1
|
Lin D, Jiang W, Feng Y, Zhang L, Zhang W, Zhang Z. Genome-wide identification of TRAF family genes in Urechis unicinctus (Annelida, Echiura) and their responses in resistance to high temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101516. [PMID: 40267861 DOI: 10.1016/j.cbd.2025.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
TRAFs (Tumor necrosis factor receptor-associated factors), serving as important signaling mediators, are essential for organismal immunity and biological responses to environmental stress. Temperature is an important environmental factor for the survival of organisms, but so far, the studies on sequence characteristics of the TRAF family genes and their responses to high temperature stress in marine animals are very limited. In this study, we conducted a genome-wide analysis of the TRAF family genes and revealed their characteristics of responding to high temperature stress in Urechis unicinctus, an economic coastal burrowing Echuran worm. Nine TRAF sequences were identified based on U. unicinctus genome database, which belonged to 5 TRAF members by phylogenetic analysis, namely UuTRAF2, UuTRAF3a, UuTRAF3b, UuTRAF3c, UuTRAF4a, UuTRAF4b, UuTRAF4c, UuTRAF6 and UuTRAF7. Especially, the copy number of TRAF3 and TRAF4 was higher, while the length and number of introns in TRAF2 and TRAF3 were significantly shorter and fewer in U. unicinctus compared to other invertebrates. Furthermore, the expression of the TRAF family genes showed obvious spatio-temporal specificity in the embryos, larvae, and adult tissues of U. unicinctus, with more TRAF family genes expressed in larvae, body wall, and hind-gut. When U. unicinctus adults were stressed by high temperature (29 °C), all the UuTRAFs were significantly up-regulated, especially UuTRAF2 and UuTRAF3a, which were kept at high levels during the experimental phase, indicating their importance in responding to the high temperature stress. Our findings will facilitate a greater comprehension of the sequence characteristics of TRAF family genes in annelids, and provide essential data for future exploring the genetic mechanism and breeding of high temperature tolerance of U. unicinctus.
Collapse
Affiliation(s)
- Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wengqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Kim SK, Do JW, Lee SK, Park JH, Kim JH, Lim HB. Inhibitory Effects of Phellodendri Cortex Against Airway Inflammation and Hyperresponsiveness in Ovalbumin-Induced Murine Asthma Model. Molecules 2025; 30:1795. [PMID: 40333800 PMCID: PMC12029468 DOI: 10.3390/molecules30081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Phellodendri cortex (PC), the dried trunk bark of Phellodendron amurense RUPR, has traditionally been used to treat patients who suffer from gastroenteritis, abdominal pain or diarrhea. Its major bioactive compounds include alkaloids and limonin, and many physiological activities including anti-microbial, anti-ulcer and anti-cancer as well as anti-inflammation have been reported. Although PC is an effective anti-inflammatory natural substance that inhibits the inflammatory response, its effect on allergic asthma has not yet been investigated. The aim of this study was to evaluate the anti-asthmatic effects of PC in an ovalbumin (OVA)-induced murine model of asthma. As a result, PC inhibited airway eosinophil accumulation, the influx of inflammatory cells, airway hyperresponsiveness (AHR), production of Th2 cytokines (IL-4, IL-5 and IL-13) and tumor necrosis factor-α (TNF-α) in the bronchoalveolar lavage fluid and/or lung, as well as OVA-specific immunoglobulin E (IgE) in the serum. Furthermore, PC suppressed the gene expression of IL-4, IL-5, IL-13, TARC and CCR3, and attenuated unique histological changes that are associated with airway inflammatory reactions including the infiltration of various inflammatory cells, collagen deposition and goblet cell hyperplasia in lung tissues. These results indicate that PC may have preventive and/or therapeutic effects for allergic asthma via the inhibition of cytokines, chemokines and chemokine receptors associated with allergic inflammation.
Collapse
Affiliation(s)
- Seong-Kyeom Kim
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Ji-Won Do
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Seong-Kyun Lee
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Jae-Ho Park
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Ju-Hyoung Kim
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Heung-Bin Lim
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Nelson HA, Mullins NA, Abell AN. MAP3K4 signaling regulates HDAC6 and TRAF4 coexpression and stabilization in trophoblast stem cells. J Biol Chem 2025; 301:108116. [PMID: 39710325 PMCID: PMC11787431 DOI: 10.1016/j.jbc.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) promotes fetal and placental growth and development, with MAP3K4 kinase inactivation resulting in placental insufficiency and fetal growth restriction. MAP3K4 promotes key signaling pathways including JNK, p38, and PI3K/Akt, leading to activation of CREB-binding protein. MAP3K4 kinase inactivation results in loss of these pathways and gain of histone deacetylase 6 (HDAC6) expression and activity. Tumor necrosis factor receptor-associated factor 4 (TRAF4) binds MAP3K4 and promotes MAP3K4 activation of downstream pathways in the embryo; however, the role of TRAF4 and its association with MAP3K4 in the placenta is unknown. Our analyses of murine placenta single-cell RNA-Seq data showed that Traf4 is coexpressed with Map3k4 in trophoblast stem (TS) cells and labyrinth progenitors, whereas Hdac6 expression is higher in differentiated trophoblasts. We demonstrate that, like HDAC6, TRAF4 expression is increased in MAP3K4 kinase-inactive TS (TSKI) cells and upon inhibition of MAP3K4-dependent pathways in WT TS cells. Moreover, Hdac6 shRNA knockdown in TSKI cells reduces TRAF4 protein expression. We found that HDAC6 forms a protein complex with TRAF4 in TS cells and promotes TRAF4 expression in the absence of HDAC6 deacetylase activity. Finally, we examine the relationships among MAP3K4, TRAF4, and HDAC6 in the developing placenta, finding a previously unknown switch in the coexpression of Traf4 with Map3k4 versus Traf4 with Hdac6 during differentiation of the placental labyrinth. Together, our findings identify previously unknown mechanisms of MAP3K4 and HDAC6 coregulation of TRAF4 in TS cells and highlight these MAP3K4, TRAF4, and HDAC6 associations during placental development.
Collapse
Affiliation(s)
- Hannah A Nelson
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Nathan A Mullins
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Amy N Abell
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA.
| |
Collapse
|
4
|
Tharanga EMT, Nadarajapillai K, Warnakula WADLR, Kim G, Lim C, Yang H, Jayasinghe JDHE, Jeyakanesh JT, Sirisena DMKP, Arachchi UPE, Wan Q, Lee J. Characterization of tumor necrosis factor receptor-associated factor 2 (TRAF2) in red-spotted grouper (Epinephelus akaara): In vivo and in vitro investigation of its role in the regulation of antiviral immunity and cell death. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110089. [PMID: 39667537 DOI: 10.1016/j.fsi.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a key adaptor molecule in tumor necrosis factor receptor signaling complexes, facilitating downstream immune-related signaling cascades. This study aimed to elucidate its function in teleost fish by characterizing the TRAF2 homolog of the red-spotted grouper (Epinephelus akaara, EaTraf2). The open reading frame of EaTraf2 encodes a putative protein of 520 amino acids, containing several characteristic domains of TRAF2. These structural features of EaTraf2 are conserved across diverse organisms, with a relatively higher sequence identity to TRAF2 orthologs from other bony fish. Transcriptional analysis demonstrated that EaTraf2 was ubiquitously expressed in all examined tissues, with the highest level observed in blood. Upon immune challenge, EaTraf2 expression significantly increased in the early stages of stimulation in both blood and spleen. Subcellular localization analysis revealed that EaTraf2 is predominantly localized in the cytoplasm. Overexpression of EaTraf2 in fathead minnow (FHM) cells resulted in elevated levels of interferon and inflammation-associated genes following viral hemorrhagic septicemia virus (VHSV) infection, along with reduced viral gene expression. This provided compelling evidence that EaTraf2 possesses antiviral properties. Furthermore, EaTraf2 demonstrated the ability to promote cell death induced by oxidative stress. Additionally, luciferase reporter assays revealed that EaTraf2 activates the NF-κB signaling pathway upon poly(I:C) stimulation and the Jun N-terminal kinase (JNK) signaling pathway in response to H2O2 treatment. Overall, our study elucidated the role of EaTraf2 in regulating innate immune responses and mediating stress-induced cell death. These findings enhance our understanding of TRAF2 in fish and may contribute to improved health management strategies in finfish aquaculture.
Collapse
Affiliation(s)
- E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
5
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
6
|
Jang H, Kim S, Kim DY, Han JH, Park HH. TRAF1 from a Structural Perspective. Biomolecules 2024; 14:510. [PMID: 38785916 PMCID: PMC11117997 DOI: 10.3390/biom14050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins play pivotal roles in a multitude of cellular signaling pathways, encompassing immune response, cell fate determination, development, and thrombosis. Their involvement in these processes hinges largely on their ability to interact directly with diverse receptors via the TRAF domain. Given the limited binding interface, understanding how specific TRAF domains engage with various receptors and how structurally similar binding interfaces of TRAF family members adapt their distinct binding partners has been the subject of extensive structural investigations over several decades. This review presents an in-depth exploration of the current insights into the structural and molecular diversity exhibited by the TRAF domain and TRAF-binding motifs across a range of receptors, with a specific focus on TRAF1.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (H.J.); (S.K.); (D.Y.K.); (J.H.H.)
| |
Collapse
|
7
|
Huang Y, Wang G, Zhang N, Zeng X. MAP3K4 kinase action and dual role in cancer. Discov Oncol 2024; 15:99. [PMID: 38568424 PMCID: PMC10992237 DOI: 10.1007/s12672-024-00961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
It is commonly known that the MAPK pathway is involved in translating environmental inputs, regulating downstream reactions, and maintaining the intrinsic dynamic balance. Numerous essential elements and regulatory processes are included in this pathway, which are essential to its functionality. Among these, MAP3K4, a member of the serine/threonine kinases family, plays vital roles throughout the organism's life cycle, including the regulation of apoptosis and autophagy. Moreover, MAP3K4 can interact with key partners like GADD45, which affects organism's growth and development. Notably, MAP3K4 functions as both a tumor promotor and suppressor, being activated by a variety of factors and triggering diverse downstream pathways that differently influence cancer progression. The aim of this study is to provide a brief overview of physiological functions of MAP3K4 and shed light on its contradictory roles in tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
8
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
9
|
Choolert C, Pasookhush P, Vaniksampanna A, Longyant S, Chaivisuthangkura P. A novel tumor necrosis factor receptor-associated factor 6 (TRAF6) gene from Macrobrachiumrosenbergii involved in antibacterial defense against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108945. [PMID: 37451525 DOI: 10.1016/j.fsi.2023.108945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an adapter protein that triggers downstream cascades mediated by both TNFR and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF6 is involved in various biological processes, including innate and adaptive immunity. In the present study, a homolog of TRAF6 from Macrobrachium rosenbergii (MrTRAF6) was identified and characterized. The full-length cDNA of MrTRAF6 consisted of 2,114 nucleotides with an open reading frame (ORF) of 1,695 nucleotides encoding a 564-amino acid protein that contained a conserved TRAF family motif including two RING-type zinc fingers and a C-terminal meprin and TRAF homology (MATH) domain. The putative amino sequence of MrTRAF6 shared 45.5-97.3% identity with TRAF6s from other crustacean species with the highest identity to Macrobrachium nipponense TRAF6. Phylogenetic analysis revealed that MrTRAF6 was closely related to TRAF6 of invertebrates and clustered with crustaceans. According to gene expression analysis, the MrTRAF6 transcript demonstrated broad expression in all tissues tested, with the highest expression level in gill and the lowest in muscle tissues. Upon immune challenge with Aeromonas hydrophila, significant upregulation of MrTRAF6 expression was found in the gill, hepatopancreas, hemocyte, and muscle. Furthermore, an RNA interference assay showed that silencing MrTRAF6 by dsRNA could reduce the expression of mannose-binding lectin (MBL) and crustin, but no significant change was detected in anti-lipopolysaccharide factor 5 (ALF5) levels. In addition, the cumulative mortality rate of MrTRAF6-silenced M. rosenbergii was significantly increased after A. hydrophila infection. These findings indicated that MrTRAF6 is involved in antibacterial activity and plays a critical role in the innate immune response of M. rosenbergii.
Collapse
Affiliation(s)
- Chanitcha Choolert
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Phongthana Pasookhush
- Division of Medical Bioinformatics, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Akapon Vaniksampanna
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Center of Excellence in Animal, Plant and Parasite Biotechnology (COE), Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Center of Excellence in Animal, Plant and Parasite Biotechnology (COE), Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
10
|
Zhong K, Liu X, Ding W, Peng L, Zeng X, Gu Y. TRAF inhibition drives cancer cell apoptosis and improves retinoic acid sensitivity in multiple cancers models. Discov Oncol 2023; 14:117. [PMID: 37389738 DOI: 10.1007/s12672-023-00703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
TNF receptor-associated factors (TRAFs) are signaling adaptor proteins that play a crucial role in regulating cellular receptors' signaling transduction to downstream pathways and exert multifaceted roles in regulating signaling pathways, cell survival, and carcinogenesis. The 13-cis-retinoic acid (RA), an active metabolite of vitamin A, exhibits anti-cancer properties, but the development of retinoic acid resistance poses a challenge in clinical application. This study aimed to investigate the relationship between TRAFs and retinoic acid sensitivity in various cancers. Here, we revealed that TRAFs' expression varied significantly across The Cancer Genome Atlas (TCGA) cancer cohorts and human cancer cell lines. Additionally, inhibiting TRAF4, TRAF5, or TRAF6 improved retinoic acid sensitivity and reduced colony formation in ovarian cancer and melanoma cells. Mechanistically, knocking down TRAF4, TRAF5, or TRAF6 in retinoic acid-treated cancer cell lines increased the levels of procaspase 9 and induced cell apoptosis. Further in vivo studies using the SK-OV-3 and MeWo xenograft models confirmed the anti-tumor effects of TRAF knockdown combined with retinoic acid treatment. These findings support that combination therapy with retinoic acid and TRAF silencing may offer significant therapeutic advantages in treating melanoma and ovarian cancers.
Collapse
Affiliation(s)
- Kun Zhong
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaojun Liu
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Weihua Ding
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Lizhong Peng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xuhui Zeng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Yayun Gu
- Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Wang R, Han P, Liu X, Wang X. Genome-wide identification of TNF receptor-associated factors in Japanese flounder (Paralichthys olivaceus) and functional analysis of resistance to temperature and Edwardsiella tarda stress. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108862. [PMID: 37263548 DOI: 10.1016/j.fsi.2023.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs), as the signaling mediators of the tumor necrosis factor (TNFR) superfamily, toll-like receptors (TLR) and interleukin-1 receptor (IL-1R) superfamily, can activate downstream signal transduction pathways and play an important role in the body's immune process. In this study, six TRAF genes, namely PoTRAF2a, PoTRAF2b, PoTRAF3, PoTRAF4, PoTRAF6 and PoTRAF7, were identified and annotated in Japanese flounder by using bioinformatics methods. Phylogenetic analysis confirmed that TRAF genes can be divided into seven groups. Analysis of motif composition and gene structure demonstrated that all PoTRAF members were evolutionarily conserved. The expression patterns of PoTRAF genes were then further investigated in six different developmental stages and eleven tissues of healthy fish, and it was found that there were spatial and tissue specificities among the members. To investigate the immune response of Japanese flounder to abiotic and biotic stresses, we further analyzed the expression profile of PoTRAFs after temperature stress and pathogen challenge. The result showed that PoTRAF3 and PoTRAF4 were observably differentially expressed under temperature stress, indicating that they were involved in the immune response after temperature stress. The expression of PoTRAF2a, PoTRAF2b and PoTRAF4 was significantly different after E. tarda infection, suggesting that they might have antibacterial effects. These results would help to clarify the molecular roles of PoTRAF genes in the regulation of immune and inflammatory responses in Japanese flounder.
Collapse
Affiliation(s)
- Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
12
|
Souza RF, Caetano MAF, Magalhães HIR, Castelucci P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol 2023; 29:2733-2746. [PMID: 37274062 PMCID: PMC10237104 DOI: 10.3748/wjg.v29.i18.2733] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are part of Inflammatory Bowel Diseases (IBD) and have pathophysiological processes such as bowel necrosis and enteric neurons and enteric glial cells. In addition, the main inflammatory mediator is related to the tumor necrosis factor-alpha (TNF-α). TNF-α is a me-diator of the intestinal inflammatory processes, thus being one of the main cytokines involved in the pathogenesis of IBD, however, its levels, when measured, are present in the serum of patients with IBD. In addition, TNF-α plays an important role in promoting inflammation, such as the production of interleukins (IL), for instance IL-1β and IL-6. There are two receptors for TNF as following: The tumor necrosis factor 1 receptor (TNFR1); and the tumor necrosis factor 2 receptor (TNFR2). They are involved in the pathogenesis of IBD and their receptors have been detected in IBD and their expression is correlated with disease activity. The soluble TNF form binds to the TNFR1 receptor with, and its activation results in a signaling cascade effects such as apoptosis, cell proliferation and cytokine secretion. In contrast, the transmembrane TNF form can bind both to TNFR1 and TNFR2. Recent studies have suggested that TNF-α is one of the main pro-inflammatory cytokines involved in the pathogenesis of IBD, since TNF levels are present in the serum of both patients with UC and CD. Intravenous and subcutaneous biologics targeting TNF-α have revolutionized the treatment of IBD, thus becoming the best available agents to induce and maintain IBD remission. The application of antibodies aimed at neutralizing TNF-α in patients with IBD that induce a satisfactory clinical response in up to 60% of patients, and also induced long-term maintenance of disease remission in most patients. It has been suggested that anti-TNF-α agents inactivate the pro-inflammatory cytokine TNF-α by direct neutralization, i.e., resulting in suppression of inflammation. However, anti-TNF-α antibodies perform more complex functions than a simple blockade.
Collapse
Affiliation(s)
- Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
13
|
You SL, Jiang XX, Zhang GR, Ji W, Ma XF, Zhou X, Wei KJ. Molecular Characterization of Nine TRAF Genes in Yellow Catfish ( Pelteobagrus fulvidraco) and Their Expression Profiling in Response to Edwardsiella ictaluri Infection. Int J Mol Sci 2023; 24:ijms24098363. [PMID: 37176078 PMCID: PMC10179116 DOI: 10.3390/ijms24098363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413-2025 bp in length and encoded 470-674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon-intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish.
Collapse
Affiliation(s)
- Shen-Li You
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Gao Y, Jiang X, Wei Z, Long H, Lai W. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Front Genet 2023; 14:1168538. [PMID: 37077539 PMCID: PMC10106650 DOI: 10.3389/fgene.2023.1168538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.
Collapse
Affiliation(s)
- Yanzi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Wenli Lai,
| |
Collapse
|
15
|
Zeng F, Carrasco G, Li B, Sophocleous A, Idris AI. TRAF6 as a potential target in advanced breast cancer: a systematic review, meta-analysis, and bioinformatics validation. Sci Rep 2023; 13:4646. [PMID: 36944688 PMCID: PMC10029787 DOI: 10.1038/s41598-023-31557-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
TRAF6 has emerged as a key regulator of breast cancer (BCa). However, the TRAF family constitutes of seven members that exhibit distinct and overlapping functions. To explore which TRAF represents a potential druggable target for BCa treatment, we searched Medline, Web of Science and Scopus for relevant studies from inception to June 27, 2021. We identified 14 in vitro, 11 in vivo and 4 human articles. A meta-analysis of pharmacological studies showed that in vitro inhibition of TRAF2/4 (mean difference (MD): - 57.49, 95% CI: - 66.95, - 48.02, P < 0.00001) or TRAF6 (standard(Std.)MD: - 4.01, 95% CI: - 5.75, - 2.27, P < 0.00001) is associated with reduction in BCa cell migration. Consistently, inhibition of TRAF2/4 (MD: - 51.08, 95% CI: - 64.23, - 37.94, P < 0.00001) and TRAF6 (Std.MD: - 2.80, 95% CI: - 4.26, - 1.34, P = 0.0002) is associated with reduced BCa cell invasion, whereas TRAF2/4 inhibition (MD: - 40.54, 95% CI: - 52.83, - 28.26, P < 0.00001) is associated with reduced BCa cell adhesion. Interestingly, only inhibition of TRAF6 (MD: - 21.46, 95% CI: - 30.40, - 12.51, P < 0.00001) is associated with reduced cell growth. In animal models of BCa, administration of pharmacological inhibitors of TRAF2/4 (Std.MD: - 3.36, 95% CI: - 4.53, - 2.18, P < 0.00001) or TRAF6 (Std.MD: - 4.15, 95% CI: - 6.06, - 2.24, P < 0.0001) in mice is associated with reduction in tumour burden. In contrast, TRAF6 inhibitors (MD: - 2.42, 95% CI: - 3.70, - 1.14, P = 0.0002) reduced BCa metastasis. In BCa patients, high expression of TRAF6 (Hazard Ratio: 1.01, CI: 1.01, 1.01, P < 0.00001) is associated with poor survival rate. Bioinformatics validation of clinical and pathway and process enrichment analysis in BCa patients confirmed that gain/amplification of TRAF6 is associated with secondary BCa in bone (P = 0.0079), and poor survival rate (P < 0.05). Overall, TRAF6 inhibitors show promise in the treatment of metastatic BCa. However, low study number and scarcity of evidence from animal and human studies may limit the translation of present findings into clinical practice.
Collapse
Affiliation(s)
- Feier Zeng
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Giovana Carrasco
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Boya Li
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, 1516, Nicosia, Cyprus
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
16
|
Urbański A, Johnston P, Bittermann E, Keshavarz M, Paris V, Walkowiak-Nowicka K, Konopińska N, Marciniak P, Rolff J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci Rep 2022; 12:17277. [PMID: 36241888 PMCID: PMC9568666 DOI: 10.1038/s41598-022-21605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland ,grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany ,grid.419247.d0000 0001 2108 8097Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Elisa Bittermann
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maryam Keshavarz
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Véronique Paris
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.1008.90000 0001 2179 088XBio 21 Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karolina Walkowiak-Nowicka
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Konopińska
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jens Rolff
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
17
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Han M, Liu Y, Jin C, Wang X, Song W, Zhang Q. Genome-wide identification, characterization and expression profiling of TRAF family genes in Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2022; 127:203-210. [PMID: 35724846 DOI: 10.1016/j.fsi.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) are signaling mediators for Toll-like receptor (TLR) and tumor necrosis factor (TNFR) superfamily that play important roles in organism immune response. However, reports on systematic identification of TRAF gene family in teleost fish and the function of TRAFs in innate immunity of black rockfish (Sebastes schlegelii) are lacked. In our study, eight TRAF genes were identified and characterized, namely, SsTRAF2a, SsTRAF2a-like, SsTRAF2b, SsTRAF3, SsTRAF4, SsTRAF5, SsTRAF6 and SsTRAF7 in S. schegelii. Furthermore, we analyzed their sequences, conserved domains, gene structures, motif compositions, phylogeny, tissue expression patterns in healthy and Vibro. anguillarum challenged individuals. All the SsTRAFs contained typical conserved domain, including C-terminal MATH domain and N-terminal RING finger domain. Analyses of gene structures and motifs showed the distribution of exon-intron and conserved motifs in S. schegelii and serval other teleost fish. We also analyzed the expression file of SsTRAFs in five immune-relate organs, liver, spleen, kidney, gill and intestine in healthy and bacterial challenged fish. The results indicated that all SsTRAF member were widely involved in immune response after pathogenic bacteria infection. In summary, the analyses of TRAFs in S. schegelii will be helpful to better understand the diverse roles of TRAF genes in the innate immune response to bacterial challenge.
Collapse
Affiliation(s)
- Miao Han
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Yuxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Xuangang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
19
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Sun J, Yang Q, Liu E, Chen D, Sun Q. KIZ/GM114 Balances the NF-ĸB Signaling by Antagonizing the Association of TRAF2/6 With Their Upstream Adaptors. Front Cell Dev Biol 2022; 10:877039. [PMID: 35433693 PMCID: PMC9008698 DOI: 10.3389/fcell.2022.877039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
NF-κB signaling is a pivotal regulator of the inflammatory response and it must be tightly controlled to avoid an excessive inflammatory response that may lead to human chronic inflammatory and autoimmune diseases. Thus, how NF-κB signaling is precisely controlled is a long-standing question in the field. TRAF family proteins function as key adaptors to mediate NF-κB signaling induced by various receptors. Here, we characterize KIZ/GM114 as a negative regulator balancing the NF-κB signaling. Mechanistically, KIZ/GM114 binds TRAF6/2 by targeting the TRAF domains to antagonize the TRAF6-IRAK1 association or the TRAF2-TRADD association, consequently reducing the IL-1β/LPS/TNFα-induced NF-κB activation. Importantly, upon dextran sulfate sodium treatment, Gm114 deficiency induces a stronger inflammatory response, more severe acute colitis and lower survival rate in mice compared with control mice. Collectively, our study not only identifies KIZ/GM114 as a negative regulator to balance the NF-κB signaling, but it also implies a new strategy for limiting excessive inflammatory response.
Collapse
Affiliation(s)
- Jiawei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
- *Correspondence: Dahua Chen, , ; Qinmiao Sun,
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dahua Chen, , ; Qinmiao Sun,
| |
Collapse
|
21
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Vargas JFDC, Skare T, Gehlen ML, Moreira ATR. Subconjunctival adalimumab for treatment of dry eye disease in Sjögren’s syndrome. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
The E3 Ubiquitin Ligase TRAF6 Interacts with the Cellular Prion Protein and Modulates Its Solubility and Recruitment to Cytoplasmic p62/SQSTM1-Positive Aggresome-Like Structures. Mol Neurobiol 2022; 59:1577-1588. [PMID: 35000151 DOI: 10.1007/s12035-021-02666-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
The cellular prion protein (PrPC) is a ubiquitous glycoprotein highly expressed in the brain where it is involved in neurite outgrowth, copper homeostasis, NMDA receptor regulation, cell adhesion, and cell signaling. Conformational conversion of PrPC into its insoluble and aggregation-prone scrapie form (PrPSc) is the trigger for several rare devastating neurodegenerative disorders, collectively referred to as prion diseases. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To better dissect the role of ubiquitination in PrPC physiology, we focused on the E3 RING ubiquitin ligase tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6). Here, we report that PrPC interacts with TRAF6 both in vitro, in cells, and in vivo, in the mouse brain. Transient overexpression of TRAF6 indirectly modulates PrPC ubiquitination and triggers redistribution of PrPC into the insoluble fraction. Importantly, in the presence of wild-type TRAF6, but not a mutant lacking E3 ligase activity, PrPC accumulates into cytoplasmic aggresome-like inclusions containing TRAF6 and p62/SQSTM1. Our results suggest that TRAF6 ligase activity could exert a role in the regulation of PrPC redistribution in cells under physiological conditions. This novel interaction may uncover possible mechanisms of cell clearance/reorganization in prion diseases.
Collapse
|
24
|
Curty G, Iñiguez LP, Nixon DF, Soares MA, de Mulder Rougvie M. Hallmarks of Retroelement Expression in T-Cells Treated With HDAC Inhibitors. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.756635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A wide spectrum of drugs have been assessed as latency reversal agents (LRA) to reactivate HIV-1 from cellular reservoirs and aid in viral eradication strategies. Histone deacetylase inhibitors (HDACi) have been studied in vitro and in vivo as potential candidates for HIV-1 latency reversion. Suberoylanilide hydroxamic acid (SAHA) and romidepsin (RMD) are two HDACi able to reverse HIV latency, however studies of potential off-target effects on retroelement expression have been limited. Retroelements constitute a large portion of the human genome, and some are considered “fossil viruses” as they constitute remnants of ancient exogenous retroviruses infections. Retroelements are reactivated during certain disease conditions like cancer or during HIV-1 infection. In this study, we analyzed differential expression of retroelements using publicly available RNA-seq datasets (GSE102187 and GSE114883) obtained from uninfected CD4+, and HIV-1 latently infected CD4+ T-cells treated with HDACi (SAHA and RMD). We found a total of 712 and 1,380 differentially expressed retroelements in HIV-1 latently infected cells following a 24-h SAHA and RMD treatment, respectively. Furthermore, we found that 531 retroelement sequences (HERVs and L1) were differentially expressed under both HDACi treatments, while 1,030 HERV/L1 were exclusively regulated by each drug. Despite differences in specific HERV loci expression, the overall pattern at the HERV family level was similar for both treatments. We detected differential expression of full-length HERV families including HERV-K, HERV-W and HERV-H. Furthermore, we analyzed the link between differentially expressed retroelements and nearby immune genes. TRAF2 (TNF receptor) and GBP5 (inflammasome activator) were upregulated in HDACi treated samples and their expression was correlated with nearby HERV (MERV101_9q34.3) and L1 (L1FLnI_1p22.2k, L1FLnI_1p22.2j, L1FLnI_1p22.2i). Our findings suggest that HDACi have an off-target effect on the expression of retroelements and on the expression of immune associated genes in treated CD4+ T-cells. Furthermore, our data highlights the importance of exploring the interaction between HIV-1 and retroelement expression in LRA treated samples to understand their role and impact on “shock and kill” strategies and their potential use as reservoir biomarkers.
Collapse
|
25
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
26
|
Gurley JM, Gmyrek GB, McClellan ME, Hargis EA, Hauck SM, Dozmorov MG, Wren JD, Carr DJJ, Elliott MH. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33079993 PMCID: PMC7585394 DOI: 10.1167/iovs.61.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The immune-privileged environment and complex organization of retinal tissue support the retina's essential role in visual function, yet confound inquiries into cell-specific inflammatory effects that lead to dysfunction and degeneration. Caveolin-1 (Cav1) is an integral membrane protein expressed in several retinal cell types and is implicated in immune regulation. However, whether Cav1 promotes or inhibits inflammatory processes in the retina (as well as in other tissues) remains unclear. Previously, we showed that global-Cav1 depletion resulted in reduced retinal inflammatory cytokine production but paradoxically elevated retinal immune cell infiltration. We hypothesized that these disparate responses are the result of differential cell-specific Cav1 functions in the retina. Methods We used Cre/lox technology to deplete Cav1 specifically in the neural retinal (NR) compartment to clarify the role NR-specific Cav1 (NR-Cav1) in the retinal immune response to intravitreal inflammatory challenge induced by activation of Toll-like receptor-4 (TLR4). We used multiplex protein suspension array and flow cytometry to evaluate innate immune activation. Additionally, we used bioinformatics assessment of differentially expressed membrane-associated proteins to infer relationships between NR-Cav1 and immune response pathways. Results NR-Cav1 depletion, which primarily affects Müller glia Cav1 expression, significantly altered immune response pathway regulators, decreased retinal inflammatory cytokine production, and reduced retinal immune cell infiltration in response to LPS-stimulated inflammatory induction. Conclusions Cav1 expression in the NR compartment promotes the innate TLR4-mediated retinal tissue immune response. Additionally, we have identified novel potential immune modulators differentially expressed with NR-Cav1 depletion. This study further clarifies the role of NR-Cav1 in retinal inflammation.
Collapse
Affiliation(s)
- Jami M Gurley
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Elizabeth A Hargis
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, Virginia, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| |
Collapse
|
27
|
Xie J, Wang M, Cheng A, Jia R, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Luo Q, Wang Y, Xu Z, Chen Z, Zhu L, Liu Y, Yu Y, Zhang L, Chen X. The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma. Virol J 2021; 18:74. [PMID: 33849568 PMCID: PMC8045357 DOI: 10.1186/s12985-021-01544-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host's antiviral responses to achieve persistent infection. CONCLUSIONS This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| |
Collapse
|
28
|
Sandru F, Petca RC, Costescu M, Dumitrașcu MC, Popa A, Petca A, Miulescu RG. Cutaneous Mastocytosis in Childhood-Update from the Literature. J Clin Med 2021; 10:1474. [PMID: 33918305 PMCID: PMC8038134 DOI: 10.3390/jcm10071474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
Mastocytosis (M) represents a systemic pathology characterized by increased accumulation and clonal proliferation of mast cells in the skin and/or different organs. Broadly, M is classified into two categories: Cutaneous mastocytosis (CM) and systemic mastocytosis (SM). In children, CM is the most frequent form. Unfortunately, pathogenesis is still unclear. It is thought that genetic factors are involved, but further studies are necessary. As for features of CM, the lesions differ in clinical forms. The most important fact is evaluating a pediatric patient with CM. It must comprise laboratory exams (with baseline dosing of total serum tryptase), a skin biopsy (with a pathological exam and, if the diagnosis is unclear, immunohistochemical tests), and a complete clinical evaluation. It is also defining to distinguish between CM and other diseases with cutaneous involvement. As for the management of CM in children, the first intervention implies eliminating trigger factors. The available cures are oral H1 and/or H2 antihistamines, oral cromolyn sodium, oral methoxypsoralen therapy with long-wave psoralen plus ultraviolet A radiation, potent dermatocorticoid, and calcineurin inhibitors. In children, the prognosis of CM is excellent, especially if the disease's onset is in the first or second years of life.
Collapse
Affiliation(s)
- Florica Sandru
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Dermatology, Elias University Emergency Hospital, 0611461 Bucharest, Romania;
| | - Răzvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Urology, “Prof. Dr. Theodor Burghele” Clinical Hospital, 061344 Bucharest, Romania
| | - Monica Costescu
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Dermatology, “Dr. Victor Babes” Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Obstetrics & Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Adelina Popa
- Department of Dermatology, Elias University Emergency Hospital, 0611461 Bucharest, Romania;
| | - Aida Petca
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Obstetrics & Gynecology, Elias University Emergency Hospital, 0611461 Bucharest, Romania
| | - Raluca-Gabriela Miulescu
- “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (F.S.); (R.-C.P.); (M.C.); (R.-G.M.)
- Department of Dermatology, Vălenii de Munte Hospital, 106400 Prahova, Romania
| |
Collapse
|
29
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|
30
|
Liu T, Wu Y, Han Y, Liu Q, Chen S, Zhao H. Genome-wide characterization of TNF receptor-associated factors in the Chinese soft-shelled turtle Pelodiscus sinensis and their expression profiling in response to Aeromonas hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 101:88-98. [PMID: 32229294 DOI: 10.1016/j.fsi.2020.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of crucial signaling molecules that mediate the signal transduction of various immune signaling pathways. Extensive studies have demonstrated that TRAFs play vital roles in regulating cellular immune responses. However, the biological functions and expression profiling of TRAFs in Chinese soft-shelled turtle (Pelodiscus sinensis) remain unclear. In this study, the genes of the PsTRAF family at the genome-wide level were identified in P. sinensis, revealing six PsTRAF members that contained the conserved TRAF domain in the C-terminal regions. Molecular evolutionary analysis showed that PsTRAFs shared close evolutionary relationships and similar protein crystal structures with the TRAF homologs from other turtles, indicating the evolutionary conservation of PsTRAFs. Further expression analysis revealed the tissue-specific expression of PsTRAF genes. Obvious variations in the expression of PsTRAF genes were observed in the spleen in response to Aeromonas hydrophila infection. Three PsTRAF genes, PsTRAF2, PsTRAF3, and PsTRAF6, were significantly upregulated at the mRNA and protein levels post-infection, indicating their potential function in the immune response. Moreover, the protein-protein associations of PsTRAFs with several signaling receptors were predicted in P. sinensis. These results provide a basis for the investigation of the functional roles of PsTRAFs in immune defense against bacterial infection.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yongjie Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Yawen Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
31
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Silvestri E, Bitossi A, Bettiol A, Emmi G, Urban ML, Mattioli I, Di Scala G, Bacherini D, Lopalco G, Venerito V, Iannone F, Vitale A, Tosi GM, Rizzo S, Fabiani C, Cantarini L, Virgili G, Vannozzi L, Prisco D. Adalimumab effectively controls both anterior and posterior noninfectious uveitis associated with systemic inflammatory diseases: focus on Behçet's syndrome. Inflammopharmacology 2020; 28:711-718. [PMID: 32157555 DOI: 10.1007/s10787-020-00697-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND To compare the efficacy of Adalimumab (ADA) in noninfectious anterior uveitis (AU) and posterior segment (PS) involvement, associated with different conditions, with a focus on Behçet's syndrome (BS). METHODS In this retrospective, multicenter post-hoc study, we evaluated the efficacy of ADA in terms of ocular control and relapses in 96 patients with AU and PS uveitis, either idiopathic (IU) or associated with BS or with other systemic disorders (OSD) (Juvenile Idiopathic Arthritis, Psoriatic Arthritis, Ankylosing Spondylitis, Vogt-Koyanagi-Harada, Inflammatory Bowel Disease), followed in three tertiary referral centers. RESULTS Ninety-six patients (45 AU; 51 PS uveitis) were included. Eleven had IU, 58 BS, and 27 OSD. All patients with AU achieved complete long-term ocular control. In PS uveitis, 89%, 67% and 100% of patients with BS, IU and OSD achieved ocular control at the last follow-up (> 12 months), respectively. The lowest ocular relapse rate occurred in patients with AU with BS (1/13) or IU (0/2). ADA accounted for long-term disease control, and no predictors of ocular control and relapse were identified; particularly, ocular relapses seemed not related to systemic ones. Macular edema resolved in 75% and 67% of PS uveitis with BS and IU, respectively. CONCLUSIONS ADA controls both anterior and posterior uveitis, with an efficacy similar in IU, BS and OSD patients. In BS, the efficacy of ADA seems to be independent of demographic and clinical characteristics, and ocular relapses mostly occurred independently from systemic ones. Based on our results, ADA may represent a valid alternative in anterior refractory uveitis.
Collapse
Affiliation(s)
- Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| | - Alice Bitossi
- Department of Surgery and Translational Medicine, Eye Clinic, University of Firenze, 50134, Florence, Italy
| | - Alessandra Bettiol
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, 50139, Florence, Italy.
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| | - Gerardo Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| | - Daniela Bacherini
- Department of Surgery and Translational Medicine, Eye Clinic, University of Firenze, 50134, Florence, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation (DETO), Rheumatology Unit, University of Bari, 70121, Bari, Italy
| | - Vincenzo Venerito
- Department of Emergency and Organ Transplantation (DETO), Rheumatology Unit, University of Bari, 70121, Bari, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantation (DETO), Rheumatology Unit, University of Bari, 70121, Bari, Italy
| | - Antonio Vitale
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Gian Marco Tosi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
| | - Stanislao Rizzo
- Ophtalmology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Fabiani
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Luca Cantarini
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Gianni Virgili
- Department of Surgery and Translational Medicine, Eye Clinic, University of Firenze, 50134, Florence, Italy
| | - Lorenzo Vannozzi
- Department of Surgery and Translational Medicine, Eye Clinic, University of Firenze, 50134, Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, 50134, Florence, Italy
| |
Collapse
|
33
|
Li KM, Li M, Wang N, Chen YD, Xu XW, Xu WT, Wang L, Chen SL. Genome-wide identification, characterization, and expression analysis of the TRAF gene family in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2020; 96:13-25. [PMID: 31760167 DOI: 10.1016/j.fsi.2019.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) play crucial roles as signaling mediators for the TNF receptor (TNFR) superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAFs collectively play important roles in multiple biological processes and organismal immunity. However, systematic identification of the TRAF gene family in teleost fish has not yet been reported, and there is little available information about its roles in innate immunity in Chinese tongue sole (Cynoglossus semilaevis), an aquaculture fish of high economic value. In the present study, we identified and characterized seven TRAF genes, namely, CsTRAF2a, CsTRAF2b, CsTRAF3, CsTRAF4, CsTRAF5, CsTRAF6 and CsTRAF7, in Chinese tongue sole, and the complete ORFs of the CsTRAFs were cloned. Sequence analysis revealed various genomic structures of the CsTRAFs and showed that they contain typical conserved domains compared with mammalian TRAFs. Phylogenetic analysis indicated the evolutionary relationships of TRAF family members in teleost fish and revealed an absence of TRAF1 in most species and TRAF5 in some species of teleosts. Analysis of the gene structures and motifs showed the diversity and distribution of exon-intron structures and conserved motifs in Chinese tongue sole and several other teleost species. Real-time quantitative PCR was used to investigate the expression patterns of CsTRAF genes in tissues of healthy fish and in the gills, livers and spleens of fish after bacterial infection with Vibrio harveyi. The results indicate that only CsTRAF2a is relatively highly expressed in the brain and that the other CsTRAFs are highly expressed in immune-related tissues and may participate in the immune response after infection with pathogenic bacteria. Functional analysis of CsTRAF3, CsTRAF4 and CsTRAF6 revealed that only CsTRAF6 could strongly activate the NF-кB pathway after overexpression of CsTRAF3, CsTRAF4 and CsTRAF6 in HEK-293T cells. This systematic analysis provided valuable information about the diverse roles of TRAFs in the innate immune response to pathogenic bacterial infection in teleost fish and will contribute to the functional characterization of CsTRAF genes in further research.
Collapse
Affiliation(s)
- Kun-Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai, China
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Ya-Dong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xi-Wen Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Song-Lin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
34
|
Han XQ, Gao F, Lu M, Liu ZG, Wang M, Ke XL, Gao YX. Identification and characterisation of tumour necrosis factor receptor (TNFR) associated factor 3 from Nile tilapia, Oreochromis niloticus. JOURNAL OF FISH BIOLOGY 2020; 96:185-193. [PMID: 31721203 DOI: 10.1111/jfb.14203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, we cloned the complementary (c)DNA sequences of tumour necrosis factor receptor (TNFR)-associated factor 3 (traf3) in Nile tilapia, Oreochromis niloticus. The expression patterns of the traf3 gene were investigated and preliminary functional analyses were performed. In healthy fish, traf3 transcript was broadly expressed in all examined tissues, with the highest expression level in the blood and the lowest in the liver. The traf3 gene reached its highest expression at 8 days post-fertilisation (dpf) during embryonic development. Moreover, we found that expression of traf3 was clearly altered following stimulation with Streptococcus agalactiae in vivo and that traf3 could be induced by lipopolysaccharides (LPS), Poly I: C and S. agalactiae WC1535 in Nile tilapia macrophages. Overexpression in 293T cells showed that Traf3 protein was mainly distributed in the cytoplasm and could significantly increase nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Taken together, these results implied that traf3 could play important roles in the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Xue-Qing Han
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Yan-Xia Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
35
|
Arkee T, Bishop GA. TRAF family molecules in T cells: Multiple receptors and functions. J Leukoc Biol 2019; 107:907-915. [PMID: 31749173 DOI: 10.1002/jlb.2mr1119-397r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
The TNFR superfamily of receptors, the major focus of the recent TNFR Superfamily Conference held in June 2019, employ the TNFR-associated factor (TRAF) family of adaptor proteins in key aspects of their signaling pathways. Although many early studies investigated TRAF functions via exogenous overexpression in nonhematopoietic cell lines, it has subsequently become clear that whereas TRAFs share some overlap in function, each also plays unique biologic roles, that can be highly context dependent. This brief review summarizes the current state of knowledge of functions of each of the TRAF molecules that mediate important functions in T lymphocytes: TRAFs 1, 2, 3, 5, and 6. Due to our current appreciation of the contextual nature of TRAF function, our focus is upon findings made specifically in T lymphocytes. Key T cell functions for each TRAF are detailed, as well as future knowledge gaps of interest and importance.
Collapse
Affiliation(s)
- Tina Arkee
- Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA.,Depts. of Microbiology & Immunology and Internal Medicine, The University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
36
|
Stephanou C, Tamana S, Minaidou A, Papasavva P, Kleanthous M, Kountouris P. Genetic Modifiers at the Crossroads of Personalised Medicine for Haemoglobinopathies. J Clin Med 2019; 8:E1927. [PMID: 31717530 PMCID: PMC6912721 DOI: 10.3390/jcm8111927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Haemoglobinopathies are common monogenic disorders with diverse clinical manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous growth in the amount of genetic data, instigating the need for ranking methods to identify candidate genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric (IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes database. IthaScore successfully reflects current knowledge for well-established disease modifiers, while it can be dynamically updated with emerging evidence. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were employed to identify new potential disease modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor (VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation, and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate genes to potentially inform and improve diagnosis, prognosis and therapeutic management.
Collapse
Affiliation(s)
| | | | | | | | - Marina Kleanthous
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| | - Petros Kountouris
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| |
Collapse
|
37
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
38
|
Biswas R, Chowdhury N, Biswas S, Roy R, Bagchi A. Structure based virtual screening of natural products to disrupt the structural integrity of TRAF6 C-terminal domain homotrimer. J Mol Graph Model 2019; 93:107428. [PMID: 31493661 DOI: 10.1016/j.jmgm.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ligase which takes part in different cellular pathways. TRAF6 is seen to be highly expressed in various cancers and most importantly is known to drive cancer metastasis. This makes TRAF6 a potential therapeutic target. In our previous studies, we observed that the C-terminal domain of TRAF6 forms a mushroom shaped trimer structure. Lys340 and Glu345 were identified to be the most critical residues in the trimer interface. In this current work, we screened for more than 14000 small molecules derived from various natural sources and they were screened against TRAF6 C-terminal trimer interaction interface to prevent the formation of the interface. All the obtained molecules were tested for their drug-likeliness properties. The ligands which qualified the filter were considered for protein-ligand docking or structure based virtual screening in GOLD 5.2. Pose selection was carried out on the basis of GoldScore and ChemScore function of GOLD 5.2. Top 20 molecules binding the TRAF6 trimeric interface were tested for their ADME properties. From the top 20 molecules, top 3 ligands were chosen based on their abilities to pass the maximum numbers of ADME filters.
Collapse
Affiliation(s)
- Ria Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Riya Roy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, India.
| |
Collapse
|
39
|
Swaidani S, Liu C, Zhao J, Bulek K, Li X. TRAF Regulation of IL-17 Cytokine Signaling. Front Immunol 2019; 10:1293. [PMID: 31316496 PMCID: PMC6610456 DOI: 10.3389/fimmu.2019.01293] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors or (TRAFs) are important mediators of Interleukin-17 (IL-17) cytokine signaling and contribute to driving tissue responses that are crucial for protective immunity but are often implicated in immunopathology. By amplifying tissue immune activity, IL-17 cytokine pathways contribute to maintaining barrier function as well as activation of innate and adaptive immunity necessary for host defense. IL-17 receptors signaling is orchestrated in part, by the engagement of TRAFs and the subsequent unlocking of downstream cellular machinery that can promote pathogen clearance or contribute to immune dysregulation, chronic inflammation, and disease. Originally identified as signaling adaptors for TNFR superfamily, TRAF proteins can mediate the signaling of a variety of intercellular and extracellular stimuli and have been shown to regulate the downstream activity of many cytokine receptors including receptors for IL-1β, IL-2, IL-6, IL-17, IL-18, IL-33, type I IFNs, type III IFNs, GM-CSF, M-CSF, and TGF-β Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I- like receptors, and C-type lectin receptors. This review will focus on discussing studies that reveal our current understanding of how TRAFs mediate and regulate biochemical activities downstream of the IL-17 cytokines signaling.
Collapse
Affiliation(s)
- Shadi Swaidani
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States.,Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
40
|
Qi Y, Zhao X, Chen J, Pradipta AR, Wei J, Ruan H, Zhou L, Hsung RP, Tanaka K. In vitro and in vivo cancer cell apoptosis triggered by competitive binding of Cinchona alkaloids to the RING domain of TRAF6. Biosci Biotechnol Biochem 2019; 83:1011-1026. [DOI: 10.1080/09168451.2018.1559030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT
TRAF6 is highly expressed in many tumors and plays an important role in the immune system. The aim of this study is to confirm anti-tumor activities of all naturally occurring Cinchona alkaloids that have been screened using computational docking program, and to validate the accuracy and specificity of the RING domain of TRAF6 as a potential anti-tumor target, and to explore their effect on the immune system. Results reported herein would demonstrate that Cinchona alkaloids could induce apoptosis in HeLa cells, inhibit the ubiquitination and phosphorylation of both AKT and TAK1, and up-regulate the ratio of Bax/Bcl-2. In addition, these compounds could induce apoptosis in vivo, and increase the secretion of TNF-α, IFN-γ, and IgG, while not significantly impacting the ratio of CD4+T/CD8+T. These investigations suggest that the RING domain of TRAF6 could serve as a de novo biological target for therapeutic treatment in cancers.
Collapse
Affiliation(s)
- Yonghao Qi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Xuan Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Jiaying Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Wako, Saitama, Japan
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Haihua Ruan
- Tianjin University of Commerce, Tianjin, P.R. China
| | - Lijun Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Richard P Hsung
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Wako, Saitama, Japan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- JST-PRESTO, Wako, Saitama, Japan
| |
Collapse
|
41
|
Huang X, Gao Y, Qin J, Lu S. miR-214 Down-Regulation Promoted Hypoxia/Reoxygenation-Induced Hepatocyte Apoptosis Through TRAF1/ASK1/JNK Pathway. Dig Dis Sci 2019; 64:1217-1225. [PMID: 30560327 DOI: 10.1007/s10620-018-5405-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study investigated the role of miR-214 in the hepatocyte apoptosis induced by hypoxia/reoxygenation (H/R) injury. MATERIALS AND METHODS In vivo hepatic ischemia/reperfusion (HIR) injury, mice model and in vitro HR model were established. miR-214, TRAF1, ASK1, and JNK expression levels were detected by qRT-PCR and western blot. The apoptosis of mouse hepatocyte AML12 was detected by flow cytometry analysis. The interaction between miR-214 and TRAF1 was confirmed by dual-luciferase reporter gene assay. RESULTS Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were elevated in HIR injury mice compared with sham mice. miR-214 expression was down-regulated in liver tissues of HIR and H/R-induced hepatocytes, whereas TRAF1, ASK1, and JNK expressions were up-regulated in HIR and H/R groups. H/R stimulation promoted the apoptosis of hepatocytes, and miR-214 overexpression inhibited the apoptosis of hepatocytes. Besides, TRAF1 was a target of miR-214 and negatively regulated by miR-214. miR-214/TRAF1 pathway involved in the modulation of H/R-induced apoptosis of hepatocytes. In vivo study proved miR-214 reduced hepatic injury of HIR mice. CONCLUSION miR-214 overexpression reduces hepatocyte apoptosis after HIR injury through negatively regulating TRAF1/ASK1/JNK pathway.
Collapse
Affiliation(s)
- Xinli Huang
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yun Gao
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jianjie Qin
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Sen Lu
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
42
|
Yang M, Han R, Ni LY, Luo XC, Li AX, Dan XM, Tsim KWK, Li YW. Molecular characteristics and function study of TNF receptor-associated factor 5 from grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 87:730-736. [PMID: 30769079 DOI: 10.1016/j.fsi.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a key adapter molecule that participates in numerous signaling pathways. The function of TRAF5 in fish is largely unknown. In the present study, a TRAF5 cDNA sequence (EcTRAF5) was identified in grouper (Epinephelus coioides). Similar to its mammalian counterpart, EcTRAF5 contained an N-terminal RING finger domain, a zinc finger domain, a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. The EcTRAF5 protein shared relatively low sequence identity with that of other species, but clustered with TRAF5 sequences from other fish. Real-time PCR analysis revealed that EcTRAF5 mRNA was broadly expressed in numerous tissues, with relatively high expression in skin, hindgut, and head kidney. Additionally, the expression of EcTRAF5 was up-regulated in gills and head kidney after infection with Cryptocaryon irritans. Intracellular localization analysis demonstrated that the full-length EcTRAF5 protein was uniformly distributed in the cytoplasm; while a deletion mutant of the coiled-coil domain of EcTRAF5 was observed uniformly distributed in the cytoplasm and the nucleus. After exogenous expression in HEK293T cells, TRAF5 significantly activated NF-κB. The deletion of the EcTRAF5 RING domain or of the zinc finger domain dramatically impaired its ability to activate NF-κB, implying that the RING domain and the zinc finger domain are required for EcTRAF5 signaling.
Collapse
Affiliation(s)
- Man Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu-Yun Ni
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Müller CP, Chu C, Qin L, Liu C, Xu B, Gao H, Ruggeri B, Hieber S, Schneider J, Jia T, Tay N, Akira S, Satoh T, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Artiges E, Lemaitre H, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Bakalkin G, Liu Y, Desrivières S, Elliott P, Eulenburg V, Levy D, Crews F, Schumann G. The Cortical Neuroimmune Regulator TANK Affects Emotional Processing and Enhances Alcohol Drinking: A Translational Study. Cereb Cortex 2019; 29:1736-1751. [PMID: 30721969 PMCID: PMC6430980 DOI: 10.1093/cercor/bhy341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Alcohol abuse is a major public health problem worldwide. Understanding the molecular mechanisms that control regular drinking may help to reduce hazards of alcohol consumption. While immunological mechanisms have been related to alcohol drinking, most studies reported changes in immune function that are secondary to alcohol use. In this report, we analyse how the gene "TRAF family member-associated NF-κB activator" (TANK) affects alcohol drinking behavior. Based on our recent discovery in a large GWAS dataset that suggested an association of TANK, SNP rs197273, with alcohol drinking, we report that SNP rs197273 in TANK is associated both with gene expression (P = 1.16 × 10-19) and regional methylation (P = 5.90 × 10-25). A tank knock out mouse model suggests a role of TANK in alcohol drinking, anxiety-related behavior, as well as alcohol exposure induced activation of insular cortex NF-κB. Functional and structural neuroimaging studies among up to 1896 adolescents reveal that TANK is involved in the control of brain activity in areas of aversive interoceptive processing, including the insular cortex, but not in areas related to reinforcement, reward processing or impulsiveness. Our findings suggest that the cortical neuroimmune regulator TANK is associated with enhanced aversive emotional processing that better protects from the establishment of alcohol drinking behavior.
Collapse
Affiliation(s)
- Christian P Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany
| | - Congying Chu
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill NC, USA
| | - Chunyu Liu
- The Framingham Heart Study, 73 Mt Wayte Ave, Framingham MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda MD, USA
- Boston University School of Public Health, 715 Albany St, Boston MA, USA
| | - Bing Xu
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Barbara Ruggeri
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Saskia Hieber
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany
| | - Julia Schneider
- Institute for Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, Erlangen, Germany
| | - Tianye Jia
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Nicole Tay
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontiern Research Center, Research Institute for Microbial Diseases, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Osaka, Japan
| | - Takashi Satoh
- Laboratory of Host Defense, World Premier International Immunology Frontiern Research Center, Research Institute for Microbial Diseases, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Osaka, Japan
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, James's Street, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, Hamburg, Germany
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [ Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2—12, Berlin, Germany]
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud—University Paris Saclay, DIGITEO Labs, Rue Noetzlin, Gif sur Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud—Paris Saclay, University Paris Descartes; and AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud—University Paris Saclay, DIGITEO Labs, Gif sur Yvette; and Psychiatry Department, Orsay Hospital, Orsay, France
| | - Herve Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris-Sud Medical School, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, 3560 Bathurst Street, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, Göttingen, Germany
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Chemnitzer Str. 46a01187 Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Chemnitzer Str. 46a01187 Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Aras an Phiarsaigh Trinity College Dublin, Dublin, Ireland
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical, Biosciences, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Yun Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Volker Eulenburg
- Institute for Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, Erlangen, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Daniel Levy
- The Framingham Heart Study, 73 Mt Wayte Ave, Framingham MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda MD, USA
| | - Fulton Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill NC, USA
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, UK
| |
Collapse
|
44
|
Dhillon B, Aleithan F, Abdul-Sater Z, Abdul-Sater AA. The Evolving Role of TRAFs in Mediating Inflammatory Responses. Front Immunol 2019; 10:104. [PMID: 30778351 PMCID: PMC6369152 DOI: 10.3389/fimmu.2019.00104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
TRAFs [tumor necrosis factor (TNF) receptor associated factors] are a family of signaling molecules that function downstream of multiple receptor signaling pathways and play a pivotal role in the biology of innate, and adaptive immune cells. Following receptor ligation, TRAFs generally function as adapter proteins to mediate the activation of intracellular signaling cascades. With the exception of TRAF1 that lacks a Ring domain, TRAFs have an E3 ubiquitin ligase activity which also contributes to their ability to activate downstream signaling pathways. TRAF-mediated signaling pathways culminate in the activation of several transcription factors, including nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs; e.g., ERK-1 and ERK-2, JNK, and p38), and interferon-regulatory factors (IRF; e.g., IRF3 and IRF7). The biological role of TRAFs is largely due to their ability to positively or negatively regulate canonical and non-canonical NF-κB signaling. While TRAF-mediated signaling regulates various immune cell functions, this review is focused on the recent advances in our knowledge regarding the molecular mechanisms through which TRAF proteins regulate, positively and negatively, inflammatory signaling pathways, including Toll-IL-1 receptors, RIG-I like receptors, and Nod-like receptors. The review also offers a perspective on the unanswered questions that need to be addressed to fully understand how TRAFs regulate inflammation.
Collapse
Affiliation(s)
- Bipandeep Dhillon
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Fatemah Aleithan
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Zahi Abdul-Sater
- Department of Basic Sciences, Phoenicia University, Mazraat El Daoudiyeh, Lebanon
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
45
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
46
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
47
|
Huang WC, Liao JH, Hsiao TC, Wei TYW, Maestre-Reyna M, Bessho Y, Tsai MD. Binding and Enhanced Binding between Key Immunity Proteins TRAF6 and TIFA. Chembiochem 2018; 20:140-146. [PMID: 30378729 DOI: 10.1002/cbic.201800436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Human tumor necrosis factor receptor associated factor (TRAF)-interacting protein, with a forkhead-associated domain (TIFA), is a key regulator of NF-κB activation. It also plays a key role in the activation of innate immunity in response to bacterial infection, through heptose 1,7-bisphosphate (HBP); a metabolite of lipopolysaccharide (LPS). However, the mechanism of TIFA function is largely unexplored, except for the suggestion of interaction with TRAF6. Herein, we provide evidence for direct binding, albeit weak, between TIFA and the TRAF domain of TRAF6, and it is shown that the binding is enhanced for a rationally designed double mutant, TIFA S174Q/M179D. Enhanced binding was also demonstrated for endogenous full-length TRAF6. Furthermore, the structures of the TRAF domain complexes with the consensus TRAF-binding peptides from the C terminus of wild-type and S174Q/M179D mutant TIFA, showing salt-bridge formation between residues 177-181 of TIFA and the binding pocket residues of the TRAF domain, were solved. Taken together, the results provide direct evidence and a structural basis for the TIFA-TRAF6 interaction, and show how this important biological function can be modulated.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Tzu-Chun Hsiao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, National (Taiwan) University, 1, Roosevelt Road Sec. 4, Taipei, 106, Taiwan
| |
Collapse
|
48
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
49
|
Xu D, Zhao W, Wang C, Zhu H, He M, Zhu X, Liu W, Wang F, Fan J, Chen C, Cui D, Cui Z. Up-regulation of TNF Receptor-associated Factor 7 after spinal cord injury in rats may have implication for neuronal apoptosis. Neuropeptides 2018; 71:81-89. [PMID: 30100091 DOI: 10.1016/j.npep.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
TNF receptor-associated factor 7 (TRAF7), is an E3 ubiquitin ligase for several proteins involved in the activation of TLR-dependent NF-kappaB signaling. TRAF7 links TNF receptor family proteins to signaling pathways, thus participates in regulating cell death and survival mediated by TNF family ligands. To date, the biological function of TRAF7 after spinal cord injury (SCI) is still with limited acquaintance. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of TRAF7 expression in the spinal cord. Our results showed that TRAF7 was up-regulated significantly after SCI, which was paralleled with the levels of the apoptotic protein active caspase-3. Immunofluorescent labeling showed that TRAF7 was co-localizated with active caspase-3 in neurons. To further investigate the function of TRAF7, an apoptosis model was established in primary neuronal cells. When TRAF7 was knocked down by specific short interfering RNA (siRNA), the protein levels of active caspase-3 and the number of apoptotic primary neurons were significantly decreased in our study. Taken together, our findings suggest that the change of TRAF7 protein expression plays a key role in neuronal apoptosis after SCI.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Hao Zhu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng 224005, People's Republic of China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Xinhui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Fei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Daoran Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
50
|
Niu W, Sun B, Li M, Cui J, Huang J, Zhang L. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to Mycobacterium tuberculosis infection. Cell Cycle 2018; 17:1931-1945. [PMID: 30153074 DOI: 10.1080/15384101.2018.1509636] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, could lead to kinds of clinical disorders and remains a leading global health problem, resulting in great morbidity and mortality worldwide. Previous studies have firmly demonstrated that M. tuberculosis (M.tb) has evolved to utilize different mechanisms to evade or attenuate the host immune response, such as regulation of immune-related genes by modulation of miRNAs of host or bacteria. However, the knowledge of functions of miRNAs during M.tb infection remains limited. Here, we reported that a host microRNA, miR-125a, was significantly up-regulated by M.tb infection in both RAW264.7 and THP-1cells, in a TLR4 signaling-dependent manner. Subsequently, our results demonstrated that miR-125a was a negative regulator of NF-kB pathway by directly targeting TRAF6, resulting in the suppression of cytokines, attenuation of immune response and promotion of M.tb survival. Taken together, our findings provide a novel detailed molecular mechanism in which miR-125a was enhanced to inhibit inflammatory cytokines secretion and attenuate the immune response during M.tb infection in RAW264.7 and THP-1 cells, and suggest an intrinsic a promising anti-M.tb therapeutic target.
Collapse
Affiliation(s)
- Wenyi Niu
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Bing Sun
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Mingying Li
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Junwei Cui
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Jian Huang
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| | - Ligong Zhang
- a Department of Tuberculosis , The First Affliated Hospital of Xinxiang Medical University , Weihui , China
| |
Collapse
|