1
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
3
|
Sun W, van Ginneken D, Perié L. scMitoMut for calling mitochondrial lineage-related mutations in single cells. Brief Bioinform 2024; 26:bbaf072. [PMID: 40036721 PMCID: PMC11878546 DOI: 10.1093/bib/bbaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/11/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
Tracing cell lineages has become a valuable tool for studying biological processes. Among the available tools for human data, mitochondrial DNA (mtDNA) has a high potential due to its ability to be used in conjunction with single-cell chromatin accessibility data, giving access to the cell phenotype. Nonetheless, the existing mutation calling tools are ill-equipped to deal with the polyploid nature of the mtDNA and lack a robust statistical framework. Here we introduce scMitoMut, an innovative R package that leverages statistical methodologies to accurately identify mitochondrial lineage-related mutations at the single-cell level. scMitoMut assigns a mutation quality q-value based on beta-binomial distribution to each mutation at each locus within individual cells, ensuring higher sensitivity and precision of lineage-related mutation calling in comparison to current methodologies. We tested scMitoMut using single-cell DNA sequencing, single-cell transposase-accessible chromatin (scATAC) sequencing, and 10× Genomics single-cell multiome datasets. Using a single-cell DNA sequencing dataset from a mixed population of cell lines, scMitoMut demonstrated superior sensitivity in identifying a small proportion of cancer cell line compared to existing methods. In a human colorectal cancer scATAC dataset, scMitoMut identified more mutations than state-of-the-art methods. Applied to 10× Genomics multiome datasets, scMitoMut effectively measured the lineage distance in cells from blood or brain tissues. Thus, the scMitoMut is a freely available, and well-engineered toolkit (https://www.bioconductor.org/packages/devel/bioc/html/scMitoMut.html) for mtDNA mutation calling with high memory and computational efficiency. Consequently, it will significantly advance the application of single-cell sequencing, facilitating the precise delineation of mitochondrial mutations for lineage-tracing purposes in development, tumour, and stem cell biology.
Collapse
Affiliation(s)
- Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Daphne van Ginneken
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
4
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Sturgis J, Singh R, Caron Q, Samuels IS, Shiju TM, Mukkara A, Freedman P, Bonilha VL. Modeling aging and retinal degeneration with mitochondrial DNA mutation burden. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569464. [PMID: 38076962 PMCID: PMC10705408 DOI: 10.1101/2023.11.30.569464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a Polymerase gamma (POLG) deficiency model, the POLGD257A mutator mice (PolgD257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the POLGD257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mitochondria morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress observed in the retina or RPE of POLGD257A mice. Additionally, POLGD257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mitochondrial markers displayed decreased abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mitochondrial DNA mutations leads to impaired mitochondrial function and accelerated aging, resulting in retinal degeneration.
Collapse
Affiliation(s)
- John Sturgis
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quinn Caron
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ivy S. Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Thomas Micheal Shiju
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aditi Mukkara
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul Freedman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Debusk College of Osteopathic Medicine, Knoxville, TN, USA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, Kohrn BF, Kim HJ, Hipp MJ, Fredrickson J, Nguyen MM, Hurley JB, Marcinek DJ, Rabinovitch PS, Kennedy SR. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. eLife 2023; 12:e83395. [PMID: 36799304 PMCID: PMC10072880 DOI: 10.7554/elife.83395] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Accumulation of somatic mutations in the mitochondrial genome (mtDNA) has long been proposed as a possible mechanism of mitochondrial and tissue dysfunction that occurs during aging. A thorough characterization of age-associated mtDNA somatic mutations has been hampered by the limited ability to detect low-frequency mutations. Here, we used Duplex Sequencing on eight tissues of an aged mouse cohort to detect >89,000 independent somatic mtDNA mutations and show significant tissue-specific increases during aging across all tissues examined which did not correlate with mitochondrial content and tissue function. G→A/C→T substitutions, indicative of replication errors and/or cytidine deamination, were the predominant mutation type across all tissues and increased with age, whereas G→T/C→A substitutions, indicative of oxidative damage, were the second most common mutation type, but did not increase with age regardless of tissue. We also show that clonal expansions of mtDNA mutations with age is tissue- and mutation type-dependent. Unexpectedly, mutations associated with oxidative damage rarely formed clones in any tissue and were significantly reduced in the hearts and kidneys of aged mice treated at late age with elamipretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative damage-linked mutations with age suggests a life-long dynamic clearance of either the oxidative lesions or mtDNA genomes harboring oxidative damage.
Collapse
Affiliation(s)
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Brenden F Kohrn
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Hyeon Jeong Kim
- Department of Biology, University of WashingtonSeattleUnited States
| | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - James B Hurley
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - David J Marcinek
- Department of Radiology, University of WashingtonSeattleUnited States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Wada KI, Hosokawa K, Ito Y, Mizuo M, Harada Y, Yonemitsu Y. Generation of transmitochondrial cybrids using a microfluidic device. Exp Cell Res 2022; 418:113233. [PMID: 35659971 DOI: 10.1016/j.yexcr.2022.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/04/2022]
Abstract
Mitochondrial cloning is a promising approach to achieve homoplasmic mitochondrial DNA (mtDNA) mutations. We previously developed a microfluidic device that performs single mitochondrion transfer from a mtDNA-intact cell to a mtDNA-less (ρ0) cell by promoting cytoplasmic connection through a microtunnel between them. In the present study, we described a method for generating transmitochondrial cybrids using the microfluidic device. After achieving mitochondrial transfer between HeLa cells and thymidine kinase-deficient ρ0143B cells using the microfluidic device, selective culture was carried out using a pyruvate and uridine (PU)-absent and 5-bromo-2'-deoxyuridine-supplemented culture medium. The resulting cells contained HeLa mtDNA and 143B nuclei, but both 143B mtDNA and HeLa nuclei were absent in these cells. Additionally, these cells showed lower lactate production than parent ρ0143B cells and disappearance of PU auxotrophy for cell growth. These results suggest successful generation of transmitochondrial cybrids using the microfluidic device. Furthermore, we succeeded in selective harvest of generated transmitochondrial cybrids under a PU-supplemented condition by removing unfused ρ0 cells with puromycin-based selection in the microfluidic device.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan; Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kazuo Hosokawa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maeda Mizuo
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yui Harada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan
| |
Collapse
|
10
|
Ip EKK, Troup M, Xu C, Winlaw DS, Dunwoodie SL, Giannoulatou E. Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application. Front Genet 2022; 13:692257. [PMID: 35350246 PMCID: PMC8957813 DOI: 10.3389/fgene.2022.692257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity, from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a percentage of mtDNA copies and can be detected with levels as low as 1%. The large number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In recent years, specialized variant calling algorithms have been developed that are tailored to identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few studies have systematically evaluated and compared these methods for the detection of both homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the commonly used Genome Analysis Toolkit “best practices” pipeline, which is included in most current WGS pipelines. We also used WGS data from 126 trios and calculated the percentage of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic variants. We additionally compared multiple pathogenicity prediction resources for mtDNA variants. Although the accuracy of homoplasmic variant detection was high for the majority of the callers with high concordance across callers, we found a very low concordance rate between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for heteroplasmy thresholds of 5% and 1%. Overall, Mutserve showed the best performance using the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed low concordance in prediction results. We have shown that while homoplasmic variant calling is consistent between callers, there remains a significant discrepancy in heteroplasmic variant calling. We found that resources like population frequency databases and pathogenicity predictors are now available for variant annotation but still need refinement and improvement. With its peculiarities, the mitochondria require special considerations, and we advocate that caution needs to be taken when analyzing mtDNA data from WGS data.
Collapse
Affiliation(s)
- Eddie K K Ip
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Colin Xu
- School of Computer Science and Engineering, Sydney, NSW, Australia
| | - David S Winlaw
- Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Centre, Heart Institute, Cincinnati, OH, United States
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| |
Collapse
|
11
|
Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021; 177:337-346. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
As a key organelle in eukaryotic cells, mitochondria play a central role in maintaining normal cellular functions. Mitochondrial dysfunction is reported to be closely related with aging and various diseases. Epigenetic modifications in nuclear genome provide a substantial layer for the modulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the involved mechanisms remain largely obscure and controversial. Recently, accumulating evidence has suggested that mitochondrial epigenetics, also known as mitoepigenetics may serve as an intriguing regulatory layer in mitochondrial DNA (mtDNA)-encoded gene expression. Given the potential regulatory role of mitoepigenetics, mitochondrial dysfunction derived from mitoepigenetics-induced abnormal gene expression could also be closely associated with aging and disease development. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in aging and metabolic-related diseases as well as the new methods and technologies for the study of mitoepigenetics. Uncovering the regulatory role of mitoepigenetics will help to understand the underlying mechanisms of mitochondrial dysfunction and provide novel strategies for delaying aging and preventing metabolic-related diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
12
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Abstract
The homologous recombination (HR) pathway has been implicated as the predominant mechanism for the repair of chromosomal DNA double-strand breaks (DSBs) of the malarial parasite. Although the extrachromosomal mitochondrial genome of this parasite experiences a greater number of DSBs due to its close proximity to the electron transport chain, nothing is known about the proteins involved in the repair of the mitochondrial genome. We investigated the involvement of nucleus-encoded HR proteins in the repair of the mitochondrial genome, as this genome does not code for any DNA repair proteins. Here, we provide evidence that the nucleus-encoded "recombinosome" of the parasite is also involved in mitochondrial genome repair. First, two crucial HR proteins, namely, Plasmodium falciparum Rad51 (PfRad51) and P. falciparum Bloom helicase (PfBlm) are located in the mitochondria. They are recruited to the mitochondrial genome at the schizont stage, a stage that is prone to DSBs due to exposure to various endogenous and physiologic DNA-damaging agents. Second, the recruitment of these two proteins to the damaged mitochondrial genome coincides with the DNA repair kinetics. Moreover, both the proteins exit the mitochondrial DNA (mtDNA) once the genome is repaired. Most importantly, the specific chemical inhibitors of PfRad51 and PfBlm block the repair of UV-induced DSBs of the mitochondrial genome. Additionally, overexpression of these two proteins resulted in a kinetically faster repair. Given the essentiality of the mitochondrial genome, blocking its repair by inhibiting the HR pathway could offer a novel strategy for curbing malaria. IMPORTANCE The impact of malaria on global public health and the world economy continues to surge despite decades of vaccine research and drug development efforts. An alarming rise in resistance toward all the commercially available antimalarial drugs and the lack of an effective malaria vaccine brings us to the urge to identify novel intervention strategies for curbing malaria. Here, we uncover the molecular mechanism behind the repair of the most deleterious form of DNA lesions on the parasitic mitochondrial genome. Given that the single-copy mitochondrion is an indispensable organelle of the malaria parasite, we propose that targeting the mitochondrial DNA repair pathways should be exploited as a potential malaria control strategy. The establishment of the parasitic homologous recombination machinery as the predominant repair mechanism of the mitochondrial DNA double-strand breaks underscores the importance of this pathway as a novel druggable target.
Collapse
|
14
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
15
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
16
|
Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 05/12/2023]
Abstract
Tailoring personalized cancer nanomedicines demands detailed understanding of the tumor microenvironment. In recent years, smart upconversion nanoparticles with the ability to exploit the unique characteristics of the tumor microenvironment for precise targeting have been designed. To activate upconversion nanoparticles, various bio-physicochemical characteristics of the tumor microenvironment, namely, acidic pH, redox reactants, and hypoxia, are exploited. Stimuli-responsive upconversion nanoparticles also utilize the excessive presence of adenosine triphosphate (ATP), riboflavin, and Zn2+ in tumors. An overview of the design of stimulus-responsive upconversion nanoparticles that precisely target and respond to tumors via targeting the tumor microenvironment and intracellular signals is provided. Detailed understanding of the tumor microenvironment and the personalized design of upconversion nanoparticles will result in more effective clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main St Ste 1030, Houston, TX, 77030, USA
| | - Arindam Pramanik
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Devlina Das
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, 641004, India
| | - Anubhab Mukherjee
- Department of Formulation, R&D, Aavishkar Oral Strips Pvt. Ltd., Cherlapally, Hyderabad, 500051, India
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories (NNRL), National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences Lehtrar Road, Islamabad, 45650, Pakistan
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Ziada AS, Lu MY, Ignas‐Menzies J, Paintsil E, Li M, Ogbuagu O, Saberi S, Hsieh AYY, Sattha B, Harrigan PR, Kalloger S, Côté HCF. Mitochondrial DNA somatic mutation burden and heteroplasmy are associated with chronological age, smoking, and HIV infection. Aging Cell 2019; 18:e13018. [PMID: 31407474 PMCID: PMC6826146 DOI: 10.1111/acel.13018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/03/2022] Open
Abstract
The gradual accumulation of mitochondrial DNA (mtDNA) mutations is implicated in aging and may contribute to the accelerated aging phenotype seen with tobacco smoking and HIV infection. mtDNA mutations are thought to arise from oxidative damage; however, recent reports implicate polymerase γ errors during mtDNA replication. Investigations of somatic mtDNA mutations have been hampered by technical challenges in measuring low-frequency mutations. We use primer ID-based next-generation sequencing to quantify both somatic and heteroplasmic blood mtDNA point mutations within the D-loop, in 164 women and girls aged 2-72 years, of whom 35% were smokers and 56% were HIV-positive. Somatic mutations and the occurrence of heteroplasmic mutations increased with age. While transitions are theorized to result from polymerase γ errors, transversions are believed to arise from DNA oxidative damage. In our study, both transition and transversion mutations were associated with age. However, transition somatic mutations were more prevalent than transversions, and no heteroplasmic transversions were observed. We also measured elevated somatic mutations, but not heteroplasmy, in association with high peak HIV viremia. Conversely, heteroplasmy was higher among smokers, but somatic mutations were not, suggesting that smoking promotes the expansion of preexisting mutations rather than de novo mutations. Taken together, our results are consistent with blood mtDNA mutations increasing with age, inferring a greater contribution of polymerase γ errors in mtDNA mutagenesis. We further suggest that smoking and HIV infection both contribute to the accumulation of mtDNA mutations, though in different ways.
Collapse
Affiliation(s)
- Adam S. Ziada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Meng Ying Lu
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Jarek Ignas‐Menzies
- Department of Mechanical EngineeringUniversity of British ColumbiaVancouverBCCanada
| | - Elijah Paintsil
- Department of PediatricsYale School of MedicineNew HavenCTUSA
- School of Public HealthYale UniversityNew HavenCTUSA
- Department of Pharmacology, Yale School of MedicineNew HavenCTUSA
| | - Min Li
- Department of PediatricsYale School of MedicineNew HavenCTUSA
| | - Onyema Ogbuagu
- Department of MedicineYale School of MedicineNew HavenCTUSA
| | - Sara Saberi
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Beheroze Sattha
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | | | - Steve Kalloger
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Women’s Health Research InstituteVancouverBCCanada
| |
Collapse
|
18
|
Li Y, Giorgi EE, Beckman KB, Caberto C, Kazma R, Lum-Jones A, Haiman CA, Marchand LL, Stram DO, Saxena R, Cheng I. Association between mitochondrial genetic variation and breast cancer risk: The Multiethnic Cohort. PLoS One 2019; 14:e0222284. [PMID: 31577800 PMCID: PMC6774509 DOI: 10.1371/journal.pone.0222284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background The mitochondrial genome encodes for thirty-seven proteins, among them thirteen are essential for the oxidative phosphorylation (OXPHOS) system. Inherited variation in mitochondrial genes may influence cancer development through changes in mitochondrial proteins, altering the OXPHOS process and promoting the production of reactive oxidative species. Methods To investigate the association between mitochondrial genetic variation and breast cancer risk, we tested 314 mitochondrial SNPs (mtSNPs), capturing four complexes of the mitochondrial OXPHOS pathway and mtSNP groupings for rRNA and tRNA, in 2,723 breast cancer cases and 3,260 controls from the Multiethnic Cohort Study. Results We examined the collective set of 314 mtSNPs as well as subsets of mtSNPs grouped by mitochondrial OXPHOS pathway, complexes, and genes, using the sequence kernel association test and adjusting for age, sex, and principal components of global ancestry. We also tested haplogroup associations using unconditional logistic regression and adjusting for the same covariates. Stratified analyses were conducted by self-reported maternal race/ethnicity. No significant mitochondrial OXPHOS pathway, gene, and haplogroup associations were observed in African Americans, Asian Americans, Latinos, and Native Hawaiians. In European Americans, a global test of all genetic variants of the mitochondrial genome identified an association with breast cancer risk (P = 0.017, q = 0.102). In mtSNP-subset analysis, the gene MT-CO2 (P = 0.001, q = 0.09) in Complex IV (cytochrome c oxidase) and MT-ND2 (P = 0.004, q = 0.19) in Complex I (NADH dehydrogenase (ubiquinone)) were significantly associated with breast cancer risk. Conclusions In summary, our findings suggest that collective mitochondrial genetic variation and particularly in the MT-CO2 and MT-ND2 may play a role in breast cancer risk among European Americans. Further replication is warranted in larger populations and future studies should evaluate the contribution of mitochondrial proteins encoded by both the nuclear and mitochondrial genomes to breast cancer risk.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Kenneth B. Beckman
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Christian Caberto
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Remi Kazma
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Annette Lum-Jones
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Richa Saxena
- Center for Human Genetic Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program of Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bris C, Goudenege D, Desquiret-Dumas V, Charif M, Colin E, Bonneau D, Amati-Bonneau P, Lenaers G, Reynier P, Procaccio V. Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing. Front Genet 2018; 9:632. [PMID: 30619459 PMCID: PMC6297213 DOI: 10.3389/fgene.2018.00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
The development of next generation sequencing (NGS) has greatly enhanced the diagnosis of mitochondrial disorders, with a systematic analysis of the whole mitochondrial DNA (mtDNA) sequence and better detection sensitivity. However, the exponential growth of sequencing data renders complex the interpretation of the identified variants, thereby posing new challenges for the molecular diagnosis of mitochondrial diseases. Indeed, mtDNA sequencing by NGS requires specific bioinformatics tools and the adaptation of those developed for nuclear DNA, for the detection and quantification of mtDNA variants from sequence alignment to the calling steps, in order to manage the specific features of the mitochondrial genome including heteroplasmy, i.e., coexistence of mutant and wildtype mtDNA copies. The prioritization of mtDNA variants remains difficult, relying on a limited number of specific resources: population and clinical databases, and in silico tools providing a prediction of the variant pathogenicity. An evaluation of the most prominent bioinformatics tools showed that their ability to predict the pathogenicity was highly variable indicating that special efforts should be directed at developing new bioinformatics tools dedicated to the mitochondrial genome. In addition, massive parallel sequencing raised several issues related to the interpretation of very low mtDNA mutational loads, discovery of variants of unknown significance, and mutations unrelated to patient phenotype or the co-occurrence of mtDNA variants. This review provides an overview of the current strategies and bioinformatics tools for accurate annotation, prioritization and reporting of mtDNA variations from NGS data, in order to carry out accurate genetic counseling in individuals with primary mitochondrial diseases.
Collapse
Affiliation(s)
- Céline Bris
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - David Goudenege
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Valérie Desquiret-Dumas
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Majida Charif
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Estelle Colin
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Dominique Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Patrizia Amati-Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Vincent Procaccio
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| |
Collapse
|
20
|
Zinovkina LA. Mechanisms of Mitochondrial DNA Repair in Mammals. BIOCHEMISTRY (MOSCOW) 2018; 83:233-249. [PMID: 29625543 DOI: 10.1134/s0006297918030045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of mutations in mitochondrial DNA leads to the development of severe, currently untreatable diseases. The contribution of these mutations to aging and progress of neurodegenerative diseases is actively studied. Elucidation of DNA repair mechanisms in mitochondria is necessary for both developing approaches to the therapy of diseases caused by mitochondrial mutations and understanding specific features of mitochondrial genome functioning. Mitochondrial DNA repair systems have become a subject of extensive studies only in the last decade due to development of molecular biology methods. DNA repair systems of mammalian mitochondria appear to be more diverse and effective than it had been thought earlier. Even now, one may speak about the existence of mitochondrial mechanisms for the repair of single- and double-stranded DNA lesions. Homologous recombination also takes place in mammalian mitochondria, although its functional significance and molecular mechanisms remain obscure. In this review, I describe DNA repair systems in mammalian mitochondria, such as base excision repair (BER) and microhomology-mediated end joining (MMEJ) and discuss a possibility of existence of mitochondrial DNA repair mechanisms otherwise typical for the nuclear DNA, e.g., nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination, and classical non-homologous end joining (NHEJ). I also present data on the mechanisms for coordination of the nuclear and mitochondrial DNA repair systems that have been actively studied recently.
Collapse
Affiliation(s)
- L A Zinovkina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| |
Collapse
|
21
|
Antipova VN, Lomaeva MG, Zyrina NV. Mitochondrial DNA deletions in tissues of mice after ionizing radiation exposure. Int J Radiat Biol 2018; 94:282-288. [DOI: 10.1080/09553002.2018.1419299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Valeriya N. Antipova
- Laboratory of Biophysics of Active Media, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Milena G. Lomaeva
- Laboratory of Radiation Molecular Biology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nadezhda V. Zyrina
- Laboratory of Crystallophysics and X-ray Research, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
22
|
Wada KI, Hosokawa K, Ito Y, Maeda M. Quantitative control of mitochondria transfer between live single cells using a microfluidic device. Biol Open 2017; 6:1960-1965. [PMID: 29092814 PMCID: PMC5769642 DOI: 10.1242/bio.024869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Quantitative control of mitochondria transfer between live cells is a promising approach for genetic manipulation of mitochondrial DNA (mtDNA) because single mitochondrion transfer to a mtDNA-less (ρ0) cell potentially leads to homoplasmy of mtDNA. In this paper, we describe a method for quantitative control of mitochondria transfer between live single cells. For this purpose, we fabricated novel microfluidic devices having cell paring structures with a 4.1, 5.6 or 10.0 μm-length microtunnel. When cells were fused through a microtunnel using the Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel. Elongation of the cytoplasmic connection led to a decrease in mitochondria transfer to the fusion partner. Moreover, some cell pairs that fused through a 10.0 μm-length microtunnel showed single mitochondrion transfer. Fused cells were spontaneously disconnected from each other when they were recovered in a normal culture medium. These results suggest that our cell fusion method can perform quantitative control of mitochondria transfer that includes a single mitochondrion transfer. Summary: We developed a novel mitochondria transfer platform using a microfluidic device, and succeeded in single mitochondrion transfer between live single cells.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Hosokawa
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Refinetti P, Warren D, Morgenthaler S, Ekstrøm PO. Quantifying mitochondrial DNA copy number using robust regression to interpret real time PCR results. BMC Res Notes 2017; 10:593. [PMID: 29132417 PMCID: PMC5683470 DOI: 10.1186/s13104-017-2913-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Real time PCR (rtPCR) is a quantitative assay to determine the relative DNA copy number in a sample versus a reference. The [Formula: see text] method is the standard for the analysis of the output data generated by an rtPCR experiment. We developed an alternative based on fitting a robust regression to the rtPCR signal. This new data analysis tool reduces potential biases and does not require all of the compared DNA fragments to have the same PCR efficiency. RESULTS Comparing the two methods when analysing 96 identical PCR preparations showed similar distributions of the estimated copy numbers. Estimating the efficiency with the [Formula: see text] method, however, required a dilution series, which is not necessary for the robust regression method. We used rtPCR to quantify mitochondrial DNA (mtDNA) copy numbers in three different tissues types: breast, colon and prostate. For each type, normal tissue and a tumor from the same three patients were analysed. This gives a total of six samples. The mitochondrial copy number is estimated to lie between 200 and 300 copies per cell. Similar results are obtained when using the robust regression or the [Formula: see text] method. Confidence ratios were slightly narrower for the robust regression. The new data analysis method has been implemented as an R package.
Collapse
Affiliation(s)
- Paulo Refinetti
- Ecole Polytechnique Féderale de Lausanne, 1015, Lausanne, Switzerland.
| | - David Warren
- Department of Medical Biochemistry, Radiumhospital, 0379, Oslo, Norway
| | | | - Per O Ekstrøm
- Department of Tumor Biology, Radiumhospital, 0379, Oslo, Norway
| |
Collapse
|
24
|
Hu P, Wu T, Fan W, Chen L, Liu Y, Ni D, Bu W, Shi J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017; 141:86-95. [DOI: 10.1016/j.biomaterials.2017.06.035] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
|
25
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
26
|
Kleist B, Meurer T, Poetsch M. Mitochondrial DNA alteration in primary and metastatic colorectal cancer: Different frequency and association with selected clinicopathological and molecular markers. Tumour Biol 2017; 39:1010428317692246. [PMID: 28345467 DOI: 10.1177/1010428317692246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study attempts to determine whether primary tumor tissue could reliably represent metastatic colorectal cancer in therapy-guiding analysis of mitochondrial microsatellite instability. Therefore, we investigated the concordance of microsatellite instability in D310, D514, and D16184 (mitochondrial DNA displacement loop), and its association with selected clinical categories and KRAS/NRAS/BRAF/PIK3CA/TP53 mutation status between primary and metastatic colorectal cancer tissue from 119 patients. Displacement loop microsatellite instability was significantly more frequently seen in lymph node metastases (53.1%) compared to primary tumors (37.5%) and distant metastases (21.4%) ( p = 0.0183 and p = 0.0005). The discordant rate was significantly higher in lymph node metastases/primary tumor pairs (74.6%) than in distant metastases/primary tumor pairs (52.4%) or lymph node metastases/distant metastases pairs (51.6%) ( p = 0.0113 and p = 0.0261) with more gain (86.7%) than loss (61.1%) of microsatellite instability in the discordant lymph node metastases ( p = 0.0024). Displacement loop instability occurred significantly more frequently in lymph node metastases and distant metastases of patients with early colorectal cancer onset age <60 years ( p = 0.0122 and p = 0.0129), was found with a significant high rate in a small cohort of TP53-mutated distant metastases ( p = 0.0418), and was associated with TP53 wild-type status of primary tumors ( p = 0.0009), but did not correlate with KRAS, NRAS, BRAF, or PIK3CA mutations. In conclusion, mitochondrial microsatellite instability and its association with selected clinical and molecular markers are discordant in primary and metastatic colorectal cancer, which could have importance for surveillance and therapeutic strategies.
Collapse
Affiliation(s)
- Britta Kleist
- 1 Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Thuja Meurer
- 2 Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| | - Micaela Poetsch
- 2 Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
27
|
Sun Y, Zong L, Gao Z, Zhu S, Tong J, Cao Y. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields. Mutat Res 2017; 797-799:7-14. [PMID: 28340409 DOI: 10.1016/j.mrfmmm.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
Abstract
HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm2 power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.
Collapse
Affiliation(s)
- Yulong Sun
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Lin Zong
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Zhen Gao
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province, PR China
| | - Jian Tong
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Yi Cao
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
28
|
Pirini F, Goldman LR, Soudry E, Halden RU, Witter F, Sidransky D, Guerrero-Preston R. Prenatal exposure to tobacco smoke leads to increased mitochondrial DNA content in umbilical cord serum associated to reduced gestational age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:52-67. [PMID: 28002977 PMCID: PMC5532520 DOI: 10.1080/09603123.2016.1268677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/11/2016] [Indexed: 05/22/2023]
Abstract
We investigated if prenatal exposures to tobacco smoke lead to changes in mitochondrial DNA content (mtDNA) in cord serum and adversely affect newborns' health. Umbilical cord serum cotinine levels were used to determine in utero exposure to smoking. Cord serum mtDNA was measured by quantitative polymerase chain reaction analysis of the genes coding for cytochrome c oxidase1 (MT-CO1) and cytochrome c oxidase2 (MT-CO2). Log transformed levels of mtDNA coding for MT-CO1 and MT-CO2 were significantly higher among infants of active smokers with higher serum level of cotinine (p < 0.05) and inversely associated with gestational age (p = 0.08; p = 0.02). Structural equation modeling results confirmed a positive association between cotinine and MT-CO1 and2 (p < 0.01) and inverse associations with gestational age (p = 0.02) and IGF-1 (p < 0.01). We identified a dose-dependent increase in the level of MT-CO1 and MT-CO2 associated to increased cord serum cotinine and decreased gestational age.
Collapse
Affiliation(s)
- Francesca Pirini
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
| | - Lynn R. Goldman
- The George Washington University, Milken Institute School of Public Health, Washington, District of Columbia, USA
| | - Ethan Soudry
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
| | - Rolf U. Halden
- Arizona State University, The Biodesign Institute and Global Security Initiative, Center for Environmental Security, Tempe, Arizona
| | - Frank Witter
- The Johns Hopkins University, School of Medicine, Obstetrics and Gynecology Department, Baltimore, USA
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
- Co-corresponding authors: Rafael Guerrero-Preston, DrPH, MPH, . David Sidransky, MD, , Johns Hopkins School of Medicine, Head and Neck Cancer Research Division, 1550 Orleans Street, Cancer Research Building II, Room 5M, Baltimore. MD, 21231, 410-502-5153
| | - Rafael Guerrero-Preston
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
- University of Puerto Rico School of Medicine, Department of Obstetrics and Gynecology, San Juan, Puerto Rico
- Co-corresponding authors: Rafael Guerrero-Preston, DrPH, MPH, . David Sidransky, MD, , Johns Hopkins School of Medicine, Head and Neck Cancer Research Division, 1550 Orleans Street, Cancer Research Building II, Room 5M, Baltimore. MD, 21231, 410-502-5153
| |
Collapse
|
29
|
Er LM, Wu ML, Gao Y, Wang SJ, Li Y. Identification of sequence polymorphisms in the displacement loop region of mitochondrial DNA as a risk factor for gastroenteropancreatic neuroendocrine neoplasm. J Clin Lab Anal 2016; 31. [PMID: 27704598 DOI: 10.1002/jcla.22078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) are relatively rare tumors that arise from the diffuse neuroendocrine system, and the biggest advances in molecular biology have helped in understanding these biological diversity of tumors over the past decades. It is important to determine the carcinogenesis of GEP-NEN from the perspective of genetic backgrounds. METHODS Mitochondrial DNA (mtDNA) of peripheral blood from 66 GEP-NEN patients and from 75 healthy controls without history of any cancer were examined for single nucleotide polymorphisms (SNPs) and mutations in the displacement loop (D-loop) region. RESULTS Single nucleotide polymorphisms were detected in 148 sites within the 982 bp mitochondria D-loop region from blood samples of healthy controls and GEP-NEN patients. SNPs with a rare allele frequency >5% in either controls or GEP-NEN patients were used for cancer risk analysis; a total of 23 SNPs were selected. When individual SNPs of GEP-NEN patients compared with healthy controls were analyzed, a statistically significant increase in the SNP frequency was observed for 73G, 150T, 151T, 492C, 16257A, 16261T, and 16399G in GEP-NEN patients (P<.05). It was also observed that the SNP frequency for 489C and 16519C significantly decreased in GEP-NEN patients compared with controls (P<.05). CONCLUSION In summary, SNPs in the mutations of the mitochondrial D-loop may be valuable markers for GEP-NEN risk evaluation. Analysis of the genetic polymorphisms in the D-loop may be useful for diagnosis of high-risk individuals.
Collapse
Affiliation(s)
- Li-Mian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-Li Wu
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Gao
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shi-Jie Wang
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Valente WJ, Ericson NG, Long AS, White PA, Marchetti F, Bielas JH. Mitochondrial DNA exhibits resistance to induced point and deletion mutations. Nucleic Acids Res 2016; 44:8513-8524. [PMID: 27550180 PMCID: PMC5062989 DOI: 10.1093/nar/gkw716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure.
Collapse
Affiliation(s)
- William J Valente
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Ma B, Jing M, Villalta PW, Kapphahn RJ, Montezuma SR, Ferrington DA, Stepanov I. Simultaneous determination of 8-oxo-2'-deoxyguanosine and 8-oxo-2'-deoxyadenosine in human retinal DNA by liquid chromatography nanoelectrospray-tandem mass spectrometry. Sci Rep 2016; 6:22375. [PMID: 26979577 PMCID: PMC4793187 DOI: 10.1038/srep22375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/01/2016] [Indexed: 01/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Oxidative damage to mitochondrial DNA (mtDNA) in the retinal pigment epithelium (RPE) may play a key role in AMD. Measurement of oxidative DNA lesions such as 8-oxo-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-2'-deoxyadenosine (8-oxo-dA) in diseased RPE could provide important insights into the mechanism of AMD development. We have developed a liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry method for simultaneous analysis of 8-oxo-dG and 8-oxo-dA in human retinal DNA. The developed method was applied to the analysis of retinal DNA from 5 donors with AMD and 5 control donors without AMD. In mtDNA, the levels of 8-oxo-dG in controls and AMD donors averaged 170 and 188, and 8-oxo-dA averaged 11 and 17 adducts per 10(6) bases, respectively. In nuclear DNA, the levels of 8-oxo-dG in controls and AMD donors averaged 0.54 and 0.96, and 8-oxo-dA averaged 0.04 and 0.05 adducts per 10(6) bases, respectively. This highly sensitive method allows for the measurement of both adducts in very small amounts of DNA and can be used in future studies investigating the pathophysiological role of 8-oxo-dG and 8-oxo-dA in AMD and other oxidative damage-related diseases in humans.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Meng Jing
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Mayo Mail Code 493, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Mayo Mail Code 493, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Mayo Mail Code 493, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
- Division of Environmental Health Sciences, University of Minnesota, Mayo Mail Code 807, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Dalla Rosa I, Cámara Y, Durigon R, Moss CF, Vidoni S, Akman G, Hunt L, Johnson MA, Grocott S, Wang L, Thorburn DR, Hirano M, Poulton J, Taylor RW, Elgar G, Martí R, Voshol P, Holt IJ, Spinazzola A. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet 2016; 12:e1005779. [PMID: 26760297 PMCID: PMC4711891 DOI: 10.1371/journal.pgen.1005779] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/08/2015] [Indexed: 11/21/2022] Open
Abstract
MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients’ quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway. Mitochondrial DNA depletion syndrome (MDS) is a genetically heterogeneous condition characterized by a decrease of mitochondrial DNA (mtDNA) copy number and decreased activities of respiratory chain enzymes. Depletion of mtDNA has been associated with mutations in several genes, which encode either proteins directly involved in mtDNA replication or factors regulating the homeostasis of the mitochondrial deoxynucleotide pool. However, for some genes the mechanism linking mutations and mtDNA depletion is not known. One such gene is MPV17, whose loss-of-function causes mtDNA abnormalities in human, mouse and yeast. Here we show that MPV17 dysfunction leads to a shortage of the precursors for DNA synthesis in the mitochondria, slowing DNA replication in the organelle. Not only does mtDNA copy number correlate with dNTP pool size in both mouse tissues and human cells, deoxynucleoside supplementation of the growth medium prevents depletion and restores mtDNA copy number in quiescent MPV17-deficient cells. Hence, our study links MPV17 deficiency, insufficiency of mitochondrial dNTPs, and slow replication in mitochondria to depletion of mtDNA manifesting in the human disease, and places MPV17-related disease firmly in the category of mtDNA disorders caused by deoxynucleotide perturbation. The prevention and reversal of mtDNA loss in MPV17 patient-derived cells identifies potential therapeutic strategy for a currently untreatable disease.
Collapse
Affiliation(s)
| | - Yolanda Cámara
- Laboratory of Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia
- Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Sara Vidoni
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Gokhan Akman
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Lilian Hunt
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Mark A. Johnson
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Sarah Grocott
- Mitochondrial Genetics Group, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | - David R. Thorburn
- Murdoch Childrens Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Joanna Poulton
- Mitochondrial Genetics Group, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Newcastle upon Tyne, United Kingdom
| | - Greg Elgar
- MRC Mill Hill Laboratory, London, United Kingdom
| | - Ramon Martí
- Laboratory of Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia
- Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Peter Voshol
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Ian J. Holt
- MRC Mill Hill Laboratory, London, United Kingdom
| | | |
Collapse
|
33
|
Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015; 15:586. [PMID: 26268226 PMCID: PMC4535531 DOI: 10.1186/s12885-015-1594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Accumulation of mitochondrial DNA (mtDNA) damage could enhance the frequency of mitochondrial mutations and promote a variety of mitochondria-related diseases, including cancer. However, the mechanism(s) involved are not fully understood. Methods Quantitative extended length PCR was used to compare mtDNA and nDNA damage in human lung H1299 cells expressing WT Bcl2 or vector-only control. mtAPE1 endonuclease activity was analyzed by AP oligonucleotide assay. mtDNA mutation was measured by single molecule PCR. Subcellular localization of Bcl2 and APE1 was analyzed by subcellular fractionation. Results Bcl2, an anti-apoptotic molecule and oncoprotein, effectively inhibits the endonuclease activity of mitochondrial APE1 (mtAPE1), leading to significant retardation of mtDNA repair and enhanced frequency of mtDNA mutations following exposure of cells to hydrogen peroxide (H2O2) or nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, a carcinogen in cigarette smoke). Inversely, depletion of endogenous Bcl2 by RNA interference increases mtAPE1 endonuclease activity leading to accelerated mtDNA repair and decreased mtDNA mutation. Higher levels of mtAPE1 were observed in human lung cancer cells than in normal human bronchial epithelial cells (i.e. BEAS-2B). Bcl2 partially co-localizes with APE1 in the mitochondria of human lung cancer cells. Bcl2 directly interacts with mtAPE1 via its BH domains. Removal of any of the BH domains from Bcl2 abolishes Bcl2’s capacity to interact with mtAPE1 as well as its inhibitory effects on mtAPE1 activity and mtDNA repair. Conclusions Based our findings, we propose that Bcl2 suppression of mtDNA repair occurs through direct interaction with mtAPE1 and inhibition of its endonuclease activity in mitochondria, which may contribute to enhanced mtDNA mutations and carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maohua Xie
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Paul W Doetsch
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Xingming Deng
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
34
|
Venderbosch S, van Vliet S, Craenmehr MHC, Simmer F, de Haan AFJ, Punt CJA, Koopman M, Nagtegaal ID. Mitochondrial microsatellite instability in patients with metastatic colorectal cancer. Virchows Arch 2015; 466:495-502. [PMID: 25697538 PMCID: PMC4422840 DOI: 10.1007/s00428-015-1733-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial microsatellite instability (mtMSI), a change in length in mtDNA microsatellite sequences between normal and tumor tissue, has been described as a frequent occurrence in colorectal cancer (CRC). We evaluated the prevalence and prognostic value of mtMSI and its relation to nuclear microsatellite instability (MSI) in patients with metastatic CRC (mCRC). At six loci (D310, D514, D16184, ND1, ND5, and COX1), the mitochondrial DNA sequence was analyzed in normal and tumor tissue, and the mtMSI status was determined. We evaluated the prevalence and outcome in terms of overall survival (OS) in 83 CRC patients with a MSI tumor (including 39 patients with Lynch syndrome) and in 99 mCRC patients with a microsatellite stable (MSS) tumor. A meta-analysis was performed to compare our findings with existing data. mtMSI at the D-loop region was found in 54.4 % (99 out of 182) of all patients. Prevalence of mtMSI was most pronounced at the D310 locus (50.5 %). Prevalence of mtMSI at the D-loop region was not different among patients with MSI compared to MSS tumors. There was no effect of mtMSI on prognosis in patients with MSI or MSS tumors. Prevalence of mtMSI was high in mCRC patients with both MSI and MSS tumors, but there was no correlation with prognosis. mtMSI was particularly present at the D310 locus.
Collapse
Affiliation(s)
- S. Venderbosch
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - S. van Vliet
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - M. H. C. Craenmehr
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - F. Simmer
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - A. F. J. de Haan
- Department for Health Evidence, Section Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C. J. A. Punt
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - M. Koopman
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - I. D. Nagtegaal
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
35
|
Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1135-55. [PMID: 25648174 PMCID: PMC4344659 DOI: 10.3390/ijerph120201135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Newborns exposed to maternal cigarette smoke (CS) in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal) and assesses how such changes may have consequences for both fetal growth and development.
Collapse
|
36
|
Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 2013; 9:e1003794. [PMID: 24086148 PMCID: PMC3784509 DOI: 10.1371/journal.pgen.1003794] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is believed to be highly vulnerable to age-associated damage and mutagenesis by reactive oxygen species (ROS). However, somatic mtDNA mutations have historically been difficult to study because of technical limitations in accurately quantifying rare mtDNA mutations. We have applied the highly sensitive Duplex Sequencing methodology, which can detect a single mutation among >107 wild type molecules, to sequence mtDNA purified from human brain tissue from both young and old individuals with unprecedented accuracy. We find that the frequency of point mutations increases ∼5-fold over the course of 80 years of life. Overall, the mutation spectra of both groups are comprised predominantly of transition mutations, consistent with misincorporation by DNA polymerase γ or deamination of cytidine and adenosine as the primary mutagenic events in mtDNA. Surprisingly, G→T mutations, considered the hallmark of oxidative damage to DNA, do not significantly increase with age. We observe a non-uniform, age-independent distribution of mutations in mtDNA, with the D-loop exhibiting a significantly higher mutation frequency than the rest of the genome. The coding regions, but not the D-loop, exhibit a pronounced asymmetric accumulation of mutations between the two strands, with G→A and T→C mutations occurring more often on the light strand than the heavy strand. The patterns and biases we observe in our data closely mirror the mutational spectrum which has been reported in studies of human populations and closely related species. Overall our results argue against oxidative damage being a major driver of aging and suggest that replication errors by DNA polymerase γ and/or spontaneous base hydrolysis are responsible for the bulk of accumulating point mutations in mtDNA. Owing to their evolutionary history, mitochondria harbor independently replicating genomes. Failure to faithfully transmit the genetic information of mtDNA during replication can lead to the production of dysfunctional electron transport proteins and a subsequent decline in energy production. Cellularly-derived reactive oxygen species (ROS) and environmental agents preferentially damage mtDNA compared to nuclear DNA. However, little is known about the consequences of mtDNA damage for mutagenesis. This lack of knowledge stems, in part, from an absence of methods capable of accurately detecting these mutations throughout the mitochondrial genome. Using a new, highly sensitive DNA sequencing strategy, we find that the frequency of point mutations is 10–100-fold lower than what has been previously reported using less precise means. Moreover, the frequency increases 5-fold over an 80 year lifespan. We also find that it is predominantly transition mutations, rather than mutations commonly associated with oxidative damage to mtDNA, that increase with age. This finding is inconsistent with free radical theories of aging. Finally, the mutagenic patterns and biases we observe in our data are similar to what is seen in population studies of mitochondrial polymorphisms and suggest a common mechanism by which somatic and germline mtDNA mutations arise.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jesse J. Salk
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael W. Schmitt
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
37
|
Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 2013; 110:25-34. [PMID: 23920043 DOI: 10.1016/j.ymgme.2013.07.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Recent expansion of our knowledge on epigenetic changes strongly suggests that not only nuclear DNA (nDNA), but also mitochondrial DNA (mtDNA) may be subjected to epigenetic modifications related to disease development, environmental exposure, drug treatment and aging. Thus, mtDNA methylation is attracting increasing attention as a potential biomarker for the detection and diagnosis of diseases and the understanding of cellular behavior in particular conditions. In this paper we review the current advances in mtDNA methylation studies with particular attention to the evidences of mtDNA methylation changes in diseases and physiological conditions so far investigated. Technological advances for the analysis of epigenetic variations are promising tools to provide insights into methylation of mtDNA with similar resolution levels as those reached for nDNA. However, many aspects related to mtDNA methylation are still unclear. More studies are needed to understand whether and how changes in mtDNA methylation patterns, global and gene specific, are associated to diseases or risk factors.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | | | | | | |
Collapse
|
38
|
Glowacki S, Synowiec E, Blasiak J. The role of mitochondrial DNA damage and repair in the resistance of BCR/ABL-expressing cells to tyrosine kinase inhibitors. Int J Mol Sci 2013; 14:16348-64. [PMID: 23965958 PMCID: PMC3759915 DOI: 10.3390/ijms140816348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs), primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Sylwester Glowacki
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| |
Collapse
|
39
|
Napoli E, Wong S, Giulivi C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol Autism 2013; 4:2. [PMID: 23347615 PMCID: PMC3570390 DOI: 10.1186/2040-2392-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/04/2013] [Indexed: 02/05/2023] Open
Abstract
Background The mitochondrial genome (mtDNA) is particularly susceptible to damage mediated by reactive oxygen species (ROS). Although elevated ROS production and elevated biomarkers of oxidative stress have been found in tissues from children with autism spectrum disorders, evidence for damage to mtDNA is lacking. Findings mtDNA deletions were evaluated in peripheral blood monocytic cells (PBMC) isolated from 2–5 year old children with full autism (AU; n = 67), and typically developing children (TD; n = 46) and their parents enrolled in the CHildhood Autism Risk from Genes and Environment study (CHARGE) at University of California Davis. Sequence variants were evaluated in mtDNA segments from AU and TD children (n = 10; each) and their mothers representing 31.2% coverage of the entire human mitochondrial genome. Increased mtDNA damage in AU children was evidenced by (i) higher frequency of mtDNA deletions (2-fold), (ii) higher number of GC→AT transitions (2.4-fold), being GC preferred sites for oxidative damage, and (iii) higher frequency of G,C,T→A transitions (1.6-fold) suggesting a higher incidence of polymerase gamma incorporating mainly A at bypassed apurinic/apyrimidinic sites, probably originated from oxidative stress. The last two outcomes were identical to their mothers suggesting the inheritance of a template consistent with increased oxidative damage, whereas the frequency of mtDNA deletions in AU children was similar to that of their fathers. Conclusions These results suggest that a combination of genetic and epigenetic factors, taking place during perinatal periods, results in a mtDNA template in children with autism similar to that expected for older individuals.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California, One Shields Ave, 1120 Haring Hall, Davis, CA, 95616, USA.
| | | | | |
Collapse
|
40
|
Wheeler LJ, Mathews CK. Effects of a mitochondrial mutator mutation in yeast POS5 NADH kinase on mitochondrial nucleotides. J Biol Chem 2012; 287:31218-22. [PMID: 22843688 DOI: 10.1074/jbc.m112.394031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae contains three NADH/NAD(+) kinases, one of which is localized in mitochondria and phosphorylates NADH in preference to NAD(+). Strand et al. reported that a yeast mutation in POS5, which encodes the mitochondrial NADH kinase, is a mutator, specific for mitochondrial genes (Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., and Copeland, W. C. (2003) Eukaryot. Cell 2, 809-820). Because of the involvement of NADPH in deoxyribonucleotide biosynthesis, we asked whether mitochondria in a pos5 deletion mutant contain abnormal deoxyribonucleoside triphosphate (dNTP) pools. We found the pools of the four dNTPs to be more than doubled in mutant mitochondrial extracts relative to wild-type mitochondrial extracts. This might partly explain the mitochondrial mutator phenotype. However, the loss of antioxidant protection is also likely to be significant. To this end, we measured pyridine nucleotide pools in mutant and wild-type mitochondrial extracts and found NADPH levels to be diminished by ∼4-fold in Δpos5 mitochondrial extracts, with NADP(+) diminished to a lesser degree. Our data suggest that both dNTP abnormalities and lack of antioxidant protection contribute to elevated mitochondrial gene mutagenesis in cells lacking the mitochondrial NADH kinase. The data also confirm previous reports of the specific function of Pos5p in mitochondrial NADP(+) and NADPH biosynthesis.
Collapse
Affiliation(s)
- Linda J Wheeler
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| | | |
Collapse
|
41
|
Mitochondrial D-loop polymorphisms and mitochondrial DNA content in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2011; 33:e239-44. [PMID: 21646920 DOI: 10.1097/mph.0b013e31820a5ece] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrial displacement loop (D-loop) controls mitochondrial expression, with mutations and mitochondrial DNA (mtDNA) content linked to oncogenesis. We investigated D-loop polymorphisms and mtDNA content in childhood acute lymphoblastic leukemia (ALL). The D-loop was sequenced in 251 children: precursor B ALL (n=114), with 76 paired remission/relapse samples; T-ALL (n=24); cord blood controls (n=113). The mtDNA copy number was analyzed using real-time quantitative polymerase chain reaction for 92 controls and 54 ALL patients at diagnosis and remission. Polymorphisms around H-strand replication origin (nucleotides 150 to 199) and conserved sequence block II (nucleotides 299 to 317) were associated with leukemia biology and treatment response. T-ALL patients were more likely to have longer nt303 poly-C tract. T199C polymorphism was associated with increased risk of ALL in Malays; T152C was more frequent in good responders. There was no difference in mtDNA content between diagnostic ALL samples and controls; however, there was significant decrease in mtDNA content after treatment, especially in samples with OH polymorphisms. Somatic mutations were found in 13% (9 of 76) of patients, suggesting a link to leukemogenesis. Our results suggest that polymorphisms impacting transcriptional control could affect mtDNA replication. Decrease in mtDNA content after treatment may confer susceptibility to chemotherapy and be a clue to the good prognosis of childhood ALL.
Collapse
|
42
|
Antipova VN, Lomaeva MG. Study of a mtDNA deletion in BALB/c mice exposed to ionizing radiation. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Evdokimovsky EV, Ushakova TE, Kudriavtcev AA, Gaziev AI. Alteration of mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice after irradiation at lethal dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:181-188. [PMID: 20814800 DOI: 10.1007/s00411-010-0329-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
High steady-state transcriptional activity is essential for normal mitochondrial function. The requisite transcription rate is satisfied in part by high copy number of mitochondrial DNA (mtDNA). In the present study, we analyze mtDNA copy number by real-time PCR in nucleated blood cells from control mice and mice exposed to 1- or 10-Gy X-radiation. Transcription of the oxidative phosphorylation-associated genes cytb, atp6, nd4, nd2 and d-loop region was monitored in these nucleated blood cells similarly by real-time PCR. We observed a 50% decrease in the ratio of mitochondrial to nuclear DNA (mtDNA/nDNA) in blood cells, while the mtDNA/nDNA ratio in serum increased. After a lethal 10-Gy dose of X-irradiation, we observed an 80% decrease in the number of circulating lymphocytes. In response to a 10-Gy radiation dose, we observed transiently increased mtDNA/nDNA ratio and transcription within the initial 5 h post-treatment. At 24-72 h, the mtDNA/nDNA ratio in surviving cells was reduced to the level observed in blood cells irradiated with 1 Gy. We observed a decrease in the serum mtDNA/nDNA ratio due to an increase in nDNA content rather than a decrease in mtDNA. Taken together, results presented herein suggest that the mtDNA/nDNA ratio may be of clinical value potentially as a diagnostic tool, particularly in oncology patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Edward V Evdokimovsky
- Laboratory of Radiation and Molecular Biology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Instituskaya St., Pushchino, 142290, Russia.
| | | | | | | |
Collapse
|
44
|
Jiang Y, Zhou S, Sandusky GE, Kelley MR, Fishel ML. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression. Cancer Invest 2010; 28:885-95. [PMID: 20919954 DOI: 10.3109/07357907.2010.512816] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Walnut, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
45
|
Gubina NE, Merekina OS, Ushakova TE. Mitochondrial DNA transcription in mouse liver, skeletal muscle, and brain following lethal x-ray irradiation. BIOCHEMISTRY (MOSCOW) 2010; 75:777-83. [PMID: 20636270 DOI: 10.1134/s0006297910060131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using quantitative real-time PCR, the levels of mitochondrial DNA transcripts in murine tissues (skeletal muscle, liver, and brain) were determined at different time points (1, 5, and 24 h) following X-ray irradiation at the dose of 10 Gy. One hour after irradiation the levels of mitochondrial transcripts ND2, ND4, CYTB, and ATP6 dramatically decreased by 85-95% and remained at the same minimum level for 24 h in all analyzed tissues. This decrease was not associated with depletion of mtDNA as a matrix for transcription, since mtDNA copy number increased after irradiation in all tissues. The decrease in mitochondrial transcription in liver, brain, and skeletal muscle did not generally result from the damage of cell transcription apparatus, because the transcription level of nuclear housekeeping gene BETA-ACTIN remained virtually unchanged after irradiation. The mitochondrial gene transcription decreased after irradiation in the same manner as that of the nuclear gene TFB2M encoding mitochondrial transcription factor, whose regulatory role under normal conditions is well understood.
Collapse
Affiliation(s)
- N E Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
46
|
Lecomte T, Ceze N, Dorval E, Laurent-Puig P. Circulating free tumor DNA and colorectal cancer. ACTA ACUST UNITED AC 2010; 34:662-81. [PMID: 20832215 DOI: 10.1016/j.gcb.2009.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 04/15/2009] [Accepted: 04/25/2009] [Indexed: 12/18/2022]
Abstract
Cancer is characterized by multiple somatic genetic and epigenetic alterations that could be useful as molecular markers for detecting tumor DNA in different bodily fluids. In patients with various diseases as well as in healthy subjects, circulating plasma and serum carry small amounts of non-cell-bound DNA. In this free circulating DNA, tumor-associated molecular alterations can be detected in patients who have cancer. In many instances, the alterations identified are the same as those found in the primary tumor tissue, thereby suggesting tumor origin from a fraction of the circulating free DNA. In fact, various types of DNA alterations described in colorectal cancer have been detected in the circulating free DNA of patients with colorectal cancer. These alterations include KRAS2, APC and TP53 mutations, DNA hypermethylation, microsatellite instability (MSI) and loss of heterozygosity (LOH). Also, advances in polymerase chain reaction (PCR)-based technology now allow the detection and quantification of extremely small amounts of tumor-derived circulating free DNA in colorectal cancer patients. The present report summarizes the literature available so far on the mechanisms of circulating free DNA, and on the studies aimed at assessing the clinical and biological significance of tumor-derived circulating free DNA in colorectal cancer patients. Thus, tumor-derived circulating free DNA could serve as a marker for the diagnosis, prognosis and early detection of recurrence, thereby significantly improving the monitoring of colorectal cancer patients.
Collapse
Affiliation(s)
- T Lecomte
- Université François-Rabelais, parc Grandmont, 37200 Tours, France. lecomt
| | | | | | | |
Collapse
|
47
|
Meyer JN. QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:804-11. [PMID: 20049526 PMCID: PMC2844971 DOI: 10.1007/s10646-009-0457-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2009] [Indexed: 05/17/2023]
Abstract
The quantitative PCR (QPCR) assay for DNA damage and repair has been used extensively in laboratory species. More recently, it has been adapted to ecological settings. The purpose of this article is to provide a detailed methodological guide that will facilitate its adaptation to additional species, highlight its potential for ecotoxicological and biomonitoring work, and critically review the strengths and limitations of this assay. Major strengths of the assay include very low (nanogram to picogram) amounts of input DNA; direct comparison of damage and repair in the nuclear and mitochondrial genomes, and different parts of the nuclear genome; detection of a wide range of types of DNA damage; very good reproducibility and quantification; applicability to properly preserved frozen samples; simultaneous monitoring of relative mitochondrial genome copy number; and easy adaptation to most species. Potential limitations include the limit of detection (approximately 1 lesion per 10(5) bases); the inability to distinguish different types of DNA damage; and the need to base quantification of damage on a control or reference sample. I suggest that the QPCR assay is particularly powerful for some ecotoxicological studies.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, Box 90328, NC 27708-0328, USA.
| |
Collapse
|
48
|
Abdullaev SA, Antipova VN, Gaziev AI. Extracellular mutant mitochondrial DNA content is dramatically elevated in the blood plasma of irradiated mice. Mol Biol 2009. [DOI: 10.1134/s0026893309060119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Todorov IN, Todorov GI. Multifactorial nature of high frequency of mitochondrial DNA mutations in somatic mammalian cells. BIOCHEMISTRY (MOSCOW) 2009; 74:962-70. [DOI: 10.1134/s000629790909003x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Gulyaeva NA, Abdullaev SA, Malakhova LV, Antipova VN, Bezlepkin VG, Gaziev AI. Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in the postradiation period. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|