1
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
3
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
4
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Liu H, Tian H, Zhao J, Jia Y. High HOXD4 protein expression in gastric adenocarcinoma tissues indicates unfavorable clinical outcomes. Saudi J Gastroenterol 2019; 25:46-54. [PMID: 30588951 PMCID: PMC6373212 DOI: 10.4103/sjg.sjg_105_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIM Homeobox D4 (HOXD4) belongs to the homeobox (HOX) family, which plays a crucial role in the early embryo development and cell differentiation. The role of HOXD4 in human gastric adenocarcinoma has not been elucidated. In the present study, we aimed to examine the expression levels of HOXD4 and dissect whether the HOXD4 expression is associated with aggressive clinicopathological outcomes of patients with gastric adenocarcinoma. PATIENTS AND METHODS Clinicopathological analyses were performed in 127 patients with gastric adenocarcinoma. Expression of HOXD4 was tested by immunohistochemistry staining and quantitative RT-PCR. Clinical outcomes were evaluated by the Kaplan-Meier method and log-rank test. The prognostic role of HOXD4 in gastric adenocarcinoma patients was assessed by univariate and multivariate analyses. The effects and mechanisms of HOXD4 on cell proliferation, migration and invasion were explored through cellular experiments. RESULTS HOXD4 expression was elevated in gastric adenocarcinoma tissues compared to non-tumorous gastric tissues (P = 0.018). High expression of HOXD4 was significantly associated with larger tumor size (P = 0.008), advanced tumor invasion depth (P = 0.014), and positive lymph node metastasis (P < 0.001). Moreover, patients with high HOXD4 expression had poorer overall survival (P = 0.001), and HOXD4 was identified as an independent prognosis factor according to multivariate analysis [hazard ratio (HR) =2.253, 95% confident interval (CI) 1.028-4.979, P = 0.044]. Cellular results revealed that HOXD4 can promote tumor cell proliferation by upregulating c-Myc and cyclin D1. CONCLUSIONS Our study demonstrated that overexpression of HOXD4 was significantly correlated with poorer prognosis of gastric adenocarcinoma patients, indicating the potential of HOXD4 as a novel clinical predictive biomarker and drug target.
Collapse
Affiliation(s)
- Hui Liu
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Hequn Tian
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Jing Zhao
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Yong Jia
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China,Address for correspondence: Dr. Yong Jia, Vice #2 Weiyangxi Road, Xianyang 712000, Shaanxi Province, China. E-mail:
| |
Collapse
|
6
|
Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int 2018; 2018:3569493. [PMID: 30154863 PMCID: PMC6081605 DOI: 10.1155/2018/3569493] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.
Collapse
|
7
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
8
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
9
|
Seifert A, Werheid DF, Knapp SM, Tobiasch E. Role of Hox genes in stem cell differentiation. World J Stem Cells 2015; 7:583-595. [PMID: 25914765 PMCID: PMC4404393 DOI: 10.4252/wjsc.v7.i3.583] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative medicine approaches.
Collapse
|
10
|
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues. Mol Cell Biol 2015; 35:1449-61. [PMID: 25691658 DOI: 10.1128/mcb.00765-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.
Collapse
|
11
|
Wai HA, Kawakami K, Wada H, Müller F, Vernallis AB, Brown G, Johnson WEB. The development and growth of tissues derived from cranial neural crest and primitive mesoderm is dependent on the ligation status of retinoic acid receptor γ: evidence that retinoic acid receptor γ functions to maintain stem/progenitor cells in the absence of retinoic acid. Stem Cells Dev 2015; 24:507-19. [PMID: 25233141 PMCID: PMC4313414 DOI: 10.1089/scd.2014.0235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) signaling is important to normal development. However, the function of the different RA receptors (RARs)--RARα, RARβ, and RARγ--is as yet unclear. We have used wild-type and transgenic zebrafish to examine the role of RARγ. Treatment of zebrafish embryos with an RARγ-specific agonist reduced somite formation and axial length, which was associated with a loss of hoxb13a expression and less-clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist also disrupted formation of tissues arising from cranial neural crest, including cranial bones and anterior neural ganglia. There was a loss of Sox 9-immunopositive neural crest stem/progenitor cells in the same anterior regions. Pectoral fin outgrowth was blocked by RARγ agonist treatment. However, there was no loss of Tbx-5-immunopositive lateral plate mesodermal stem/progenitor cells and the block was reversed by agonist washout or by cotreatment with an RARγ antagonist. Regeneration of the caudal fin was also blocked by RARγ agonist treatment, which was associated with a loss of canonical Wnt signaling. This regenerative response was restored by agonist washout or cotreatment with the RARγ antagonist. These findings suggest that RARγ plays an essential role in maintaining stem/progenitor cells during embryonic development and tissue regeneration when the receptor is in its nonligated state.
Collapse
Affiliation(s)
- Htoo Aung Wai
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Hironori Wada
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, University of Birmingham, United Kingdom
| | | | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, United Kingdom
| | | |
Collapse
|
12
|
Lee K, Skromne I. Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition. Development 2015; 141:4375-84. [PMID: 25371368 DOI: 10.1242/dev.109603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems.
Collapse
Affiliation(s)
- Keun Lee
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Isaac Skromne
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
13
|
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 2014; 514:490-3. [PMID: 25219855 PMCID: PMC4209185 DOI: 10.1038/nature13723] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.
Collapse
|
14
|
Sleep–wake dynamics under extended light and extended dark conditions in adult zebrafish. Behav Brain Res 2013; 256:377-90. [DOI: 10.1016/j.bbr.2013.08.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
|
15
|
Soshnikova N. Hox genes regulation in vertebrates. Dev Dyn 2013; 243:49-58. [PMID: 23832853 DOI: 10.1002/dvdy.24014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022] Open
Abstract
Hox genes encode transcription factors defining cellular identities along the major and secondary body axes. Their coordinated expression in both space and time is critical for embryonic patterning. Accordingly, Hox genes transcription is tightly controlled at multiple levels, and involves an intricate combination of local and long-range cis-regulatory elements. Recent studies revealed that in addition to transcription factors, dynamic patterns of histone marks and higher-order chromatin structure are important determinants of Hox gene regulation. Furthermore, the emerging picture suggests an involvement of various species of non-coding RNA in targeting activating and repressive complexes to Hox clusters. I review these recent developments and discuss their relevance to the control of Hox gene expression in vivo, as well as to our understanding of transcriptional regulatory mechanisms.
Collapse
|
16
|
Pascual-Anaya J, Adachi N, Alvarez S, Kuratani S, D'Aniello S, Garcia-Fernàndez J. Broken colinearity of the amphioxus Hox cluster. EvoDevo 2012. [PMID: 23198682 PMCID: PMC3534614 DOI: 10.1186/2041-9139-3-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.
Collapse
Affiliation(s)
- Juan Pascual-Anaya
- Departament de Genètica and Institut de Biomedicina (IBUB), University of Barcelona, Av, Diagonal, 643, Barcelona, 08028, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Olynik BM, Rastegar M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 2012; 3:81. [PMID: 22629283 PMCID: PMC3355330 DOI: 10.3389/fgene.2012.00081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022] Open
Abstract
Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types.
Collapse
Affiliation(s)
- Brendan M. Olynik
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
18
|
Phua SLC, Sivakamasundari V, Shao Y, Cai X, Zhang LF, Lufkin T, Featherstone M. Nuclear accumulation of an uncapped RNA produced by Drosha cleavage of a transcript encoding miR-10b and HOXD4. PLoS One 2011; 6:e25689. [PMID: 21991333 PMCID: PMC3185001 DOI: 10.1371/journal.pone.0025689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Patterning of the animal embryo's antero-posterior (AP) axis is dependent on spatially and temporally regulated Hox gene expression. The murine Hoxd4 gene has been proposed to harbour two promoters, an upstream promoter P2, and a downstream promoter P1, that lie 5.2 and 1.1 kilobase pairs (kb) upstream of the coding region respectively. The evolutionarily conserved microRNA-10b (miR-10b) gene lies in the Hoxd4 genomic locus in the intron separating the non-coding exons 4 and 5 of the P2 transcript and directly adjacent to the proposed P1 promoter. Hoxd4 transcription is regulated by a 3′ neural enhancer that harbours a retinoic acid response element (RARE). Here, we show that the expression profiles of Hoxd4 and miR-10b transcripts during neural differentiation of mouse embryonal carcinoma (EC) P19 cells are co-ordinately regulated, suggesting that both Hoxd4 and miR-10b expression is governed by the neural enhancer. Our observation that P1 transcripts are uncapped, together with the mapping of their 5′ ends, strongly suggests that they are generated by Drosha cleavage of P2 transcripts rather than by transcriptional initiation. This is supported by the colocalization of P1 and P2 transcripts to the same posterior expression domain in the mouse embryo. These uncapped P1 transcripts do not appear to possess an Internal Ribosomal Entry Site (IRES), but accumulate within multiple punctate bodies within the nucleus suggesting that they play a functional role. Finally, similar uncapped Drosha-cleaved P1-like transcripts originating from the paralogous Hoxb4/miR-10a locus were also identified. We propose that these transcripts may belong to a novel class of regulatory RNAs.
Collapse
Affiliation(s)
| | | | - Yu Shao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiaohan Cai
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Mark Featherstone
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
19
|
Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 2011; 59:68-81. [PMID: 21046556 DOI: 10.1002/glia.21077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions.
Collapse
Affiliation(s)
- Cosima V Pfenninger
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
20
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Szatmari I, Iacovino M, Kyba M. The retinoid signaling pathway inhibits hematopoiesis and uncouples from the Hox genes during hematopoietic development. Stem Cells 2010; 28:1518-29. [PMID: 20681018 DOI: 10.1002/stem.484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) is a well-established inducer of Hox genes during development of neurectoderm, however effects of RA on Hox expression are poorly defined in mesoderm and not defined in the hematopoietic compartment. Both Hox genes and retinoid signaling have been suggested to modulate hematopoietic stem cell (HSC) self-renewal, supporting the notion that RA signaling might drive HSC self-renewal through Hox gene induction. Here, we investigate this possibility by comprehensively evaluating Hox gene expression using mouse embryonic stem cells differentiated in vitro. In unspecified mesoderm, we find that RA coordinately upregulates anterior 3' Hox genes from clusters A, B, and C, and downregulates posterior 5' Hox genes from clusters A-D. However, hematopoietic development of mesoderm was inhibited by RA, and we find further that retinoids are entirely dispensable for hematopoiesis in vitro. More surprisingly, in fully specified hematopoietic progenitors, Hox genes are refractory to regulation by RA, although other RA targets are normally regulated. Pulses of RA exposure demonstrate that the Hox complexes are decoupled from RA regulation progressively in lateral plate mesoderm as it undergoes hematopoietic specification. Thus, Hox genes are targets of the RA pathway only in selected cell types, and are clearly not regulated by RA in the earliest hematopoietic progenitors. We propose that the developmental uncoupling of the Hox complexes protects the Hox code from potential RA signaling centers as HSCs migrate or circulate during development.
Collapse
Affiliation(s)
- Istvan Szatmari
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
22
|
Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 2010; 192:261-74. [PMID: 20739155 DOI: 10.1016/j.aanat.2010.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/10/2023]
Abstract
The process of mammalian development is established through multiple complex molecular pathways acting in harmony at the genomic, proteomic, and epigenomic levels. The outcome is profoundly influenced by the role of epigenetics through transcriptional regulation of key developmental genes. Epigenetics refer to changes in gene expression that are inherited through mechanisms other than the underlying DNA sequence, which control cellular morphology and identity. It is currently well accepted that epigenetics play central roles in regulating mammalian development and cellular differentiation by dictating cell fate decisions via regulation of specific genes. Among these genes are the Hox family members, which are master regulators of embryonic development and stem cell differentiation and their mis-regulation leads to human disease and cancer. The Hox gene discovery led to the establishment of a fundamental role for basic genetics in development. Hox genes encode for highly conserved transcription factors from flies to humans that organize the anterior-posterior body axis during embryogenesis. Hox gene expression during development is tightly regulated in a spatiotemporal manner, partly by chromatin structure and epigenetic modifications. Here, we review the impact of different epigenetic mechanisms in development and stem cell differentiation with a clear focus on the regulation of Hox genes.
Collapse
Affiliation(s)
- Benjamin A Barber
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg MB R3E 0J9, Canada
| | | |
Collapse
|
23
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
24
|
Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2010; 25:431-56. [PMID: 19575673 DOI: 10.1146/annurev.cellbio.042308.113423] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Segmentation is an important process that is frequently used during development to segregate groups of cells with distinct features. Segmental compartments provide a mechanism for generating and organizing regional properties along an embryonic axis and within tissues. In vertebrates the development of two major systems, the hindbrain and the paraxial mesoderm, displays overt signs of compartmentalization and depends on the process of segmentation for their functional organization. The hindbrain plays a key role in regulating head development, and it is a complex coordination center for motor activity, breathing rhythms, and many unconscious functions. The paraxial mesoderm generates somites, which give rise to the axial skeleton. The cellular processes of segmentation in these two systems depend on ordered patterns of Hox gene expression as a mechanism for generating a combinatorial code that specifies unique identities of the segments and their derivatives. In this review, we compare and contrast the signaling inputs and transcriptional mechanisms by which Hox gene regulatory networks are established during segmentation in these two different systems.
Collapse
Affiliation(s)
- Tara Alexander
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Voss AK, Collin C, Dixon MP, Thomas T. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 2009; 17:674-86. [PMID: 19922872 DOI: 10.1016/j.devcel.2009.10.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 09/09/2009] [Accepted: 10/14/2009] [Indexed: 12/19/2022]
Abstract
We report that embryos deficient in the histone acetyltransferase Moz (Myst3/Kat6a) show histone H3 lysine 9 (H3K9) hypoacetylation, corresponding H3K9 hypermethylation, and reduced transcription at Hox gene loci. Consistent with an observed caudal shift in Hox gene expression, segment identity is shifted anteriorly, such that Moz-deficient mice show a profound homeotic transformation of the axial skeleton and the nervous system. Intriguingly, histone acetylation defects are relatively specific to H3K9 at Hox loci, as neither Hox H3K14 acetylation nor bulk H3K9 acetylation levels throughout the genome are strongly affected; H4K16 acetylation actually increases in the absence of Moz. H3K9 hypoacetylation, Hox gene repression, and the homeotic transformation caused by lack of Moz are all reversed by treatment with retinoic acid (RA). In conclusion, our data show that Moz regulates H3K9 acetylation at Hox gene loci and that RA can act independently of Moz to establish specific Hox gene expression boundaries.
Collapse
Affiliation(s)
- Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
27
|
Gongal PA, Waskiewicz AJ. Zebrafish model of holoprosencephaly demonstrates a key role for TGIF in regulating retinoic acid metabolism. Hum Mol Genet 2007; 17:525-38. [PMID: 17998248 DOI: 10.1093/hmg/ddm328] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Holoprosencephaly (HPE) is the most common human congenital forebrain defect, affecting specification of forebrain tissue and subsequent division of the cerebral hemispheres. The causes of HPE are multivariate and heterogeneous, and include exposure to teratogens, such as retinoic acid (RA), and mutations in forebrain patterning genes. Many of the defects in HPE patients resemble animal models with aberrant RA levels, which also show severe forebrain abnormalities. RA plays an important role in early neural patterning of the vertebrate embryo: expression of RA-synthesizing enzymes initiates high RA levels in the trunk, which are required for proper anterior-posterior patterning of the hindbrain and spinal cord. In the forebrain and midbrain, RA-degrading enzymes are expressed, protecting these regions from the effects of RA. However, the mechanisms that regulate RA-synthesizing and RA-degrading enzymes are poorly understood. Mutations in the gene TGIF are associated with incidence of HPE. We demonstrate in zebrafish that Tgif plays a key role in regulating RA signaling, and is essential to properly pattern the forebrain. Tgif is necessary for normal initiation of genes that control RA synthesis and degradation, resulting in defects in RA-dependent central nervous system patterning in Tgif-depleted embryos. The loss of the forebrain-specific RA-degrading enzyme cyp26a1 causes a forebrain phenotype that mimics tgif morphants. We propose a model in which Tgif controls forebrain patterning by regulating RA degradation. The consequences of abnormal RA levels for forebrain patterning are profound, and imply that in human patients with TGIF deficiencies, increased forebrain RA levels contribute to the development of HPE.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
28
|
Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 2007; 134:177-87. [PMID: 17164423 PMCID: PMC1765950 DOI: 10.1242/dev.02706] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.
Collapse
Affiliation(s)
- Rafael E Hernandez
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
29
|
Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol 2006; 299:582-93. [PMID: 17010333 DOI: 10.1016/j.ydbio.2006.08.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 12/14/2022]
Abstract
The antero-posterior (AP) and dorso-ventral (DV) patterning of the neural tube is controlled in part by HOX and PAX transcription factors, respectively. We have reported on a neural enhancer of Hoxd4 that directs expression in the CNS with the correct anterior border in the hindbrain. Comparison to the orthologous enhancer of zebrafish revealed seven conserved footprints including an obligatory retinoic acid response element (RARE), and adjacent sites D, E and F. Whereas enhancer function in the embryonic CNS is destroyed by separation of the RARE from sites D-E-F by a half turn of DNA, it is rescued by one full turn, suggesting stereospecific constraints between DNA-bound retinoid receptors and the factor(s) recognizing sites D-E-F. Alterations in the DV trajectory of the Hoxd4 anterior expression border following mutation of site D or E implicated transcriptional regulators active across the DV axis. We show that PAX6 specifically binds sites D and E in vitro, and use chromatin immunoprecipitation to demonstrate recruitment of PAX6 to the Hoxd4 neural enhancer in mouse embryos. Hoxd4 expression throughout the CNS is reduced in Pax6 mutant Sey(Neu) animals on embryonic day 8. Additionally, stage-matched zebrafish embryos having decreased pax6a and/or pax6b activity display malformed rhombomere boundaries and an anteriorized hoxd4a expression border. These results reveal an evolutionarily conserved role for Pax6 in AP-restricted expression of vertebrate Hoxd4 orthologs.
Collapse
Affiliation(s)
- Christof Nolte
- McGill Cancer Centre, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 2006; 281:25926-39. [PMID: 16757478 DOI: 10.1074/jbc.m602555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct patterning of the antero-posterior axis of the embryonic trunk is dependent on spatiotemporally restricted Hox gene expression. In this study, we identified components of the Hoxd4 P1 promoter directing expression in neurally differentiating retinoic acid-treated P19 cells. We mapped three nucleosomes that are subsequently remodeled into an open chromatin state upon retinoic acid-induced Hoxd4 transcription. These nucleosomes spanned the Hoxd4 transcriptional start site in addition to a GC-rich positive regulatory element located 3' to the initiation site. We further identified two major cis-acting regulatory elements. An autoregulatory element was shown to recruit HOXD4 and its cofactor PBX1 and to positively regulate Hoxd4 expression in differentiating P19 cells. Conversely, the Polycomb group (PcG) protein Ying-Yang 1 (YY1) binds to an internucleosomal linker and represses Hoxd4 transcription before and during transcriptional activation. Sequential chromatin immunoprecipitation studies revealed that the PcG protein MEL18 was co-recruited with YY1 only in undifferentiated P19 cells, suggesting a role for MEL18 in silencing Hoxd4 transcription in undifferentiated P19 cells. This study links for the first time local chromatin remodeling events that take place during transcriptional activation with the dynamics of transcription factor association and DNA accessibility at a Hox regulatory region.
Collapse
Affiliation(s)
- Laila Kobrossy
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6 Canada
| | | | | |
Collapse
|
31
|
Abstract
Retinoid signaling plays an important role in the developmental patterning of the hindbrain. Studies of the teratogenic effects of retinoids showed early on that the hindbrain suffered patterning defects in cases of retinoid excess or deficiency. Closer examination of these effects in animal models suggested that retinoids might play a physiological role in specifying the antero-posterior axis of the hindbrain. This idea was supported by the localization of retinoid synthetic and degradative enzymes, binding proteins, and receptors to the hindbrain and neighboring regions of the neuroepithelium and the mesoderm. In parallel, it became clear that the molecular patterning of the hindbrain, in terms of the regionalized expression of Hox genes and other developmental regulatory genes, is profoundly influenced by retinoid signaling.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Physiology, PB 1103 Blindern, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
32
|
Serpente P, Tümpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dollé P, Chambon P, Krumlauf R, Gould AP. Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development 2005; 132:503-13. [PMID: 15634700 DOI: 10.1242/dev.01593] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During anteroposterior (AP) patterning of the developing hindbrain, the expression borders of many transcription factors are aligned at interfaces between neural segments called rhombomeres (r). Mechanisms regulating segmental expression have been identified for Hox genes, but for other classes of AP patterning genes there is only limited information. We have analysed the murine retinoic acid receptor β gene (Rarb) and show that it is induced prior to segmentation, by retinoic-acid (RA) signalling from the mesoderm. Induction establishes a diffuse expression border that regresses until, at later stages, it is stably maintained at the r6/r7 boundary by inputs from Hoxb4 and Hoxd4. Separate RA- and Hox-responsive enhancers mediate the two phases of Rarb expression: a regulatory mechanism remarkably similar to that of Hoxb4. By showing that Rarb is a direct transcriptional target of Hoxb4, this study identifies a new molecular link, completing a feedback circuit between Rarb, Hoxb4 and Hoxd4. We propose that the function of this circuit is to align the initially incongruent expression of multiple RA-induced genes at a single segment boundary.
Collapse
MESH Headings
- Aldehyde Oxidoreductases/genetics
- Aldehyde Oxidoreductases/metabolism
- Animals
- Base Sequence
- Binding Sites
- Chickens
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Rhombencephalon/cytology
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Sequence Alignment
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Patricia Serpente
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cell Biol 2004; 24:8090-103. [PMID: 15340071 PMCID: PMC515066 DOI: 10.1128/mcb.24.18.8090-8103.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.0) and E10.5 mouse embryos. During Hoxd4 induction in both systems, we observed that histone modifications typical of transcriptionally active chromatin occurred first at the 3' neural enhancer and then at the promoter. Moreover, the sequential distribution of histone modifications between E8.0 and E10.5 was consistent with a spreading of open chromatin, starting with the enhancer, followed by successively more 5' intervening sequences, and culminating at the promoter. Neither RNA polymerase II (Pol II) nor CBP associated with the inactive gene. During Hoxd4 induction, CBP and RNA Pol II were recruited first to the enhancer and then to the promoter. Whereas the CBP association was transient, RNA Pol II remained associated with both regulatory regions. Histone modification and transcription factor recruitment occurred in posterior, Hox-expressing embryonic tissues, but never in anterior tissues, where such genes are inactive. Together, our observations demonstrate that the direction of histone modifications at Hoxd4 mirrors colinear gene activation across Hox clusters and that the establishment of anterior and posterior compartments is accompanied by the imposition of distinct chromatin states.
Collapse
Affiliation(s)
- Mojgan Rastegar
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
34
|
Wilson L, Gale E, Chambers D, Maden M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev Biol 2004; 269:433-46. [PMID: 15110711 DOI: 10.1016/j.ydbio.2004.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 11/21/2022]
Abstract
The development of neural subtypes in the dorsoventral (DV) axis of the vertebrate central nervous system (CNS) involves the integration of signalling pathways coupled with the combinatorial expression of homeodomain transcription factors. Previous studies have implicated a role for retinoic acid in the specification of a subtype of motor neurons (MN) and in the patterning of a group of interneurons within the ventral spinal cord. In this study, we use the vitamin A-deficient (VAD) quail model to further investigate the role of retinoids in the patterning of the neural tube. Using genetic markers specific to neuronal cell populations, we demonstrate that in the absence of retinoic acid, there is a disruption to the molecular mechanisms associated with the dorsoventral patterning of the spinal cord. In particular, we observe an uneven dorsal expansion of ventral-specific genes, accompanied by a reduction in the domain of roof plate and dorsal patterning genes, both of which are rescued upon addition of retinoids during development. In addition, there is a loss of V1 interneuron-specific gene expression and a decrease in the ventricular zone expression of motor neuron patterning genes. Interestingly, these effects are localised to the rostral half of the spinal cord, indicating that RA is integrated in both anteroposterior (AP) and dorsoventral patterning processes. Using differential display techniques, we have isolated 27 retinoic acid-regulated genes within the spinal cord that together reveal several interesting potential biological functions for retinoids within the avian neural tube. In summary, we propose that retinoids have an essential role in the patterning of the dorsoventral axis of the spinal cord, and are also required for the correct integration of anteroposterior patterning signals with dorsoventral determinants in the rostral spinal cord.
Collapse
Affiliation(s)
- Leigh Wilson
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
35
|
Houle M, Sylvestre JR, Lohnes D. Retinoic acid regulates a subset of Cdx1 function in vivo. Development 2004; 130:6555-67. [PMID: 14660544 DOI: 10.1242/dev.00889] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox gene products are key players in establishing positional identity along the anteroposterior (AP) axis. In vertebrates, gain or loss of Hox expression along the AP axis often leads to inappropriate morphogenesis, typically manifesting as homeotic transformations that affect the vertebrae and/or hindbrain. Various signalling pathways are known to impact on Hox expression, including the retinoid signalling pathway. Exogenous retinoic acid (RA), disruption of enzymes involved in maintaining normal embryonic RA distribution or mutation of the retinoid receptors (RARs and RXRs) can all impact on Hox expression with concomitant effects on AP patterning. Several Hox loci have well characterized RA response elements (RAREs), which have been shown to regulate functionally relevant Hox expression in the neurectoderm. A similar crucial function for any RARE in mesodermal Hox expression has, however, not been documented. The means by which RA regulates mesodermal Hox expression could therefore be either through an undocumented direct mechanism or through an intermediary; these mechanisms are not necessarily exclusive. In this regard, we have found that Cdx1 may serve as such an intermediary. Cdx1 encodes a homeobox transcription factor that is crucial for normal somitic expression of several Hox genes, and is regulated by retinoid signalling in vivo and in vitro likely through an atypical RARE in the proximal promoter. In order to more fully understand the relationship between retinoid signalling, Cdx1 expression and AP patterning, we have derived mice in which the RARE has been functionally inactivated. These RARE-null mutants exhibit reduced expression of Cdx1 at all stages examined, vertebral homeotic transformations and altered Hox gene expression which correlates with certain of the defects seen in Cdx1-null offspring. These findings are consistent with a pivotal role for retinoid signalling in governing a subset of expression of Cdx1 crucial for normal vertebral patterning.
Collapse
Affiliation(s)
- Martin Houle
- Department of Molecular Biology, Université de Montréal, 110 ave des Pins, ouest, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
36
|
Mainguy G, In der Rieden PMJ, Berezikov E, Woltering JM, Plasterk RHA, Durston AJ. A position-dependent organisation of retinoid response elements is conserved in the vertebrate Hox clusters. Trends Genet 2003; 19:476-9. [PMID: 12957539 DOI: 10.1016/s0168-9525(03)00202-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Gaëll Mainguy
- Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Nolte C, Amores A, Nagy Kovács E, Postlethwait J, Featherstone M. The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech Dev 2003; 120:325-35. [PMID: 12591602 DOI: 10.1016/s0925-4773(02)00442-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The zebrafish hoxd4a locus was compared to its murine ortholog, Hoxd4. The sequence of regulatory elements, including a DR5 type retinoic acid response element (RARE) required for Hoxd4 neural enhancer activity, are highly conserved. Additionally, zebrafish and mouse neural enhancers function identically in transgenic mouse embryos. We tested whether sequence conservation reflects functional importance by altering the spacing and sequence of the RARE in the Hoxd4 neural enhancer. Stabilizing receptor-DNA interactions did not anteriorize transgene expression. By contrast, conversion of the RARE from a DR5 to a DR2 type element decreased receptor-DNA stability and posteriorized expression. Hence, the setting of the Hox anterior expression border is not a simple function of the affinity of retinoid receptors for their cognate element.
Collapse
Affiliation(s)
- Christof Nolte
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
Cdx homeodomain proteins in vertebral patterning. MURINE HOMEOBOX GENE CONTROL OF EMBRYONIC PATTERNING AND ORGANOGENESIS 2003. [DOI: 10.1016/s1569-1799(03)13003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Bel-Vialar S, Itasaki N, Krumlauf R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxBgenes in two distinct groups. Development 2002; 129:5103-15. [PMID: 12399303 DOI: 10.1242/dev.129.22.5103] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of Hox genes requires interactions between numerous factors and signaling pathways in order to establish their precise domain boundaries in the developing nervous system. There are distinct differences in the expression and regulation of members of Hox genes within a complex suggesting that multiple competing mechanisms are used to initiate their expression domains in early embryogenesis. In this study, by analyzing the response ofHoxB genes to both RA and FGF signaling in neural tissue during early chick embryogenesis (HH stages 7-15), we have defined two distinct groups of Hox genes based on their reciprocal sensitivity to RA or FGF during this developmental period. We found that the expression domain of 5′ members from the HoxB complex (Hoxb6-Hoxb9) can be expanded anteriorly in the chick neural tube up to the level of the otic vesicle following FGF treatment and that these same genes are refractory to RA treatment at these stages. Furthermore, we showed that the chickcaudal-related genes, cdxA and cdxB, are also responsive to FGF signaling in neural tissue and that their anterior expansion is also limited to the level of the otic vesicle. Using a dominant negative form of a Xenopus Cdx gene (XcadEnR) we found that the effect of FGF treatment on 5′ HoxB genes is mediated in part through the activation and function of CDX activity. Conversely, the 3′HoxB genes (Hoxb1 and Hoxb3-Hoxb5) are sensitive to RA but not FGF treatments at these stages. We demonstrated by in ovo electroporation of a dominant negative retinoid receptor construct(dnRAR) that retinoid signaling is required to initiate expression. Elevating CDX activity by ectopic expression of an activated form of aXenopus Cdx gene (XcadVP16) in the hindbrain ectopically activates and anteriorly expands Hoxb4 expression. In a similar manner, when ectopic expression of XcadVP16 is combined with FGF treatment, we found that Hoxb9 expression expands anteriorly into the hindbrain region. Our findings suggest a model whereby, over the window of early development we examined, all HoxB genes are actually competent to interpret an FGF signal via a CDX-dependent pathway. However, mechanisms that axially restrict the Cdx domains of expression, serve to prevent 3′ genes from responding to FGF signaling in the hindbrain. FGF may have a dual role in both modulating the accessibility of the HoxB complex along the axis and in activating the expression of Cdx genes. The position of the shift in RA or FGF responsiveness of Hox genes may be time dependent. Hence, the specific Hox genes in each of these complementary groups may vary in later stages of development or other tissues. These results highlight the key role of Cdx genes in integrating the input of multiple signaling pathways, such as FGFs and RA, in controlling initiation of Hox expression during development and the importance of understanding regulatory events/mechanisms that modulate Cdx expression.
Collapse
Affiliation(s)
- Sophie Bel-Vialar
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
40
|
Roelen BAJ, de Graaff W, Forlani S, Deschamps J. Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev 2002; 119:81-90. [PMID: 12385756 DOI: 10.1016/s0925-4773(02)00329-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanism underlying the 3' to 5' polarity of induction of mouse Hox genes is still elusive. While relief from a cluster-encompassing repression was shown to lead to all Hoxd genes being expressed like the 3'most of them, Hoxd1 (Kondo and Duboule, 1999), the molecular basis of initial activation of this 3'most gene, is not understood yet. We show that, already before primitive streak formation, prior to initial expression of the first Hox gene, a dramatic transcriptional stimulation of the 3'most genes, Hoxb1 and Hoxb2, is observed upon a short pulse of exogenous retinoic acid (RA), whereas it is not in the case for more 5', cluster-internal, RA-responsive Hoxb genes. In contrast, the RA-responding Hoxb1lacZ transgene that faithfully mimics the endogenous gene (Marshall et al., 1994) did not exhibit the sensitivity of Hoxb1 to precocious activation. We conclude that polarity in initial activation of Hoxb genes reflects a greater availability of 3'Hox genes for transcription, suggesting a pre-existing (susceptibility to) opening of the chromatin structure at the 3' extremity of the cluster. We discuss the data in the context of prevailing models involving differential chromatin opening in the directionality of clustered Hox gene transcription, and regarding the importance of the cluster context for correct timing of initial Hox gene expression.Interestingly, Cdx1 manifested the same early transcriptional availability as Hoxb1.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
41
|
Gilthorpe J, Vandromme M, Brend T, Gutman A, Summerbell D, Totty N, Rigby PWJ. Spatially specific expression of Hoxb4 is dependent on the ubiquitous transcription factor NFY. Development 2002; 129:3887-99. [PMID: 12135926 DOI: 10.1242/dev.129.16.3887] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding how boundaries and domains of Hox gene expression are determined is critical to elucidating the means by which the embryo is patterned along the anteroposterior axis. We have performed a detailed analysis of the mouse Hoxb4 intron enhancer to identify upstream transcriptional regulators. In the context of an heterologous promoter, this enhancer can establish the appropriate anterior boundary of mesodermal expression but is unable to maintain it, showing that a specific interaction with its own promoter is important for maintenance. Enhancer function depends on a motif that contains overlapping binding sites for the transcription factors NFY and YY1. Specific mutations that either abolish or reduce NFY binding show that it is crucial for enhancer activity. The NFY/YY1 motif is reiterated in the Hoxb4 promoter and is known to be required for its activity. As these two factors are able to mediate opposing transcriptional effects by reorganizing the local chromatin environment, the relative levels of NFY and YY1 binding could represent a mechanism for balancing activation and repression of Hoxb4 through the same site.
Collapse
Affiliation(s)
- Jonathan Gilthorpe
- Division of Eukaryotic Molecular Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Huang D, Chen SW, Gudas LJ. Analysis of two distinct retinoic acid response elements in the homeobox gene Hoxb1 in transgenic mice. Dev Dyn 2002; 223:353-70. [PMID: 11891985 DOI: 10.1002/dvdy.10057] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of vertebrate Hox genes is regulated by retinoids such as retinoic acid (RA) in cell culture and in early embryonic development. Retinoic acid response elements (RAREs) have been identified in Hox gene regulatory regions, suggesting that endogenous retinoids may be involved in the direct control of Hox gene patterning functions. Previously, two RAREs located 3' of the murine Hoxb1 gene, a DR(2) RARE and a DR(5) RARE, have been shown to regulate Hoxb1 mRNA expression in the neural epithelium and the foregut region, respectively; the foregut develops into the esophagus, liver, pancreas, lungs, and stomach. We have now examined the functional roles of these two types of 3' RAREs in regulating Hoxb1 expression at different stages of gestation, from embryonic day 7.5 to 13.5, in transgenic mice carrying specific RARE mutations. We demonstrate that the DR(5) RARE is required for the regulation of Hoxb-1 transgene region-specific expression in the gut and extraembryonic tissues, as well as for the RA-induced anteriorization of Hoxb-1 transgene expression in the gut. In contrast, expression of the Hoxb1 transgene in the neural epithelium requires only the DR(2) RARE. By in situ hybridization, we have identified a new site of Hoxb1 expression in the developing forelimbs at approximately day 12.5, and we show that, in transgenic embryos, expression in the forelimb buds requires that either the DR(2) or the DR(5) RARE is functional. Attainment of a high level of Hoxb1 transgene expression in other regions, such as in rhombomere 4 (r4) and in the somites, requires that both the DR(2) and DR(5) RAREs are functional. In addition, our transgenic data indicate that the Hoxb1 gene is expressed in other tissues such as the hernia gut, genital eminence, and lung. Our analysis shows that endogenous retinoids act through individual DR(2) and DR(5) RAREs to regulate Hoxb1 expression in different regions of the embryo and that functional redundancy between these DR(2) and DR(5) RAREs does not exist with respect to neural epithelium and the gut Hoxb1 expression.
Collapse
Affiliation(s)
- Danyang Huang
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
43
|
Allan D, Houle M, Bouchard N, Meyer BI, Gruss P, Lohnes D. RARgamma and Cdx1 interactions in vertebral patterning. Dev Biol 2001; 240:46-60. [PMID: 11784046 DOI: 10.1006/dbio.2001.0455] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous retinoic acid (RA) can evoke vertebral homeosis when administered during late gastrulation. These vertebral transformations correlate with alterations of the rostral limit of Hox gene expression in the prevertebrae, suggesting that retinoid signaling regulates the combinatorial expression of Hox genes dictating vertebral identity. Conversely, loss of certain RA receptors (RARs) results in anterior homeotic transformations principally affecting the cervical region. Despite these observations, the relationship between retinoid signaling, somitic Hox expression, and vertebral patterning is poorly understood. The members of the murine Cdx family (Cdx1, Cdx2, and Cdx4) are the homologues of Drosophila caudal and encode homeobox-containing transcription factors. Cdx1 homozygous null mutants exhibit anterior homeotic transformations, some of which are reminiscent of those in RARgamma null offspring. In Cdx1 mutants, these transformations occur concomitant with posteriorized prevertebral expression of certain Hox genes. Cdx1 has recently been demonstrated to be a direct RA target, suggesting an indirect means by which retinoid signaling may impact vertebral patterning. To further investigate this relationship, a complete allelic series of Cdx1-RARgamma mutants was generated and the skeletal phenotype assessed either following normal gestation or after administration of RA. Synergistic interactions between these null alleles were observed in compound mutants, and the full effects of exogenous RA on vertebral morphogenesis required Cdx1. These findings are consistent with a role for RA upstream of Cdx1 as regards axial patterning. However, exogenous RA attenuated several defects inherent to Cdx1 null mutants. This finding, together with the increased phenotypic severity of RARgamma-Cdx1 double null mutants relative to single nulls, suggests that these pathways also function in parallel, likely by converging on common targets.
Collapse
Affiliation(s)
- D Allan
- Division of Experimental Medicine, Department of Molecular Biology, Institut de Recherches Cliniques de Montréal, 110 ave des Pins, ouest, Montréal, Québec, H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R. Independent regulation of initiation and maintenance phases ofHoxa3expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 2001; 128:3595-607. [PMID: 11566863 DOI: 10.1242/dev.128.18.3595] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the vertebrate hindbrain, Hox genes play multiples roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.
Collapse
Affiliation(s)
- M Manzanares
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Saleh M, Rambaldi I, Yang XJ, Featherstone MS. Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol Cell Biol 2000; 20:8623-33. [PMID: 11046157 PMCID: PMC102167 DOI: 10.1128/mcb.20.22.8623-8633.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 08/18/2000] [Indexed: 11/20/2022] Open
Abstract
The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo.
Collapse
Affiliation(s)
- M Saleh
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|