1
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Evaluation of Jacalin lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2025; 252:116525. [PMID: 39447420 DOI: 10.1016/j.jpba.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Human chorionic gonadotropin (hCG) is a dimeric, highly glycosylated hormone with a total of 4 N- and 4 O-glycosylation sites in its two subunits, hCGα and hCGβ. Recently, we developed a novel nano liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) method for the analysis and thus the detection of the intact glycoforms of hCG. Here, a sorbent functionalized with the Jacalin lectin was evaluated in solid-phase extraction (SPE) for its potential to fractionate the hCG glycoforms prior to their nanoLC-HRMS analysis at the intact level, which may facilitate the detection of low-abundance glycoforms and may lead to a more detailed characterization of the hormone glycosylation. A commercial sorbent based on Jacalin immobilized on Sepharose and having a lectin density of 4.5 mg per ml of gel was selected to carry out SPE and its capacity was estimated to be of some tens of μg of hCG per ml of lectin sorbent. Next, the SPE protocol was modified to improve the extraction recoveries. Especially, it was noticed that an extensive pre-conditioning procedure prior to the first use of a cartridge was necessary to remove the residual non-grafted lectins. Indeed, if non-grafted lectins are not eliminated, they may bind a part of hCG glycoforms preventing their retention by the sorbent, leading to low extraction recoveries (around 10 %). With the extensive pre-conditioning procedure, the average extraction recoveries for both hCGα and hCGβ glycoforms were about 50 %, with either recombinant or urinary hCG. Qualitatively, the fractionation of hCG glycoforms between the washing and elution fractions was achieved with the urinary hCG sample by determining the number of glycoforms detected in each fraction. It appears that 12 hCGα glycoforms have a low affinity (detected only in the washing fraction), 1 a low-medium affinity (detected in washing and elution 1 fractions), 16 a medium affinity (detected in washing, elution 1 and 2 fractions), and 12 a high affinity (detected only in elution 1 and 2 fractions). For the hCGβ glycoforms, similarly, 3 have a low affinity and 12 a low-medium affinity. Additionally, the 3 hCGβ glycoforms were detected better. A different behavior was observed with the recombinant hCG sample, which indicates glycosylation differences between the two hCG samples. This shows the potential of lectin-based affinity fractionation before nanoLC-HRMS analysis to better characterize the glycosylation state of hCG at the intact level.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", UMR-S 1139, Université Paris Cité, INSERM, Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Chang C, Chen YL, Wang YW, Chen HW, Hsu CW, Lin KC, Ou YC, Liu T, Chen WL, Chu CA, Ho CL, Lee CT, Chow NH. Aberrant trophoblastic differentiation in human cancer: An emerging novel therapeutic target (Review). Oncol Rep 2024; 51:43. [PMID: 38240107 PMCID: PMC10823338 DOI: 10.3892/or.2024.8701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/15/2023] [Indexed: 01/23/2024] Open
Abstract
Various types of human cancer may develop aberrant trophoblastic differentiation, including histological changes and altered expression of β‑human chorionic gonadotropin (β‑hCG). Aberrant trophoblastic differentiation in epithelial cancer is usually associated with poor differentiation, tumor metastasis, unfavorable prognosis and treatment resistance. Since β‑hCG‑targeting vaccines have failed in an early phase II trial, it is crucial to obtain a better understanding of the molecular pathogenesis of trophoblastic differentiation in human cancer. The present review summarizes the clinical and translational research on this topic with the aim of accelerating the development of an effective targeted therapy. Ectopic expression of β‑hCG promotes proliferation, migration, invasion, vasculogenesis and epithelial‑mesenchymal transition (EMT) in vitro, and enhances metastatic and tumorigenic capabilities in vivo. Signaling cascades modulated by β‑hCG include the TGF‑β receptor pathway, EMT‑related pathways, the c‑MET receptor tyrosine kinase and mitogen‑activated protein kinase/ERK pathways, and the SMAD2/4 pathway. Taken together, these findings indicated that TGF‑β receptors, c‑MET and ERK1/2 are potential therapeutic targets. Nevertheless, further investigation on the molecular basis of aberrant trophoblastic differentiation is mandatory to improve the design of precision therapy for this aggressive type of human cancer.
Collapse
Affiliation(s)
- Chen Chang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Molecular Diagnostics Laboratory, Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Yi-Wen Wang
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan, R.O.C
| | - Hui-Wen Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Che-Wei Hsu
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Kun-Che Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Yin-Chien Ou
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Tsunglin Liu
- The Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Bioinformatics Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Wan-Li Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Diagnostics Laboratory, Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Chien-An Chu
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Chung-Liang Ho
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Molecular Diagnostics Laboratory, Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Chung-Ta Lee
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Molecular Diagnostics Laboratory, Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- The Institute of Molecular Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
3
|
Lis K. From Cereal Grains to Immunochemistry-What Role Have Antibodies Played in the History of the Home Pregnancy Test. Antibodies (Basel) 2023; 12:56. [PMID: 37753970 PMCID: PMC10525168 DOI: 10.3390/antib12030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Today, the home pregnancy test is the most frequently performed laboratory test for self-diagnosis (home diagnostic test). It is also the first laboratory test that has been adapted for self-use at home. This is probably because women have always wanted to know the answer to the question: "Am I pregnant or not?" and always preferred to know the answer to this question intimately and in a discreet way. The history of the pregnancy test is also an interesting example of how the discovery of antibodies and the development of in vitro diagnostic methods based on the antigen-antibody reaction were important for the development of laboratory and clinical diagnostics. Immunodiagnostic techniques (based on the antigen-antibody reaction) are currently the basis of modern specialist laboratory diagnostics, which is essential in clinical diagnosis. The history of the pregnancy test is an interesting one and dates back to ancient times. A pregnancy test is defined as a procedure intended to reveal the presence or absence of pregnancy. Nowadays, every pregnancy test is based on the detection of human chorionic gonadotropin (hCG) in urine or blood. Human chorionic gonadotropin is secreted by the placenta right after a fertilized egg cell implants in the uterus and can be detected in both the urine and blood of pregnant women. Urine pregnancy tests are convenient for self-use at home. Blood tests are performed in medical laboratories. Specialized laboratory methods not only detect hCG but also determine the concentration of this hormone. However, both of these methods are highly accurate and common. Throughout the ages, many different methods were used to detect pregnancy at the earliest stage. Grain, wine, and various small animals were used as research tools. These were both long-term and often unreliable; most were based on folk beliefs and superstitions. Animal pregnancy tests were the first biological tests used in this field. This was a significant advance in the accurate detection of relatively early pregnancy. Animal tests in modern times are considered cruel and inhumane, no matter how reliable their results can be. Their place is now taken by much more specific, more sensitive, and definitely more ethical immunochemical tests. The pregnancy test and the methods to find out whether a woman is pregnant have gone through massive transformations, from bioassays using plants to bioassays on animals to advanced immunochemical techniques and biosensors. Modern pregnancy tests are not invasive and are very sensitive. Nowadays, it takes only about 3 min to know the answer to the question: "Am I pregnant or not?". However, it was not always as simple as it is today. This manuscript aims to show the important role played by antibodies in the development of laboratory and clinical diagnostics in the example of the interesting history of the pregnancy test.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
4
|
Chikadze N, Tevzadze M, Janelidze M, Lydyard P, Porakishvili N. Prevalence of high affinity naturally occurring IgG2 antibodies against human chorionic gonadotropin and its subunits in patients with ovarian cyst. Immunobiology 2022; 227:152273. [PMID: 36088866 DOI: 10.1016/j.imbio.2022.152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Naturally occurring antibodies to tumour antigens are gaining interest as clinically important cancer biomarkers for early diagnosis, prognosis and for the development of anti-cancer therapeutics. The glycoprotein αβ heterodimer hormone human chorionic gonadotropin (hCG) and its β subunit (hCGβ) are produced by various cancers, and their increased serum levels correlate with poor prognosis. We have previously reported that patients with benign ovarian cysts, but not the malignant tumours, were characterized by augmented serum levels of naturally-occurring IgG antibodies to hCG and hCGβ. Here we further characterise these antibodies in patients with ovarian cysts. IgG and IgM antibody binding to whole hCG, hCGβ, hCGα, hCGβ C-terminal peptide (hCGβCTP), and the hCGβ core fragment (hCGβCF) were measured in the sera from 36 patients with ovarian cysts and 12 healthy non-pregnant women using a standard ELISA. IgG subclass usage and affinity was also determined together with cross-binding to whole hCG and its subunits of four selected commercial monoclonal antibodies generated against ovarian cyst mucins. Our results showed that 91.7% of the sera tested contained elevated IgG, but not IgM antibodies to one or several antigens, with an overwhelming prevalence of high affinity IgG2 indicating their binding to carbohydrate epitopes and possibly ovarian cyst mucins. Anti-mucin commercial antibody ab212418 (Abcam) produced against Gal1-3GalNAc, exhibited strong cross-binding to hCGαβ, hCGβ, hCGα and hCGβCTP. The protective anti-cancer potential of these antibodies will be further investigated and could lead to the development of novel treatment strategies for ovarian cancer.
Collapse
Affiliation(s)
- N Chikadze
- Division of Immunology and Microbiology, Javakhishvili Tbilisi State University, Georgia.
| | - M Tevzadze
- Tbilisi Medical Academy, Georgia; University of Georgia, Georgia
| | | | - P Lydyard
- School of Life Sciences, University of Westminster, London, UK; University of Georgia, Georgia
| | - N Porakishvili
- Division of Immunology and Microbiology, Javakhishvili Tbilisi State University, Georgia; School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
5
|
Yoo SK, Mehdi SF, Pusapati S, Mathur N, Anipindi M, Lunenfeld B, Lowell B, Yang H, Metz CN, Khan SA, Leroith D, Roth J. Human Chorionic Gonadotropin and Related Peptides: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2021; 12:714177. [PMID: 34589085 PMCID: PMC8475184 DOI: 10.3389/fimmu.2021.714177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis continues to be a major cause of morbidity, mortality, and post-recovery disability in patients with a wide range of non-infectious and infectious inflammatory disorders, including COVID-19. The clinical onset of sepsis is often marked by the explosive release into the extracellular fluids of a multiplicity of host-derived cytokines and other pro-inflammatory hormone-like messengers from endogenous sources ("cytokine storm"). In patients with sepsis, therapies to counter the pro-inflammatory torrent, even when administered early, typically fall short. The major focus of our proposed essay is to promote pre-clinical studies with hCG (human chorionic gonadotropin) as a potential anti-inflammatory therapy for sepsis.
Collapse
Affiliation(s)
- Sun Koo Yoo
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Manasa Anipindi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Bruno Lunenfeld
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Barbara Lowell
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sawleha Arshi Khan
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek Leroith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| |
Collapse
|
6
|
Ibeto L, Antonopoulos A, Grassi P, Pang PC, Panico M, Bobdiwala S, Al-Memar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seckl M, Clark G, Haslam SM, Dell A. Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One 2020; 15:e0228507. [PMID: 32045434 PMCID: PMC7012436 DOI: 10.1371/journal.pone.0228507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that is essential for the maintenance of pregnancy. Glycosylation of hCG is known to be essential for its biological activity. "Hyperglycosylated" variants secreted during early pregnancy have been proposed to be involved in initial implantation of the embryo and as a potential diagnostic marker for gestational diseases. However, what constitutes "hyperglycosylation" is not yet fully understood. In this study, we perform comparative N-glycomic analysis of hCG expressed in the same individuals during early and late pregnancy to help provide new insights into hCG function, reveal new targets for diagnostics and clarify the identity of hyperglycosylated hCG. hCG was isolated in urine collected from women at 7 weeks and 20 weeks' gestation. hCG was also isolated in urine from women diagnosed with gestational trophoblastic disease (GTD). We used glycomics methodologies including matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and MS/MS methods to characterise the N-glycans associated with hCG purified from the individual samples. The structures identified on the early pregnancy (EP-hCG) and late pregnancy (LP-hCG) samples corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. A novel finding was the presence of substantial amounts of bisected type N-glycans in pregnancy hCG samples, which were present at much lower levels in GTD samples. A second novel observation was the presence of abundant LewisX antigens on the bisected N-glycans. GTD-hCG had fewer glycoforms which constituted a subset of those found in normal pregnancy. When compared to EP-hCG, GTD-hCG samples had decreased signals for tri- and tetra-antennary N-glycans. In terms of terminal epitopes, GTD-hCG had increased signals for sialylated structures, while LewisX antigens were of very minor abundance. hCG carries the same N-glycans throughout pregnancy but in different proportions. The N-glycan repertoire is more diverse than previously reported. Bisected and LewisX structures are potential targets for diagnostics. hCG isolated from pregnancy urine inhibits NK cell cytotoxicity in vitro at nanomolar levels and bisected type glycans have previously been implicated in the suppression of NK cell cytotoxicity, suggesting that hCG-related bisected type N-glycans may directly suppress NK cell cytotoxicity.
Collapse
Affiliation(s)
- Linda Ibeto
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maria Panico
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Shabnam Bobdiwala
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Maya Al-Memar
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Paul Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Mark Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Julian Norman Taylor
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Paula Almeida
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Richard Harvey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tom Bourne
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Michael Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, United States of America
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Nishino K, Yamamoto E, Niimi K, Sekiya Y, Yamashita Y, Kikkawa F. N-acetylglucosaminyltransferase IVa promotes invasion of choriocarcinoma. Oncol Rep 2017; 38:440-448. [PMID: 28534963 DOI: 10.3892/or.2017.5661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Gestational trophoblastic neoplasia (GTN) results from the malignant transformation of placental trophoblasts which secrete human chorionic gonadotropin (hCG) as do normal placenta or hydatidiform mole. N-acetylglucosaminyltransferase IV (GnT-IV) is a glycosyltransferase which catalyses the formation of β1,4GlcNAc branches on the mannose core of N-glycans. Previous studies reported that β1,4GlcNAc branches on hCG were detected in GTN but not in normal pregnancy or hydatidiform mole. The aim of the present study was to understand the role of GnT-IVa in choriocarcinoma and find the target proteins for GnT-IVa glycosylation which contribute to the malignancy of choriocarcinoma. Immunohistochemistry showed that Griffonia simplicifolia lectin-II staining and GnT-IVa staining were intense in trophoblastic cells of invasive mole and choriocarcinoma. We established a choriocarcinoma cell line with GnT-IVa overexpression (Jar-GnT4a), and examined its malignant potential and target proteins for GnT-IVa glycosylation. GnT-IVa overexpression increased the cell migration and invasion (2.5- and 1.4-fold) as well as the ability to adhere to the extracellular matrix (ECM) components, including fibronectin and collagen type I and IV. The tumour formation potential of Jar-GnT4a in mice was significantly higher than that of control (P=0.0407), and the cumulative survival rate of mice with Jar-GnT4a was relatively lower than those with control. Immunoprecipitation studies showed that β1,4GlcNAc branches of N-glycans on integrin β1 in choriocarcinoma cells were increased by GnT-IVa overexpression. Nano-LC/MS/MS analysis suggested that lysosome-associated membrane glycoprotein 2 (LAMP-2) was a target protein for glycosylation by GnT-IVa. The increase in β1,4GlcNAc branches on LAMP-2 by GnT-IVa overexpression was confirmed by lectin blot analysis using whole cell lysate and conditioned medium. Our results suggest that highly branched N-glycans generated by the action of GnT-IVa are present in trophoblastic cells of GTN in proportion to GnT-IVa expression level, and that GnT-IVa may contribute to the malignancy of choriocarcinoma by promoting cell adhesion, migration and invasion through glycosylation of integrin β1 and LAMP-2.
Collapse
Affiliation(s)
- Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eiko Yamamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoko Sekiya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
8
|
Mei Z, Huang B, Mo Y, Fan J. An exploratory study into the role of miR-204-5p in pregnancy-induced hypertension. Exp Ther Med 2017; 13:1711-1718. [PMID: 28565757 PMCID: PMC5443271 DOI: 10.3892/etm.2017.4212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/25/2016] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism that leads to pregnancy-induced hypertension (PIH), a pregnancy-specific syndrome, remains poorly understood. It has been suggested that microRNAs (miRNAs) may be potentially useful biomarkers for severe preeclampsia (PE), which is an important condition associated with PIH. The aim of the present study was to identify miR-204 by verifying differentially expressed serum miRNAs in patients with PIH during pregnancy compared with normal controls. Subsequently, the effects of miR-204 on proliferation and apoptosis of human choriocarcinoma (JAR) cells in hypoxic microenvironment were investigated. Previous studies indicated a number of miRNA candidates and the present study validated the expression of eight miRNAs in serum samples using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A higher expression of miR-204 was identified in patients with PIH. To assess the impact of miR-204 inhibition on hypoxic JAR cells function in vitro, cell proliferation was detected using a Cell Counting Kit-8 assay. The rate of apoptosis and cell cycle progression was then examined by flow cytometry. RT-qPCR confirmed that serum miR-204-5p is more highly expressed in patients with PIH. Further statistical analysis indicated that the survival ratio of JAR cells in hypoxic microenvironments was increased in the miR-204-5p inhibitor group. However, the miR-204-5p inhibitor protected hypoxic JAR cells from apoptosis. The analysis of cell-cycle status demonstrated that the percentage of cells in the G2/G1 phase was larger compared with the control group. The results of the present study suggest that low levels of miR-204-5p may increase cell proliferation and reduce cell apoptosis with cell cycle changes in vitro. Therefore, serum miR-204-5p may be used as a notable biomarker for the diagnosis, prevention and treatment of PIH.
Collapse
Affiliation(s)
- Zhixiong Mei
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Baoqin Huang
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Mo
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianhui Fan
- Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
9
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
10
|
Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:490531. [PMID: 26509158 PMCID: PMC4609776 DOI: 10.1155/2015/490531] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/13/2022]
Abstract
Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.
Collapse
|
11
|
Direct analysis of hCGβcf glycosylation in normal and aberrant pregnancy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Mol Sci 2014; 15:10067-82. [PMID: 24905406 PMCID: PMC4100140 DOI: 10.3390/ijms150610067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
The analysis of human chorionic gonadotropin (hCG) in clinical chemistry laboratories by specific immunoassay is well established. However, changes in glycosylation are not as easily assayed and yet alterations in hCG glycosylation is associated with abnormal pregnancy. hCGβ-core fragment (hCGβcf) was isolated from the urine of women, pregnant with normal, molar and hyperemesis gravidarum pregnancies. Each sample was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis following dithiothreitol (DTT) reduction and fingerprint spectra of peptide hCGβ 6–40 were analyzed. Samples were variably glycosylated, where most structures were small, core and largely mono-antennary. Larger single bi-antennary and mixtures of larger mono-antennary and bi-antennary moieties were also observed in some samples. Larger glycoforms were more abundant in the abnormal pregnancies and tri-antennary carbohydrate moieties were only observed in the samples from molar and hyperemesis gravidarum pregnancies. Given that such spectral profiling differences may be characteristic, development of small sample preparation for mass spectral analysis of hCG may lead to a simpler and faster approach to glycostructural analysis and potentially a novel clinical diagnostic test.
Collapse
|
12
|
|
13
|
Lee CL, Chiu PCN, Hautala L, Salo T, Yeung WSB, Stenman UH, Koistinen H. Human chorionic gonadotropin and its free β-subunit stimulate trophoblast invasion independent of LH/hCG receptor. Mol Cell Endocrinol 2013; 375:43-52. [PMID: 23684886 DOI: 10.1016/j.mce.2013.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Both paracrine and autocrine factors are involved in the regulation of trophoblast invasion. One of these factors is human chorionic gonadotropin (hCG), which stimulates trophoblast invasion. The stimulatory activity has especially been ascribed to a hyperglycosylated form of hCG (hCG-h) that is expressed in early pregnancy. We compared the stimulatory activities of different forms of hCG and its free β-subunit (hCGβ) on trophoblast invasion. hCG, hCG-h, hCGβ, and its hyperglycosylated form (hCGβ-h) stimulated the invasion of JEG-3 choriocarcinoma cells. The stimulatory effect of hCGβ was also confirmed with primary human trophoblasts. Down-regulation of the LH/hCG receptor by RNA-interference did not significantly reduce the effect of hCGβ and hCG on cell invasion. Increased invasion was associated with increased levels of MMP-2, MMP-9 and activity of uPA. Our findings suggest that hCG, hCGβ and their hyperglycosylated forms stimulate the invasion of trophoblast cells independent of the classical LH/hCG-receptor.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | | | | | | | |
Collapse
|
14
|
Niimi K, Yamamoto E, Fujiwara S, Shinjo K, Kotani T, Umezu T, Kajiyama H, Shibata K, Ino K, Kikkawa F. High expression of N-acetylglucosaminyltransferase IVa promotes invasion of choriocarcinoma. Br J Cancer 2012; 107:1969-77. [PMID: 23169300 PMCID: PMC3516685 DOI: 10.1038/bjc.2012.496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Gestational trophoblastic diseases (GTDs) are related to trophoblasts, and human chorionic gonadotropin (hCG) is secreted by GTDs as well as normal placentas. However, the asparagine-linked sugar chains on hCG contain abnormal biantennary structures in invasive mole and choriocarcinoma, but not normal pregnancy or hydatidiform mole. N-acetylglucosaminyltransferase-IV (GnT-IV) catalyses β1,4-N-acetylglucosamine branching on asparagine-linked oligosaccharides, which are consistent with the abnormal sugar chain structures on hCG. Methods: We investigated GnT-IVa expression in GTDs and placentas by immunohistochemistry, western blot, and RT–PCR. We assessed the effects of GnT-IVa knockdown in choriocarcinoma cells in vitro and in vivo. Results: The GnT-IVa was highly expressed in trophoblasts of invasive mole and choriocarcinoma, and moderately in extravillous trophoblasts during the first trimester, but not in hydatidiform mole or other normal trophoblasts. The GnT-IVa knockdown in choriocarcinoma cells significantly reduced migration and invasive capacities, and suppressed cellular adhesion to extracellular matrix proteins. The extent of β1,4-N-acetylglucosamine branching on β1 integrin was greatly reduced by GnT-IVa knockdown, although the expression of β1 integrin was not changed. In vivo studies further demonstrated that GnT-IVa knockdown suppressed tumour engraftment and growth. Conclusion: These findings suggest that GnT-IVa is involved in regulating invasion of choriocarcinoma through modifications of the oligosaccharide chains of β1 integrin.
Collapse
Affiliation(s)
- K Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Constant F, Camous S, Chavatte-Palmer P, Heyman Y, de Sousa N, Richard C, Beckers J, Guillomot M. Altered secretion of pregnancy-associated glycoproteins during gestation in bovine somatic clones. Theriogenology 2011; 76:1006-21. [DOI: 10.1016/j.theriogenology.2011.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
|
16
|
Zenzmaier C, Gerth R, Gruschwitz M, Lindner H, Plas E, Berger P. Decreased levels of genuine large free hCG alpha in men presenting with abnormal semen analysis. Reprod Biol Endocrinol 2011; 9:114. [PMID: 21838882 PMCID: PMC3176484 DOI: 10.1186/1477-7827-9-114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/12/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The pregnancy hormone human chorionic gonadotropin (hCG) and its free subunits (hCG alpha, hCG beta) are produced in the male reproductive tract and found in high concentrations in seminal fluid, in particular hCG alpha. This study aimed to elucidate changes in peptide hormone profiles in patients showing abnormal semen analyses and to determine the genuineness of the highly abundant hCG alpha. METHODS Seminal plasma was obtained from 45 male patients undergoing semen analysis during infertility workups. Comprehensive peptide hormone profiles were established by a panel of immunofluorometric assays for hCG, hCG alpha, hCG beta and its metabolite hCG beta core fragment, placental lactogen, growth hormone and prolactin in seminal plasma of patients with abnormal semen analysis results (n = 29) versus normozoospermic men (n = 16). The molecular identity of large hyperglycosylated hCG alpha was analyzed by mass-spectrometry and selective deglycosylation. RESULTS hCG alpha levels were found to be significantly lower in men with impaired semen quality (1346 +/- 191 vs. 2753 +/- 533 ng/ml, P = 0.022). Moreover, patients with reduced sperm count had reduced intact hCG levels compared with normozoospermic men (0.097 +/- 0.022 vs. 0.203 +/- 0.040 ng/ml, P = 0.028). Using mass-spectrometry, the biochemical identity of hCG alpha purified from seminal plasma was verified. Under non-reducing conditions in SDS-PAGE, hCG alpha isolated from seminal plasma migrated in a manner comparable with large free hCG alpha with an apparent molecular mass (Mr, app) of 24 kDa, while hCG alpha dissociated from pregnancy-derived holo-hCG migrated at approximately 22 kDa. After deglycosylation with PNGase F under denaturing conditions, all hCG alpha variants showed an Mr, app of 15 kDa, indicating identical amino acid backbones. CONCLUSIONS The findings indicate a pathophysiological relevance of hCG, particularly its free alpha subunit, in spermatogenesis. The alternative glycosylation pattern on the free large hCG alpha in seminal plasma might reflect a modified function of this subunit in the male reproductive tract.
Collapse
Affiliation(s)
- Christoph Zenzmaier
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck, Austria
| | - Regine Gerth
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck, Austria
| | - Matthias Gruschwitz
- Department of Dermatology, University of Erlangen-Nuremberg, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Herbert Lindner
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Medical University Innsbruck, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | - Eugen Plas
- Department of Urology and Ludwig Boltzmann Institute for Urology and Andrology, Hospital Hietzing, Wolkersbergenstraße 1, 1130 Vienna, Austria
| | - Peter Berger
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Abstract
When considering human chorionic gonadotropin (hCG) and hCG tests, it is important to realize that it is not a single biological molecule. The regular form of hCG produced by differentiated syncytotrophoblast cells (regular hCG) is a hormone made with the primary function of maintaining the myometrial and decidual spiral arteries and the vascular supply of the placenta during the full course of pregnancy. Hyperglycosylated hCG (hCG with double-size O-linked oligosaccharides) is made by undifferentiated cytotrophoblast cells. This is an autocrine hormone with separate functions, it maintains invasion as in implantation of pregnancy and malignancy in gestational trophoblastic diseases. A hyperglycosylated free beta-subunit is produced by a high proportion of all malignancies. This functions as an autocrine hormone to promote the growth and invasion of the malignancy. It is important to realize when ordering an hCG test what you are measuring and whether the test ordered will detect appropriately these three variant of hCG as well as their degradation products. Most automated commercial laboratory tests, point-of-care test and over-the-counter tests are limited in what is detected, focusing only on regular hCG. This is in part due to the US FDA, who only consider hCG as a pregnancy test, and to whom only detection of regular hCG is critical. This may be a cause of test errors since primarily hyperglycosylated hCG is produced in early pregnancy, choriocarcinoma and germ cell testicular malignancies, and only free beta-subunit may be produced in other germ cell malignancies (all applications for hCG test). The exceptions are the older style hCGbeta radioimmunoassay and the Siemen's Immulite platform hCG test which detect all variant and their degradation product appropriately. Regardless of test specificity limitations, assays for hCG variants are widely used clinically in pregnancy detection, early pregnancy detection, prediction of spontaneously aborting and ectopic pregnancies and prediction of trisomy pregnancies. hCG tests are essential in managing gestational trophoblastic diseases, whether hydatidiform mole, invasive mole or choriocarcinoma, and are very useful in management of testicular malignancies and other germ cell malignancies.
Collapse
Affiliation(s)
- Laurence A Cole
- Department of Obstetrics and Gynecology, University of New Mexico, Albuquerque NM 87131, USA.
| |
Collapse
|
18
|
The quagmire of hCG and hCG testing in gynecologic oncology. Gynecol Oncol 2009; 112:663-72. [DOI: 10.1016/j.ygyno.2008.09.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/17/2022]
|
19
|
Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol 2009; 7:8. [PMID: 19171054 PMCID: PMC2649930 DOI: 10.1186/1477-7827-7-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/26/2009] [Indexed: 12/19/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone comprising 2 subunits, alpha and beta joined non covalently. While similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents, rather than as a single molecule like LH and the other glycoprotein hormones. These are regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG. For 88 years regular hCG has been known as a promoter of corpus luteal progesterone production, even though this function only explains 3 weeks of a full gestations production of regular hCG. Research in recent years has explained the full gestational production by demonstration of critical functions in trophoblast differentiation and in fetal nutrition through myometrial spiral artery angiogenesis. While regular hCG is made by fused villous syncytiotrophoblast cells, extravillous invasive cytotrophoblast cells make the variant hyperglycosylated hCG. This variant is an autocrine factor, acting on extravillous invasive cytotrophoblast cells to initiate and control invasion as occurs at implantation of pregnancy and the establishment of hemochorial placentation, and malignancy as occurs in invasive hydatidiform mole and choriocarcinoma. Hyperglycosylated hCG inhibits apoptosis in extravillous invasive cytotrophoblast cells promoting cell invasion, growth and malignancy. Other non-trophoblastic malignancies retro-differentiate and produce a hyperglycosylated free beta-subunit of hCG (hCG free beta). This has been shown to be an autocrine factor antagonizing apoptosis furthering cancer cell growth and malignancy. New applications have been demonstrated for total hCG measurements and detection of the 3 hCG variants in pregnancy detection, monitoring pregnancy outcome, determining risk for Down syndrome fetus, predicting preeclampsia, detecting pituitary hCG, detecting and managing gestational trophoblastic diseases, diagnosing quiescent gestational trophoblastic disease, diagnosing placental site trophoblastic tumor, managing testicular germ cell malignancies, and monitoring other human malignancies. There are very few molecules with such wide and varying functions as regular hCG and its variants, and very few tests with such a wide spectrum of clinical applications as total hCG.
Collapse
Affiliation(s)
- Laurence A Cole
- USA hCG Reference Service, Obstetrics and Gynecology, and Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
20
|
Alvarez-Oxiley AV, de Sousa NM, Beckers JF. Native and recombinant bovine placental lactogens. Reprod Biol 2008; 8:85-106. [PMID: 18677398 DOI: 10.1016/s1642-431x(12)60006-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bovine placenta produces a wide variety of proteins that are structurally and functionally similar to the pituitary proteins from the GH/PRL gene family. Bovine placental lactogen (bPL) is a 200-amino acid long glycoprotein hormone that exhibits both lactogenic and somatogenic properties. The apparent molecular masses of purified native (n) bPL molecules (31-33 kDa) exceed 23 041 Da, which is the theoretical molecular mass of the protein core. At least six isoelectric variants (pI: 4.85-6.3) of bPL were described in cotyledonary extracts and three different bPL isoforms (pI: 4.85-5.25) were found in fetal sera. The bPL molecules that are detected in higher concentrations in peripheral circulation exhibit a more acidic pI than those present in placental homogenates. This may reflect an important glycosylation process occurring just prior to the bPL secretion. The bPL mRNA is transcribed in trophectoderm binucleate cells starting from Day 30 of pregnancy until the end of gestation. In mothers, bPL is involved in the regulation of ovarian function, mammogenesis, lactogenesis, and pregnancy stage-dependent adaptation of nutrient supplies to the fetus. Due to the higher fetal, compared to maternal concentrations of circulating hormone, it has been suggested that bPL primarily targets fetal tissues.
Collapse
Affiliation(s)
- Andrea V Alvarez-Oxiley
- Laboratory of Animal Endocrinology and Reproduction, Faculty of Veterinary Medicine, University of Liege, Bd. de Colonster, 4000. Liege, Belgium
| | | | | |
Collapse
|
21
|
Merz WE, Krause JM, Roig J, Singh V, Berger P. Nonassembled human chorionic gonadotropin subunits and alphaalpha-homodimers use fast-track processing in the secretory pathway in contrast to alphabeta-heterodimers. Endocrinology 2007; 148:5831-41. [PMID: 17761764 DOI: 10.1210/en.2007-0789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In multimeric glycoproteins, like glycoprotein hormones, mutual subunit interactions are required for correct folding, assembly, and transport in the secretory pathway. However, character and time course of these interactions need further elucidation. The influence of the glycoprotein hormone alpha-subunit (GPHalpha) on the folding of the human chorionic gonadotropin (hCG) beta-subunit (hCGbeta) in hCG alphabeta-heterodimers was investigated in [(35)S]Met/Cys-labeled JEG-3 cells. Completeness of disulfide bridge formation during the time course of folding was estimated by labeling with [(3)H]N-ethylmaleinimide of free thiol groups not yet consumed. Subunit association took place between immature hCGbeta (high (3)H/(35)S ratio) and almost completely folded GPHalpha. Analysis revealed a highly dynamic maturation process comprising of at least eight main hCGbeta folding intermediates (molecular masses from 107 to 28 kDa) that could be micro-preparatively isolated and characterized. These hCGbeta variants developed while being associated with GPHalpha. The 107-kDa variant was identified as a complex with calnexin. In contrast to hCG alphabeta-heterodimers, free nonassociated hCGbeta, free large GPHalpha, and GPHalphaalpha homodimers showed a fast-track-like processing in the secretory pathway. At 10 min before hCG secretion, sialylation of these variants had already been completed in the late Golgi, whereas hCG alphabeta-heterodimers had still not arrived medial Golgi. This shows that the GPHalpha in the hCG alphabeta-heterodimers decelerates the maturation of the hCGbeta portion in the heterodimer complex. This results in a postponed approval of hCG alphabeta-heterodimers by the endoplasmic reticulum quality control unlike GPHalphaalpha homodimers, free hCGbeta, and GPHalpha subunits.
Collapse
Affiliation(s)
- Wolfgang E Merz
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
22
|
Krause JM, Berger P, Roig J, Singh V, Merz WE. Rapid Maturation of Glycoprotein Hormone Free α-Subunit (GPHα) and GPHαα Homodimers. Mol Endocrinol 2007; 21:2551-64. [PMID: 17609437 DOI: 10.1210/me.2007-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe dynamics of glycoprotein hormone α-subunit (GPHα) maturation and GPHαα homodimer formation were studied in presence (JEG-3 choriocarcinoma cells) and absence (HeLa cells) of hCGβ. In both cases, the major initially occurring GPHα variant in [35S]Met/Cys-labeled cells carried two N-glycans (Mr app = 22 kDa). Moreover, a mono-N-glycosylated in vivo association-incompetent GPHα variant (Mr app = 18 kDa) was observed. In JEG-3 cells the early 22-kDa GPHα either associated with hCGβ, or showed self-association to yield GPHαα homodimers, or was later converted into heavily glycosylated large free GPHα (Mr app = 24 kDa). Micro-preparative isolation of intracellular GPHαα homodimers of JEG-3 cells and their conversion by reduction revealed that they consisted of 22-kDa GPHα monomers and not of large free GPHα. In HeLa cells, the large free GPHα variant was not observed, whereas GPHαα homodimers were present. Intracellularly, early GPHαα homodimers (35 kDa) and late variants (JEG-3: 44 kDa, HeLa: 39 kDa) were found. Both cell types secreted 45 kDa GPHαα homodimers. Large free GPHα and GPHαα homodimers were more rapidly sialylated than hCG αβ-heterodimers indicating a sequestration mechanism in the secretory pathway. In GPHαα homo- as well as hCG αβ-heterodimers the subunit interaction site, located on loop 2 of GPHα (amino acids 33–42), became immunologically inaccessible indicating similar spatial orientation of GPHα in both types of dimers. The studies demonstrate the formation, in vivo dynamics of GPHαα homodimers, and the pathways of the cellular metabolism of variants of GPHα, monoglycosylated GPHα and large free GPHα.
Collapse
Affiliation(s)
- Jean-Michel Krause
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
23
|
Alvarez-Oxiley AV, Sousa NM, Hornick JL, Touati K, van der Weijden GC, Taverne MAM, Szenci O, Sulon J, Debliquy P, Beckers JF. Radioimmunoassay of bovine placental lactogen using recombinant and native preparations: determination of fetal concentrations across gestation. Reprod Fertil Dev 2007; 19:877-85. [PMID: 17897591 DOI: 10.1071/rd06173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 07/20/2007] [Indexed: 11/23/2022] Open
Abstract
Concentrations of bovine placental lactogen (bPL) were determined in fetal plasma samples by twelve double-antibody competitive radioimmunoassay systems (RIA I-XII) based on either recombinant bPL (non-glycosylated) or native bPL (glycosylated). Both preparations were used as standard and tracer, and for primary antisera production. The minimum detection limit measured by these RIA varied from 0.02 to 0.6 ng bPL mL(-1). The coefficients of correlation of different bPL RIA systems were up to 90% (P < 0.0001) when each RIA was tested against the average values of all twelve RIA systems. All developed RIA were used to investigate the incidence of different bPL isoforms in bovine fetal serum samples (n = 71). Fetal concentrations ranged from 11.8 to 35.7 ng mL(-1) at the third month and from 1.1 to 13.5 ng mL(-1) at the ninth month of gestation. They tended to decrease with advancing gestation. In general, those RIA systems that used recombinant bPL as the standard measured higher values than those using the native bPL preparation. These differences decreased toward the end of gestation (P < 0.05), suggesting a lower rate of glycosylation. Our results provide evidence of different glycosylated isoforms of bPL in fetal serum at different gestation periods.
Collapse
Affiliation(s)
- A V Alvarez-Oxiley
- Laboratory of Animal Endocrinology and Reproduction, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Hyperglycosylated hCG (hCG-H) is a glycosylation variant of the hormone hCG. Here we review all that is known about this independently functioning molecule. As discussed, it is a very different molecule to the hormone hCG. First, hCG-H is produced by cytotrophoblast cells while regular hCG is made in syncytiotrophoblast cell. Second, it is an autocrine acting directly on the cells which produce it, while regular hCG is an endocrine acting on maternal corpus luteal cells. Third, hCG-H has minimal biological activity in promoting progesterone production compared to regular hCG. Fourth, hCG-H functions unlike regular hCG as an invasion promoter, whether invasion as in choriocarcinoma and testicular germ cell malignancies, or as in implantation of pregnancy. These functions seemingly occur through action on cytotrophoblast cell TGFbeta receptors. Fifth, hCG-H is an essential component for successful human implantation to prevent early pregnancy loss and spontaneous abortion. Sixth, hCG-H is critical for promoting the midtrimester hemochorial implantation, and for preventing preeclampsia. Seventh, measurements of hCG-H have advantages over measurements of regular hCG or total hCG, in detecting pregnancy, pregnancy outcome (failing or term pregnancy), predicting preeclampsia in pregnancy, or as a tumor marker for gestational trophoblastic diseases.
Collapse
Affiliation(s)
- L A Cole
- USA hCG Reference Service, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, MSC10-5580, 1 University of New Mexico, 333 Cedar Street, Albuquerque, NM 87131, USA.
| |
Collapse
|
25
|
Kovalevskaya G, Kakuma T, Schlatterer J, O'Connor JF. Hyperglycosylated HCG expression in pregnancy: cellular origin and clinical applications. Mol Cell Endocrinol 2007; 260-262:237-43. [PMID: 17092638 DOI: 10.1016/j.mce.2006.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 02/20/2006] [Indexed: 11/28/2022]
Abstract
Employing a monoclonal antibody (B152) specific for a carbohydrate epitope found on a choriocarcinoma derived hCG, it was discovered that a similar hCG isoform is expressed during early pregnancy. This form differs from later pregnancy hCG in carbohydrate moieties. Profiling of these two hCG isoforms throughout pregnancy utilized two IRMA's: B152-B207 ("hyperglycosylated hCG"-specific assay) and B109-B108 (an IRMA for standard intact hCG isoforms in the WHO hCG reference preparation). The WHO hCG standard was used in both assays. Values were presented as a ratio of hCG isoform concentrations (B152/B109 ratio). In early pregnancy urine concentrations of B152 hCG were significantly higher in normal pregnancy (NP) compared to early pregnancy loss (EPL). Matched serum-urine samples from the first and third trimesters revealed that the B152 hCG form is predominant in both serum and urine in the first trimester compared with the third trimester. The proportion of the B152 hCG (HhCG) form is higher in urine than in matched serum. There was a significant difference in the B152/B109 ratio between days 5 and 20 from time of embryo transfer in normally developing pregnancy versus EPL in the urine of IVF patients. In spontaneous abortion (SA) the level of B109 hCG remained higher in NP compared with SA. However, the B152/B109 ratio declined with gestational age faster in SA than in NP suggesting perhaps a different loss mechanism in SA versus EPL. The cellular origin of the different hCG glycoforms was identified by assay of cell media from cytotrophoblasts (CTBs) and syncytiotrophoblasts (STBs). Isolated CTBs expressed predominantly HhCG. The level of expression was the highest in the first trimester. STBs were the source of the less glycosylated B109 hCG isoform. Analysis of hCG glycoforms during early pregnancy can distinguish pregnancies that will fail from those that will proceed normally. Since the B152 assay does not effectively discriminate between intact HhCG and free beta HhCG (HhCGbeta), a new HhCGbeta assay was developed. This assay recognizes the HhCGbeta which is produced by CTBs. We hypothesize that the measurement of HhCGbeta may have a potential use in screening for Down syndrome and perhaps other pregnancy disorders and certain types of cancer.
Collapse
Affiliation(s)
- G Kovalevskaya
- Irving Center for Clinical Research, Columbia University College of Physicians and Surgeons, 630 W 168th St., New York, NY 10032, USA
| | | | | | | |
Collapse
|
26
|
Cole LA, Khanlian SA. Hyperglycosylated hCG: a variant with separate biological functions to regular hCG. Mol Cell Endocrinol 2007; 260-262:228-36. [PMID: 17081684 DOI: 10.1016/j.mce.2006.03.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 03/23/2006] [Indexed: 11/19/2022]
Abstract
Hyperglycosylated hCG (hCG-H) is an over-glycosylated variant of hCG. While regular hCG is produced by differentiated syncytotrophoblast cells, hCG-H is independently secreted by stem cytotrophoblast cells. hCG-H has an independent function to regular hCG. It is the direct promoter of trophoblast invasion and malignancy. Invasion as in implantation of pregnancy and malignancy as in choriocarcinoma. Neither will occur in the absence of hCG-H. hCG-H measurements have multiple functions. Primarily or exclusively hCG-H is produced at the time of implantation of pregnancy and in the 2 weeks that follows. As such, a good pregnancy test should measure regular hCG and hCG-H equally. This is not commonly the case. Most tests poorly detect hCG-H. New pregnancy tests are needed, including those that measure only hCG-H. Considering that hCG-H is critical for implantation, hCG-H is also invaluable for determining pregnancy outcome and detecting failures. It makes a considerable more accurate test for detecting pregnancy failures and ectopic pregnancies than regular hCG. Down syndrome pregnancies are marked by poor trophoblast differentiation. As such, they are very well marked by using a combination of hCG-H measurements and other screening tests. hCG-H is also an absolute tumor marker for malignant or invasive gestational trophoblastic disease, it can discriminate active and inactive (quiescent) disease, and the need for chemotherapy.
Collapse
Affiliation(s)
- Laurence A Cole
- USA hCG Reference Service, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM 87104, United States.
| | | |
Collapse
|
27
|
|
28
|
Stenman UH, Tiitinen A, Alfthan H, Valmu L. The classification, functions and clinical use of different isoforms of HCG. Hum Reprod Update 2006; 12:769-84. [PMID: 16877746 DOI: 10.1093/humupd/dml029] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HCG is composed of two subunits, HCGalpha and HCGbeta. During early pregnancy, HCG stimulates progesterone production in the corpus luteum, and injection of HCG is widely used to induce ovulation in assisted reproduction treatment (ART). Under experimental conditions, the free subunits have been shown to exert functions other than those of HCG, but the relevance of these remains to be determined. Intact HCG, free subunits and degraded forms of these occur in biological fluids, and determinations of these are important for diagnosis and monitoring of pregnancy, pregnancy-related disorders and several types of cancer. Development of optimal methods for the various forms has been hampered by lack of appropriate standards and expression of the concentrations of the various forms in units that are not comparable. Furthermore, the nomenclature for HCG assays is confusing and in some cases misleading. These problems can now be solved; a uniform nomenclature has been established, and new standards are available for HCG, its subunits HCGalpha and HCGbeta, the partially degraded or nicked forms of HCG and HCGbeta, and the beta-core fragment. This review describes the biochemical and biological background for the clinical use of determinations of various forms of HCG. The clinical use of HCG and studies on HCG vaccines are briefly reviewed.
Collapse
Affiliation(s)
- Ulf-Håkan Stenman
- Department of Clinical Chemistry, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
29
|
Cole LA, Dai D, Butler SA, Leslie KK, Kohorn EI. Gestational trophoblastic diseases: 1. Pathophysiology of hyperglycosylated hCG. Gynecol Oncol 2006; 102:145-50. [PMID: 16631920 DOI: 10.1016/j.ygyno.2005.12.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/02/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hyperglycosylated hCG (hCG-H) is a glycosylation variant of hCG produced by cytotrophoblast cells at implantation of pregnancy and in choriocarcinoma. We investigated the biological function of hCG-H in invasion in vitro and in vivo and the use of hCG-H antibodies in blocking tumorigenesis and cancer growth in vivo. METHODS AND RESULTS hCG-H accounts for 43% to 100% of total hCG immunoreactivity in the culture fluid of choriocarcinoma cell lines and 100% in primary cultures of pregnancy cytotrophoblast cells. We investigated the action of hCG and hCG-H on isolated cytotrophoblast cell primary cultures and on 3 different lines of choriocarcinoma cells cultured on Matrigel basement membrane inserts (culture models for assessing tumor invasion). The addition of hCG-H to medium significantly promoted invasion of membranes with both pregnancy and cancer cell line sources, while regular hCG had no significant effect. JEG-3 human choriocarcinoma cells were transplanted subcutaneously into athymic nude mice. Tumors rapidly formed. B152, mouse monoclonal antibody against hCG-H, and non-specific mouse IgG (control) were administered twice weekly once tumors were clearly visible. While a correlation between time and growth was observed with the control group (r(2)=0.97), no correlation was observed with the B152-treated mice (r(2)=0.15). B152 blocked tumor growth (t test, IgG vs. B152, P=0.003). In a second experiment, antibody B152 or IgG was administered to mice at the time of choriocarcinoma transplantation. B152 significantly inhibited tumorigenesis (t test P=0.0071). CONCLUSIONS hCG-H is a critical promoter in human cytotrophoblast and human choriocarcinoma cell invasion in vivo and in vitro, promoting tumor growth and invasion through an autocrine mechanism. hCG-H is a signal for choriocarcinoma cell invasion, making it a biological tumor marker. Antibodies against hCG-H block tumor formation and growth. Human or humanized antibodies against hCG-H may be useful in treating and managing choriocarcinoma and other gestational trophoblastic malignancies.
Collapse
Affiliation(s)
- Laurence A Cole
- Department of Obstetrics and Gynecology, MSC10 5580 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | |
Collapse
|
30
|
Kelly LS, Kozak M, Walker T, Pierce M, Puett D. Lectin immunoassays using antibody fragments to detect glycoforms of human chorionic gonadotropin secreted by choriocarcinoma cells. Anal Biochem 2005; 338:253-62. [PMID: 15745745 DOI: 10.1016/j.ab.2004.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/24/2022]
Abstract
Immobilized antibodies are commonly used to recognize and bind proteins of interest from heterogeneous samples; however, subsequent probing of the glycan(s) of captured glycoproteins with lectins is limited by interference due to the competing oligosaccharides inherently present on antibodies. To prepare capture antibodies with significantly reduced binding of any lectin, the glycosylated protein domains (F(c)) of two anti-human chorionic gonadotropin antibodies were proteolytically removed. Depending on the individual antibody, usable fragments were generated either directly or effectively separated after cleavage through partial reduction and thiol coupling to an appropriate matrix. Importantly, neither method required additional purification of the antibody fragments before immobilization. Binding of a variety of lectins to the functional fragments was reduced by approximately 90% compared with intact immunoglobulin G in both an enzyme-linked immunosorbent assay and a biosensor format. These carbohydrate-free antibody fragments were used to bind the glycoprotein hormone, human chorionic gonadotropin, produced during normal pregnancy and that secreted by three human choriocarcinoma cell lines. Lectins bound to the unpurified gonadotropin glycoforms in distinct patterns consistent with glycan structures previously elucidated by others on hormone samples purified from the urine of pregnant women and of patients with choriocarcinoma. The methods described in this article are applicable for generating capture reagents universally suitable for lectin immunoassays of glycoproteins.
Collapse
Affiliation(s)
- Lisa S Kelly
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
31
|
Zimmerman RL, Fogt F. The beta subunit of human chorionic gonadotropin lacks specificity for malignant cells in serous effusions. Mod Pathol 2004; 17:701-4. [PMID: 15001996 DOI: 10.1038/modpathol.3800086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytologic diagnosis of malignancy is frequently straightforward. For difficult cases, multiple immunostains and immunostain panels have been investigated without consensus. beta-human chorionic gonadotropin (hCG) has been reportedly expressed in malignancies, but not in normal tissue. HCG also has been reported as a specific marker of metastases in serous fluids when detected with laboratory assays. We investigated the clinical utility of hCG in this cytologic setting. A total of 97 cases of benign and malignant effusions were studied. Each case was immunostained with monoclonal hCG using the avidin-biotin technique and diaminobenzidine as a chromogen. Additionally, a mucicarmine stain was performed on most cases. Cases were evaluated for hCG expression and mucin in a blinded fashion. After the cases were reviewed, the diagnoses were unblinded and staining patterns were evaluated. Of the 47 benign cases studied, 23 (49%) exhibited immunoreactivity to hCG in at least 5% of mesothelial cells present. In contrast, 28 of 44 (64%) adenocarcionomas exhibited a similar degree of immunostaining. In all, 21 (48%) of the adenocarcinomas were also positive for mucin; five of these mucin-positive cases were negative for hCG. The combination of mucin and hCG detected 33 of 44 (75%) adenocarcinomas. We conclude that hCG lacks the specificity for malignant cells to be of clinical use in effusion cytology.
Collapse
Affiliation(s)
- Robert L Zimmerman
- Department of Pathology and Lab Medicine, University of Pennsylvania Medical Center - Presbyterian, Philadelphia PA 19104, USA.
| | | |
Collapse
|
32
|
Cole LA. Hyperglycosylated hCG cannot be measured using a sialic acid-specific lectin immunoassay. Prenat Diagn 2003; 23:176-8; author reply 178. [PMID: 12575032 DOI: 10.1002/pd.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Kovalevskaya G, Genbacev O, Fisher SJ, Caceres E, O'Connor JF. Trophoblast origin of hCG isoforms: cytotrophoblasts are the primary source of choriocarcinoma-like hCG. Mol Cell Endocrinol 2002; 194:147-55. [PMID: 12242037 DOI: 10.1016/s0303-7207(02)00135-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously demonstrated that a hyperglycosylated isoform of chorionic gonadotropin (hCG) (B152 hCG) is detected in the blood and urine in early pregnancy and is subsequently rapidly replaced by the hCG isoform (B109 hCG) characteristic of later pregnancy. In the current study we have extended our work on the origin of these isoforms. We have used a combination of in situ and in vitro approaches. Localization studies in placental tissues showed that monoclonal antibody B109 stained very specifically syncytiotrophoblast (STBs) from first and second trimester tissues. At term, STBs exhibited no B109 staining at all. Immunostaining with B152 antibody, that recognize the hyperglycosylated isoform of hCG, revealed only punctate staining of STBs in most villi of first trimester tissue. Both antibodies B109 and B152 failed to stain cytotrophoblasts (CTBs). To assess the functional relevance of these observations we analyzed conditioned media from purified CTBs using two immunometric assays, one of which (B152-B207*) has primary specificity for the hyperglycosylated, choriocarcinoma-like hCG and the other (B109-B108*) having primary specificity for the later pregnancy hCG isoform. Regardless of gestational age, isolated CTBs secreted predominantly B152 hCG isoform in contrast to placental villi (predominantly STBs), which released primarily the B109 hCG isoform. Isolated CTBs, however, failed to immunostain with both B109 and B152 antibodies. To resolve this contradiction, we cultured CTBs in the presence of brefeldin A, a drug known to block secretion by inhibiting protein translocation from the endoplasmic reticulum to the Golgi vesicles. Brefeldin A treated CTBs stained strongly with B109 and did not stain or stained weakly with B152 antibody. We assume that treatment with brefeldin A impaired glycosylation of beta subunit and consequently inhibited the production of hyperglycosylated form of hCG recognized by B152. In summary, our in vitro experiments indicate that both isoforms of hCG are produced by villus CTBs and that the dominant isoform is the one recognized by antibody B152. STBs produce primarily the less glycosylated B109 hCG isoform. This data suggests that at the beginning of pregnancy villus CTBs are the major source of the B152 hCG isoform. This finding is supported by our clinical data that show that the dominant hCG isoform in the blood and urine of pregnant women in the first 6 weeks of pregnancy is recognized by B152 (). The inversion of the B152/B109 ratio observed after 6-7 weeks of pregnancy can be explained by the reduction of number of villus CTBs and/or by maturation of STBs.
Collapse
Affiliation(s)
- G Kovalevskaya
- Irving Center for Clinical Research, Columbia University College of Physicians and Surgeons, 630 W 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Erbel PJA, Haseley SR, Kamerling JP, Vliegenthart JFG. Studies on the relevance of the glycan at Asn-52 of the alpha-subunit of human chorionic gonadotropin in the alphabeta dimer. Biochem J 2002; 364:485-95. [PMID: 12023892 PMCID: PMC1222594 DOI: 10.1042/bj20011482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycosylation of Asn-52 of the alpha-subunit (alphaAsn-52) is required for bioactivity of the alphabeta-dimeric human chorionic gonadotropin (hCG), although at a molecular level the effect of the glycan at alphaAsn-52 is not yet understood. To study the role of this glycan for heterodimer stability, the beta-subunit was recombined in solution with either the alpha-subunit or the alpha-subunit enzymically deglycosylated at alphaAsn-52. Enzymic deglycosylation avoids modification of the glycans at alphaAsn-78 and disturbing the protein folding. The efficiency of recombination after 16 h is 80%, independent of whether alphaAsn-52 is glycosylated or not. The dissociation constant of the hCG complex, with or without the glycan at alphaAsn-52, is less than 1 x 10(-5) s(-1), indicating that the glycan at alphaAsn-52 does not contribute significantly to the stability of the dimer. CD and NMR spectra indicate a local conformational difference between both alphabeta-dimeric hCG variants, most probably involving amino acids of the hCG beta-subunit close to the glycan at alphaAsn-52. These data explain the native-like receptor-binding abilities of hCG lacking the glycan at alphaAsn-52. It is proposed that for bioactivity the glycan at alphaAsn-52 is necessary for inducing and stabilizing a conformational change in hCG upon binding to the receptor, resulting in activation of the signal-transduction pathway.
Collapse
Affiliation(s)
- Paul J A Erbel
- Department of Bio-Organic Chemistry, Bijvoet Center, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Charlwood J, Skehel JM, Camilleri P. Analysis of N-linked oligosaccharides released from glycoproteins separated by two-dimensional gel electrophoresis. Anal Biochem 2000; 284:49-59. [PMID: 10933855 DOI: 10.1006/abio.2000.4687] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protocols have been developed for the characterization of carbohydrate covalently attached (N-linked) to an asparagine residue in glycoproteins, after separation by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Mixtures of proteins (each at a level from 0.5 to 50 microg) were resolved in the first dimension according to their isoelectric points (pI), followed by separation in the orthogonal axis on the basis of their molecular weights. Glycans were released directly from excised gel spots after digestion with PNGase F, with or without prior treatment with trypsin. In a third method, glycoproteins were electroblotted onto poly(vinylidene difluoride) before glycans were released by PNGase F. For all these procedures profiles of the neutral and sialic acid-containing oligosaccharide mixtures were obtained after derivatization with 3-acetamido-6-aminoacridine, and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and/or high-performance liquid chromatography. Potential applications to proteomics are discussed.
Collapse
Affiliation(s)
- J Charlwood
- SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom
| | | | | |
Collapse
|
36
|
Abstract
Finding of the deletion phenomenon of certain oligosaccharides in human milk and its correlation to the blood types of the donors opened a way to elucidate the biochemical basis of blood types in man. This success led to the idea of establishing reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins. N-Linked sugar chains were first released quantitatively as oligosaccharides by enzymatic and chemical means, and labelled by reduction with NaB3H4. After fractionation, structures of the radioactive oligosaccharides were determined by a series of methods developed for the studies of milk oligosaccharides. By using such techniques, structural rules hidden in the N-linked sugar chains, and organ- and species-specific N-glycosylation of glycoproteins, which afforded a firm basis to the development of glycobiology, were elucidated. Finding of galactose deficiency in the N-linked sugar chains of serum IgG from patients with rheumatoid arthritis, and malignant alteration of N-glycosylation in various tumors opened a new research world called glycopathology. However, recent studies revealed that several structural exceptions occur in the sugar chains of particular glycoproteins. Finding of the occurrence of the Galbeta1-4Fucalpha1- group linked at the C-6 position of the proximal N-acetylglucosamine residue of the hybrid type sugar chains of octopus rhodopsin is one of such examples. This finding indicated that the fucosyl residue of the fucosylated trimannosyl core should no more be considered as a stop signal as has long been believed. Furthermore, recent studies on dystroglycan revealed that the sugar chains, which do not fall into the current classification of N and O-linked sugar chains, are essential for the expression of the functional role of this glycoprotein. It was found that expression of many glycoproteins is altered by aging. Among the alterations of the glycoprotein patterns found in the brain nervous system, the most prominent evidence was found in P0. This protein is produced in non-glycosylated form in the spinal cord of young mammals. However, it starts to be N-glycosylated in the spinal cord of aged animals. These evidences indicate that various unusual sugar chains occur as minor components in mammals, and play important roles in particular tissues.
Collapse
Affiliation(s)
- A Kobata
- Tokyo Metropolitan Institute of Gerontology, Japan
| |
Collapse
|