1
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Kroon T, Sierksma MC, Meredith RM. Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective. Front Syst Neurosci 2013; 7:75. [PMID: 24198768 PMCID: PMC3814085 DOI: 10.3389/fnsys.2013.00075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022] Open
Abstract
Brain function and behavior undergo significant plasticity and refinement, particularly during specific critical and sensitive periods. In autistic and intellectual disability (ID) neurodevelopmental disorders (NDDs) and their corresponding genetic mouse models, impairments in many neuronal and behavioral phenotypes are temporally regulated and in some cases, transient. However, the links between neurobiological mechanisms governing typically normal brain and behavioral development (referred to also as "neurotypical" development) and timing of NDD impairments are not fully investigated. This perspective highlights temporal patterns of synaptic and neuronal impairment, with a restricted focus on autism and ID types of NDDs. Given the varying known genetic and environmental causes for NDDs, this perspective proposes two strategies for investigation: (1) a focus on neurobiological mechanisms underlying known critical periods in the (typically) normal-developing brain; (2) investigation of spatio-temporal expression profiles of genes implicated in monogenic syndromes throughout affected brain regions. This approach may help explain why many NDDs with differing genetic causes can result in overlapping phenotypes at similar developmental stages and better predict vulnerable periods within these disorders, with implications for both therapeutic rescue and ultimately, prevention.
Collapse
Affiliation(s)
- Tim Kroon
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| | | | | |
Collapse
|
4
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Oblak AL, Rosene DL, Kemper TL, Bauman ML, Blatt GJ. Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res 2011; 4:200-11. [PMID: 21360830 PMCID: PMC3110607 DOI: 10.1002/aur.188] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/07/2011] [Indexed: 01/11/2023]
Abstract
Autism is a developmental disorder with prenatal origins, currently estimated to affect 1 in 91 children in the United States. Social-emotional deficits are a hallmark of autism and early neuropathology studies have indicated involvement of the limbic system. Imaging studies demonstrate abnormal activation of the posterior cingulate cortex (PCC), a component of the limbic system. Abnormal activation has also been noted in the fusiform gyrus (FFG), a region important for facial recognition and a key element in social interaction. A potential imbalance between excitatory and inhibitory interneurons in the cortex may contribute to altered information processing in autism. Furthermore, reduced numbers of GABA receptors have previously been reported in the autistic brain. Thionin-stained sections were used to qualitatively assess cytoarchitectonic patterning and quantitatively determine the density of neurons and immunohistochemistry was used to determine the densities of a subset of GABAergic interneurons utilizing parvalbumin-and calbindin-immunoreactivity. In autism, the PCC displayed altered cytoarchitecture with irregularly distributed neurons, poorly demarcated layers IV and V, and increased presence of white matter neurons. In contrast, no neuropathology was observed in the FFG. There was no significant difference in the density of thionin, parvalbumin, or calbindin interneurons in either region and there was a trend towards a reduced density of calbindin neurons in the PCC. This study highlights the presence of abnormal findings in the PCC, which appear to be developmental in nature and could affect the local processing of social-emotional behaviors as well as functioning of interrelated areas.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
6
|
Bilimoria PM, de la Torre-Ubieta L, Ikeuchi Y, Becker EBE, Reiner O, Bonni A. A JIP3-regulated GSK3β/DCX signaling pathway restricts axon branching. J Neurosci 2010; 30:16766-76. [PMID: 21159948 PMCID: PMC3409248 DOI: 10.1523/jneurosci.1362-10.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 01/26/2023] Open
Abstract
Axon branching plays a critical role in establishing the accurate patterning of neuronal circuits in the brain. However, the mechanisms that control axon branching remain poorly understood. Here we report that knockdown of the brain-enriched signaling protein JNK-interacting protein 3 (JIP3) triggers exuberant axon branching and self-contact in primary granule neurons of the rat cerebellar cortex. JIP3 knockdown in cerebellar slices and in postnatal rat pups in vivo leads to the formation of ectopic branches in granule neuron parallel fiber axons in the cerebellar cortex. We also find that JIP3 restriction of axon branching is mediated by the protein kinase glycogen synthase kinase 3β (GSK3β). JIP3 knockdown induces the downregulation of GSK3β in neurons, and GSK3β knockdown phenocopies the effect of JIP3 knockdown on axon branching and self-contact. Finally, we establish doublecortin (DCX) as a novel substrate of GSK3β in the control of axon branching and self-contact. GSK3β phosphorylates DCX at the distinct site of Ser327 and thereby contributes to DCX function in the restriction of axon branching. Together, our data define a JIP3-regulated GSK3β/DCX signaling pathway that restricts axon branching in the mammalian brain. These findings may have important implications for our understanding of neuronal circuitry during development, as well as the pathogenesis of neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Parizad M. Bilimoria
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Luis de la Torre-Ubieta
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Azad Bonni
- Department of Pathology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
7
|
Reversible block of mouse neural stem cell differentiation in the absence of dicer and microRNAs. PLoS One 2010; 5:e13453. [PMID: 20976144 PMCID: PMC2956652 DOI: 10.1371/journal.pone.0013453] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/21/2010] [Indexed: 12/21/2022] Open
Abstract
Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation.
Collapse
|
8
|
Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 2010; 5:e12486. [PMID: 20824214 PMCID: PMC2930854 DOI: 10.1371/journal.pone.0012486] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases. METHODOLOGY/PRINCIPAL FINDINGS Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents. CONCLUSIONS/SIGNIFICANCE These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation.
Collapse
|
9
|
Kim YH, Peregrine J, Arnold AP. The distribution of expression of doublecortin (DCX) mRNA and protein in the zebra finch brain. Brain Res 2006; 1106:189-196. [PMID: 16814268 DOI: 10.1016/j.brainres.2006.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 05/25/2006] [Accepted: 05/25/2006] [Indexed: 11/28/2022]
Abstract
Using in situ hybridization, we measured the distribution of expression of doublecortin (DCX), a microtubule-associated protein, in zebra finch adult and nestling (P9-11) brains. In adult brain, DCX mRNA was detected mainly in the mesopallium (M), medial striatum (MSt), septum, Area X, diencephalon, telencephalic subventricular zone (SVZ), and Purkinje cells in the cerebellum. The expression at posthatch day 9 (P9) was heavy in almost the entire telencephalon and showed heavier expression in SVZ and song regions such as the high vocal center (HVC) and the robust nucleus of arcopallium (RA). Outside of the telencephalon at P9, we found distinct label in nucleus ovoidalis (OV), nucleus spiriformis lateralis (SpL), and nucleus subpretectalis (SP) in the midbrain, almost the entire diencephalon including nucleus dorsomedialis posterior thalami (DMP), stratum griseum et fibrosum superficiale (SGF) in optic tectum, and Purkinje cells in cerebellum. Most of the heavily labeled areas by in situ hybridization overlapped with immunohistochemical staining for DCX, indicating that DCX mRNA is probably translated into protein in those regions. No sex difference was found in DCX expression at P9 or in the adult except that Area X was labeled only in the adult male. The intensity of expression in the adult was significantly lower than that at P9, which suggests a particular role for DCX in early song bird brain development. If DCX is predominantly expressed in migrating neurons, as suggested from studies in mammals, the present results offer no evidence for a sex difference in neuronal migration.
Collapse
Affiliation(s)
- Yong-Hwan Kim
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jamie Peregrine
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Fogliarini C, Chaumoitre K, Chapon F, Fernandez C, Lévrier O, Figarella-Branger D, Girard N. Assessment of cortical maturation with prenatal MRI: part II: abnormalities of cortical maturation. Eur Radiol 2005; 15:1781-9. [PMID: 15843935 DOI: 10.1007/s00330-005-2779-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The fetal cortical maturation is a long process with predefined steps. Abnormalities can occur at different stages of cortical maturation, resulting in various malformations. They can result from disturbance in cell proliferation, cell differentiation, cell migration and in organization of the cortex. Analysis of the different abnormalities of cortical maturation is given with illustrations of the principal malformations encountered in utero and accessible to MRI.
Collapse
Affiliation(s)
- Céline Fogliarini
- Centre de Résonance Magnétique Biologique et Médicale, Faculté Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Patel LS, Wenzel HJ, Schwartzkroin PA. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 2005; 24:9005-14. [PMID: 15483119 PMCID: PMC6730067 DOI: 10.1523/jneurosci.2943-04.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice lacking a functional p35 gene provide an ideal model in which to address these questions, because these knock-out animals not only exhibit aberrant neuronal migration but also demonstrate spontaneous seizures. Extracellular field recordings from hippocampal slices, characterizing the input-output relationship in the dentate, revealed little difference between wild-type and knock-out mice under both normal and elevated extracellular potassium conditions. However, in the presence of the GABA(A) antagonist bicuculline, p35 knock-out slices, but not wild-type slices, exhibited prolonged depolarizations in response to stimulation of the perforant path. There were no significant differences in the intrinsic properties of dentate granule cells (i.e., input resistance, time constant, action potential generation) from wild-type versus knock-out mice. However, antidromic activation (mossy fiber stimulation) evoked an excitatory synaptic response in over 65% of granule cells from p35 knock-out slices that was never observed in wild-type slices. Ultrastructural analyses identified morphological substrates for this aberrant excitation: recurrent axon collaterals, abnormal basal dendrites, and mossy fiber terminals forming synapses onto the spines of neighboring granule cells. These studies suggest that granule cells in p35 knock-out mice contribute to seizure activity by forming an abnormal excitatory feedback circuit.
Collapse
Affiliation(s)
- Leena S Patel
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
12
|
McMillan DR, White PC. Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass1) causes audiogenic seizures in mice. Mol Cell Neurosci 2004; 26:322-9. [PMID: 15207856 DOI: 10.1016/j.mcn.2004.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 01/29/2004] [Accepted: 02/17/2004] [Indexed: 11/28/2022] Open
Abstract
At approximately 6300 amino acids, very large G-protein-coupled receptor-1 (VLGR1, also termed Mass1) is the largest known cell surface protein. It is expressed at high levels within the embryonic nervous system, especially the ventricular zone. A naturally occurring nonsense mutation in VLGR1, V2250X, is linked with susceptibility to audiogenic seizures in mice. Interpretation of this finding is complicated by the existence of splice and transcriptional variants. We targeted the transmembrane and cytoplasmic domains of VLGR1, yielding a gene encoding the complete ectodomain of VLGR1 fused to antigenic tags (VLGR/del7TM). Homozygous mutant mice are susceptible to audiogenic seizures. Western blots detect a single very high molecular weight protein in brain extracts from VLGR/del7TM mice. These findings suggest that loss of VLGR1 transmembrane and cytoplasmic domains underlies the seizure phenotype in both mutant mouse strains, perhaps by disrupting signals regulating neural development.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Brain/embryology
- Brain/metabolism
- Brain/physiopathology
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/metabolism
- Epilepsy, Reflex/physiopathology
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Genetic Predisposition to Disease/genetics
- Mice
- Mice, Neurologic Mutants
- Mice, Transgenic
- Mutation/genetics
- Neurons/metabolism
- Phenotype
- Protein Structure, Tertiary/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
Collapse
Affiliation(s)
- D Randy McMillan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | | |
Collapse
|
13
|
Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry R, Perry E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol Appl Neurobiol 2004; 30:615-23. [PMID: 15541002 DOI: 10.1111/j.1365-2990.2004.00574.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropathological substrates underlying the characteristic clinical phenotype of autism are unknown. Neuroimaging studies have identified a decrease in task-related activation in the dorsolateral prefrontal cortex in autism. In the current study, we have analysed the dorsolateral prefrontal cortex in two adult individuals with a clinical diagnosis of autism, using Nissl staining and MAP2 immunohistochemistry. There was unchanged density of both neuronal and glial cell pools, although the autistic individuals had ill-defined neocortical cellular layers, substantially depleted MAP2 neuronal expression, and reduced dendrite numbers. Further studies on a larger number of individuals with autism are needed to establish the clinical relevance of the described changes, especially to determine whether the loss of dendritic markers is age associated or disease specific.
Collapse
|
14
|
Schwartzkroin PA, Roper SN, Wenzel HJ. Cortical dysplasia and epilepsy: animal models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:145-74. [PMID: 15250593 DOI: 10.1007/978-1-4757-6376-8_12] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cortical dysplasia syndromes--those conditions of abnormal brain structure/organization that arise during aberrant brain development--frequently involve epileptic seizures. Neuropathological and neuroradiological analyses have provided descriptions and categorizations based on gross anatomical and cellular histological features (e.g., lissencephaly, heterotopia, giant cells), as well as on the developmental mechanisms likely to be involved in the abnormality (e.g., cell proliferation, migration). Recently, the genes responsible for several cortical dysplastic conditions have been identified and the underlying molecular processes investigated. However, it is still unclear how the various structural abnormalities associated with cortical dysplasia are related to (i.e., "cause") chronic seizures. To elucidate these relationships, a number of animal models of cortical dysplasia have been developed in rats and mice. Some models are based on laboratory manipulations that injure the brain (e.g., freeze, undercut, irradiation, teratogen exposure) of immature animals; others are based on spontaneous genetic mutations or on gene manipulations (knockouts/transgenics) that give rise to abnormal cortical structures. Such models of cortical dysplasia provide a means by which investigators can not only study the developmental mechanisms that give rise to these brain lesions, but also examine the cause-effect relationships between structural abnormalities and epileptogenesis.
Collapse
|
15
|
Treves A. Computational constraints that may have favoured the lamination of sensory cortex. J Comput Neurosci 2003; 14:271-82. [PMID: 12766428 DOI: 10.1023/a:1023213010875] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
At the transition from early reptilian ancestors to primordial mammals, the areas of sensory cortex that process topographic modalities acquire the laminar structure of isocortex. A prominent step in lamination is granulation, whereby the formerly unique principal layer of pyramidal cells is split by the insertion of a new layer of excitatory, but intrinsic, granule cells, layer IV. I consider the hypothesis that granulation, and the differentiation between supra- and infra-granular pyramidal layers, may be advantageous to support fine topography in their sensory maps. Fine topography implies a generic distinction between "where" information, explicitly mapped on the cortical sheet, and "what" information, represented in a distributed fashion as a distinct firing pattern across neurons. These patterns can be stored on recurrent collaterals in the cortex, and such memory can help substantially in the analysis of current sensory input. The simulation of a simplified network model demonstrates that a non-laminated patch of cortex must compromise between transmitting "where" information or retrieving "what" information. The simulation of a modified model including differentiation of a granular layer shows a modest but significant quantitative advantage, expressed as a less severe trade-off between "what" and "where". The further connectivity differentiation between infra-granular and supra-granular pyramidal layers is shown to match the mix of "what" and "where" information optimal for their respective target structures.
Collapse
|
16
|
Miyan JA, Nabiyouni M, Zendah M. Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 2003; 81:317-28. [PMID: 12769224 DOI: 10.1139/y03-027] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been considerable recent progress in understanding the processes involved in brain development. An analysis of a number of neurological conditions, together with our studies of the hydrocephalic Texas (H-Tx) rat, presents an important role for cerebrospinal fluid (CSF) in the developmental process. The fluid flow is essentially one-way and the location of the choroid plexuses in the lateral, third, and fourth ventricles allows for the possibility of new components being added to the fluid at these points. The role of the fourth ventricular CSF is particularly interesting since this is added to the fluid downstream of the cerebral hemisphere germinal epithelium (the main site of cortical cell proliferation and differentiation) and is destined for the basal cisterns and subarachnoid space suggesting different target cells to those within the ventricular system. Moreover, other sources of additions to the CSF exist, notably the subcommissural organ, which sits at the opening of the third ventricle into the cerebral aqueduct and is the source of Reisner's fibre, glycoproteins, and unknown soluble proteins. In this paper a model for the role of CSF is developed from studies of the development of the cortex of the H-Tx rat. We propose that CSF is vital in controlling development of the nervous system along the whole length of the neural tube and that the externalisation of CSF during development is essential for the formation of the layers of neurones in the cerebral cortex.
Collapse
Affiliation(s)
- Jaleel A Miyan
- Department of Biomolecular Sciences, University of Manchester Institute of Science & Technology, PO. Box 88, Sackville Street, Manchester M60 1QD, UK.
| | | | | |
Collapse
|
17
|
Wichterle H, Alvarez-Dolado M, Erskine L, Alvarez-Buylla A. Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A 2003; 100:727-32. [PMID: 12515855 PMCID: PMC141064 DOI: 10.1073/pnas.242721899] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Young neurons born in the medial ganglionic eminence (MGE) migrate a long distance dorsally, giving rise to several types of interneurons in neocortex. The mechanisms that facilitate selective dorsal dispersion of MGE cells while restricting their movement ventrally into neighboring regions are not known. Using microtransplantation into fetal brain slices and onto dissociated substrate cells on floating filters (spot assay), we demonstrate that ventral forebrain regions neighboring the MGE are nonpermissive for MGE cell migration, whereas the dorsal regions leading to the neocortex are increasingly permissive. Spot assay experiments using filters with different pore sizes indicate that the permissive factors are not diffusible. We also show that MGE cells respond to chemoattractive and inhibitory factors diffusing from the neocortex and ventromedial forebrain, respectively. We propose that the final extent and regional specificity of MGE cell dispersion is largely dictated by contact guidance through a selectively permissive environment, flanked by nonpermissive tissues. In addition, we propose that chemotactic guidance cues superimposed over the permissive corridor facilitate efficient dorsal migration of MGE cells.
Collapse
|
18
|
Malas S, Postlethwaite M, Ekonomou A, Whalley B, Nishiguchi S, Wood H, Meldrum B, Constanti A, Episkopou V. Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hyperexcitability. Neuroscience 2003; 119:421-32. [PMID: 12770556 DOI: 10.1016/s0306-4522(03)00158-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice.
Collapse
Affiliation(s)
- S Malas
- Mammalian Neurogenesis Group, MRC, Clinical Sciences Centre, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Major advances in the identification of genes expressed in malformation-associated epileptic disorders have been made. Some of these changes reflect the complex gene interactions necessary for proper neurodevelopment, whereas others suggest specific synaptic aberrations that could result in a hyperexcitable, and ultimately, epileptic condition. Here we review reported changes in gene expression associated with a malformed brain, with particular emphasis on how these changes provide clues to seizure genesis.
Collapse
|
20
|
Abstract
Epidemiological studies indicate that there is a high rate of mental retardation and behavioural problems in children with epilepsy. In some cases both the epilepsy and the mental retardation will have a common cause, such as a metabolic disorder or brain trauma. However, in other children, the epilepsy itself may cause either temporary or permanent learning problems. When permanent learning disability can be prevented it is important to treat the epilepsy early and effectively. Children with specific learning difficulties and memory problems can benefit greatly from appropriate management. There are many causes of behavioural disturbance in children with epilepsy. These causes include the epilepsy itself, treatment of the epilepsy, reactions to the epilepsy, associated brain damage/dysfunction and causes that are equally applicable to children who do not have epilepsy. Identifying the cause or causes in each child allows rational management to be provided. Antiepileptic treatment with medication or surgery can either improve the situation or make matters worse. The treatment should be tailored to the needs of the individual child. If surgery is required, there is a strong argument for performing this early in life, both to allow the greatest opportunity for brain plasticity and also to allow the child full benefit from the important developmental and educational years, without the problems that can be associated with the epilepsy. Skilled management of children with epilepsy who have mental retardation and/or behavioural problems can be very rewarding both for the family and for the professionals involved.
Collapse
Affiliation(s)
- Frank M C Besag
- Specialist Medical Department, Bedfordshire and Luton Community NHS Trust, Clapham, UK.
| |
Collapse
|
21
|
Hedera P, Alvarado D, Beydoun A, Fink JK. Novel mental retardation-epilepsy syndrome linked to Xp21.1-p11.4. Ann Neurol 2002; 51:45-50. [PMID: 11782983 DOI: 10.1002/ana.10051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluated a kindred with X-linked mental retardation and epilepsy. Seven affected males with mild to moderate mental retardation developed seizures (primarily generalized, tonic-clonic, and atonic) that began on average at 6.8 months of age (range, 4 to 14 months). These patients did not have a history of infantile spasms. There were no dysmorphic features. Other than mental retardation, the neurological examination was unremarkable, with exception of 2 affected subjects who had mild generalized rigidity and ataxia. We identified tight linkage to a group of markers on Xp21.1-p11.4. A maximum two-point LOD score of +3.83 at straight theta = 0 was obtained for markers DXS8090, DXS1069, DXS8102, and DXS8085. This locus spans 7.7cM between DXS1049 and DXS8054 and does not overlap the locus for X-linked West syndrome. The tetraspanin gene, implicated in nonspecific mental retardation, is mapped to this region. We sequenced the tetraspanin coding sequence in subjects with X-linked mental retardation and epilepsy and did not identify disease-specific mutations. The syndrome we describe, designated X-linked mental retardation and epilepsy, is clinically and genetically distinct from X-linked West syndrome and other X-linked mental retardation-epilepsy syndromes.
Collapse
Affiliation(s)
- Peter Hedera
- Department of Neurology, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The promise of genetics has been partly realized in our understanding of human brain development as this relates to disorders of gyral formation. Cerebral gyral dysplasias are disorders of brain formation that result in phenotypes with the common feature of abnormal cerebral gyri. This review emphasizes the recent progress made in understanding the human lissencephalies and related disorders. LIS1 heterozygous loss-of-function deletions and point mutations, as well as Doublecortin mutations in males, lead to a very similar phenotype, termed type 1 lissencephaly. Additionally, Doublecortin mutations in females lead to a more variable subcortical band heterotopia. Given the similarities between the lissencephaly phenotypes that result from aberrations in these genes, it is important to review the genetics of these disorders. In order to begin to understand the cell biology of the LIS1 protein and the Doublecortin protein, potentially interacting pathways need to be emphasized. Another human genetic disorder with an interestingly similar phenotype has a mouse correlate that has been well characterized. This surprising finding may lead to further understanding of LIS1 protein and of Doublecortin protein. Furthermore, mouse modeling of the aforementioned human disorders now holds promise for enabling us finally to understand the formation of the most complex organ that nature has produced - the human brain.
Collapse
Affiliation(s)
- G D Clark
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
23
|
Abstract
Recent advances in research into the pathophysiology of human epilepsies and in neuroimaging, especially magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and magnetoelectroencephalography, have resulted in improvements in the localization of both the epileptogenic tissue and functionally important areas. The ability to correlate functional disturbances and lesions has been clarified, which has led to a better understanding of plasticity and epilepsy.
Collapse
Affiliation(s)
- H Stefan
- Neurologische Klinik der Universität Erlangen-Nürnberg, Zentrum Epilepsie Erlangen, Germany.
| |
Collapse
|
24
|
Cotter DR, Honavar M, Everall I. Focal cortical dysplasia: a neuropathological and developmental perspective. Epilepsy Res 1999; 36:155-64. [PMID: 10515163 DOI: 10.1016/s0920-1211(99)00049-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focal cortical dysplasia (FCD) is a rare, sporadic disorder which is a recognised cause of chronic epilepsy. It is proposed to result from disordered neuronal migration and differentiation and has characteristic histological features which include disturbed cortical lamination, large abnormal neurons and the presence of large balloon cells with glassy eosinophilic cytoplasm and pleomorphic eccentric nuclei. These latter express both glial and neuronal markers indicative of abnormal neuroglial differentiation. In this paper we review the current literature on the neuropathology of FCD and discuss potential mechanisms. We focus on growth factors, signalling pathways and candidate genes with known roles in Drosophila and vertebrate brain development that could be responsible for the developmental brain changes seen in FCD. At issue are the factors that influence cell fate and differentiation and which regulate neural migration. Some of the molecular pathways, such as those involving the Notch and the Wnt pathways have particularly important roles in neuroglial differentiation in vertebrates, and these are proposed as potential candidates.
Collapse
Affiliation(s)
- D R Cotter
- Department of Neuropathology, Institute of Psychiatry, DeCrespigny Park, London, UK.
| | | | | |
Collapse
|