1
|
González-Sánchez HM, Rubio Hernández EI, Silva-Ramírez AS, Miranda-López A, Monsiváis-Urenda AE, Comas-García M, Noyola DE, Rodríguez VM, Castillo CG. Cytomegalovirus Infection Affects the Differentiation and Determines the Functionality of a Human Progenitor Neural Cell Line. Curr Microbiol 2025; 82:256. [PMID: 40259057 DOI: 10.1007/s00284-025-04231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/23/2025] [Indexed: 04/23/2025]
Abstract
Cytomegalovirus (CMV) is a leading cause of congenital infections and one of the most common causes of neurodevelopmental disabilities worldwide. Despite the critical consequences of CMV infection in the brain, little is known about the mechanisms of neuropathogenesis responsible for malformations and dysfunction in the central nervous system. Some reports point out the infection of neural precursor cells (NPCs) as a key element in this process; these cells show the greatest susceptibility to CMV in the developing brain. In order to further characterize how CMV perturbs NPCs properties, we investigated the effect of human CMV strain AD169 in the neural stem cell cycle, viability, phenotype, and function of hNS-1 cells (immortalized cell line of human fetal brain). Notably, both infected and non-infected cells undergo apoptosis, with CMV infection not inducing a higher rate of apoptosis compared to non-infected cells. Upon infection and induction of differentiation in hNS-1 cells, the transcriptional expression of the NMDA receptor and the astrocyte marker GFAP is significantly reduced. Immunofluorescence assays corroborate the inhibition of astrocyte differentiation by CMV infection, while differentiation to neurons remains unaffected. Furthermore, our study demonstrates that CMV-infected hNS-1 cells exhibit impaired responses to multiple agonists after differentiation, including purinergic and GABAergic neurotransmission. These observations shed light on the previously understudied aspect of human CMV's influence on NPCs' function, providing valuable insights into the intricate interplay between CMV and neural development.
Collapse
Affiliation(s)
- H M González-Sánchez
- SECIHTI-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - E I Rubio Hernández
- Laboratorio de Células Troncales Humanas, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - A S Silva-Ramírez
- Laboratorio de Células Troncales Humanas, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A Miranda-López
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A E Monsiváis-Urenda
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - M Comas-García
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - D E Noyola
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - V M Rodríguez
- Instituto de Neurobiología, UNAM-Campus Juriquilla, Juriquilla, Querétaro, Qro., México
| | - C G Castillo
- Laboratorio de Células Troncales Humanas, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
- Coordinación Para La Innovación y Aplicación de La Ciencia y La Tecnología (CIACYT)-Facultad de Medicina, UASLP, Av. Sierra Leona No. 550, Col. Lomas 2ª. Secc, CP 78210, San Luis Potosí, S.L.P., México.
| |
Collapse
|
2
|
Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells 2025; 14:487. [PMID: 40214441 PMCID: PMC11988158 DOI: 10.3390/cells14070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic pain is a widespread global health problem with profound socioeconomic implications, affecting millions of people of all ages. Glial cells (GCs) in pain pathways play essential roles in the processing of pain signals. Dysregulation of GC activity contributes to chronic pain states, making them targets for therapeutic interventions. Non-pharmacological approaches, such as exercise, are strongly recommended for effective pain management. This review examines the link between exercise, regular physical activity (PA), and glial cell-mediated pain processing, highlighting its potential as a strategy for managing chronic pain. Exercise not only improves overall health and quality of life but also influences the function of GCs. Recent research highlights the ability of exercise to mitigate neuroinflammatory responses and modulate the activity of GCs by reducing the activation of microglia and astrocytes, as well as modulating the expression biomarkers, thereby attenuating pain hypersensitivity. Here, we summarize new insights into the role of exercise as a non-pharmacological intervention for the relief of chronic pain.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
3
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
4
|
Landa-García JN, Palacios-Arellano MDLP, Morales MA, Aranda-Abreu GE, Rojas-Durán F, Herrera-Covarrubias D, Toledo-Cárdenas MR, Suárez-Medellín JM, Coria-Avila GA, Manzo J, Hernández-Aguilar ME. The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals (Basel) 2024; 14:2570. [PMID: 39272355 PMCID: PMC11394280 DOI: 10.3390/ani14172570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
This review provides a comprehensive analysis of the pelvic plexus and its regulation across various mammalian species, including rats, cats, dogs, and pigs. The pelvic and hypogastric nerves play crucial roles in regulating pelvic functions such as micturition, defecation, and erection. The anatomical organization of these nerves varies, forming either well-defined ganglia or complex plexuses. Despite these variations, the neurons within these structures are consistently regulated by key neurotransmitters, norepinephrine and acetylcholine. These neurons also possess receptors for testosterone and prolactin, particularly in rats, indicating the significant role of these hormones in neuronal function and development. Moreover, neuropeptides such as vasoactive intestinal peptide (VIP), substance P, neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), and calcitonin gene-related peptide (CGRP) are co-released with neurotransmitters to modulate pelvic functions. This review highlights the complex interplay between neurotransmitters, neuropeptides, and hormones in regulating pelvic physiology and emphasizes the importance of hormonal regulation in maintaining the functionality and health of the pelvic plexus across different species.
Collapse
Affiliation(s)
| | | | - Miguel Angel Morales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| | | | | | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| | | |
Collapse
|
5
|
Chen J, Liu X, Liu C, Tang L, Bu T, Jiang B, Qing Y, Xie Y, Wang Y, Shan Y, Li R, Ye C, Liao L. Reconfigurable Ag/HfO 2/NiO/Pt Memristors with Stable Synchronous Synaptic and Neuronal Functions for Renewable Homogeneous Neuromorphic Computing System. NANO LETTERS 2024; 24:5371-5378. [PMID: 38647348 DOI: 10.1021/acs.nanolett.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Artificial synapses and bionic neurons offer great potential in highly efficient computing paradigms. However, complex requirements for specific electronic devices in neuromorphic computing have made memristors face the challenge of process simplification and universality. Herein, reconfigurable Ag/HfO2/NiO/Pt memristors are designed for feasible switching between volatile and nonvolatile modes by compliance current controlled Ag filaments, which enables stable and reconfigurable synaptic and neuronal functions. A neuromorphic computing system effectively replicates the biological synaptic weight alteration and continuously accomplishes excitation and reset of artificial neurons, which consist of bionic synapses and artificial neurons based on isotype Ag/HfO2/NiO/Pt memristors. This reconfigurable electrical performance of the Ag/HfO2/NiO/Pt memristors takes advantage of simplified hardware design and delivers integrated circuits with high density, which exhibits great potency for future neural networks.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Xingqiang Liu
- Changsha Semiconductor Technology and Application Research Institute, Engineering Research Center of Advanced Semiconductor Technology, College of Semiconductor (College of Integrated Circuit), Hunan University, Changsha 410082, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lin Tang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Tong Bu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bei Jiang
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
- Changsha Semiconductor Technology and Application Research Institute, Engineering Research Center of Advanced Semiconductor Technology, College of Semiconductor (College of Integrated Circuit), Hunan University, Changsha 410082, China
| | - Yahui Qing
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Yulu Xie
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Yong Wang
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Yongtao Shan
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Ruxin Li
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Cong Ye
- Key Laboratory of Intelligent Sensing System and Security, Ministry of Education, School of Microelectronics, Hubei University, Wuhan 430062, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Research Institute, Engineering Research Center of Advanced Semiconductor Technology, College of Semiconductor (College of Integrated Circuit), Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Dill-McFarland KA, Altman MC, Esnault S, Jarjour NN, Busse WW, Rosenkranz MA. Molecular pathways underlying lung-brain axis signaling in asthma: Relevance for psychopathology and neuroinflammation. J Allergy Clin Immunol 2024; 153:111-121. [PMID: 37730134 PMCID: PMC10841090 DOI: 10.1016/j.jaci.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Accumulating evidence indicates that asthma has systemic effects and affects brain function. Although airway inflammation is proposed to initiate afferent communications with the brain, the signaling pathways have not been established. OBJECTIVE We sought to identify the cellular and molecular pathways involved in afferent lung-brain communication during airway inflammation in asthma. METHODS In 23 adults with mild asthma, segmental bronchial provocation with allergen (SBP-Ag) was used to provoke airway inflammation and retrieve bronchoalveolar lavage fluid for targeted protein analysis and RNA sequencing to determine gene expression profiles. Neural responses to emotional cues in nodes of the salience network were assessed with functional magnetic resonance imaging at baseline and 48 hours after SBP-Ag. RESULTS Cell deconvolution and gene coexpression network analysis identified 11 cell-associated gene modules that changed in response to SBP-Ag. SBP-Ag increased bronchoalveolar lavage eosinophils and expression of an eosinophil-associated module enriched for genes related to TH17-type inflammation (eg, IL17A), as well as cell proliferation in lung and brain (eg, NOTCH1, VEGFA, and LIF). Increased expression of genes in this module, as well as several TH17-type inflammation-related proteins, was associated with an increase from baseline in salience network reactivity. CONCLUSIONS Our results identify a specific inflammatory pathway linking asthma-related airway inflammation and emotion-related neural function. Systemically, TH17-type inflammation has been implicated in both depression and neuroinflammation, with impacts on long-term brain health. Thus, our data emphasize that inflammation in the lung in asthma may have profound effects outside of the lung that may be targetable with novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wis; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
7
|
Freitas FEDA, Batista MAC, Braga DCDA, de Oliveira LB, Antunes VR, Cardoso LM. The gut-brain axis and sodium appetite: Can inflammation-related signaling influence the control of sodium intake? Appetite 2022; 175:106050. [PMID: 35447164 DOI: 10.1016/j.appet.2022.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Sodium is the main cation present in the extracellular fluid. Sodium and water content in the body are responsible for volume and osmotic homeostasis through mechanisms involving sodium and water excretion and intake. When body sodium content decreases below the homeostatic threshold, a condition termed sodium deficiency, highly motivated sodium seeking, and intake occurs. This is termed sodium appetite. Classically, sodium and water intakes are controlled by a number of neuroendocrine mechanisms that include signaling molecules from the renin-angiotensin-aldosterone system acting in the central nervous system (CNS). However, recent findings have shown that sodium and water intakes can also be influenced by inflammatory agents and mediators acting in the CNS. For instance, central infusion of IL-1β or TNF-α can directly affect sodium and water consumption in animal models. Some dietary conditions, such as high salt intake, have been shown to change the intestinal microbiome composition, stimulating the immune branch of the gut-brain axis through the production of inflammatory cytokines, such as IL-17, which can stimulate the brain immune system. In this review, we address the latest findings supporting the hypothesis that immune signaling in the brain could produce a reduction in thirst and sodium appetite and, therefore, contribute to sodium intake control.
Collapse
Affiliation(s)
| | | | | | | | - Vagner Roberto Antunes
- Dept. of Physiology and Biophysics - ICB, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
8
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
9
|
Hernández-Melchor D, Ramírez-Martínez L, Cid L, Palafox-Gómez C, López-Bayghen E, Ortega A. EAAT1-dependent slc1a3 Transcriptional Control depends on the Substrate Translocation Process. ASN Neuro 2022; 14:17590914221116574. [PMID: 35903937 PMCID: PMC9340397 DOI: 10.1177/17590914221116574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium-dependent transporters expressed in neurons and glial cells. The bulk of glutamate uptake activity occurs in glial cells through the sodium-dependent glutamate/aspartate transporter (EAAT1/GLAST) and glutamate transporter 1 (EAAT2/GLT-1). EAAT1/GLAST is the predominant transporter within the cerebellum. It is highly enriched in Bergmann glial cells that span the cerebellar cortex and wrap the most abundant glutamatergic synapses in the central nervous system, the synapse formed by the parallel fibers and the Purkinje cells. In the past years, it has become evident that Bergmann glial cells are involved in glutamatergic transmission. Glutamate transporters are tightly regulated due to their essential role in tripartite synapses. Glutamate regulates EAAT1/GLAST function and gene expression in a receptor-dependent and receptor-independent manner. Through the use of the non-metabolizable EAAT1/GLAST ligand, D-Aspartate, and the well-established chick cerebellar Bergmann glia primary culture, in this contribution, we demonstrate that EAAT1/GLAST down-regulates its expression and function at the transcriptional level through the activation of a signaling pathway that includes the phosphatidyl inositol 3 kinase (PI3K), the Ca2+/diacylglycerol dependent protein kinase PKC and the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). These results favor the notion of an activity-dependent fine-tuning of glutamate recycling and its synaptic transactions through glial cells. Summary statement EAAT1/GLAST down-regulates its expression and function at the transcriptional level by activating a signaling pathway that includes PI3K, PKC and NF-κB, favoring the notion of an activity-dependent fine-tuning of glutamate recycling and its synaptic transactions through glial cells.
Collapse
Affiliation(s)
- Dinorah Hernández-Melchor
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Science, Technology and Society Program. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leticia Ramírez-Martínez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Luis Cid
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Cecilia Palafox-Gómez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
10
|
Soria-Ortiz MB, Reyes-Ortega P, Martínez-Torres A, Reyes-Haro D. A Functional Signature in the Developing Cerebellum: Evidence From a Preclinical Model of Autism. Front Cell Dev Biol 2021; 9:727079. [PMID: 34540842 PMCID: PMC8448387 DOI: 10.3389/fcell.2021.727079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.
Collapse
Affiliation(s)
- María Berenice Soria-Ortiz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Pamela Reyes-Ortega
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
11
|
Song W, Wang W, Yu S, Lin GN. Dissection of the Genetic Association between Anorexia Nervosa and Obsessive-Compulsive Disorder at the Network and Cellular Levels. Genes (Basel) 2021; 12:491. [PMID: 33801746 PMCID: PMC8065602 DOI: 10.3390/genes12040491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) exhibit a high co-morbidity rate, similar symptoms, and a shared genetic basis. However, an understanding of the specific underlying mechanisms of these commonalities is currently limited. Here, we collected Genome-Wide Association Analysis results for AN and OCD, and obtained genes hit by the top SNPs as the risk genes. We then carried out an integrative coexpression network analysis to explore the convergence and divergence of AN and OCD risk genes. At first, we observed that the AN risk genes were enriched in coexpression modules that involved extracellular matrix functions and highly are expressed in the postnatal brain, limbic system, and non-neuronal cell types, while the OCD risk genes were enriched in modules of synapse function, the prenatal brain, cortex layers, and neurons. Next, by comparing the expressions from the eating disorder and OCD postmortem patient brain tissues, we observed both disorders have similar prefrontal cortex expression alterations influencing the synapse transmission, suggesting that the two diseases could have similar functional pathways. We found that the AN and OCD risk genes had distinct functional and spatiotemporal enrichment patterns but carried similar expression alterations as a disease mechanism, which may be one of the key reasons they had similar but not identical clinical phenotypes.
Collapse
Affiliation(s)
| | | | | | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (S.Y.)
| |
Collapse
|
12
|
Dang J, Tiwari SK, Agrawal K, Hui H, Qin Y, Rana TM. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol Psychiatry 2021; 26:1194-1207. [PMID: 32051547 PMCID: PMC7423603 DOI: 10.1038/s41380-020-0676-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022]
Abstract
Methamphetamine (METH) is a potent stimulant that induces a euphoric state but also causes cognitive impairment, neurotoxicity and neurodevelopmental deficits. Yet, the molecular mechanisms by which METH causes neurodevelopmental defects have remained elusive. Here we utilized human cerebral organoids and single-cell RNA sequencing (scRNA-seq) to study the effects of prenatal METH exposure on fetal brain development. We analyzed 20,758 cells from eight untreated and six METH-treated cerebral organoids and found that the organoids developed from embryonic stem cells contained a diverse array of glial and neuronal cell types. We further identified transcriptionally distinct populations of astrocytes and oligodendrocytes within cerebral organoids. Treatment of organoids with METH-induced marked changes in transcription in multiple cell types, including astrocytes and neural progenitor cells. METH also elicited novel astrocyte-specific gene expression networks regulating responses to cytokines, and inflammasome. Moreover, upregulation of immediate early genes, complement factors, apoptosis, and immune response genes suggests a neuroinflammatory program induced by METH regulating neural stem cell proliferation, differentiation, and cell death. Finally, we observed marked METH-induced changes in neuroinflammatory and cytokine gene expression at the RNA and protein levels. Our data suggest that human cerebral organoids represent a model system to study drug-induced neuroinflammation at single-cell resolution.
Collapse
Affiliation(s)
- Jason Dang
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Shashi Kant Tiwari
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Kriti Agrawal
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Hui Hui
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Yue Qin
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Tariq M. Rana
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| |
Collapse
|
13
|
Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev 2020; 110:100-113. [DOI: 10.1016/j.neubiorev.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/30/2019] [Accepted: 03/24/2019] [Indexed: 02/08/2023]
|
14
|
Noronha-Matos JB, Oliveira L, Peixoto AR, Almeida L, Castellão-Santana LM, Ambiel CR, Alves-do Prado W, Correia-de-Sá P. Nicotinic α7 receptor-induced adenosine release from perisynaptic Schwann cells controls acetylcholine spillover from motor endplates. J Neurochem 2020; 154:263-283. [PMID: 32011735 DOI: 10.1111/jnc.14975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/01/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
Acetylcholine (ACh) spillover from motor endplates occurs after neuronal firing bursts being potentiated by cholinesterase inhibitors (e.g., neostigmine). Nicotinic α7 receptors (α7nAChR) on perisynaptic Schwann cells (PSCs) can control ACh spillover by unknown mechanisms. We hypothesized that adenosine might be the gliotransmitter underlying PSCs-nerve terminal communication. Rat isolated hemidiaphragm preparations were used to measure (1) the outflow of [3 H]ACh, (2) real-time transmitter exocytosis by video-microscopy with the FM4-64 fluorescent dye, and (3) skeletal muscle contractions during high-frequency (50 Hz) nerve stimulation bursts in the presence of a selective α7nAChR agonist, PNU 282987, or upon inhibition of cholinesterase activity with neostigmine. To confirm our prediction that α7nAChR-mediated effects require direct activation of PSCs, we used fluorescence video-microscopy in the real-time mode to measure PNU 282987-induced [Ca2+ ]i transients from Fluo-4 NW loaded PSCs in non-stimulated preparations. The α7nAChR agonist, PNU 282987, decreased nerve-evoked diaphragm tetanic contractions. PNU 282987-induced inhibition was mimicked by neostigmine and results from the reduction of ACh exocytosis measured as decreases in [3 H]ACh release and FM4-64 fluorescent dye unloading. Methyllycaconitine blockage of α7nAChR and the fluoroacetate gliotoxin both prevented inhibition of nerve-evoked ACh release and PSCs [Ca2+ ]i transients triggered by PNU 282987 and neostigmine. Adenosine deamination, inhibition of the ENT1 nucleoside outflow, and blockage of A1 receptors prevented PNU 282987-induced inhibition of transmitter release. Data suggest that α7nAChR controls tetanic-induced ACh spillover from the neuromuscular synapse by promoting adenosine outflow from PSCs via ENT1 transporters and retrograde activation of presynaptic A1 inhibitory receptors.
Collapse
Affiliation(s)
- José B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Laura Oliveira
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Ana R Peixoto
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | - Liliana Almeida
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| | | | - Célia R Ambiel
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Wilson Alves-do Prado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Paraná, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Ortega A, Olivares-Bañuelos TN. Neurons and Glia Cells in Marine Invertebrates: An Update. Front Neurosci 2020; 14:121. [PMID: 32132895 PMCID: PMC7040184 DOI: 10.3389/fnins.2020.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The nervous system (NS) of invertebrates and vertebrates is composed of two main types of cells: neurons and glia. In both types of organisms, nerve cells have similarities in biochemistry and functionality. The neurons are in charge of the synapse, and the glial cells are in charge of important functions of neuronal and homeostatic modulation. Knowing the mechanisms by which NS cells work is important in the biomedical area for the diagnosis and treatment of neurological disorders. For this reason, cellular and animal models to study the properties and characteristics of the NS are always sought. Marine invertebrates are strategic study models for the biological sciences. The sea slug Aplysia californica and the squid Loligo pealei are two examples of marine key organisms in the neurosciences field. The principal characteristic of marine invertebrates is that they have a simpler NS that consists of few and larger cells, which are well organized and have accessible structures. As well, the close phylogenetic relationship between Chordata and Echinodermata constitutes an additional advantage to use these organisms as a model for the functionality of neuronal cells and their cellular plasticity. Currently, there is great interest in analyzing the signaling processes between neurons and glial cells, both in vertebrates and in invertebrates. However, only few types of glial cells of invertebrates, mostly insects, have been studied, and it is important to consider marine organisms' research. For this reason, the objective of the review is to present an update of the most relevant information that exists around the physiology of marine invertebrate neuronal and glial cells.
Collapse
Affiliation(s)
- Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
16
|
Belote RL, Simon SM. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol 2019; 219:132739. [PMID: 31821412 PMCID: PMC7039208 DOI: 10.1083/jcb.201902014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Melanocytes are the neural crest-derived pigment-producing cells of the skin that possess dendrites. Yet little is known about how melanocyte dendrites receive and process information from neighboring cells. Here, using a co-culture system to interrogate the interaction between melanocyte dendrites and keratinocytes, we show that signals from neighboring keratinocytes trigger local compartmentalized Ca2+ transients within the melanocyte dendrites. The localized dendritic Ca2+ transients could be triggered by two keratinocyte-secreted factors, endothelin and acetylcholine, which acted via specific melanocyte receptors. Furthermore, compartmentalized Ca2+ transients were also generated on discrete dendritic spine-like structures on the melanocytes. These spines were also present in intact human skin. Our findings provide insights into how melanocyte dendrites communicate with neighboring cells and offer a new model system for studying compartmentalized signaling in dendritic structures.
Collapse
|
17
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
18
|
Stierli S, Imperatore V, Lloyd AC. Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia 2019; 67:2203-2215. [PMID: 31215712 DOI: 10.1002/glia.23643] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
How tissues are maintained over a lifetime and repaired following injury are fundamental questions in biology with a disruption to these processes underlying pathologies such as cancer and degenerative disorders. It is becoming increasingly clear that each tissue has a distinct mechanism to maintain homeostasis and respond to injury utilizing different types of stem/progenitor cell populations depending on the insult and/or with a contribution from more differentiated cells that are able to dedifferentiate to aid tissue regeneration. Peripheral nerves are highly quiescent yet show remarkable regenerative capabilities. Remarkably, there is no evidence for a classical stem cell population, rather all cell-types within the nerve are able to proliferate to produce new nerve tissue. Co-ordinating the regeneration of this tissue are Schwann cells (SCs), the main glial cells of the peripheral nervous system. SCs exist in architecturally stable structures that can persist for the lifetime of an animal, however, they are not postmitotic, in that following injury they are reprogrammed at high efficiency to a progenitor-like state, with these cells acting to orchestrate the nerve regeneration process. During nerve regeneration, SCs show little plasticity, maintaining their identity in the repaired tissue. However, once free of the nerve environment they appear to exhibit increased plasticity with reported roles in the repair of other tissues. In this review, we will discuss the mechanisms underlying the homeostasis and regeneration of peripheral nerves and how reprogrammed progenitor-like SCs have broader roles in the repair of other tissues with implications for pathologies such as cancer.
Collapse
Affiliation(s)
- Salome Stierli
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Alison C Lloyd
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
19
|
Abstract
There are vast literatures on the neural effects of alcohol and the neural effects of exercise. Simply put, exercise is associated with brain health, alcohol is not, and the mechanisms by which exercise benefits the brain directly counteract the mechanisms by which alcohol damages it. Although a degree of brain recovery naturally occurs upon cessation of alcohol consumption, effective treatments for alcohol-induced brain damage are badly needed, and exercise is an excellent candidate from a mechanistic standpoint. In this chapter, we cover the small but growing literature on the interactive neural effects of alcohol and exercise, and the capacity of exercise to repair alcohol-induced brain damage. Increasingly, exercise is being used as a component of treatment for alcohol use disorders (AUD), not because it reverses alcohol-induced brain damage, but because it represents a rewarding, alcohol-free activity that could reduce alcohol cravings and improve comorbid conditions such as anxiety and depression. It is important to bear in mind, however, that multiple studies attest to a counterintuitive positive relationship between alcohol intake and exercise. We therefore conclude with cautionary notes regarding the use of exercise to repair the brain after alcohol damage.
Collapse
|
20
|
A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials 2019; 225:119537. [PMID: 31614290 PMCID: PMC7294901 DOI: 10.1016/j.biomaterials.2019.119537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023]
Abstract
Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne’s muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting.
Collapse
|
21
|
Early glioma is associated with abnormal electrical events in cortical cultures. Med Biol Eng Comput 2019; 57:1645-1656. [PMID: 31079355 DOI: 10.1007/s11517-019-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
The prodromal stages of some neurological diseases have a distinct electrical profile which can potentially be leveraged for early diagnosis, predicting disease recurrence, monitoring of disease progression, and better understanding of the disease pathology. Gliomas are tumors that originate from glial cells present in the brain and spinal cord. Healthy glial cells support normal neuronal function and play an important role in modulating the regular electrical activity of neurons. However, gliomas can disrupt the normal electrical dynamics of the brain. Though experimental and clinical studies suggest that glioma and injury to glial cells disrupt electrical dynamics of the brain, whether these disruptions are present during the earliest stages of glioma and glial injury are unclear. The primary aim of this study is to investigate the effect of early in vitro glial pathology (glioma and glial injury in specific) on neuronal electrical activity. In particular, we investigated the effect of glial pathology on neural synchronization: an important phenomenon that underlies several central neurophysiological processes (ScienceDirect, 2018 ). We used two in vitro disease samples: (a) a sample in which cortical cultures were treated with anti-mitotic agents that deplete glial cells and (b) a glioma sample in which healthy cortical cells were cultured with CRL-2303 (an aggressive glioma cell line). Healthy cortical culture samples were used as controls. Cultures were established over a glass dish embedded with microelectrodes that permits simultaneous measurement of extracellular electrical activity from multiple sites of the culture. We observed that healthy cortical cultures produce spontaneous and synchronized oscillations which were attenuated in the absence of glial cells. The presence of glioma was associated with the emergence of two types of "abnormal electrical activity" each with distinct amplitude and frequency profile. Our results indicate that even early stages of glioma and glial injury are associated with distinct changes in neuronal electrical activity. Graphical abstract.
Collapse
|
22
|
Liu Y, Sugiura Y, Chen F, Lee KF, Ye Q, Lin W. Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1). PLoS Genet 2019; 15:e1007857. [PMID: 30870432 PMCID: PMC6417856 DOI: 10.1371/journal.pgen.1007857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Yoshie Sugiura
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Fujun Chen
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Kuo-Fen Lee
- The Salk Institute, La Jolla, United States of America
| | - Qiaohong Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Weichun Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
23
|
Pereira P, Korbas M, Pereira V, Cappello T, Maisano M, Canário J, Almeida A, Pacheco M. A multidimensional concept for mercury neuronal and sensory toxicity in fish - From toxicokinetics and biochemistry to morphometry and behavior. Biochim Biophys Acta Gen Subj 2019; 1863:129298. [PMID: 30768958 DOI: 10.1016/j.bbagen.2019.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuronal and sensory toxicity of mercury (Hg) compounds has been largely investigated in humans/mammals with a focus on public health, while research in fish is less prolific and dispersed by different species. Well-established premises for mammals have been governing fish research, but some contradictory findings suggest that knowledge translation between these animal groups needs prudence [e.g. the relative higher neurotoxicity of methylmercury (MeHg) vs. inorganic Hg (iHg)]. Biochemical/physiological differences between the groups (e.g. higher brain regeneration in fish) may determine distinct patterns. This review undertakes the challenge of identifying sensitive cellular targets, Hg-driven biochemical/physiological vulnerabilities in fish, while discriminating specificities for Hg forms. SCOPE OF REVIEW A functional neuroanatomical perspective was conceived, comprising: (i) Hg occurrence in the aquatic environment; (ii) toxicokinetics on central nervous system (CNS)/sensory organs; (iii) effects on neurotransmission; (iv) biochemical/physiological effects on CNS/sensory organs; (v) morpho-structural changes on CNS/sensory organs; (vi) behavioral effects. The literature was also analyzed to generate a multidimensional conceptualization translated into a Rubik's Cube where key factors/processes were proposed. MAJOR CONCLUSIONS Hg neurosensory toxicity was unequivocally demonstrated. Some correspondence with toxicity mechanisms described for mammals (mainly at biochemical level) was identified. Although the research has been dispersed by numerous fish species, 29 key factors/processes were pinpointed. GENERAL SIGNIFICANCE Future trends were identified and translated into 25 factors/processes to be addressed. Unveiling the neurosensory toxicity of Hg in fish has a major motivation of protecting ichtyopopulations and ecosystems, but can also provide fundamental knowledge to the field of human neurodevelopment.
Collapse
Affiliation(s)
- Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Malgorzata Korbas
- Science Division, Canadian Light Source Inc., Saskatoon, Canada; Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Vitória Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), University of Minho, Campus of Gualtar, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
24
|
Amaroli A, Marcoli M, Venturini A, Passalacqua M, Agnati LF, Signore A, Raffetto M, Maura G, Benedicenti S, Cervetto C. Near-infrared laser photons induce glutamate release from cerebrocortical nerve terminals. JOURNAL OF BIOPHOTONICS 2018; 11:e201800102. [PMID: 29931754 DOI: 10.1002/jbio.201800102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Although photons have been repeatedly shown to affect the functioning of the nervous system, their effects on neurotransmitter release have never been investigated. We exploited in vitro models that allow effects involving neuron-astrocyte network functioning to be detected (mouse cerebrocortical slices) and dissected these effects at cerebrocortical nerve endings and astrocyte processes. Infrared light proved able to induce glutamate release by stimulating glutamatergic nerve endings.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genova, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | | |
Collapse
|
25
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
26
|
de Rezende MG, Rosa CE, Garcia-Leal C, de Figueiredo FP, Cavalli RDC, Bettiol H, Salmon CEG, Barbieri MA, de Castro M, Carlos Dos Santos A, Del-Ben CM. Correlations between changes in the hypothalamic-pituitary-adrenal axis and neurochemistry of the anterior cingulate gyrus in postpartum depression. J Affect Disord 2018; 239:274-281. [PMID: 30029155 DOI: 10.1016/j.jad.2018.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/28/2018] [Accepted: 07/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to investigate associations between indicators of hypothalamic-pituitary-adrenal axis (HPA) functioning and metabolite levels in the anterior cingulate gyrus (ACG) of women with postpartum depression (PPD). METHODS The sample (mean age = 28.5 ± 4.6 years) consisted of 20 women with PPD and 19 postpartum euthymic (PPE) women. Brain metabolites were quantified by proton magnetic resonance spectroscopy (1H-MRS). Salivary cortisol samples were collected upon awakening and 30 min and 12 h later, at 20.6 ± 6.6 (PPD) and 23.0 ± 7.4 (PPE) weeks after childbirth. RESULTS There were no significant differences between groups in respect to metabolite levels in the ACG. Compared with PPE, PPD women had less diurnal variation (DVr%). In the PPD group, positive correlations were found between DVr% and myo-inositol (mI/Cr) levels, and between cortisol awakening response (CARi%) and glutamate + glutamine (Glx/Cr) levels. The correlation between CARi% and Glx/Cr remained significant even after controlling for the interval, in weeks, from birth and MR spectroscopy and to hormonal data collection, and the use of contraceptives. LIMITATIONS The limitations of the study include the small sample size and the use of oral contraceptives by around half of the sample. CONCLUSIONS In the remote postpartum period (mean 21.8 ± 6.9 weeks) and in the presence of depressive episodes, the decreased responsiveness of the HPA axis after awakening and a smaller decrease in cortisol levels over the day were associated with lower levels of metabolites in the ACG. These results may contribute to the development of biological models to explain the etiology of PPD.
Collapse
Affiliation(s)
- Marcos Gonçalves de Rezende
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | - Carlos Eduardo Rosa
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cybele Garcia-Leal
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Felipe Pinheiro de Figueiredo
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | - Heloisa Bettiol
- Puericulture and Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos Ernesto Garrido Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Barbieri
- Puericulture and Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Margaret de Castro
- Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Cristina Marta Del-Ben
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
27
|
Song SY, Chae M, Yu JH, Lee MY, Pyo S, Shin YK, Baek A, Park JW, Park ES, Choi JY, Cho SR. Environmental Enrichment Upregulates Striatal Synaptic Vesicle-Associated Proteins and Improves Motor Function. Front Neurol 2018; 9:465. [PMID: 30061854 PMCID: PMC6054977 DOI: 10.3389/fneur.2018.00465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) is a therapeutic paradigm that consists of complex combinations of physical, cognitive, and social stimuli. The mechanisms underlying EE-mediated synaptic plasticity have yet to be fully elucidated. In this study, we investigated the effects of EE on synaptic vesicle-associated proteins and whether the expression of these proteins is related to behavioral outcomes. A total of 44 CD-1® (ICR) mice aged 6 weeks were randomly assigned to either standard cages or EE (N = 22 each). Rotarod and ladder walking tests were then performed to evaluate motor function. To identify the molecular mechanisms underlying the effects of EE, we assessed differentially expressed proteins (DEPs) in the striatum by proteomic analysis. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry were conducted to validate the expressions of these proteins. In the behavioral assessment, EE significantly enhanced performance on the rotarod and ladder walking tests. A total of 116 DEPs (54 upregulated and 62 downregulated proteins) were identified in mice exposed to EE. Gene ontology (GO) analysis demonstrated that the upregulated proteins in EE mice were primarily related to biological processes of synaptic vesicle transport and exocytosis. The GO terms for these biological processes commonly included Synaptic vesicle glycoprotein 2B (SV2B), Rabphilin-3A, and Piccolo. The qRT-PCR and western blot analyses revealed that EE increased the expression of SV2B, Rabphilin-3A and Piccolo in the striatum compared to the control group. Immunohistochemistry showed that the density of Piccolo in the vicinity of the subventricular zone was significantly increased in the EE mice compared with control mice. In conclusion, EE upregulates proteins associated with synaptic vesicle transport and exocytosis such as SV2B, Rabphilin-3A and Piccolo in the striatum. These upregulated proteins may be responsible for locomotor performance improvement, as shown in rotarod and ladder walking tests. Elucidation of these changes in synaptic protein expression provides new insights into the mechanism and potential role of EE.
Collapse
Affiliation(s)
- Suk-Young Song
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea
| | - Minji Chae
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Yoon-Kyum Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jung-Won Park
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Sook Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Young Choi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Rehabilitation Medicine, Eulji University School of Medicine, Daejeon, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
28
|
Development of Microplatforms to Mimic the In Vivo Architecture of CNS and PNS Physiology and Their Diseases. Genes (Basel) 2018; 9:genes9060285. [PMID: 29882823 PMCID: PMC6027402 DOI: 10.3390/genes9060285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.
Collapse
|
29
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|
30
|
Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 2018; 43:281-298. [PMID: 27442752 DOI: 10.1111/nan.12338] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes have essential roles in the central nervous system and are also implicated in the pathogenesis of neurodegenerative disease. Forming non-overlapping domains, astrocytes are highly complex cells. Immunohistochemistry to a variety of proteins can be used to study astrocytes in tissue, labelling different cellular components and sub-populations, including glial fibrillary acidic protein, ALDH1L1, CD44, NDRG2 and amino acid transporters, but none of these labels the entire astrocyte population. Increasing heterogeneity is recognized in the astrocyte population, a complexity that is relevant both to their normal function and pathogenic roles. They are involved in neuronal support, as active components of the tripartite synapse and in cell interactions within the neurovascular unit (NVU), where they are essential for blood-brain barrier maintenance and neurovascular coupling. Astrocytes change with age, and their responses may modulate the cellular effects of neurodegenerative pathologies, which alone do not explain all of the variance in statistical models of neurodegenerative dementias. Astrocytes respond to both the neurofibrillary tangles and plaques of Alzheimer's disease, to hyperphosphorylated tau and Aβ, eliciting an effect which may be neuroprotective or deleterious. Not only astrocyte hypertrophy, in the form of gliosis, occurs, but also astrocyte injury and atrophy. Loss of normal astrocyte functions may contribute to reduced support for neurones and dysfunction of the NVU. Understanding how astrocytes contribute to dementia requires an understanding of the underlying heterogeneity of astrocyte populations, and the complexity of their responses to pathology. Enhancing the supportive and neuroprotective components of the astrocyte response has potential translational applications in therapeutic approaches to dementia.
Collapse
Affiliation(s)
- C J Garwood
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - L E Ratcliffe
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P G Ince
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| |
Collapse
|
31
|
Alattar AA, Carroll K, Hirshman BR, Joshi RS, Sanghvi P, Chen CC. Cystic Formation After Stereotactic Radiosurgery of Brain Metastasis. World Neurosurg 2018; 114:e719-e728. [PMID: 29551723 DOI: 10.1016/j.wneu.2018.03.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Limited information is available on the natural history and etiology of cystic formation after stereotactic radiosurgery (SRS) for brain metastases (BM). We aimed to characterize the natural history of cyst formation after SRS of BM and analyze potential risk factors. METHODS We retrospectively reviewed 214 consecutive patients who underwent a total of 1106 SRSs for BM. Demographic, clinical, dosimetric, and magnetic resonance imaging MRI data were reviewed. Statistical analysis was accomplished using Student's t test, and univariate and multivariate logistic regression. RESULTS The median patient age was 61 years (range, 19-91 years), and the median duration of follow-up was 424 days (range, 91-2934 days). Eleven cases of cyst formation (0.9% of 1106 treated lesions) were identified at SRS-treated BM sites among 9 patients (2 patients developed cysts at independent sites). The median interval between first SRS and first evidence of cyst was 218 days. Seven of the 9 patients (78%) sustained progressive cyst expansion and neurologic decline requiring steroid treatment. Four of these 7 patients (57%) experienced continued neurologic decline and needed surgical fenestration. On univariate analysis, receipt of >4 rounds of SRS was the sole variable associated with an increased risk of cyst formation (odds ratio, 16.58; P = 0.001). This association remained robust after adjusting for duration of follow-up (odds ratio, 13.59; P = 0.003). CONCLUSIONS In our experience with 1106 SRS-treated cases of BM, cyst formation was a rare phenomenon. However, 1 in 3 patients who underwent >4 rounds of SRS sustained cyst formation. A high proportion (78%) of SRS-associated cysts progressively expanded and required medical or surgical treatment.
Collapse
Affiliation(s)
- Ali A Alattar
- School of Medicine, University of California San Diego, San Diego, California, USA
| | - Kate Carroll
- School of Medicine, University of California San Diego, San Diego, California, USA
| | - Brian R Hirshman
- Division of Neurological Surgery, University of California San Diego, San Diego, California, USA; Computation, Organization, and Society Program, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Rushikesh S Joshi
- School of Medicine, University of California San Diego, San Diego, California, USA
| | - Parag Sanghvi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
32
|
Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.12.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zink A, Priller J, Prigione A. Pluripotent Stem Cells for Uncovering the Role of Mitochondria in Human Brain Function and Dysfunction. J Mol Biol 2018; 430:891-903. [PMID: 29458125 DOI: 10.1016/j.jmb.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunctions are a known pathogenetic mechanism of a number of neurological and psychiatric disorders. At the same time, mutations in genes encoding for components of the mitochondrial respiratory chain cause mitochondrial diseases, which commonly exhibit neurological symptoms. Mitochondria are therefore critical for the functionality of the human nervous system. The importance of mitochondria stems from their key roles in cellular metabolism, calcium handling, redox and protein homeostasis, and overall cellular homeostasis through their dynamic network. Here, we describe how the use of pluripotent stem cells (PSCs) may help in addressing the physiological and pathological relevance of mitochondria for the human nervous system. PSCs allow the generation of patient-derived neurons and glia and the identification of gene-specific and mutation-specific cellular phenotypes via genome engineering approaches. We discuss the recent advances in PSC-based modeling of brain diseases and the current challenges of the field. We anticipate that the careful use of PSCs will improve our understanding of the impact of mitochondria in neurological and psychiatric disorders and the search for effective therapeutic avenues.
Collapse
Affiliation(s)
- Annika Zink
- Max Delbrueck Center for Molecular Medicine (MDC), 13125 Berlin, Germany; Department of Neuropsychiatry, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Cluster of Excellence NeuroCure and German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; UK Dementia Research Institute and University of Edinburgh, Edinburgh EH16 4SB, UK
| | | |
Collapse
|
34
|
Sampedro-Piquero P, Begega A. Environmental Enrichment as a Positive Behavioral Intervention Across the Lifespan. Curr Neuropharmacol 2018; 15:459-470. [PMID: 27012955 PMCID: PMC5543669 DOI: 10.2174/1570159x14666160325115909] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/30/2015] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In recent decades, the interest in behavioral interventions has been growing due to the higher prevalence of age-related cognitive impairments. Hence, behavioral interventions, such as cognitive stimulation and physical activity, and along with these, our lifestyle (education level, work position, frequency of cognitive and social activities) have shown important benefits during the cognitive impairment, dementia and even recovery after brain injury. This is due to the fact that this type of intervention and activities promote the formation of a cognitive and brain reserve that allows tolerating brain damage during a long period of time without the appearance of cognitive symptoms. With regard to this, animal models have proved very useful in providing information about the brain mechanisms involved in the development of these cognitive and brain reserves and how they interact with each other. METHODS We summarize several studies showing the positive effects of Environmental Enrichment (EE), understood as a housing condition in which animals benefit from the sensory, physical, cognitive and social stimulation provided, on brain and cognitive functions usually impaired during aging. RESULTS Most of studies have shown that EE is a successful protocol to improve cognitive functions and reduce anxiety-related behaviors across the lifespan, as well as in animal models of neurodegenerative diseases. CONCLUSION Therefore, EE is a laboratory condition in which some aspects of an active lifestyle are reproduced.
Collapse
Affiliation(s)
- P Sampedro-Piquero
- Department of Biological and Health Psychology, Autonomous University of Madrid, Cantoblanco 28049, Madrid, Spain
| | - A Begega
- Neuroscience Laboratory, Psychology Department, University of Oviedo, Plaza Feijoo s/n 33003 Oviedo, INEUROPA, Spain
| |
Collapse
|
35
|
Dornier E, Rabas N, Mitchell L, Novo D, Dhayade S, Marco S, Mackay G, Sumpton D, Pallares M, Nixon C, Blyth K, Macpherson IR, Rainero E, Norman JC. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat Commun 2017; 8:2255. [PMID: 29269878 PMCID: PMC5740148 DOI: 10.1038/s41467-017-02101-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The role of glutaminolysis in providing metabolites to support tumour growth is well-established, but the involvement of glutamine metabolism in invasive processes is yet to be elucidated. Here we show that normal mammary epithelial cells consume glutamine, but do not secrete glutamate. Indeed, low levels of extracellular glutamate are necessary to maintain epithelial homoeostasis, and provision of glutamate drives disruption of epithelial morphology and promotes key characteristics of the invasive phenotype such as lumen-filling and basement membrane disruption. By contrast, primary cultures of invasive breast cancer cells convert glutamine to glutamate which is released from the cell through the system Xc- antiporter to activate a metabotropic glutamate receptor. This contributes to the intrinsic aggressiveness of these cells by upregulating Rab27-dependent recycling of the transmembrane matrix metalloprotease, MT1-MMP to promote invasive behaviour leading to basement membrane disruption. These data indicate that acquisition of the ability to release glutamate is a key watershed in disease aggressiveness.
Collapse
Affiliation(s)
- Emmanuel Dornier
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Nicolas Rabas
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - David Novo
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Sandeep Dhayade
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Sergi Marco
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Gillian Mackay
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - David Sumpton
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Maria Pallares
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Colin Nixon
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
| | - Iain R Macpherson
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Elena Rainero
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
- Biomedical Science Department, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jim C Norman
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
36
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
37
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
38
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
39
|
An efficient and cost-effective method of generating postnatal (P2-5) mouse primary hippocampal neuronal cultures. J Neurosci Methods 2017; 286:69-77. [PMID: 28546101 DOI: 10.1016/j.jneumeth.2017.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/01/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Primary culture of postnatal central neurons is a widely used methodology for applications such as the investigation of neuronal development, protein trafficking/distribution and cellular signalling. However, successful production and maintenance of such cultures, particularly from postnatal animals, can be challenging. In attempting to surmount these difficulties, several disparate culturing methodologies have been developed. Such methodologies are centred on the identification and optimisation of critical steps and, as such, the protocols and reagents utilised can differ quite markedly from protocol to protocol, often with the suggestion that the use of a (usually expensive) proprietary reagent(s), lengthy substrate preparation and/or cell isolation techniques is/are necessary for successful culture preparation. NEW METHOD Herein, we present a simple and inexpensive protocol for the preparation of primary hippocampal neurons from postnatal (2-5 day old) mice, which remain viable for experimental use for over one month. RESULTS Neurons cultured using this method follow well established developmental norms and display typical responses to standard physiological stimuli such as depolarisation and certain pharmacological agents. COMPARISON WITH EXISTING METHODS/CONCLUSION By using a novel trituration technique, simplified methodology and non-proprietary reagents, we have developed a reliable protocol that enables the cost effective and efficient production of high quality postnatal mouse hippocampal cultures. This method, if required, can also be utilised to prepare neurons both from other regions of the brain as well as from other species such as rat.
Collapse
|
40
|
Abstract
One of the central issues in cognitive science is the nature of human representations. We argue that symbolic representations are essential for capturing human cognitive capabilities. We start by examining some common misconceptions found in discussions of representations and models. Next we examine evidence that symbolic representations are essential for capturing human cognitive capabilities, drawing on the analogy literature. Then we examine fundamental limitations of feature vectors and other distributed representations that, despite their recent successes on various practical problems, suggest that they are insufficient to capture many aspects of human cognition. After that, we describe the implications for cognitive architecture of our view that analogy is central, and we speculate on roles for hybrid approaches. We close with an analogy that might help bridge the gap.
Collapse
Affiliation(s)
| | - Chen Liang
- Department of Computer Science, Northwestern University
| | - Irina Rabkina
- Department of Computer Science, Northwestern University
| |
Collapse
|
41
|
Mercier MR, Bickel S, Megevand P, Groppe DM, Schroeder CE, Mehta AD, Lado FA. Evaluation of cortical local field potential diffusion in stereotactic electro-encephalography recordings: A glimpse on white matter signal. Neuroimage 2016; 147:219-232. [PMID: 27554533 DOI: 10.1016/j.neuroimage.2016.08.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022] Open
Abstract
While there is a strong interest in meso-scale field potential recording using intracranial electroencephalography with penetrating depth electrodes (i.e. stereotactic EEG or S-EEG) in humans, the signal recorded in the white matter remains ignored. White matter is generally considered electrically neutral and often included in the reference montage. Moreover, re-referencing electrophysiological data is a critical preprocessing choice that could drastically impact signal content and consequently the results of any given analysis. In the present stereotactic electroencephalography study, we first illustrate empirically the consequences of commonly used references (subdermal, white matter, global average, local montage) on inter-electrode signal correlation. Since most of these reference montages incorporate white matter signal, we next consider the difference between signals recorded in cortical gray matter and white matter. Our results reveal that electrode contacts located in the white matter record a mixture of activity, with part arising from the volume conduction (zero time delay) of activity from nearby gray matter. Furthermore, our analysis shows that white matter signal may be correlated with distant gray matter signal. While residual passive electrical spread from nearby matter may account for this relationship, our results suggest the possibility that this long distance correlation arises from the white matter fiber tracts themselves (i.e. activity from distant gray matter traveling along axonal fibers with time lag larger than zero); yet definitive conclusions about the origin of the white matter signal would require further experimental substantiation. By characterizing the properties of signals recorded in white matter and in gray matter, this study illustrates the importance of including anatomical prior knowledge when analyzing S-EEG data.
Collapse
Affiliation(s)
- Manuel R Mercier
- Department of Neurology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA; Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Pavillon Baudot CHU Purpan, BP 25202, 31052 Toulouse Cedex, France
| | - Stephan Bickel
- Department of Neurology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | - Pierre Megevand
- Department of Neurosurgery, Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research, Manhasset, New York, NY 11030, USA
| | - David M Groppe
- Department of Neurosurgery, Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research, Manhasset, New York, NY 11030, USA
| | - Charles E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Neurosurgery, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research, Manhasset, New York, NY 11030, USA
| | - Fred A Lado
- Department of Neurology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Mitterauer B. Imbalance of Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. Neuroscientist 2016; 10:199-206. [PMID: 15155059 DOI: 10.1177/107385403262248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a wave of new information suggesting that glia, especially astrocytes, are intimately involved in the active control of neuronal activity and synaptic transmission. Synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses consisting of the presynapse, the postsynapse, and the glial element (astrocytes). Smit and coworkers proposed a model of a cholinergic tripartite synapse based on the identification of a glial-derived binding protein (BP) that is secreted into the synapse and binds free acetylcholine (ACh), thus reducing the levels of ACh available for stimulating the postsynapse. Here the author proposes an explanatory model of the pathophysiology of bipolar disorder focusing on the possible dynamics in cholinergic tripartite synapses. The hypothesis is that an imbalance between neurotransmitters and glial BPs in the synaptic cleft is determined by glia. If glial BPs are overexpressed, synaptic transmission is suppressed because of reduced levels of bioavailable neurotransmitters. This state could cause a depression on the behavioral level. In contrast, if glial BPs are underexpressed, the excess of neurotransmitters in the cleft leads to an overbalanced state of synaptic information transmission. This state could cause manic behavior. Under certain conditions, underbalanced and overbalanced synapses at different locations in the same brain could disturb brain function in parallel causing a mixed episode of bipolar disorder. If glial BPs and mutations in genes expressing glial BPs in the various synapses of the brain are identified, this hypothesis can be experimentally tested.
Collapse
Affiliation(s)
- Bernhard Mitterauer
- Institute of Forensic Neuropsychiatry and Gotthard Günther Archives, University of Salzburg, Austria.
| |
Collapse
|
43
|
Mitterauer B. Nonfunctional Glial Proteins in Tripartite Synapses: A Pathophysiological Model of Schizophrenia. Neuroscientist 2016; 11:192-8. [PMID: 16013114 DOI: 10.1177/1073858404265745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A model for the pathophysiology of schizophrenia is proposed that focuses on an unbalance of transmission in tripartite synapses. Synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses consisting of the presynapse, the postsynapse, and the glial element. Astrocytes may secrete glial binding protein into the synaptic cleft, thus binding free neurotransmitters and thereby reducing the levels of neurotransmitters available for stimulating the postsynapse. Astrocytes also have membrane-bound receptors for neurotransmitters, and when these bind neurotransmitters, the astrocytes upregulate the amount of binding protein secreted into the synapse, resulting in a negative feedback to the presynaptic terminal. The hypothesis presented here is that glia lose their negative feedback function due to loss of function mutations in the genes encoding the binding proteins and glial receptors. The mutations generate proteins that cannot be occupied by their cognate substances of the neuronal system, primarily neurotransmitters. Therefore, the glial-neuronal interaction in tripartite synapses affected becomes totally unbalanced, and the glia lose their inhibitory or boundary-setting function. As a result, neural flux is unconstrained by normal glial boundaries, also the flux of thought on the phenomenological level. Schizophrenia may be caused by the inability to delimit conceptual boundaries.
Collapse
Affiliation(s)
- Bernhard Mitterauer
- Institute of Forensic Neuropsychiatry and Gotthard Günther Archives, University of Salzburg, Austria.
| |
Collapse
|
44
|
Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sci 2016; 6:brainsci6020013. [PMID: 27089371 PMCID: PMC4931490 DOI: 10.3390/brainsci6020013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 01/24/2023] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing.
Collapse
|
45
|
Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr Opin Pharmacol 2016; 26:138-45. [DOI: 10.1016/j.coph.2015.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
46
|
Durieux AMS, Fernandes C, Murphy D, Labouesse MA, Giovanoli S, Meyer U, Li Q, So PW, McAlonan G. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice. Front Behav Neurosci 2015; 9:343. [PMID: 26696857 PMCID: PMC4677305 DOI: 10.3389/fnbeh.2015.00343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023] Open
Abstract
An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.
Collapse
Affiliation(s)
- Alice M S Durieux
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Marie Anais Labouesse
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology Schwerzenbach, Switzerland
| | - Sandra Giovanoli
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology Schwerzenbach, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse Zurich, Switzerland
| | - Urs Meyer
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology Schwerzenbach, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse Zurich, Switzerland
| | - Qi Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong, China
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| |
Collapse
|
47
|
Enzyme-linked DNA dendrimer nanosensors for acetylcholine. Sci Rep 2015; 5:14832. [PMID: 26442999 PMCID: PMC4595838 DOI: 10.1038/srep14832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022] Open
Abstract
It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.
Collapse
|
48
|
Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity. Neural Plast 2015; 2015:765792. [PMID: 26339509 PMCID: PMC4539116 DOI: 10.1155/2015/765792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.
Collapse
|
49
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
50
|
Yoon HJ, Jeon SB, Koh HS, Song JY, Kim SS, Kim IH, Park EJ. Distinctive responses of brain tumor cells to TLR2 ligands. Glia 2015; 63:894-905. [PMID: 25628091 DOI: 10.1002/glia.22791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cells, Cultured
- Cerebral Cortex/cytology
- Disease Models, Animal
- Interferon-gamma
- Ligands
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroblastoma/pathology
- Neuroglia/metabolism
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Hee Jung Yoon
- Cancer Immunology Branch, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | |
Collapse
|