1
|
Demircubuk I, Candar E, Sengul G. Anatomical and neurochemical organization of the dorsal, lumbar precerebellar and sacral precerebellar nuclei in the human spinal cord. Ann Anat 2025; 259:152390. [PMID: 39938757 DOI: 10.1016/j.aanat.2025.152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND PURPOSE The dorsal nucleus (Clarke's nucleus, D), lumbar precerebellar nucleus (LPrCb), and sacral precerebellar nucleus (Stilling's sacral nucleus, SPrCb) are precerebellar nuclei of the spinal cord. This study investigates the cytoarchitecture and neurochemical organization of the D, LPrCb, and SPrCb nuclei in the human spinal cord. MATERIAL AND METHODS Using Nissl staining and immunohistochemistry for markers including calbindin (Cb), calretinin (Cr), parvalbumin (Pv), choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD 65/67), and vesicular glutamate transporter 1 (VGLUT1), we analyzed sections from T1-T12, L1-L5, and S1-Co1 segments of a human spinal cord. RESULTS Our findings reveal a diverse range of neuron sizes and morphologies within these nuclei, with multipolar neurons being predominant. The immunohistochemical analysis showed distinct neurochemical characteristics, with varying densities of the markers across the D, LPrCb, and SPrCb. CONCLUSION This study provides the first detailed characterization of these nuclei in the human spinal cord, highlighting their intricate organization and suggesting potential functional similarities. The comprehensive understanding of the neurochemical profiles of these nuclei lays the groundwork for future research into their roles in motor coordination and their involvement in neurodegenerative diseases. Our findings underscore the importance of further investigation into the pathological changes occurring within the precerebellar nuclei to advance treatment and prevention strategies for related neurological disorders.
Collapse
Affiliation(s)
- Ibrahim Demircubuk
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Esra Candar
- Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Gulgun Sengul
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye; Department of Anatomy School of Medicine, Ege University, Izmir, Turkiye.
| |
Collapse
|
2
|
Kaushal P, Borthakur D, Ray SB. Variability of anterior external arcuate fibers in the human medulla oblongata. Anat Cell Biol 2025; 58:86-92. [PMID: 39552014 PMCID: PMC11933802 DOI: 10.5115/acb.24.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024] Open
Abstract
Anterior external arcuate fibers (AEAF) are efferents of the arcuate nuclei, which are located on the ventral surface of pyramids. Several types of fibre bundles superficial to the pyramids have been described in early and mid 20th century. Recently, few of these have been studied in detail. Objective of present study was to observe the morphology of AEAF in the Indian population. Distinct AEAF were noted in 13 out of 50 brain specimens. Based on their relation to olive, AEAF were further classified as supraolivary, preolivary and supraolivary fibers and their prevalence noted as 25%, 15%, and 9% respectively. Supraolivary and preolivary fibers were present together in 9 brainstem sides, while co-presence of preolivary and circumolivary fibers was noted in only 1 side. All three types of fibres were observed together in 5 brainstem sides. When present bilaterally, supraolivary and preolivary fibers were seen in 92.30% and 66.66% of brainstem respectively, while circumolivary fibers were seen bilaterally in 28.57% of brainstem. Supraolivary and circumolivary fibers exhibited variable morphology as single, double and multiple fiber bundles. Morphometric analysis revealed presence of thicker supraolivary fiber bundle on right side, while thicker circumolivary fiber bundles were noted on left side. Present study will add to knowledge of this variable fiber bundle pattern, which has been reported to play an important role in regulation of crucial physiological functions such as breathing and cardiorespiratory mechanisms. These observations open avenues for further research into developmental factors involved in migration of neurons from the rhombic lip.
Collapse
Affiliation(s)
- Parul Kaushal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Dibakar Borthakur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wu SR, Butts JC, Caudill MS, Revelli JP, Dhindsa RS, Durham MA, Zoghbi HY. Atoh1 drives the heterogeneity of the pontine nuclei neurons and promotes their differentiation. SCIENCE ADVANCES 2023; 9:eadg1671. [PMID: 37390208 PMCID: PMC10313176 DOI: 10.1126/sciadv.adg1671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex andthe cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jessica C. Butts
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Matthew S. Caudill
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S. Dhindsa
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mark A. Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Student Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y. Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
6
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM. Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets. Cell Rep 2021; 31:107767. [PMID: 32553152 DOI: 10.1016/j.celrep.2020.107767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Dominik Kraus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sjoerd J B Holwerda
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vanja Cankovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicola A Maiorano
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Daisuke Satoh
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus Sigrist
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Silvia Arber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Claudius F Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland.
| |
Collapse
|
8
|
Stonebridge R, Taliano RJ, Velilla TD, Anthony DC. Hypertrophy of the Anterior External Arcuate Fasciculus: A Rare Variant With Implications for the Development of the Arcuate Nucleus. Front Neuroanat 2020; 14:595500. [PMID: 33328906 PMCID: PMC7729007 DOI: 10.3389/fnana.2020.595500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
A rare anatomic variant of a markedly enlarged anterior external arcuate fasciculus (AEAF) on the ventral medullary surface is reported and compared to two controls. The hypertrophic AEAF was nine times larger in diameter than normal, whereas the arcuate nucleus (AN) and inferior olivary nucleus (ION) appeared histologically normal in size and neuronal distribution, and morphometric analysis of the AN confirmed that it was within the normal range. Calbindin-2 (calretinin, CALB2) expression was identified in the AN and in the fibers of the normal AEAF. The hypertrophic AEAF did not contain calbindin-2–expressing fibers. CALB2 expression was also present in the ventrolateral portion of the ION, both in the index case and in one of the control cases. The origin of the additional fibers was not identified; however, the potential origin of these fibers and its implications for the development of the AEAF are discussed.
Collapse
Affiliation(s)
- Renee Stonebridge
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Ross J Taliano
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Terra D Velilla
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States
| | - Douglas C Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation. Sci Rep 2020; 10:11830. [PMID: 32678266 PMCID: PMC7367352 DOI: 10.1038/s41598-020-68852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
Long distance tangential migration transports neurons from their birth places to distant destinations to be incorporated into neuronal circuits. How neuronal migration is guided during these long journeys is still not fully understood. We address this issue by studying the migration of pontine nucleus (PN) neurons in the mouse hindbrain. PN neurons migrate from the lower rhombic lip first anteriorly and then turn ventrally near the trigeminal ganglion root towards the anterior ventral hindbrain. Previously we showed that in mouse depleted of chemokine receptor CXCR4 or its ligand CXCL12, PN neurons make their anterior-to-ventral turn at posteriorized positions. However, the mechanism that spatiotemporally controls the anterior-to-ventral turning is still unclear. Furthermore, the role of CXCR7, the atypical receptor of CXCL12, in pontine migration has yet to be examined. Here, we find that the PN is elongated in Cxcr7 knockout due to a broadened anterior-to-ventral turning positions. Cxcr7 is not expressed in migrating PN neurons en route to their destinations, but is strongly expressed in the pial meninges. Neuroepithelium-specific knockout of Cxcr7 does not recapitulate the PN phenotype in Cxcr7 knockout, suggesting that CXCR7 acts non-cell-autonomously possibly from the pial meninges. We show further that CXCR7 regulates pontine migration by modulating CXCL12 protein levels.
Collapse
|
10
|
Qin L, Ahn KJ, Wine Lee L, de Charleroy C, Crenshaw EB. Analyses with double knockouts of the Bmpr1a and Bmpr1b genes demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei derived from the rhombic lip. PLoS One 2019; 14:e0226602. [PMID: 31869353 PMCID: PMC6927620 DOI: 10.1371/journal.pone.0226602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been hypothesized to specify distinct dorsal neural fates. During neural development, BMPs are expressed in the roof plate and adjacent neuroepithelium. Because several hindbrain nuclei that form the proprioceptive/vestibular/auditory sensory network originate from the rhombic lip, near the roof plate, BMP signaling may regulate the development of these nuclei. To test this hypothesis genetically, we have examined the development of the hindbrain in BMP type I receptor knockout mice. Our results demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei, which give rise to cerebellar mossy fibers, but is not required for the development of the inferior olivary nucleus, which gives rise to cerebellar climbing fibers.
Collapse
Affiliation(s)
- Lihua Qin
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kyung J. Ahn
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lara Wine Lee
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles de Charleroy
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - E. Bryan Crenshaw
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otorhinolaryngology, Head and Neck Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Varin EM, Mulvihill EE, Baggio LL, Koehler JA, Cao X, Seeley RJ, Drucker DJ. Distinct Neural Sites of GLP-1R Expression Mediate Physiological versus Pharmacological Control of Incretin Action. Cell Rep 2019; 27:3371-3384.e3. [DOI: 10.1016/j.celrep.2019.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/10/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
|
12
|
Martinez-Chavez E, Scheerer C, Wizenmann A, Blaess S. The zinc-finger transcription factor GLI3 is a regulator of precerebellar neuronal migration. Development 2018; 145:dev.166033. [PMID: 30470704 DOI: 10.1242/dev.166033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Hindbrain precerebellar neurons arise from progenitor pools at the dorsal edge of the embryonic hindbrain: the caudal rhombic lip. These neurons follow distinct migratory routes to establish nuclei that provide climbing or mossy fiber inputs to the cerebellum. Gli3, a zinc-finger transcription factor in the Sonic hedgehog signaling pathway, is an important regulator of dorsal brain development. We demonstrate that in Gli3-null mutant mice, disrupted neuronal migratory streams lead to a disorganization of precerebellar nuclei. Precerebellar progenitors are properly established in Gli3-null embryos and, using conditional gene inactivation, we provide evidence that Gli3 does not play a cell-autonomous role in migrating precerebellar neurons. Thus, GLI3 likely regulates the development of other hindbrain structures, such as non-precerebellar nuclei or cranial ganglia and their respective projections, which may in turn influence precerebellar migration. Although the organization of non-precerebellar hindbrain nuclei appears to be largely unaffected in absence of Gli3, trigeminal ganglia and their central descending tracts are disrupted. We show that rostrally migrating precerebellar neurons are normally in close contact with these tracts, but are detached in Gli3-null embryos.
Collapse
Affiliation(s)
- Erick Martinez-Chavez
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Claudia Scheerer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| |
Collapse
|
13
|
Wu S, Chang KC, Goldberg JL. Retinal Cell Fate Specification. Trends Neurosci 2018; 41:165-167. [PMID: 29602333 DOI: 10.1016/j.tins.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 10/17/2022]
Abstract
How are different neural cell types generated from progenitor cells? In 1990, Turner et al. used new lineage tracing techniques to show that different cells in the mammalian retina share their progenitor origin. The findings established a key step toward our understanding of how multipotent progenitor cells give rise to complex circuitry in the retina.
Collapse
Affiliation(s)
- Suqian Wu
- Byers Eye Institute, Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA 94303, USA; Eye, Ear, Nose & Throat Hospital, Department of Ophthalmology and Visual Science, Fudan University, Shanghai, 200031, P.R. China; These authors contributed equally
| | - Kun-Che Chang
- Byers Eye Institute, Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA 94303, USA; These authors contributed equally.
| | - Jeffrey L Goldberg
- Byers Eye Institute, Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA 94303, USA
| |
Collapse
|
14
|
Howley MM, Keppler-Noreuil KM, Cunniff CM, Browne ML. Descriptive epidemiology of cerebellar hypoplasia in the National Birth Defects Prevention Study. Birth Defects Res 2018; 110:1419-1432. [PMID: 30230717 PMCID: PMC6265081 DOI: 10.1002/bdr2.1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebellar hypoplasia is a rare disorder of cerebellar formation in which the cerebellum is not completely developed, smaller than it should be, or completely absent. The prevalence of cerebellar hypoplasia at birth is unknown, and little is known about epidemiological risk factors. Using data from the National Birth Defects Prevention Study (NBDPS), a population-based, case-control study, we analyzed clinical features and potential risk factors for nonsyndromic cerebellar hypoplasia. METHODS The NBDPS included pregnancies with estimated delivery dates from 1997-2011. We described clinical features of cerebellar hypoplasia cases from the study area. We explored risk factors for cerebellar hypoplasia (case characteristics, demographics, pregnancy characteristics, maternal health conditions, maternal medication use, and maternal behavioral exposures) by comparing cases to non-malformed live born control infants. We calculated crude odds ratios (ORs) and 95% confidence intervals using logistic regression models. RESULTS We identified 87 eligible cerebellar hypoplasia cases and 55 mothers who participated in the NBDPS. There were no differences in clinical features between interviewed and non-interviewed cases. Cerebellar hypoplasia cases were more likely than controls to be from a multiple pregnancy, be born preterm, and have low birth weight. Cerebellar hypoplasia cases were more likely to be born in or after 2005, as opposed to earlier in NBDPS. We found elevated ORs that were not statistically significant for maternal use of vasoactive medications, non-Hispanic black mothers, and mothers with a history of hypertension. CONCLUSIONS Although unadjusted, our findings from a large, population-based study can contribute to new hypotheses regarding the etiology of cerebellar hypoplasia.
Collapse
Affiliation(s)
- Meredith M Howley
- Congenital Malformations Registry, NYS Department of Health, Albany, New York
| | - Kim M Keppler-Noreuil
- Medical Genomic & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Marilyn L Browne
- Congenital Malformations Registry, NYS Department of Health, Albany, New York
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, New York
| |
Collapse
|
15
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Dominici C, Rappeneau Q, Zelina P, Fouquet S, Chédotal A. Non-cell autonomous control of precerebellar neuron migration by Slit and Robo proteins. Development 2018; 145:dev150375. [PMID: 29343636 DOI: 10.1242/dev.150375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/11/2017] [Indexed: 02/05/2023]
Abstract
During development, precerebellar neurons migrate tangentially from the dorsal hindbrain to the floor plate. Their axons cross it but their cell bodies stop their ventral migration upon reaching the midline. It has previously been shown that Slit chemorepellents and their receptors, Robo1 and Robo2, might control the migration of precerebellar neurons in a repulsive manner. Here, we have used a conditional knockout strategy in mice to test this hypothesis. We show that the targeted inactivation of the expression of Robo1 and Robo2 receptors in precerebellar neurons does not perturb their migration and that they still stop at the midline. The selective ablation of the expression of all three Slit proteins in floor-plate cells has no effect on pontine neurons and only induces the migration of a small subset of inferior olivary neurons across the floor plate. Likewise, we show that the expression of Slit proteins in the facial nucleus is dispensable for pontine neuron migration. Together, these results show that Robo1 and Robo2 receptors act non-cell autonomously in migrating precerebellar neurons and that floor-plate signals, other than Slit proteins, must exist to prevent midline crossing.
Collapse
Affiliation(s)
- Chloé Dominici
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Quentin Rappeneau
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Pavol Zelina
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| |
Collapse
|
17
|
Lizen B, Moens C, Mouheiche J, Sacré T, Ahn MT, Jeannotte L, Salti A, Gofflot F. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function. Front Mol Neurosci 2017; 10:369. [PMID: 29187810 PMCID: PMC5695161 DOI: 10.3389/fnmol.2017.00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.
Collapse
Affiliation(s)
- Benoit Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Moens
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinane Mouheiche
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Sacré
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.,Centre de Recherche sur le Cancer, Université Laval, Quebec City, QC, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Ahmad Salti
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Kratochwil CF, Maheshwari U, Rijli FM. The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry. Front Neural Circuits 2017; 11:33. [PMID: 28567005 PMCID: PMC5434118 DOI: 10.3389/fncir.2017.00033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 01/26/2023] Open
Abstract
The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of KonstanzKonstanz, Germany.,Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| |
Collapse
|
19
|
Martinez-de-la-Torre M, Lambertos A, Peñafiel R, Puelles L. An exercise in brain genoarchitectonics: Analysis of AZIN2-Lacz expressing neuronal populations in the mouse hindbrain. J Neurosci Res 2017; 96:1490-1517. [PMID: 28467636 DOI: 10.1002/jnr.24053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
We examined in detail the distribution of AZIN2 (antizyme inhibitor 2) expression in the adult mouse hindbrain and neighboring spinal cord. AZIN2, similar to previously known AZIN1, is a recently-discovered, a functional paralog of ornithine decarboxylase (ODC). Due to their structural similarity to ODC, both AZIN1 and AZIN2 counteract the inhibitory action of 3 known antizymes (AZ1-3) on the ODC synthesis of polyamines, thus increasing intracytoplasmic levels of polyamines. AZIN2 is strongly, but heterogeneously, expressed in the brain. Our study uses a mouse line carrying an AZIN2-LacZ construct, and, in our topographic analysis of AZIN2-positive structures, we intend to share new knowledge about the rhombomeric segmentation of the hindbrain (a function of Hox paralogs and other genes). The observed labeled cell populations predominantly coincide with known cholinergic and glutamatergic cells, but occasionally also correspond to GABAergic, and possibly glycinergic cells. Some imperfectly known hindbrain populations stood out in unprecedented detail, and some axonal tracts were also differentially stained. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ana Lambertos
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Murcia and IMIB, Murcia, 30071, Spain
| | - Rafael Peñafiel
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Murcia and IMIB, Murcia, 30071, Spain
| | - Luis Puelles
- Dept.Human Anatomy, Faculty of Medicine, University of Murcia and IMIB, Murcia, 30071, Spain
| |
Collapse
|
20
|
Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. Brain Struct Funct 2017; 222:3509-3542. [PMID: 28470551 PMCID: PMC5676809 DOI: 10.1007/s00429-017-1416-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/27/2017] [Indexed: 01/13/2023]
Abstract
The r4-derived territory is located in the pontine region of the brainstem, forming a wedge-shaped slice that broadens from the choroidal roof to the ventral midline. R4-derived neuronal populations migrate radially inside and tangentially outside this rhombomere, forming nuclei of the sensorimotor auditory, vestibular, trigeminal and reticular systems. R4-derived fibre tracts contribute to the lateral lemniscus, the trigeminothalamic tracts, the medial tegmental tract and the medial forebrain bundle, which variously project to the midbrain, thalamus, hypothalamus and telencephalon. Other tracts such as the trigeminocerebellar and vestibulocerebellar tracts reach the cerebellum, while the medial and lateral vestibulospinal tracts, and the reticulospinal and trigeminal oro-spinal tracts extend into the spinal cord. Many r4-derived fibres are crossed; they decussate to the contralateral side traversing the midline through the cerebellar, collicular and intercollicular commissures, as well as the supraoptic decussation. Moreover, some fibres enter into the posterior and anterior commissures and some terminals reach the septum. Overall, this study provides an overview of all r4 neuronal populations and axonal tracts from their embryonic origin to the adult final location and target.
Collapse
|
21
|
Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn MT, Gofflot F. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol 2016; 525:1155-1175. [PMID: 27650319 DOI: 10.1002/cne.24123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benoit Lizen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Bertrand Hutlet
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Diane Bissen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Deborah Sauvegarde
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maryse Hermant
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Abstract
Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.
Collapse
|
23
|
Butts T, Green MJ, Wingate RJT. Development of the cerebellum: simple steps to make a 'little brain'. Development 2014; 141:4031-41. [PMID: 25336734 DOI: 10.1242/dev.106559] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is a pre-eminent model for the study of neurogenesis and circuit assembly. Increasing interest in the cerebellum as a participant in higher cognitive processes and as a locus for a range of disorders and diseases make this simple yet elusive structure an important model in a number of fields. In recent years, our understanding of some of the more familiar aspects of cerebellar growth, such as its territorial allocation and the origin of its various cell types, has undergone major recalibration. Furthermore, owing to its stereotyped circuitry across a range of species, insights from a variety of species have contributed to an increasingly rich picture of how this system develops. Here, we review these recent advances and explore three distinct aspects of cerebellar development - allocation of the cerebellar anlage, the significance of transit amplification and the generation of neuronal diversity - each defined by distinct regulatory mechanisms and each with special significance for health and disease.
Collapse
Affiliation(s)
- Thomas Butts
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Mary J Green
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| |
Collapse
|
24
|
Hutlet B, Theys N, Coste C, Ahn MT, Doshishti-Agolli K, Lizen B, Gofflot F. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 2014; 221:1223-43. [PMID: 25527350 DOI: 10.1007/s00429-014-0965-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.
Collapse
Affiliation(s)
- Bertrand Hutlet
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Nicolas Theys
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Cécile Coste
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, 4000, Liège, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | | | - Benoît Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.
| |
Collapse
|
25
|
Zelina P, Blockus H, Zagar Y, Péres A, Friocourt F, Wu Z, Rama N, Fouquet C, Hohenester E, Tessier-Lavigne M, Schweitzer J, Crollius H, Chédotal A. Signaling Switch of the Axon Guidance Receptor Robo3 during Vertebrate Evolution. Neuron 2014; 84:1258-72. [DOI: 10.1016/j.neuron.2014.11.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2014] [Indexed: 01/07/2023]
|
26
|
Abstract
Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.
Collapse
|
27
|
Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 2014; 141:389-98. [PMID: 24381197 PMCID: PMC3879817 DOI: 10.1242/dev.099119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhombic lip gives rise to neuronal populations that contribute to cerebellar, proprioceptive and interoceptive networks. Cell production depends on the expression of the basic helix-loop-helix (bHLH) transcription factor Atoh1. In rhombomere 1, Atoh1-positive cells give rise to both cerebellar neurons and extra-cerebellar nuclei in ventral hindbrain. The origin of this cellular diversity has previously been attributed to temporal signals rather than spatial patterning. Here, we show that in both chick and mouse the cerebellar Atoh1 precursor pool is partitioned into initially cryptic spatial domains that reflect the activity of two different organisers: an isthmic Atoh1 domain, which gives rise to isthmic nuclei, and the rhombic lip, which generates deep cerebellar nuclei and granule cells. We use a combination of in vitro explant culture, genetic fate mapping and gene overexpression and knockdown to explore the role of isthmic signalling in patterning these domains. We show that an FGF-dependent isthmic Atoh1 domain is the origin of distinct populations of Lhx9-positive neurons in the extra-cerebellar isthmic nuclei. In the cerebellum, ectopic FGF induces proliferation while blockade reduces the length of the cerebellar rhombic lip. FGF signalling is not required for the specification of cerebellar cell types from the rhombic lip and its upregulation inhibits their production. This suggests that although the isthmus regulates the size of the cerebellar anlage, the downregulation of isthmic FGF signals is required for induction of rhombic lip-derived cerebellar neurons.
Collapse
Affiliation(s)
- Mary J Green
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
28
|
Green MJ, Wingate RJT. Developmental origins of diversity in cerebellar output nuclei. Neural Dev 2014; 9:1. [PMID: 24405572 PMCID: PMC3929244 DOI: 10.1186/1749-8104-9-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022] Open
Abstract
Background The functional integration of the cerebellum into a number of different neural systems is governed by the connection of its output axons. In amniotes, the majority of this output is mediated by an evolutionarily diverse array of cerebellar nuclei that, in mice, are derived from the embryonic rhombic lip. To understand the origins of cerebellar nucleus diversity, we have explored how nucleus development is patterned in birds, which notably lack a dentate-like nucleus output to the dorsal thalamus. Results Using targeted in ovo electoroporation of green fluorescent protein (GFP) and red fluorescent protein (RFP) in a variety of combinations and with different conditional enhancers, we show that cerebellar nuclei in chicks are produced, as in the mouse, at the rhombic lip. Furthermore, the comparison of fate-mapped neurons with molecular markers reveals a strict temporal sequence of cell fate allocation in establishing the avian lateral and medial cerebellar nuclei. In contrast to the mouse cerebellum, Lhx9 expression is confined to extracerebellar thalamic afferent nuclei corresponding to the absence, in chicks, of a dentate nucleus. Spatiotemporally targeted over-expression of Lhx9 in chick cerebellar nuclei (recapitulating in part the mammalian expression pattern) results in a loss of distinct nuclear boundaries and a change in axon initial trajectories consistent with a role for Lhx9 specifying targeting. Conclusions Our results confirm the relationship between cell fate and a fine grain temporal patterning at the rhombic lip. This suggests that the lack of a cerebellar output to the dorsal thalamus of birds corresponds with a restricted expression of the LIM-homeodomain gene Lhx9 to earlier born rhombic lip cohorts when compared to mice. The evolution of cerebellar nucleus diversity in amniotes may hence reflect a heterochronic adaptation of gene expression with respect to the sequential production of rhombic lip derivatives resulting in altered axonal targeting.
Collapse
Affiliation(s)
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, London SE1 1UL UK.
| |
Collapse
|
29
|
Abstract
Fate maps, by defining the relationship between embryonic tissue organization and postnatal tissue structure, are one of the most important tools on hand to developmental biologists. In the past, generating such maps in mice was hindered by their in utero development limiting the physical access required for traditional methods involving tracer injection or cell transplantation. No longer is physical access a requirement. Innovations over the past decade have led to genetic techniques that offer means to "deliver" cell lineage tracers noninvasively. Such "genetic fate mapping" approaches employ transgenic strategies to express genetically encoded site-specific recombinases in a cell type-specific manner to switch on expression of a cell-heritable reporter transgene as lineage tracer. The behaviors and fate of marked cells and their progeny can then be explored and their contributions to different tissues examined. Here, we review the basic concepts of genetic fate mapping and consider the strengths and limitations for their application. We also explore two refinements of this approach that lend improved spatial and temporal resolution: (1) Intersectional and subtractive genetic fate mapping and (2) Genetic inducible fate mapping.
Collapse
Affiliation(s)
- Patricia Jensen
- Laboratory of Neurobiology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | | |
Collapse
|
30
|
Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 2013; 242:1348-68. [PMID: 23996673 DOI: 10.1002/dvdy.24055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 01/17/2023] Open
Abstract
Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. In vertebrates, 39 Hox genes have been identified and like their Drosophila counterparts they are organized within chromosomal clusters. Hox genes interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing hindbrain and spinal cord, and are considered crucial determinants of segmental identity and cell specification along the anterioposterior and dorsoventral axes of the embryo. Here, we review their later roles in the assembly of neuronal circuitry, in stereotypic neuronal migration, axon pathfinding, and topographic connectivity. Importantly, we will put some emphasis on how their early-segmented expression patterns can influence the formation of complex vital hindbrain and spinal cord circuitries.
Collapse
Affiliation(s)
- Maria Di Bonito
- University of Nice-Sophia Antipolis, F-06108, Nice, France; INSERM, iBV, UMR 1091, F-06108, Nice, France
| | | | | |
Collapse
|
31
|
Kobayashi H, Kawauchi D, Hashimoto Y, Ogata T, Murakami F. The control of precerebellar neuron migration by RNA-binding protein Csde1. Neuroscience 2013; 253:292-303. [PMID: 24012837 DOI: 10.1016/j.neuroscience.2013.08.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Neuronal migration during brain development sets the position of neurons for the subsequent wiring of neural circuits. To understand the molecular mechanism regulating the migrating process, we considered the migration of mouse precerebellar neurons. Precerebellar neurons originate in the rhombic lip of the hindbrain and show stereotypic, long-distance tangential migration along the circumference of the hindbrain to form precerebellar nuclei at discrete locations. To identify the molecular components underlying this navigation, we screened for genes expressed in the migrating precerebellar neurons. As a result, we identified the following three genes through the screening; Calm1, Septin 11, and Csde1. We report here functional analysis of one of these genes, Csde1, an RNA-binding protein implicated in the post-transcriptional regulation of a subset of cellular mRNA, by examining its participation in precerebellar neuronal migration. We found that shRNA-mediated inhibition of Csde1 expression resulted in a failure of precerebellar neurons to complete their migration into their prospective target regions, with many neurons remaining in migratory paths. Furthermore, those that did reach their destination failed to invade the depth of the hindbrain via radial migration. These results have uncovered a crucial role of Csde1 in the proper control of both radial and tangential migration of precerebellar neurons.
Collapse
Affiliation(s)
- H Kobayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
32
|
Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat 2013; 7:29. [PMID: 24027500 PMCID: PMC3759752 DOI: 10.3389/fnana.2013.00029] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College London London, UK ; Medical Research Council Centre for Developmental Neurobiology, King's College London London, UK
| | | |
Collapse
|
33
|
Shinohara M, Zhu Y, Murakami F. Four-dimensional analysis of nucleogenesis of the pontine nucleus in the hindbrain. J Comp Neurol 2013; 521:3340-57. [DOI: 10.1002/cne.23353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/09/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Masaki Shinohara
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| | - Yan Zhu
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University; Suita; Osaka; 560-8531; Japan
| |
Collapse
|
34
|
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AHFM, Eichmann A, Wellik D, Ducret S, Rijli FM. Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 2013; 339:204-7. [PMID: 23307742 DOI: 10.1126/science.1229326] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the role of histone methyltransferase Ezh2 in tangential migration of mouse precerebellar pontine nuclei, the main relay between neocortex and cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in dorsal hindbrain, which allows normal pontine neuron migration. In Ezh2 mutants, ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei integrating in brain circuitry. Moreover, intrinsic topographic organization of pontine nuclei according to rostrocaudal progenitor origin is maintained throughout migration and correlates with patterned cortical input. Ezh2 maintains spatially restricted Hox expression, which, in turn, regulates differential expression of the repulsive receptor Unc5b in migrating neurons; together, they generate subsets with distinct responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation of intrinsic and extrinsic transcriptional programs controls topographic neuronal guidance and connectivity in the cortico-ponto-cerebellar pathway.
Collapse
Affiliation(s)
- Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rudnik-Schöneborn S, Senderek J, Jen JC, Houge G, Seeman P, Puchmajerová A, Graul-Neumann L, Seidel U, Korinthenberg R, Kirschner J, Seeger J, Ryan MM, Muntoni F, Steinlin M, Sztriha L, Colomer J, Hübner C, Brockmann K, Van Maldergem L, Schiff M, Holzinger A, Barth P, Reardon W, Yourshaw M, Nelson SF, Eggermann T, Zerres K. Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 2013; 80:438-46. [PMID: 23284067 DOI: 10.1212/wnl.0b013e31827f0f66] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Pontocerebellar hypoplasia with spinal muscular atrophy, also known as PCH1, is a group of autosomal recessive disorders characterized by generalized muscle weakness and global developmental delay commonly resulting in early death. Gene defects had been discovered only in single patients until the recent identification of EXOSC3 mutations in several families with relatively mild course of PCH1. We aim to genetically stratify subjects in a large and well-defined cohort to define the clinical spectrum and genotype-phenotype correlation. METHODS We documented clinical, neuroimaging, and morphologic data of 37 subjects from 27 families with PCH1. EXOSC3 gene sequencing was performed in 27 unrelated index patients of mixed ethnicity. RESULTS Biallelic mutations in EXOSC3 were detected in 10 of 27 families (37%). The most common mutation among all ethnic groups was c.395A>C, p.D132A, responsible for 11 (55%) of the 20 mutated alleles and ancestral in origin. The mutation-positive subjects typically presented with normal pregnancy, normal birth measurements, and relative preservation of brainstem and cortical structures. Psychomotor retardation was profound in all patients but lifespan was variable, with 3 subjects surviving beyond the late teens. Abnormal oculomotor function was commonly observed in patients surviving beyond the first year. Major clinical features previously reported in PCH1, including intrauterine abnormalities, postnatal hypoventilation and feeding difficulties, joint contractures, and neonatal death, were rarely observed in mutation-positive infants but were typical among the mutation-negative subjects. CONCLUSION EXOSC3 mutations account for 30%-40% of patients with PCH1 with variability in survival and clinical severity that is correlated with the genotype.
Collapse
|
36
|
Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. Front Neural Circuits 2013; 6:115. [PMID: 23293588 PMCID: PMC3534185 DOI: 10.3389/fncir.2012.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, dendrite projections, and axon terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal zones. Here, we discuss the mechanisms that establish zones and highlight how gene expression and neural activity contribute to cerebellar pattern formation. We focus on the olivocerebellar system because its developmental mechanisms are becoming clear, its topographic termination patterns are very precise, and its contribution to zonal function is debated. This review deconstructs the architecture and development of the olivocerebellar pathway to provide an update on how brain circuit maps form and function.
Collapse
Affiliation(s)
- Stacey L Reeber
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | | | | | |
Collapse
|
37
|
Hidalgo-Sánchez M, Backer S, Puelles L, Bloch-Gallego E. Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol 2012; 371:215-26. [DOI: 10.1016/j.ydbio.2012.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/21/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
|
38
|
Abstract
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | | |
Collapse
|
39
|
Holland PJ, George AM, Worrell LTC, Landsberg RL. In vitro electroporation of the lower rhombic lip of midgestation mouse embryos. J Vis Exp 2012:e3983. [PMID: 22895029 DOI: 10.3791/3983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The rhombic lip is an embryonic neuroepithelium located in the hindbrain at the junction between the neural tube and the roofplate of the fourth ventricle (reviewed in 1). The rhombic lip can be subdivided into the upper rhombic lip (URL) which encompasses rhombomere 1 (r1) and generates neurons of the cerebellum and the lower rhombic lip (LRL) which gives rise to diverse neuronal brainstem lineages. LRL derivatives include the auditory neurons of the cochlear nuclei and those of the precerebellar nuclei that are involved in regulating balance and motor control. Neurogenesis from the LRL occurs over a large temporal window that encompasses embryonic days (E) 9.5-16.5. Different neuronal lineages emerge from the LRL as postmitotic cells (or are born) during distinct developmental days during this neurogenic window. Electroporation of gene expression constructs can be used to manipulate gene expression in LRL progenitors and can potentially change the fate of the neurons produced from this region. Altering gene expression of LRL progenitors in the mouse via in utero electroporation has been highly successful for manipulating lineages born on embryonic day E12.5 or later. In utero electroporations prior to E12.5 have been unsuccessful primarily due to the lethality associated with puncturing the fourth ventricle roofplate, a necessary step in delivering exogenous DNA that is electroporated into the LRL. However, many LRL derived lineages arise from the LRL earlier than E12.5. These earlier born lineages include the neurons that comprise the lateral reticular, external cuneate, and inferior olivary nuclei of the precerebellar system which function to connect inputs from the spinal cord and cortex to the cerebellum. In order to manipulate expression in the LRL of embryos younger than E12.5, we developed an in vitro system in which embryos are placed into culture following electroporation. This study presents an efficient and effective method for manipulating the gene expression of LRL progenitors at E11.5. Embryos electroporated with green fluorescent protein (GFP) driven from the broadly active CAG promoter reproducibly expressed GFP after 24 hours of culture. A critical aspect of this assay is that gene expression is only altered because of the expression of the exogenous gene and not because of secondary effects that result from the electroporation and culturing techniques. It was determined that the endogenous gene expression patterns remain undisturbed in electroporated and cultured embryos. This assay can be utilized to alter the fate of cells emerging from the LRL of embryos younger than E12.5 through the introduction of plasmids for overexpression or knock down (through RNAi) of different pro-neural transcription factors.
Collapse
|
40
|
Abstract
Hindbrain dorsal interneurons that comprise the rhombic lip relay sensory information and coordinate motor outputs. The progenitor dA1 subgroup of interneurons, which is formed along the dorsal-most region of the caudal rhombic lip, gives rise to the cochlear and precerebellar nuclei. These centers project sensory inputs toward upper-brain regions. The fundamental role of dA1 interneurons in the assembly and function of these brainstem nuclei is well characterized. However, the precise en route axonal patterns and synaptic targets of dA1 interneurons are not clear as of yet. Novel genetic tools were used to label dA1 neurons and trace their axonal trajectories and synaptic connections at various stages of chick embryos. Using dA1-specific enhancers, two contralateral ascending axonal projection patterns were identified; one derived from rhombomeres 6-7 that elongated in the dorsal funiculus, while the other originated from rhombomeres 2-5 and extended in the lateral funiculus. Targets of dA1 axons were followed at later stages using PiggyBac-mediated DNA transposition. dA1 axons were found to project and form synapses in the auditory nuclei and cerebellum. Investigation of mechanisms that regulate the patterns of dA1 axons revealed a fundamental role of Lim-homeodomain (HD) proteins. Switch in the expression of the specific dA1 Lim-HD proteins Lhx2/9 into Lhx1, which is typically expressed in dB1 interneurons, modified dA1 axonal patterns to project along the routes of dB1 subgroup. Together, the results of this research provided new tools and knowledge to the assembly of trajectories and connectivity of hindbrain dA1 interneurons and of molecular mechanisms that control these patterns.
Collapse
|
41
|
Abstract
In the nervous system, there are hundreds to thousands of neuronal cell types that have morphologically, physiologically, and histochemically different characteristics and this diversity may enable us to elicit higher brain function. A better understanding of the molecular machinery by which neuron subtype specification occurs is thus one of the most important issues in brain science. The dorsal hindbrain, including the cerebellum, is a good model system to study this issue because a variety of types of neurons are produced from this region. Recently developed genetic lineage-tracing methods in addition to gene-transfer technologies have clarified a fate map of neurons produced from the dorsal hindbrain and accelerated our understanding of the molecular machinery of neuronal subtype specification in the nervous system.
Collapse
Affiliation(s)
- Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
42
|
Dun XP. Origin of climbing fiber neurons and the definition of rhombic lip. Int J Dev Neurosci 2012; 30:391-5. [PMID: 22406199 DOI: 10.1016/j.ijdevneu.2012.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/21/2012] [Indexed: 01/12/2023] Open
Abstract
Wilhelm His identified the rhombic lip in human embryos a century ago and thought that all mossy and climbing fiber neurons are derived from it. This has been accepted for more than one hundred years. However, recent genetic fate mapping studies have demonstrated that mossy fiber and climbing fiber neurons have distinct progenitor pools and originate from different subdomains in the ventricular zone of the caudal hindbrain. The majority of climbing fiber neurons has been found to derive from more medial parts of the caudal hindbrain although its dorsal boundary is unclear currently. Subsequently, several new definitions for the rhombic lip have been made according to the expression domain of different transcription factors, such as Math1, Wnt1 and Olig3, which have different ventral boundaries and make the area of rhombic lip confused. Therefore, a precise definition for rhombic lip is still lacking for the main reason that the origin of the entire inferior olivary nuclei is still unclear. Further genetic fate mapping is needed to determine the origin of all climbing fiber neurons which will help to give the rhombic lip an unambiguous definition.
Collapse
Affiliation(s)
- Xin-peng Dun
- Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, A Partnership of the University of Plymouth and the University of Exeter, John Bull Building, Research Way, Plymouth PL6 8BU, United Kingdom.
| |
Collapse
|
43
|
Hagan N, Zervas M. Wnt1 expression temporally allocates upper rhombic lip progenitors and defines their terminal cell fate in the cerebellum. Mol Cell Neurosci 2012; 49:217-29. [PMID: 22173107 PMCID: PMC3351839 DOI: 10.1016/j.mcn.2011.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/30/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023] Open
Abstract
The cerebellum (Cb) controls movement related physiology using a diverse array of morphologically and biochemically distinct neurons. During development, the Cb is derived from rhombomere 1 (r1), an embryonic compartment patterned by a signaling center referred to as the isthmus organizer. The secreted glycoprotein WNT1 is expressed in the midbrain primordia (mesencephalon, mes) and at the posterior limit of the mes. WNT1 plays a pivotal role in maintaining the isthmus organizer and mutations in Wnt1 produce severe Cb defects that are generally attributed to aberrant organizer activity. Interestingly, Wnt1 is also expressed at the most posterior limit of dorsal r1, in a region known as the upper rhombic lip (URL). However, the distribution and molecular identity of Wnt1 expressing progenitors have not been carefully described in r1. We used Wnt1-Venus transgenic mice to generate a molecular map of Wnt1 expressing progenitors in relation to other well characterized Cb biomarkers such as MATH1 (ATOH1), LMX1a and OTX2. Our analysis validated Wnt1 expression in the URL and revealed molecularly-defined developmental zones in r1. We then used genetic inducible fate mapping (GIFM) to link transient Wnt1 expression in r1 to terminal cell fates in the mature Cb. Wnt1 expressing progenitors primarily contributed to neurons in deep cerebellar nuclei, granule cells, and unipolar brush cells in distinct but overlapping temporal windows and sparsely contributed to inhibitory neurons and Bergmann glia. We further demonstrate that the Wnt1 lineage does not follow a competency model of progressive lineage restriction to generate the Cb or the functionally related precerebellar system. Instead, progenitors initiate Wnt1 expression de novo to give rise to each Cb cell type and precerebellar nuclei. We also used GIFM to determine how the temporal control of Wnt1 expression is related to molecular identity and cell migration in Cb development. Our findings provide new insight into how lineage and timing establish cell diversity within the Cb system.
Collapse
Affiliation(s)
- Nellwyn Hagan
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
44
|
Fu YH, Watson C. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:191-204. [PMID: 22301572 DOI: 10.1159/000335032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus.
Collapse
Affiliation(s)
- Yu Hong Fu
- Neuroscience Research Australia, Randwick, N.S.W, Australia
| | | |
Collapse
|
45
|
Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling. THE CEREBELLUM 2012; 10:570-84. [PMID: 21479970 DOI: 10.1007/s12311-011-0266-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The precerebellar nuclei are hindbrain and spinal cord centers that send fibers to the cerebellum. The neurons of the major hindbrain precerebellar nuclei are derived from the rhombic lip. Wnt1, a developmentally important gene involved in intercellular signaling, is expressed in the developing rhombic lip. We sought to investigate the relationship between the cell clusters expressing Wnt1 and the precerebellar nuclei in the hindbrain. We therefore defined the hindbrain precerebellar nuclei by retrograde tracing, following cerebellar injections of HRP, and compared these results with the cell clusters expressing Wnt1 in newborn mice. We found that 39 distinct hindbrain nuclei project to the cerebellum. Of these nuclei, all but three (namely the oral pontine reticular nucleus, the caudal pontine reticular nucleus, and the subcoeruleus nucleus) contain neurons expressing Wnt1. This shows a high degree of overlap between the precerebellar nuclei and the nuclei that express Wnt1. However, it should be noted that neurons expressing Wnt1 are also found in the superior olivary complex, which is a basal plate derivative lacking cerebellar projections.
Collapse
|
46
|
Abstract
The cerebellum dedicates a majority of the brain's neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch-clamp recordings to neurons in eight precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis, and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK (small-conductance calcium-activated potassium) currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perform similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition.
Collapse
|
47
|
Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, Johnson JE. Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol 2011; 519:1355-70. [PMID: 21452201 DOI: 10.1002/cne.22574] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurog1 (Ngn1, Neurod3, neurogenin1) is a basic helix-loop-helix (bHLH) transcription factor essential for neuronal differentiation and subtype specification during embryogenesis. Due to the transient expression of Neurog1 and extensive migration of neuronal precursors, it has been challenging to understand the full complement of Neurog1 lineage cells throughout the central nervous system (CNS). Here we labeled and followed Neurog1 lineages using inducible Cre-flox recombination systems with Neurog1-Cre and Neurog1-CreER(T2) BAC (bacterial artificial chromosome) transgenic mice. Neurog1 lineage cells are restricted to neuronal fates and contribute to diverse but discrete populations in each brain region. In the forebrain, Neurog1 lineages include mitral cells and glutamatergic interneurons in the olfactory bulb, pyramidal and granule neurons in the hippocampus, and pyramidal cells in the cortex. In addition, most of the thalamus, but not the hypothalamus, arises from Neurog1 progenitors. Although Neurog1 lineages are largely restricted to glutamatergic neurons, there are multiple exceptions including Purkinje cells and other GABAergic neurons in the cerebellum. This study provides the first overview of the spatiotemporal fate map of Neurog1 lineages in the CNS.
Collapse
Affiliation(s)
- Euiseok J Kim
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Benzing K, Flunkert S, Schedl A, Engelkamp D. A novel approach to selectively target neuronal subpopulations reveals genetic pathways that regulate tangential migration in the vertebrate hindbrain. PLoS Genet 2011; 7:e1002099. [PMID: 21698138 PMCID: PMC3116914 DOI: 10.1371/journal.pgen.1002099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/08/2011] [Indexed: 11/19/2022] Open
Abstract
Vertebrate genes often play functionally distinct roles in different subsets of cells; however, tools to study the cell-specific function of gene products are poorly developed. Therefore, we have established a novel mouse model that enables the visualization and manipulation of defined subpopulations of neurons. To demonstrate the power of our system, we dissected genetic cascades in which Pax6 is central to control tangentially migrating neurons of the mouse brainstem. Several Pax6 downstream genes were identified and their function was analyzed by over-expression and knock-down experiments. One of these, Pou4f2, induces a prolonged midline arrest of growth cones to influence the proportion of ipsilaterally versus contralaterally settling neurons. These results demonstrate that our approach serves as a versatile tool to study the function of genes involved in cell migration, axonal pathfinding, and patterning processes. Our model will also serve as a general tool to specifically over-express any gene in a defined subpopulation of neurons and should easily be adapted to a wide range of applications.
Collapse
Affiliation(s)
- Karsten Benzing
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt, Germany
| | - Stefanie Flunkert
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt, Germany
| | - Andreas Schedl
- INSERM UMR636, Centre de Biochimie, Nice, France
- University of Nice Sophia Antipolis, Nice, France
| | - Dieter Engelkamp
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt, Germany
- Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
49
|
Lin FY, Yang X. [Issues and solutions of conditional gene targeting]. YI CHUAN = HEREDITAS 2011; 33:469-484. [PMID: 21586394 DOI: 10.3724/sp.j.1005.2011.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conditional gene targeting, based on the site-specific recombination system such as Cre-loxP, plays a vital role in the study of gene functions and the generation of disease mouse models. It was always under consideration that there were problems in the Cre-loxP recombination system, such as illegal expression pattern of Cre transgene, variation of Cre recombination efficiency and toxicity of Cre recombinase, as well as the potential influences of genetic background, breeding strategy, experimental control and gene compensation. Oversights of these issues may have a profound influence on the accuracy of gene functional dissection and conditional gene targeting mice phenotypic interpretation. Accordingly, solutions should be adopted including delicate regulative control of temporal-spatial specific Cre expression, detailed detection of Cre recombination efficiency, reduction of Cre toxicity, simplification of mouse genetic background, optimization of breeding, setting up of proper control and combined conditional gene targeting.
Collapse
Affiliation(s)
- Fu-Yu Lin
- Genetic Laboratory of Development and Diseases, State Key Laboratory of Proteomics, Institute of Biotechnology, Beijing 100071, China.
| | | |
Collapse
|
50
|
Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 2011; 5:27. [PMID: 21559349 PMCID: PMC3085262 DOI: 10.3389/fnana.2011.00027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/06/2011] [Indexed: 12/21/2022] Open
Abstract
This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes
Collapse
Affiliation(s)
- Mario F Wullimann
- Graduate School of Systemic Neurosciences and Department Biology II, Ludwig-Maximilians-Universität Munich Planegg, Germany
| | | | | | | | | | | |
Collapse
|