1
|
Burnside M, Tang J, Baker JL, Merritt J, Kreth J. Shining Light on Oral Biofilm Fluorescence In Situ Hybridization (FISH): Probing the Accuracy of In Situ Biogeography Studies. Mol Oral Microbiol 2025. [PMID: 40304704 DOI: 10.1111/omi.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
The oral biofilm has been instrumental in advancing microbial research and enhancing our understanding of oral health and disease. Recent developments in next-generation sequencing have provided detailed insights into the microbial composition of the oral microbiome, enabling species-level analyses of biofilm interactions. Fluorescence in situ hybridization (FISH) has been especially valuable for studying the spatial organization of these microbes, revealing intricate arrangements such as "corncob" structures that highlight close bacterial interactions. As more genetic sequence data become available, the specificity and accuracy of existing FISH probes used in biogeographical studies require reevaluation. This study examines the performance of commonly used species-specific FISH probes, designed to differentiate oral microbes within in situ oral biofilms, when applied in vitro to an expanded set of bacterial strains. Our findings reveal that the specificity of several FISH probes is compromised, with cross-species hybridization being more common than previously assumed. Notably, we demonstrate that biogeographical associations within in situ oral biofilms, particularly involving Streptococcus and Corynebacterium, may need to be reassessed to align with the latest metagenomic data.
Collapse
Affiliation(s)
- Molly Burnside
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonah Tang
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonathon L Baker
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
2
|
Čačković A, Pjevac P, Orlić S, Reintjes G. Selective heterotopic bacteria can selfishly process polysaccharides in freshwater lakes. Cell Rep 2025; 44:115415. [PMID: 40215971 DOI: 10.1016/j.celrep.2025.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Polysaccharides, one of the main components of dissolved organic matter, are utilized by bacteria through three foraging enzymatic mechanisms: scavenging, sharing, and selfish. Our research aimed to identify selfish polysaccharide utilization by bacteria in freshwater ecosystems by examining spatial and seasonal variations in two lakes. The results of our fluorescently labeled substrate incubations revealed selfish activity in both lakes, with a larger proportion of the community showing selfish uptake of pullulan. The mesotrophic lake showed greater microbial diversity and ability for selfish uptake, particularly during a phytoplankton bloom. On the other hand, the oligotrophic lake had higher selfish activity during periods of increased terrestrial influence. Fluorescence in situ hybridization (FISH) staining combined with microbial diversity analysis revealed the selfish activity of phyla Bacteroidota, Planctomycetota, and Verrucomicrobiota as well as class Gammaproteobacteria, with different genera active depending on lake, season, and substrate. This research provides a basis for future interpretation of nutrient cycling in freshwater ecosystems.
Collapse
Affiliation(s)
- Andrea Čačković
- Division of Materials Chemistry, Ruder Bošković Institute, Zagreb, Croatia
| | - Petra Pjevac
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna, Vienna, Austria; Environment and Climate Hub, University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruder Bošković Institute, Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia.
| | - Greta Reintjes
- Microbial-Carbohydrate Interactions Group, Faculty 2 Biology/Chemistry, University of Bremen, Bremen, Germany.
| |
Collapse
|
3
|
Liu H, Zhang C, Zhang B, Xu W, Zhang R, Zhang L, Li Y, Han H, Cao H. Reapplication of glyphosate mitigate fitness costs for soil bacterial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124773. [PMID: 40043561 DOI: 10.1016/j.jenvman.2025.124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Glyphosate (GLP) is a globally ubiquitous herbicide that poses a threat to living organisms due to its widespread presence in soil ecosystems. However, the results of current research regarding the effects of glyphosate on soil microorganisms and its ecological risks are vague and inconsistent. In this study, we investigated the impact of single (low/high-dose) and reapplication (high-dose) of glyphosate applications on soil microbes through indoor incubation experiments using 16S rRNA gene high-throughput sequencing technology. Our findings indicate that in the short term, whether it's single or reapplication glyphosate applications, changes in diversities of soil bacterial community were less than those in community composition. Glyphosate exerts selective pressure on soil microbial communities, resulting in a predominant process of species replacement after glyphosate application, and quantitative analysis revealed a higher turnover rate of microbial communities under glyphosate reapplication. Factors related to nitrogen cycling, especially NH4+-N and NO3--N, were identified as the main drivers responsible for the changes in soil microbial community composition following glyphosate addition. Changes in the functionality of soil microbial communities are observed after glyphosate application, with the adaptability of microbial communities resulting in smaller changes with reapplication addition compared to a single application. Furthermore, We observed that glyphosate application leads to a phenomenon resembling the "fitness cost" found in resistant bacteria. When glyphosate as a single application, it has a significant impact on bacterial communities, leading to decreased community diversity, stability, and function, alongside alterations in community structure, however, the effect can be mitigated by reapplying glyphosate.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cunzhi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weidong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoling Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heming Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Wang G, Haenelt S, Corrêa FB, da Rocha UN, Musat F, Zhang J, Müller JA, Musat N. Riverine antibiotic resistome along an anthropogenic gradient. Front Microbiol 2025; 16:1516033. [PMID: 40078550 PMCID: PMC11897494 DOI: 10.3389/fmicb.2025.1516033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence in situ hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites. Our results showed higher bacterial abundance, a greater absolute and relative abundance of ARGs, and a more diverse ARG profile at the impacted sites. Overall, the ARG profiles at these sites reflected antibiotic usage in Germany, with genes conferring resistance to drug classes such as beta-lactams, aminoglycosides, folate biosynthesis inhibitors, and tetracyclines. There were also variations in the ARG profiles of the impacted sites. Notably, there was a high abundance of the oxacillin resistance gene OXA-4 at the downstream site in the river. In the metagenome assembly, this gene was associated with a contig homologous to small plasmids previously identified in members of the Thiotrichaceae. The likely in-situ host of the putative plasmid was a close relative of Thiolinea (also known as Thiothrix) eikelboomii, a prominent member of WWTP microbiomes worldwide. Our results show that the effluent from WWTPs can introduce bacteria into the environment that act as shuttle systems for clinically relevant ARG.
Collapse
Affiliation(s)
- Gangan Wang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sarah Haenelt
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florin Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Junya Zhang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jochen A. Müller
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG 5), Eggenstein-Leopoldshafen, Germany
| | - Niculina Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Rogowska-van der Molen MA, Manzano-Marín A, Postma JL, Coolen S, van Alen T, Jansen RS, Welte CU. From eggs to guts: Symbiotic association of Sodalis nezarae sp. nov. with the Southern green shield bug Nezara viridula. FEMS Microbiol Ecol 2025; 101:fiaf017. [PMID: 39938947 DOI: 10.1093/femsec/fiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/14/2025] Open
Abstract
Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts and other microbial community members in the gut or other organs have hardly been investigated. In this study, we reveal that the Southern green shield bug Nezara viridula harbours a Sodalis symbiont in several organs, with a notable prevalence in salivary glands, and anterior regions of the midgut. Removing external egg microbiota via sterilization profoundly impacted insect viability but did not disrupt the vertical transmission of Sodalis and Pantoea symbionts. Based on the dominance of Sodalis in testes, we deduce that N. viridula males could be involved in symbiont vertical transmission. Genomic analyses comparing Sodalis species revealed that Sodalis sp. Nvir shares characteristics with both free-living and obligate insect-associated Sodalis spp. Sodalis sp. Nvir also displays genome instability typical of endosymbiont lineages, which suggests ongoing speciation to an obligate endosymbiont. Together, our study reveals that shield bugs harbour unrecognized symbionts that might be paternally transmitted.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jelle L Postma
- Department of General Instrumentation, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Utrecht University, PO Box 800.56, 3508 Utrecht, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| |
Collapse
|
6
|
Fernando E, Nielsen PH, Nielsen JL. Fluorescently probing anaerobic digester sludge: Measuring single-cell anabolic activity in methanogens (Methanosarcina and Methanothermobacter) with deuterium-labeled Raman analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125231. [PMID: 39395277 DOI: 10.1016/j.saa.2024.125231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024]
Abstract
This study addresses the challenge of obtaining in situ information on substrate utilization rates for individual microbial species in complex microbial communities such as anaerobic digester sludge. To overcome this hurdle, a novel approach combining doubly-labelled deuterium, fluorescence in situ hybridization (FISH) and Raman microspectroscopy was developed. The method enables quantitative determination of anabolic heavy hydrogen incorporation into FISH-targeted, exemplified by methanogenic cells from the genera Methanosarcina and Methanothermobacter. The deuterium incorporation rates ascertained by Raman red-shifting of C-Hx vibrational region to C-Dx vibrations, quantified through Raman peak area ratios, were compared for different carbon sources. Methanosarcina exhibited highest kinetic rates with acetate and propionate, while Methanothermobacter demonstrated faster incorporation under acetate and methanol supplementation. This groundbreaking study demonstrates the feasibility of obtaining quantitative metabolic rate information at a single-cell level using deuterium, FISH probes, and Raman microspectroscopy.
Collapse
Affiliation(s)
- Eustace Fernando
- Center for Microbial Communities, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; Environmental Sustainability Laboratory, Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030. USA
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
7
|
Liu L, Chen Y, Qi J, Sun J, Zhang L. The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124283. [PMID: 39862835 DOI: 10.1016/j.jenvman.2025.124283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion. Based on XRD and XPS, Fe(Ⅱ)-O and Fe(Ⅲ)-O were substituted by Fe(Ⅱ)-S and Fe(Ⅲ)-S after ZVI sulfidation, which increased the electric conductivity of S-ZVI. Nyquist plot and Tafel corrosion curve showed that the sulfidation treatment can reduce impedance of electronic transmission. The results showed that the addition of S-ZVI increased methane production by 24.22% compared with ZVI alone. The addition of S-ZVI increased the relative abundance of Actinobacteria in R3(Raw + S-ZVI) and R6(NO2- + S-ZVI), enhancing the activity of microbial in anaerobic sludge digestion. The relative abundance of Acidobacteriota, Synergistota, WPS-2, Firmicutes, Caldisericota, and Gampylobactenota have changed markedly, and facilitated the activity of acidogenic microbes to produce more biodegradable organic matter, further boosting methane production. The findings of in-situ formation of S-ZVI in R5 anaerobic digestion saves the economic cost of S-ZVI preparation, which will be helpful for the extensive application of this technology.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun Qi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China
| | - Liguo Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
8
|
Nakajima M, Nakai R, Hirakata Y, Kubota K, Satoh H, Nobu MK, Narihiro T, Kuroda K. Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation. Int J Syst Evol Microbiol 2025; 75. [PMID: 39928396 DOI: 10.1099/ijsem.0.006668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
In the domain Bacteria, one of the largest, most diverse and environmentally ubiquitous phylogenetic groups, Candidatus Patescibacteria (also known as candidate phyla radiation/CPR), remains poorly characterized, leaving a major knowledge gap in microbial ecology. We recently discovered a novel cross-domain symbiosis between Ca. Patescibacteria and Archaea in highly purified enrichment cultures and proposed Candidatus taxa for the characterized species, including Ca. Minisyncoccus archaeophilus and the corresponding family Ca. Minisyncoccaceae. In this study, we report the isolation of this bacterium, designated strain PMX.108T, in a two-strain co-culture with a host archaeon, Methanospirillum hungatei strain DSM 864T (JF-1T), and hereby describe it as the first representative species of Ca. Patescibacteria. Strain PMX.108T was isolated from mesophilic methanogenic sludge in an anaerobic laboratory-scale bioreactor treating synthetic purified terephthalate- and dimethyl terephthalate-manufacturing wastewater. The strain could not grow axenically and is obligately anaerobic and parasitic, strictly depending on M. hungatei as a host. The genome was comparatively large (1.54 Mbp) compared to other members of the clade, lacked some genes involved in the biosynthesis pathway and encoded type IV pili-related genes associated with the parasitic lifestyle of ultrasmall microbes. The G+C content of the genomic DNA was 36.6 mol%. Here, we report the phenotypic and genomic properties of strain PMX.108T; we propose Minisyncoccus archaeiphilus gen. nov., sp. nov. to accommodate this strain. The type strain of the species is PMX.108T (=JCM 39522T). We also propose the associated family, order, class and phylum as Minisyncoccaceae fam. nov. Minisyncoccales nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. within the bacterial kingdom Bacillati.
Collapse
Affiliation(s)
- Meri Nakajima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Masaru K Nobu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
9
|
Heinze BM, Schwab VF, Trumbore SE, Schroeter SA, Xu X, Chaudhari NM, Küsel K. Old but not ancient: Rock-leached organic carbon drives groundwater microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178212. [PMID: 39721524 DOI: 10.1016/j.scitotenv.2024.178212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
More than 90% of earth's microbial biomass resides in the continental subsurface, where sedimentary rocks provide the largest source of organic carbon (C). While many studies indicate microbial utilization of fossil C sources, the extent to which rock-organic C is driving microbial activities in aquifers remains largely unknown. Here we incubated oxic and anoxic groundwater with crushed carbonate rocks from the host aquifer and an outcrop rock of the unsaturated zone characterized by higher organic C content, and compared the natural abundance of radiocarbon (14C) of available C pools and microbial biomarkers. The ancient rocks surprisingly released organic substances with up to 72.6 ± 0.3% modern C into the groundwater, suggesting leachable fresh organic material from surface transport was preserved within rock fractures. Over half of the rock-leached compounds were also found in the original groundwater dissolved organic carbon (DOC), indicating in situ release of material stored in rock fractures through weathering processes. In addition to aliphatic and aromatic hydrocarbons, rock-leachates were rich in lipids, peptides, and carbohydrates. Radiocarbon analysis of phospholipid-derived fatty acids showed a rapid microbial response to this 'younger' organic material, comprising up to 31% (anoxic) and 51% (oxic) of their biomass C from the rock-leachate after 18 days of incubation. Predictive functional profiling of rock-enriched taxa, including species of Desulfosporosinus, Ferribacterium and Rhodoferax, also suggested metabolic potential for aliphatic and aromatic hydrocarbon degradation. PLFAs of the original groundwater were highly 14C-depleted, indicating utilization of a mixture of fossil and 'younger' C sources. Our findings suggest that carbonate rocks act as temporal sink for 'younger' organic matter, that leaches with fossil hydrocarbons from sedimentary rocks, driving microbial metabolism in subsurface ecosystems.
Collapse
Affiliation(s)
- Beatrix M Heinze
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Department Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Valérie F Schwab
- Department Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Susan E Trumbore
- Department Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Department of Earth System Science, University of California, Irvine, CA, USA; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Simon A Schroeter
- Department Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Xiaomei Xu
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena_Leipzig, Germany.
| |
Collapse
|
10
|
Petersen JF, Valk LC, Verhoeven MD, Nierychlo MA, Singleton CM, Dueholm MKD, Nielsen PH. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Syst Appl Microbiol 2025; 48:126574. [PMID: 39700725 DOI: 10.1016/j.syapm.2024.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Wastewater treatment plants rely on complex microbial communities for bioconversion and removal of pollutants, but many process-critical species are still poorly investigated. One of these genera is Rhodoferax, an abundant core genus in wastewater treatment plants across the world. The genus has been associated with many metabolic traits such as iron reduction and oxidation and denitrification. We used 16S rRNA gene amplicon data to uncover the diversity and abundance of Rhodoferax species in Danish and global treatment plants. Publicly available metagenome-assembled genomes were analyzed based on phylogenomics to delineate species and assign taxonomies based on the SeqCode. The phylogenetic analysis of "Rhodoferax" revealed that species previously assigned to Rhodoferax in wastewater treatment plants should be considered as at least eight different genera, with five representing previously undescribed genera. Genome annotation showed potential for several key-bioconversions in wastewater treatment, such as nitrate reduction, carbohydrate degradation, and accumulations of various storage compounds. Iron oxidation and reduction capabilities were not predicted for abundant species. Species-resolved FISH-Raman was performed to gain an overview of the morphology and ecophysiology of selected taxa to clarify their potential role in global wastewater treatment systems. Our study provides a first insight into the functional and ecological characteristics of several novel genera abundant in global wastewater treatment plants, previously assigned to the Rhodoferax genus.
Collapse
Affiliation(s)
- Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Laura C Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Maarten D Verhoeven
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta A Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin M Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Agudelo J, Chen X, Mukherjee SD, Nguyen JK, Bruggeman LA, Miller AW. Cefazolin shifts the kidney microbiota to promote a lithogenic environment. Nat Commun 2024; 15:10509. [PMID: 39663374 PMCID: PMC11634958 DOI: 10.1038/s41467-024-54432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Clinical studies of the urinary tract microbiome, termed urobiome, suggest a direct, antibiotic-dependent, impact of the urobiome on kidney physiology. However, evidence for kidney bacteria comes from indirect sources or infected tissue. Further, it is unclear how antibiotics impact kidney bacteria. Here we show direct evidence for the presence of bacteria in the kidneys, with microniches in nephrons. In murine kidneys, administration of cefazolin, a commonly used perioperative antibiotic, led to a loss of uroprotective Lactobacillus spp. and proliferation of Enterobacteriaceae (which includes many known uropathogens). This effect was dependent on treatment duration, with recovery post treatment. Uroprotective L. crispatus and a strain of stone-associated E. coli differentially influenced calcium oxalate (CaOx) crystallization through the incorporation of CaOx inhibitors or promoters, respectively. In humans, microbial signatures were identified in the kidney, with unique niches between the glomeruli and tubules, established through RNA sequencing analysis and direct imaging of two independent populations. Collectively, findings support the hypothesis that the kidneys harbor a stable and antibiotic-responsive microbiota that can influence CaOx lithogenesis. The presence of unique, age-dependent microbial signatures in the glomeruli and tubuli carry implications for non-infectious kidney diseases.
Collapse
Affiliation(s)
- Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, USA.
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leslie A Bruggeman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Pereira FC, Ge X, Kristensen JM, Kirkegaard RH, Maritsch K, Szamosvári D, Imminger S, Seki D, Shazzad JB, Zhu Y, Decorte M, Hausmann B, Berry D, Wasmund K, Schintlmeister A, Böttcher T, Cheng JX, Wagner M. The Parkinson's disease drug entacapone disrupts gut microbiome homoeostasis via iron sequestration. Nat Microbiol 2024; 9:3165-3183. [PMID: 39572788 PMCID: PMC11602724 DOI: 10.1038/s41564-024-01853-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, the mechanisms underlying these effects are not well known. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed drugs on the gut microbiome. Physiologically relevant concentrations of entacapone, a treatment for Parkinson's disease, or loxapine succinate, used to treat schizophrenia, were incubated ex vivo with human faecal samples. Both drugs significantly impact microbial activity, more so than microbial abundance. Mechanistically, entacapone can complex and deplete available iron resulting in gut microbiome composition and function changes. Microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Further, entacapone-induced iron starvation selected for iron-scavenging gut microbiome members encoding antimicrobial resistance and virulence genes. These findings reveal the impact of two under-investigated drugs on whole microbiomes and identify metal sequestration as a mechanism of drug-induced microbiome disturbance.
Collapse
Affiliation(s)
- Fátima C Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
- School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jannie M Kristensen
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Rasmus H Kirkegaard
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Klara Maritsch
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dávid Szamosvári
- Department of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Stefanie Imminger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - David Seki
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Marie Decorte
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Department of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kenneth Wasmund
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Department of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA, USA.
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
13
|
Rakitin AL, Kulichevskaya IS, Beletsky AV, Mardanov AV, Dedysh SN, Ravin NV. Verrucomicrobia of the Family Chthoniobacteraceae Participate in Xylan Degradation in Boreal Peat Soils. Microorganisms 2024; 12:2271. [PMID: 39597660 PMCID: PMC11596606 DOI: 10.3390/microorganisms12112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The phylum Verrucomicrobiota is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of Verrucomicrobiota in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type hemicelluloses represent one of the most actively decomposed peat constituents. The aim of this work was to characterize the microorganisms capable of hydrolyzing xylan under the anoxic conditions typical of peatland soils. The laboratory incubation of peat samples with xylan resulted in the pronounced enrichment of several phylotypes affiliated with the Verrucomicrobiota, Firmicutes, and Alphaproteobacteria. Sequencing of the metagenome of the enrichment culture allowed us to recover high-quality metagenome-assembled genomes (MAGs) assigned to the genera Caproiciproducens, Clostridium, Bacillus (Firmicutes), and Rhizomicrobium (Alphaproteobacteria), Cellulomonas (Actinobacteriota) and the uncultured genus-level lineage of the family Chthoniobacteraceae (Verrucomicrobiota). The latter bacterium, designated "Candidatus Chthoniomicrobium xylanophilum" SH-KS-3, dominated in the metagenome and its MAG was assembled as a complete closed chromosome. An analysis of the SH-KS-3 genome revealed potential endo-1,4-beta-xylanases, as well as xylan beta-1,4-xylosidases and other enzymes involved in xylan utilization. A genome analysis revealed the absence of aerobic respiration and predicted chemoheterotrophic metabolism with the capacity to utilize various carbohydrates, including cellulose, and to perform fermentation or nitrate reduction. An analysis of other MAGs suggested that Clostridium and Rhizomicrobium could play the role of primary xylan degraders while other community members probably took advantage of the availability of xylo-oligosaccharides and xylose or utilized low molecular weight organics.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Irina S. Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia (S.N.D.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia (S.N.D.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
14
|
Vohsen SA, Gruber-Vodicka HR, Herrera S, Dubilier N, Fisher CR, Baums IB. Discovery of deep-sea coral symbionts from a novel clade of marine bacteria with severely reduced genomes. Nat Commun 2024; 15:9508. [PMID: 39496625 PMCID: PMC11535214 DOI: 10.1038/s41467-024-53855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes perform critical functions in corals, yet most knowledge is derived from the photic zone. Here, we discover two mollicutes that dominate the microbiome of the deep-sea octocoral, Callogorgia delta, and likely reside in the mesoglea. These symbionts are abundant across the host's range, absent in the water, and appear to be rare in sediments. Unlike other mollicutes, they lack all known fermentative capabilities, including glycolysis, and can only generate energy from arginine provided by the coral host. Their genomes feature several mechanisms to interact with foreign DNA, including extensive CRISPR arrays and restriction-modification systems, which may indicate their role in symbiosis. We propose the novel family Oceanoplasmataceae which includes these symbionts and others associated with five marine invertebrate phyla. Its exceptionally broad host range suggests that the diversity of this enigmatic family remains largely undiscovered. Oceanoplasmataceae genomes are the most highly reduced among mollicutes, providing new insight into their reductive evolution and the roles of coral symbionts.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biology, The Pennsylvania State University, State College, PA, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Harald R Gruber-Vodicka
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
- Zoological Institute, Christian-Albrecht University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
| | - Charles R Fisher
- Department of Biology, The Pennsylvania State University, State College, PA, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, State College, PA, USA.
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Bremen, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
| |
Collapse
|
15
|
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 2024; 54:661-674. [PMID: 38992783 DOI: 10.1016/j.ijpara.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
Collapse
Affiliation(s)
- Pavel B Klimov
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
| | - Jan Hubert
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia
| | - Tomas Erban
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia
| | - M Alejandra Perotti
- University of Reading, Ecology and Evolutionary Biology Section, School of Biological Sciences, Reading RG6 6AS, United Kingdom
| | - Henk R Braig
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, J5400 DNQ, Argentina
| | - Alex Flynt
- University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS, USA
| | - Qixin He
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA.
| | - Yubao Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.Wuxi, PR Chin.
| |
Collapse
|
16
|
Fujii N, Kuroda K, Narihiro T, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70007. [PMID: 39267333 PMCID: PMC11393006 DOI: 10.1111/1758-2229.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Candidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class-level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1-5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capacity, their precise roles remain elusive due to the difficulty in cultivating and identifying them. In previous research, we successfully recovered high-quality metagenome-assembled genomes (MAGs), including a member of JAEDAM01 from activated sludge flocs. In this study, we designed new probes to visualize the targeted JAEDAM01-associated MAG HHAS10 and identified its host using fluorescence in situ hybridization (FISH). The FISH observations revealed that JAEDAM01 HHAS10-like cells were located within dense clusters of Zoogloea, and the fluorescence brightness of zoogloeal cells decreased in the vicinity of the CPR cells. The Zoogloea MAGs possessed genes related to extracellular polymeric substance biosynthesis, floc formation and nutrient removal, including a polyhydroxyalkanoate (PHA) accumulation pathway. The JAEDAM01 MAG HHAS10 possessed genes associated with type IV pili, competence protein EC and PHA degradation, suggesting a Zoogloea-dependent lifestyle in activated sludge flocs. These findings indicate a new symbiotic relationship between JAEDAM01 and Zoogloea.
Collapse
Affiliation(s)
- Naoki Fujii
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
18
|
Xiang Q, Stryhanyuk H, Schmidt M, Kümmel S, Richnow HH, Zhu YG, Cui L, Musat N. Stable isotopes and nanoSIMS single-cell imaging reveals soil plastisphere colonizers able to assimilate sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124197. [PMID: 38782163 DOI: 10.1016/j.envpol.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.
Collapse
Affiliation(s)
- Qian Xiang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Niculina Musat
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Páez-Watson T, Tomás-Martínez S, de Wit R, Keisham S, Tateno H, van Loosdrecht MCM, Lin Y. Sweet Secrets: Exploring Novel Glycans and Glycoconjugates in the Extracellular Polymeric Substances of " Candidatus Accumulibacter". ACS ES&T WATER 2024; 4:3391-3399. [PMID: 39144681 PMCID: PMC11320575 DOI: 10.1021/acsestwater.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Biological wastewater treatment relies on microorganisms that grow as flocs, biofilms, or granules for efficient separation of biomass from cleaned water. This biofilm structure emerges from the interactions between microbes that produce, and are embedded in, extracellular polymeric substances (EPS). The true composition and structure of the EPS responsible for dense biofilm formation are still obscure. We conducted a bottom-up approach utilizing advanced glycomic techniques to explore the glycan diversity in the EPS from a highly enriched "Candidatus Accumulibacter" granular sludge. Rare novel sugar monomers such as N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha) were identified to be present in the EPS of both enrichments. Further, a high diversity in the glycoprotein structures of said EPS was identified by means of lectin based microarrays. We explored the genetic potential of "Ca. Accumulibacter" high quality metagenome assembled genomes (MAGs) to showcase the shortcoming of top-down bioinformatics based approaches at predicting EPS composition and structure, especially when dealing with glycans and glycoconjugates. This work suggests that more bottom-up research is necessary to understand the composition and complex structure of EPS in biofilms since genome based inference cannot directly predict glycan structures and glycoconjugate diversity.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sergio Tomás-Martínez
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Roeland de Wit
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
20
|
Krukenberg V, Kohtz AJ, Jay ZJ, Hatzenpichler R. Methyl-reducing methanogenesis by a thermophilic culture of Korarchaeia. Nature 2024; 632:1131-1136. [PMID: 39048017 DOI: 10.1038/s41586-024-07829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Methanogenesis mediated by archaea is the main source of methane, a strong greenhouse gas, and thus is critical for understanding Earth's climate dynamics. Recently, genes encoding diverse methanogenesis pathways have been discovered in metagenome-assembled genomes affiliated with several archaeal phyla1-7. However, all experimental studies on methanogens are at present restricted to cultured representatives of the Euryarchaeota. Here we show methanogenic growth by a member of the lineage Korarchaeia within the phylum Thermoproteota (TACK superphylum)5-7. Following enrichment cultivation of 'Candidatus Methanodesulfokora washburnenis' strain LCB3, we used measurements of metabolic activity and isotope tracer conversion to demonstrate methanol reduction to methane using hydrogen as an electron donor. Analysis of the archaeon's circular genome and transcriptome revealed unique modifications in the energy conservation pathways linked to methanogenesis, including enzyme complexes involved in hydrogen and sulfur metabolism. The cultivation and characterization of this new group of archaea is critical for a deeper evaluation of the diversity, physiology and biochemistry of methanogens.
Collapse
Affiliation(s)
- Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
21
|
Horasan Sagbasan B, Williams CM, Bell L, Barfoot KL, Poveda C, Walton GE. Inulin and Freeze-Dried Blueberry Intervention Lead to Changes in the Microbiota and Metabolites within In Vitro Studies and in Cognitive Function within a Small Pilot Trial on Healthy Children. Microorganisms 2024; 12:1501. [PMID: 39065269 PMCID: PMC11279127 DOI: 10.3390/microorganisms12071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The relationship between the gut microbiota and cognitive health is complex and bidirectional, being significantly impacted by our diet. Evidence indicates that polyphenols and inulin can impact cognitive function via various mechanisms, one of which is the gut microbiota. In this study, effects of a wild blueberry treatment (WBB) and enriched chicory inulin powder were investigated both in vitro and in vivo. Gut microbiota composition and metabolites, including neurotransmitters, were assessed upon faecal microbial fermentation of WBB and inulin in a gut model system. Secondly, microbiota changes and cognitive function were assessed in children within a small pilot (n = 13) trial comparing WBB, inulin, and a maltodextrin placebo, via a series of tests measuring executive function and memory function, with faecal sampling at baseline, 4 weeks post-intervention and after a 4 week washout period. Both WBB and inulin led to microbial changes and increases in levels of short chain fatty acids in vitro. In vivo significant improvements in executive function and memory were observed following inulin and WBB consumption as compared to placebo. Cognitive benefits were accompanied by significant increases in Faecalibacterium prausnitzii in the inulin group, while in the WBB group, Bacteroidetes significantly increased and Firmicutes significantly decreased (p < 0.05). As such, WBB and inulin both impact the microbiota and may impact cognitive function via different gut-related or other mechanisms. This study highlights the important influence of diet on cognitive function that could, in part, be mediated by the gut microbiota.
Collapse
Affiliation(s)
- Buket Horasan Sagbasan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Claire M Williams
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Lynne Bell
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Katie L Barfoot
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
22
|
Li J, Tang L, Zhang Y, Gao M, Wang S, Wang X. Hydrodynamic cultivation of aeration-free oxygenic photogranules is favored by sufficient amounts of organic carbon. BIORESOURCE TECHNOLOGY 2024; 401:130736. [PMID: 38670289 DOI: 10.1016/j.biortech.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.
Collapse
Affiliation(s)
- Junrong Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liaofan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuqing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
23
|
Romera‐Castillo C, Birnstiel S, Sebastián M. Diversity of marine bacteria growing on leachates from virgin and weathered plastic: Insights into potential degraders. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13305. [PMID: 38923399 PMCID: PMC11194452 DOI: 10.1111/1758-2229.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Plastic debris in the ocean releases chemical compounds that can be toxic to marine fauna. It was recently found that some marine bacteria can degrade such leachates, but information on the diversity of these bacteria is mostly lacking. In this study, we analysed the bacterial diversity growing on leachates from new low-density polyethylene (LDPE) and a mix of naturally weathered plastic, collected from beach sand. We used a combination of Catalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH), BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT), and 16S rRNA gene amplicon sequencing to analyse bacterioplankton-groups specific activity responses and the identity of the responsive taxa to plastic leachates produced under irradiated and non-irradiated conditions. We found that some generalist taxa responded to all leachates, most of them belonging to the Alteromonadales, Oceanospirillales, Nitrosococcales, Rhodobacterales, and Sphingomonadales orders. However, there were also non-generalist taxa responding to specific irradiated and non-irradiated leachates. Our results provide information about bacterial taxa that could be potentially used to degrade the chemicals released during plastic degradation into seawater contributing to its bioremediation.
Collapse
|
24
|
Arthofer P, Panhölzl F, Delafont V, Hay A, Reipert S, Cyran N, Wienkoop S, Willemsen A, Sifaoui I, Arberas-Jiménez I, Schulz F, Lorenzo-Morales J, Horn M. A giant virus infecting the amoeboflagellate Naegleria. Nat Commun 2024; 15:3307. [PMID: 38658525 PMCID: PMC11043551 DOI: 10.1038/s41467-024-47308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.
Collapse
Affiliation(s)
- Patrick Arthofer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Florian Panhölzl
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Alban Hay
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Siegfried Reipert
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Norbert Cyran
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology, Vienna, Austria
| | - Anouk Willemsen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| |
Collapse
|
25
|
Gómez F, Rodríguez N, Rodríguez-Manfredi JA, Escudero C, Carrasco-Ropero I, Martínez JM, Ferrari M, De Angelis S, Frigeri A, Fernández-Sampedro M, Amils R. Association of Acidotolerant Cyanobacteria to Microbial Mats below pH 1 in Acidic Mineral Precipitates in Río Tinto River in Spain. Microorganisms 2024; 12:829. [PMID: 38674771 PMCID: PMC11052175 DOI: 10.3390/microorganisms12040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining the extremely low pH and the high concentration of heavy metals, while maintaining a high level of microbial diversity. These multi-layered mineral deposits are stable all year round and are characterized by a succession of thick greenish-blue and brownish layers mainly composed of natrojarosite. The temperature and absorbance above and below the mineral precipitates were followed and stable conditions were detected inside the mineral precipitates. Different methodologies, scanning and transmission electron microscopy, immunological detection, fluorescence in situ hybridization, and metagenomic analysis were used to describe the biodiversity existing in these microbial mats, demonstrating, for the first time, the existence of acid-tolerant cyanobacteria in a hyperacidic environment of below pH 1. Up to 0.46% of the classified sequences belong to cyanobacterial microorganisms, and 1.47% of the aligned DNA reads belong to the Cyanobacteria clade.
Collapse
Affiliation(s)
- Felipe Gómez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | - Cristina Escudero
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | - José M. Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Marco Ferrari
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Simone De Angelis
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alessandro Frigeri
- Istituto di Astrofisica e Planetologia Spaziali (INAF), via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Maite Fernández-Sampedro
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Kendlbacher V, Winter TMR, Bright M. Zoothamnium mariella sp. nov., a marine, colonial ciliate with an atypcial growth pattern, and its ectosymbiont Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. PLoS One 2024; 19:e0300758. [PMID: 38557976 PMCID: PMC10984469 DOI: 10.1371/journal.pone.0300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 ¼ turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.
Collapse
Affiliation(s)
- Vincent Kendlbacher
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Monika Bright
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Sharma A, Taubert M, Pérez-Carrascal OM, Lehmann R, Ritschel T, Totsche KU, Lazar CS, Küsel K. Iron coatings on carbonate rocks shape the attached bacterial aquifer community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170384. [PMID: 38281639 DOI: 10.1016/j.scitotenv.2024.170384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Most studies of groundwater ecosystems target planktonic microbes, which are easily obtained via water samples. In contrast, little is known about the diversity and function of microbes adhering to rock surfaces, particularly to consolidated rocks. To investigate microbial attachment to rock surfaces, we incubated rock chips from fractured aquifers in limestone-mudstone alternations in bioreactors fed with groundwater from two wells representing oxic and anoxic conditions. Half of the chips were coated with iron oxides, representing common secondary mineralization in fractured rock. Our time-series analysis showed bacteria colonizing the chips within two days, reaching cell numbers up to 4.16 × 105 cells/mm2 after 44 days. Scanning electron microscopy analyses revealed extensive colonization but no multi-layered biofilms, with chips from oxic bioreactors more densely colonized than from anoxic ones. Estimated attached-to-planktonic cell ratios yielded values of up to 106: 1 and 103: 1, for oxic and anoxic aquifers, respectively. We identified distinct attached and planktonic communities with an overlap between 17 % and 42 %. Oxic bioreactors were dominated by proteobacterial genera Aquabacterium and Rhodoferax, while Rheinheimera and Simplicispira were the key players of anoxic bioreactors. Motility, attachment, and biofilm formation traits were predicted in major genera based on groundwater metagenome-assembled genomes and reference genomes. Early rock colonizers appeared to be facultative autotrophs, capable of fixing CO2 to synthesize biomass and a biofilm matrix. Late colonizers were predicted to possess biofilm degrading enzymes such as beta-glucosidase, beta-galactosidase, amylases. Fe-coated chips of both bioreactors featured more potential iron reducers and oxidizers than bare rock chips. As secondary minerals can also serve as energy source, they might favor primary production and thus contribute to subsurface ecosystem services like carbon fixation. Since most subsurface microbes seem to be attached, their contribution to ecosystem services should be considered in future studies.
Collapse
Affiliation(s)
- Alisha Sharma
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany
| | - Olga M Pérez-Carrascal
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Thomas Ritschel
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Cassandre S Lazar
- Department of Biological Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany; German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| |
Collapse
|
28
|
Bermudez C, Yao H, Widaningrum, Williams BA, Flanagan BM, Gidley MJ, Mikkelsen D. Biomass attachment and microbiota shifts during porcine faecal in vitro fermentation of almond and macadamia nuts differing in particle sizes. Food Funct 2024; 15:2406-2421. [PMID: 38265095 DOI: 10.1039/d3fo03612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nuts are highly nutritious and good sources of dietary fibre, when consumed as part of a healthy human diet. Upon consumption, nut particles of various sizes containing lipids entrapped by the plant cell walls enter the large intestine where they are fermented by the resident microbiota. This study investigated the microbial community shifts during in vitro fermentation of almond and macadamia substrates, of two particle sizes including fine particles (F = 250-500 μm) and cell clusters (CC = 710-1000 μm). The aim was to determine how particle size and biomass attachment altered the microbiota. Over the 48 h fermentation duration, short chain fatty acid concentrations increased due to particle size rather than nut type (almond or macadamia). However, nut type did change microbial population dynamics by stimulating specific genera. Tyzzerella, p253418B5 gut group, Lachnospiraceae UCG001, Geotrichum, Enterococcus, Amnipila and Acetitomaculum genera were unique for almonds. For macadamia, three unique genera including Prevotellaceae UCG004, Candidatus Methanomethylophilus and Alistipes were noted. Distinct shifts in the attached microbial biomass were noted due to nut particle size. Bacterial attachment to nut particles was visualised in situ during fermentation, revealing a decrease in lipids and an increase in attached bacteria over time. This interaction may be a pre-requisite for lipid breakdown during nut particle disappearance. Overall, this study provides insights into how nut fermentation alters the gut microbiota and the possible role that gut microbes have in lipid degradation.
Collapse
Affiliation(s)
- Cindy Bermudez
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Hong Yao
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Widaningrum
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Soekarno Integrated Science Center, Bogor, Indonesia
| | - Barbara A Williams
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Bernadine M Flanagan
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Deirdre Mikkelsen
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
29
|
Duan J, Kitamura K, Tsukamoto H, Van Phan H, Oba K, Hori T, Fujiwara T, Terada A. Enhanced granulation of activated sludge in an airlift reactor for organic carbon removal and ammonia retention from industrial fermentation wastewater: A comparative study. WATER RESEARCH 2024; 251:121091. [PMID: 38244299 DOI: 10.1016/j.watres.2023.121091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
Ammonia retention and recovery from high-nitrogenous wastewater are new concepts being used for nitrogen management. A microaerophilic activated sludge system was developed to convert organic nitrogen into ammonia and retain it for its recovery; however, the settleability of activated sludge remains a challenge. Therefore, this study proposed an aerobic granular sludge system as a potential solution. Two types of sequencing batch reactors-airlift and upflow reactors-were operated to investigate the feasibility of fast granule formation, the performance of organic carbon removal and ammonia retention, and the dynamics of microbial community composition. The operation fed with industrial fermentation wastewater demonstrated that the airlift reactor ensured a more rapid granule formation than the upflow reactor because of the high shear force, and it maintained a superior ammonia retention stability of approximately 85 %. Throughout the operational period, changes in hydraulic retention time (HRT), settling time, and exchange ratio altered the granular particle sizes and microbial community compositions. Rhodocyclaceae were replaced with Comamonadaceae, Methylophilaceae, Xanthomonadaceae, and Chitinophagaceae as core taxa instrumental in granulation, likely because of their extracellular polymeric substance secretion. As the granulation process progressed, a significant decrease in the relative abundances of nitrifying bacteria-Nitrospiraceae and Nitrosomonadaceae-was observed. The reduction of settling time and HRT enhanced granulation and inhibited the activity of nitrifying bacteria. The success in granulation for ammonia conversion and retention in this study accelerates the paradigm shift from ammonia removal to ammonia recovery from industrial fermentation wastewater.
Collapse
Affiliation(s)
- Jingyu Duan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Kotaro Kitamura
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hiroki Tsukamoto
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hop Van Phan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Kohei Oba
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Taku Fujiwara
- Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan.
| |
Collapse
|
30
|
Ouboter HT, Mesman R, Sleutels T, Postma J, Wissink M, Jetten MSM, Ter Heijne A, Berben T, Welte CU. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat Commun 2024; 15:1477. [PMID: 38368447 PMCID: PMC10874420 DOI: 10.1038/s41467-024-45758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.
Collapse
Affiliation(s)
- Heleen T Ouboter
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Jelle Postma
- Department of General Instrumentation, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Martijn Wissink
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Brown S, Lloyd CC, Giljan G, Ghobrial S, Amann R, Arnosti C. Pulsed inputs of high molecular weight organic matter shift the mechanisms of substrate utilisation in marine bacterial communities. Environ Microbiol 2024; 26:e16580. [PMID: 38254313 DOI: 10.1111/1462-2920.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Heterotrophic bacteria hydrolyze high molecular weight (HMW) organic matter extracellularly prior to uptake, resulting in diffusive loss of hydrolysis products. An alternative 'selfish' uptake mechanism that minimises this loss has recently been found to be common in the ocean. We investigated how HMW organic matter addition affects these two processing mechanisms in surface and bottom waters at three stations in the North Atlantic Ocean. A pulse of HMW organic matter increased cell numbers, as well as the rate and spectrum of extracellular enzymatic activities at both depths. The effects on selfish uptake were more differentiated: in Gulf Stream surface waters and productive surface waters south of Newfoundland, selfish uptake of structurally simple polysaccharides increased upon HMW organic matter addition. The number of selfish bacteria taking up structurally complex polysaccharides, however, was largely unchanged. In contrast, in the oligotrophic North Atlantic gyre, despite high external hydrolysis rates, the number of selfish bacteria was unchanged, irrespective of polysaccharide structure. In deep bottom waters (> 4000 m), structurally complex substrates were processed only by selfish bacteria. Mechanisms of substrate processing-and the extent to which hydrolysis products are released to the external environment-depend on substrate structural complexity and the resident bacterial community.
Collapse
Affiliation(s)
- Sarah Brown
- Environment, Ecology, and Energy Program, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - C Chad Lloyd
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Greta Giljan
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sherif Ghobrial
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
32
|
Kennedy JM, De Silva A, Walton GE, Poveda C, Gibson GR. Comparison of prebiotic candidates in ulcerative colitis using an in vitro fermentation model. J Appl Microbiol 2024; 135:lxae034. [PMID: 38337173 DOI: 10.1093/jambio/lxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS This study explored the effect of three different prebiotics, the human milk oligosaccharide 2'-fucosyllactose (2'-FL), an oligofructose-enriched inulin (fructo-oligosaccharide, or FOS), and a galacto-oligosaccaride (GOS) mixture, on the faecal microbiota from patients with ulcerative colitis (UC) using in vitro batch culture fermentation models. Changes in bacterial groups and short-chain fatty acid (SCFA) production were compared. METHODS AND RESULTS In vitro pH controlled batch culture fermentation was carried out over 48 h on samples from three healthy controls and three patients with active UC. Four vessels were run, one negative control and one for each of the prebiotic substrates. Bacterial enumeration was carried out using fluorescence in situ hybridization with flow cytometry. SCFA quantification was performed using gas chromatography mass spectrometry. All substrates had a positive effect on the gut microbiota and led to significant increases in total SCFA and propionate concentrations at 48 h. 2'-FL was the only substrate to significantly increase acetate and led to the greatest increase in total SCFA concentration at 48 h. 2'-FL best suppressed Desulfovibrio spp., a pathogen associated with UC. CONCLUSIONS 2'FL, FOS, and GOS all significantly improved the gut microbiota in this in vitro study and also led to increased SCFA.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
- Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, United Kingdom
| | - Aminda De Silva
- Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, United Kingdom
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, United Kingdom
| |
Collapse
|
33
|
Chen LM, Beck P, van Ede J, Pronk M, van Loosdrecht MCM, Lin Y. Anionic extracellular polymeric substances extracted from seawater-adapted aerobic granular sludge. Appl Microbiol Biotechnol 2024; 108:144. [PMID: 38231410 DOI: 10.1007/s00253-023-12954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Le Min Chen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Paula Beck
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Jitske van Ede
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800, AL, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
34
|
Coolen S, Rogowska-van der Molen MA, Kwakernaak I, van Pelt JA, Postma JL, van Alen T, Jansen RS, Welte CU. Microbiota of pest insect Nezara viridula mediate detoxification and plant defense repression. THE ISME JOURNAL 2024; 18:wrae097. [PMID: 38836495 PMCID: PMC11195473 DOI: 10.1093/ismejo/wrae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associated microbiota and its effect on host-plant interactions. We discovered that N. viridula hosts both vertically and horizontally transmitted microbiota throughout different developmental stages and their salivary glands harbor a thriving microbial community that is transmitted to the plant while feeding. The N. viridula microbiota was shown to aid its host with the detoxification of a plant metabolite, namely 3-nitropropionic acid, and repression of host plant defenses. Our results demonstrate that the N. viridula-associated microbiota plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ineke Kwakernaak
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Johan A van Pelt
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jelle L Postma
- Department of General Instrumentation, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
35
|
Wu M, Liu X, Engelberts JP, Tyson GW, McIlroy SJ, Guo J. Anaerobic oxidation of ammonium and short-chain gaseous alkanes coupled to nitrate reduction by a bacterial consortium. THE ISME JOURNAL 2024; 18:wrae063. [PMID: 38624180 PMCID: PMC11090206 DOI: 10.1093/ismejo/wrae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The bacterial species "Candidatus Alkanivorans nitratireducens" was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) in response to nitrite accumulation. The regulation of this switch or the nature of potential syntrophic partnerships with other microorganisms remains unclear. Here, we describe anaerobic multispecies cultures of bacteria that couple the oxidation of propane and butane to nitrate reduction and the oxidation of ammonium (anammox). Batch tests with 15N-isotope labelling and multi-omic analyses collectively supported a syntrophic partnership between "Ca. A. nitratireducens" and anammox bacteria, with the former species mediating nitrate-driven oxidation of SCGAs, supplying the latter with nitrite for the oxidation of ammonium. The elimination of nitrite accumulation by the anammox substantially increased SCGA and nitrate consumption rates, whereas it suppressed DNRA. Removing ammonium supply led to its eventual production, the accumulation of nitrite, and the upregulation of DNRA gene expression for the abundant "Ca. A. nitratireducens". Increasing the supply of SCGA had a similar effect in promoting DNRA. Our results suggest that "Ca. A. nitratireducens" switches to DNRA to alleviate oxidative stress caused by nitrite accumulation, giving further insight into adaptability and ecology of this microorganism. Our findings also have important implications for the understanding of the fate of nitrogen and SCGAs in anaerobic environments.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xiawei Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - J Pamela Engelberts
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
36
|
Rizzo C, Arcadi E, Calogero R, Ciro Rappazzo A, Caruso G, Maimone G, Lo Giudice A, Romeo T, Andaloro F. Deciphering the evolvement of microbial communities from hydrothermal vent sediments in a global change perspective. ENVIRONMENTAL RESEARCH 2024; 240:117514. [PMID: 37890823 DOI: 10.1016/j.envres.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Microbial communities first respond to changes of external environmental conditions. Observing the microbial responses to environmental changes in terms of taxonomic and functional biodiversity is therefore of great interest, particularly in extreme environments, where the already extreme conditions can become even harsher. In this study, sediment samples from three different shallow hydrothermal vents in Levante Bay (Vulcano Island, Aeolian Islands, Italy) were used to set up microcosm experiments with the aim to explore the microbial dynamics under changing conditions of pH and redox potential over a 90-days period. The leading hypothesis was to establish under microcosm conditions whether the starting microbial communities of the sediments evolved differently depending on their origin. To profile the dynamics of microbial populations over time, biodiversity, enzymatic profile, total cell abundance estimations, total/respiring cell ratio were estimated by using different approaches. An evident change in the microbial community structure was observed, mainly in the microcosm containing the sediment from the most acidified site, which was characterized by a highly diversified microbial community (in prevalence composed of Thermotoga, Desulfobacterota, Planctomycetota, Synergistota and Deferribacterota). An increase in microbial resistant forms (e.g., spore-forming species) with anaerobic metabolism was detected in all experimental conditions. Differential physiological responses characterized the sedimentary microbial communities. Proteolytic activity appeared to be stimulated under microcosm conditions, whereas the alkaline phosphatase activity was significantly depressed at low pH values, like those that were measured at the station showing intermediate pH-conditions. The results confirmed a differential response of microbial communities depending on the starting environmental conditions.
Collapse
Affiliation(s)
- Carmen Rizzo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn-, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy.
| | - Erika Arcadi
- StazioneZoologica Anton Dohrn, Sicily Marine Centre, Department of Biology and Evolution of Marine Organisms, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy.
| | - Rosario Calogero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy; Campus Scientifico, Ca' Foscari University of Venice, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167, Messina, Italy; National Institute for Environmental Protection and Research, Via Dei Mille 46, 98057, Milazzo, Italy
| | - Franco Andaloro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo, 4521 Palermo, Italy
| |
Collapse
|
37
|
Man DKW, Hermans SM, Taubert M, Garcia SL, Hengoju S, Küsel K, Rosenbaum MA. Enrichment of different taxa of the enigmatic candidate phyla radiation bacteria using a novel picolitre droplet technique. ISME COMMUNICATIONS 2024; 4:ycae080. [PMID: 38946848 PMCID: PMC11214157 DOI: 10.1093/ismeco/ycae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The candidate phyla radiation (CPR) represents a distinct monophyletic clade and constitutes a major portion of the tree of life. Extensive efforts have focused on deciphering the functional diversity of its members, primarily using sequencing-based techniques. However, cultivation success remains scarce, presenting a significant challenge, particularly in CPR-dominated groundwater microbiomes characterized by low biomass. Here, we employ an advanced high-throughput droplet microfluidics technique to enrich CPR taxa from groundwater. Utilizing a low-volume filtration approach, we successfully harvested a microbiome resembling the original groundwater microbial community. We assessed CPR enrichment in droplet and aqueous bulk cultivation for 30 days using a novel CPR-specific primer to rapidly track the CPR fraction through the cultivation attempts. The combination of soil extract and microbial-derived necromass provided the most supportive conditions for CPR enrichment. Employing these supplemented conditions, droplet cultivation proved superior to bulk cultivation, resulting in up to a 13-fold CPR enrichment compared to a 1- to 2-fold increase in bulk cultivation. Amplicon sequencing revealed 10 significantly enriched CPR orders. The highest enrichment in CPRs was observed for some unknown members of the Parcubacteria order, Cand. Jorgensenbacteria, and unclassified UBA9983. Furthermore, we identified co-enriched putative host taxa, which may guide more targeted CPR isolation approaches in subsequent investigations.
Collapse
Affiliation(s)
- DeDe Kwun Wai Man
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
| | - Syrie M Hermans
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Food Science and Microbiology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, 1142 Auckland, New Zealand
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Taubert
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sundar Hengoju
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Kirsten Küsel
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
38
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Riva A, Rasoulimehrabani H, Cruz-Rubio JM, Schnorr SL, von Baeckmann C, Inan D, Nikolov G, Herbold CW, Hausmann B, Pjevac P, Schintlmeister A, Spittler A, Palatinszky M, Kadunic A, Hieger N, Del Favero G, von Bergen M, Jehmlich N, Watzka M, Lee KS, Wiesenbauer J, Khadem S, Viernstein H, Stocker R, Wagner M, Kaiser C, Richter A, Kleitz F, Berry D. Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nat Commun 2023; 14:8210. [PMID: 38097563 PMCID: PMC10721620 DOI: 10.1038/s41467-023-43448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.
Collapse
Affiliation(s)
- Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hamid Rasoulimehrabani
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - José Manuel Cruz-Rubio
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cornelia von Baeckmann
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Deniz Inan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Márton Palatinszky
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Aida Kadunic
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Norbert Hieger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Julia Wiesenbauer
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Sanaz Khadem
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Elahinik A, Li L, Pabst M, Abbas B, Xevgenos D, van Loosdrecht MCM, Pronk M. Aerobic granular sludge phosphate removal using glucose. WATER RESEARCH 2023; 247:120776. [PMID: 37898002 DOI: 10.1016/j.watres.2023.120776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly‑hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.
Collapse
Affiliation(s)
- Ali Elahinik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands.
| | - Linghang Li
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Dimitrios Xevgenos
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands; Royal HaskoningDHV, Laan 1914 no 35, Amersfoort 3800AL, the Netherlands
| |
Collapse
|
41
|
Deng ZC, Yang JC, Huang YX, Zhao L, Zheng J, Xu QB, Guan L, Sun LH. Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2877-2895. [PMID: 37480471 DOI: 10.1007/s11427-022-2320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 07/24/2023]
Abstract
Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle. Microbial profiling analysis revealed that heat stress shifted the bacterial community in the cecum and eWAT but not in the inguinal white adipose tissue, blood, heart, liver, spleen, or muscle. Notably, gut-vascular barrier function was impaired, and the levels of some bacteria, particularly Lactobacillus, were higher in the eWAT, as confirmed by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) staining when mice were under heat stress. Moreover, integrated multi-omics analysis showed that the eWAT microbiota was associated with host lipid metabolism, and the expression of genes involved in the lipid metabolism in eWAT was upregulated under heat stress. A follow-up microbial supplementation study after introducing Lactobacillus plantarum to heat-stressed mice revealed that the probiotic ameliorated heat stress-induced loss of eWAT and dyslipidemia and reduced gut bacterial translocation to the eWAT by improving gut barrier function. Overall, our findings suggest that gut bacteria, particularly Lactobacillus spp., play a crucial role in heat stress-induced lipid metabolism disorder and that there is therapeutic potential for using probiotics, such as Lactobacillus plantarum.
Collapse
Affiliation(s)
- Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Biao Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
43
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
44
|
Pereira FC, Ge X, Kristensen JM, Kirkegaard RH, Maritsch K, Zhu Y, Decorte M, Hausmann B, Berry D, Wasmund K, Schintlmeister A, Boettcher T, Cheng JX, Wagner M. The Parkinson's drug entacapone disrupts gut microbiome homeostasis via iron sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566429. [PMID: 38014294 PMCID: PMC10680583 DOI: 10.1101/2023.11.12.566429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed nervous system-targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xiaowei Ge
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts, USA
| | - Jannie Munk Kristensen
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Rasmus H. Kirkegaard
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Klara Maritsch
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Marie Decorte
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kenneth Wasmund
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Boettcher
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Faculty of Chemistry, Department of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts, USA
- Photonics Center, Boston University, Boston, Massachusetts, USA
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
45
|
Jackson PP, Wijeyesekera A, Williams CM, Theis S, van Harsselaar J, Rastall RA. Inulin-type fructans and 2'fucosyllactose alter both microbial composition and appear to alleviate stress-induced mood state in a working population compared to placebo (maltodextrin): the EFFICAD Trial, a randomized, controlled trial. Am J Clin Nutr 2023; 118:938-955. [PMID: 37657523 PMCID: PMC10636234 DOI: 10.1016/j.ajcnut.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota. OBJECTIVES We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population. METHODS We conducted a 5-wk, 4-arm, parallel, double-blind, randomized, placebo-controlled trial in 92 healthy adults with mild-to-moderate levels of anxiety and depression. Subjects were randomized to oligofructose 8 g/d (plus 2 g/d maltodextrin); maltodextrin 10 g/d; oligofructose 8 g/d plus 2'fucosyllactose (2 g/d) or 2'fucosyllactose 2 g/d (plus 8 g/d maltodextrin). Changes in microbial load (fluorescence in situ hybridization-flow cytometry) and composition (16S ribosomal RNA sequencing) were the primary outcomes. Secondary outcomes included gastrointestinal sensations, bowel habits, and mood state parameters. RESULTS There were significant increases in several bacterial taxa including Bifidobacterium, Bacteroides, Roseburia, and Faecalibacterium prausnitzii in both the oligofructose and oligofructose/2'fucosyllactose interventions (all P ≤ 0.05). Changes in bacterial taxa were highly heterogenous upon 2'fuscoyllactose supplementation. Significant improvements in Beck Depression Inventory, State Trait Anxiety Inventory Y1 and Y2, and Positive and Negative Affect Schedule scores and cortisol awakening response were detected across oligofructose, 2'fucosyllactose, and oligofructose/2'fucosyllactose combination interventions (all P ≤ 0.05). Both sole oligofructose and oligofructose/2'fuscosyllactose combination interventions outperformed both sole 2'fucosyllactose and maltodextrin in improvements in several mood state parameters (all P ≤ 0.05). CONCLUSION The results of this study indicate that oligofructose and combination of oligofructose/2'fucosyllactose can beneficially alter microbial composition along with improving mood state parameters. Future work is needed to understand key microbial differences separating individual responses to 2'fucosyllactose supplementation. This trial was registered at clinicaltrials.gov as NCT05212545.
Collapse
Affiliation(s)
- Peter Pj Jackson
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Claire M Williams
- University of Reading, School of Psychology and Clinical Language Science, Reading, United Kingdom
| | | | | | - Robert A Rastall
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom.
| |
Collapse
|
46
|
Candry P, Chadwick GL, Caravajal-Arroyo JM, Lacoere T, Winkler MKH, Ganigué R, Orphan VJ, Rabaey K. Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities. THE ISME JOURNAL 2023; 17:2014-2022. [PMID: 37715042 PMCID: PMC10579388 DOI: 10.1038/s41396-023-01508-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Granular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified. Instead, the outer 150-500 µm of the granular biofilm consisted of a well-mixed community of Olsenella and Oscillospiraceae, while deeper layers were made up of other bacteria with lower activities. Second, nanoSIMS analysis of 15N incorporation in biofilms grown in normal and lactic acid amended conditions suggested Oscillospiraceae switched from sugars to lactic acid as substrate. This suggests competitive-cooperative interactions may govern the spatial organization of these biofilms, and suggests that optimizing biofilm size may be a suitable process engineering strategy. Third, growth activities were similar in the polar and equatorial biofilm peripheries, leaving the mechanism behind the lenticular biofilm morphology unexplained. Physical processes (e.g., shear hydrodynamics, biofilm life cycles) may have contributed to lenticular biofilm development. Together, this study develops an ecological framework of MCCA-producing granular biofilms that informs bioprocess development.
Collapse
Affiliation(s)
- Pieter Candry
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA, 98195-2700, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - José Maria Caravajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tim Lacoere
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Center for Advanced Processes and Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Center for Advanced Processes and Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium.
| |
Collapse
|
47
|
Schmidt H, Gorka S, Seki D, Schintlmeister A, Woebken D. Gold-FISH enables targeted NanoSIMS analysis of plant-associated bacteria. THE NEW PHYTOLOGIST 2023; 240:439-451. [PMID: 37381111 PMCID: PMC10962543 DOI: 10.1111/nph.19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bacteria colonize plant roots and engage in reciprocal interactions with their hosts. However, the contribution of individual taxa or groups of bacteria to plant nutrition and fitness is not well characterized due to a lack of in situ evidence of bacterial activity. To address this knowledge gap, we developed an analytical approach that combines the identification and localization of individual bacteria on root surfaces via gold-based in situ hybridization with correlative NanoSIMS imaging of incorporated stable isotopes, indicative of metabolic activity. We incubated Kosakonia strain DS-1-associated, gnotobiotically grown rice plants with 15 N-N2 gas to detect in situ N2 fixation activity. Bacterial cells along the rhizoplane showed heterogeneous patterns of 15 N enrichment, ranging from the natural isotope abundance levels up to 12.07 at% 15 N (average and median of 3.36 and 2.85 at% 15 N, respectively, n = 697 cells). The presented correlative optical and chemical imaging analysis is applicable to a broad range of studies investigating plant-microbe interactions. For example, it enables verification of the in situ metabolic activity of host-associated commercialized strains or plant growth-promoting bacteria, thereby disentangling their role in plant nutrition. Such data facilitate the design of plant-microbe combinations for improvement of crop management.
Collapse
Affiliation(s)
- Hannes Schmidt
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Doctoral School in Microbiology and Environmental ScienceUniversity of ViennaVienna1030Austria
| | - David Seki
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| |
Collapse
|
48
|
Ding J, Qin F, Li C, Tang M. Long-term effect of acetate and biochar addition on enrichment and activity of denitrifying anaerobic methane oxidation microbes. CHEMOSPHERE 2023; 338:139642. [PMID: 37495044 DOI: 10.1016/j.chemosphere.2023.139642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The denitrifying anaerobic methane oxidation (DAMO) process plays a crucial role in the global carbon/nitrogen cycles and methane emission control, and also has application potential in biological wastewater treatment. However, given that DAMO microbes are susceptible to external conditions such as additional carbon source in the system, it is essential to evaluate the effect of alternative carbon substance on the enrichment efficiency and metabolic activity of DAMO microbes. To this end, this study investigated the effect of acetate (0.1 mmol/L-R2, 0.5 mmol/L-R3) and biochar addition (R4) on the enrichment and activity of DAMO microbes. The long-term operation showed that the NO2--N and CH4 consumption rates in the reactors almost presented the sequence of R4>R2>R3>R1. However, the short-term activity test with isotope labelling showed the sequence of R2>R4>R1>R3. Furthermore, the addition of acetate and biochar improved the electrochemical activity and extracellular polymeric substance (EPS) secretion in the systems. In R4 reactor, the proportion of DAMO bacteria was the highest (7.20%), indicating that the addition of biochar could promote the enrichment of DAMO bacteria, and Thauera was co-enriched with the proportion increasing from 0.26% to 6.73%. While in R1, R2 and R3 reactors, DAMO bacteria were enriched with relatively low abundances (0.10%, 0.23%, 0.15%, respectively), together with methanogens and denitrifiers. This study showed that biochar and acetate with appropriate concentration could enhance the enrichment and activity of DAMO bacteria, the results can provide reference for the enrichment of DAMO microbes and its application in the biological nitrogen removal of wastewater.
Collapse
Affiliation(s)
- Jing Ding
- National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Fan Qin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Changxin Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mingfang Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
49
|
Bourceau P, Geier B, Suerdieck V, Bien T, Soltwisch J, Dreisewerd K, Liebeke M. Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat Protoc 2023; 18:3050-3079. [PMID: 37674095 DOI: 10.1038/s41596-023-00864-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023]
Abstract
Label-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells. Here, we detail metaFISH as a robust and easy method for assigning the spatial distribution of metabolites to microbiome members based on imaging of nucleic acid probes, down to single-cell resolution. We describe the steps required for tissue preparation, on-tissue hybridization, fluorescence microscopy, data integration into a correlative image dataset, matrix application and MSI data acquisition. Using metaFISH, we map hundreds of metabolites and several microbial species to the micrometer scale on a single tissue section. For example, intra- and extracellular bacteria, host cells and their associated metabolites can be localized in animal tissues, revealing their complex metabolic interactions. We explain how we identify low-abundance bacterial infection sites as regions of interest for high-resolution MSI analysis, guiding the user to a trade-off between metabolite signal intensities and fluorescence signals. MetaFISH is suitable for a broad range of users from environmental microbiologists to clinical scientists. The protocol requires ~2 work days.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tanja Bien
- Institute of Hygiene, University of Münster, Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Institute of Human Nutrition and Food Sciences, University of Kiel, Kiel, Germany.
| |
Collapse
|
50
|
Zhang X, Joyce GH, Leu AO, Zhao J, Rabiee H, Virdis B, Tyson GW, Yuan Z, McIlroy SJ, Hu S. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens'. Nat Commun 2023; 14:6118. [PMID: 37777538 PMCID: PMC10542353 DOI: 10.1038/s41467-023-41847-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by 'Candidatus Methanoperedens nitroreducens', an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that 'Ca. M. nitroreducens' uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Georgina H Joyce
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia.
| |
Collapse
|