1
|
Huffman K. The developing, aging neocortex: how genetics and epigenetics influence early developmental patterning and age-related change. Front Genet 2012; 3:212. [PMID: 23087707 PMCID: PMC3473232 DOI: 10.3389/fgene.2012.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/26/2012] [Indexed: 11/13/2022] Open
Abstract
A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory, and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging on the brain.
Collapse
Affiliation(s)
- Kelly Huffman
- Department of Psychology, University of California Riverside, CA, USA
| |
Collapse
|
2
|
Dye CA, Abbott CW, Huffman KJ. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev 2012; 7:5. [PMID: 22289655 PMCID: PMC3347983 DOI: 10.1186/1749-8104-7-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/30/2012] [Indexed: 02/08/2023] Open
Abstract
Background Anatomically and functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization. This process is believed to be reliant on both activity-dependent and activity-independent mechanisms. Although both mechanisms are thought to function concurrently during arealization, the nature of their interaction is not understood. To examine the potential interplay of extrinsic activity-dependent mechanisms, such as sensory input, and intrinsic activity-independent mechanisms, including gene expression in mouse neocortical development, we performed bilateral enucleations in newborn mice and conducted anatomical and molecular analyses 10 days later. In this study, by surgically removing the eyes of the newborn mouse, we examined whether early enucleation would impact normal gene expression and the development of basic anatomical features such as intraneocortical connections and cortical area boundaries in the first 10 days of life, before natural eye opening. We examined the acute effects of bilateral enucleation on the lateral geniculate nucleus of the thalamus and the neocortical somatosensory-visual area boundary through detailed analyses of intraneocortical connections and gene expression of six developmentally regulated genes at postnatal day 10. Results Our results demonstrate short-term plasticity on postnatal day 10 resulting from the removal of the eyes at birth, with changes in nuclear size and gene expression within the lateral geniculate nucleus as well as a shift in intraneocortical connections and ephrin A5 expression at the somatosensory-visual boundary. In this report, we highlight the correlation between positional shifts in ephrin A5 expression and improper refinement of intraneocortical connections observed at the somatosensory-visual boundary in enucleates on postnatal day 10. Conclusions Bilateral enucleation induces a positional shift of both ephrin A5 expression and intraneocortical projections at the somatosensory-visual border in only 10 days. These changes occur prior to natural eye opening, suggesting a possible role of spontaneous retinal activity in area border formation within the neocortex. Through these analyses, we gain a deeper understanding of how extrinsic activity-dependent mechanisms, particularly input from sensory organs, are integrated with intrinsic activity-independent mechanisms to regulate neocortical arealization and plasticity.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
3
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse I. ACTA ACUST UNITED AC 2010; 21:1311-30. [PMID: 21060110 DOI: 10.1093/cercor/bhq212] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A hallmark of mammalian evolution is the structural and functional complexity of the cerebral cortex. Within the cerebral cortex, the neocortex, or isocortex, is a 6-layered complexly organized structure that is comprised of multiple interconnected sensory and motor areas. These areas and their precise patterns of connections arise during development, through a process termed arealization. Intrinsic, activity-independent and extrinsic, activity-dependent mechanisms are involved in the development of neocortical areas and their connections. The intrinsic molecular mechanisms involved in the establishment of this sophisticated network are not fully understood. In this report (I) and the companion report (II), we present the first lifespan analysis of ipsilateral intraneocortical connections (INCs) among multiple sensory and motor regions, from the embryonic period to adulthood in the mouse. Additionally, we characterize the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular control of arealization from embryonic day 13.5 to postnatal day (P) 3 (I) and P6 to 50 (II). In this analysis, we utilize novel methods to correlate the boundaries of gene expression with INCs and developing areal boundaries, in order to better understand the nature of gene-areal relationships during development.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
4
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse II. ACTA ACUST UNITED AC 2010; 21:1331-50. [PMID: 21060113 DOI: 10.1093/cercor/bhq213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mammalian neocortex contains an intricate processing network of multiple sensory and motor areas that allows the animal to engage in complex behaviors. These anatomically and functionally unique areas and their distinct connections arise during early development, through a process termed arealization. Both intrinsic, activity-independent and extrinsic, activity-dependent mechanisms drive arealization, much of which occurs during the areal patterning period (APP) from late embryogenesis to early postnatal life. How areal boundaries and their connections develop and change from infancy to adulthood is not known. Additionally, the adult patterns of sensory and motor ipsilateral intraneocortical connections (INCs) have not been thoroughly characterized in the mouse. In this report and its companion (I), we present the first lifespan analysis of ipsilateral INCs among multiple sensory and motor regions in mouse. We describe the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular regulation of arealization, from postnatal day (P) 6 to P50. In this study, we correlate the boundaries of gene expression patterns with developing areal boundaries across a lifespan, in order to better understand the nature of gene-areal relationships from early postnatal life to adulthood.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
5
|
Efficient CPP-mediated Cre protein delivery to developing and adult CNS tissues. BMC Biotechnol 2009; 9:40. [PMID: 19393090 PMCID: PMC2680837 DOI: 10.1186/1472-6750-9-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/24/2009] [Indexed: 12/01/2022] Open
Abstract
Background Understanding and manipulating gene function in physiological conditions is a major objective for both fundamental and applied research. In contrast to other experimental settings, which use either purely genetic or gene delivery (viral or non-viral) strategies, we report here a strategy based on direct protein delivery to central nervous system (CNS) tissues. We fused Cre recombinase with cell-penetrating peptides and analyzed the intracellular biological activity of the resulting chimerical proteins when delivered into cells endowed with Cre-mediated reporter gene expression. Results We show that active Cre enzymatic conjugates are readily internalized and exert their enzymatic activity in the nucleus of adherent cultured cells. We then evaluated this strategy in organotypic cultures of neural tissue explants derived from reporter mice carrying reporter "floxed" alleles. The efficacy of two protocols was compared on explants, either by direct addition of an overlying drop of protein conjugate or by implantation of conjugate-coated beads. In both cases, delivery of Cre recombinase resulted in genomic recombination that, with the bead protocol, was restricted to discrete areas of embryonic and adult neural tissues. Furthermore, delivery to adult brain tissue resulted in the transduction of mature postmitotic populations of neurons. Conclusion We provide tools for the spatially restricted genetic modification of cells in explant culture. This strategy allows to study lineage, migration, differentiation and death of neural cells. As a proof-of-concept applied to CNS tissue, direct delivery of Cre recombinase enabled the selective elimination of an interneuron subpopulation of the spinal cord, thereby providing a model to study early events of neurodegenerative processes. Thus our work opens new perspectives for both fundamental and applied cell targeting protocols using proteic cargoes which need to retain full bioactivity upon internalisation, as illustrated here with the oligomeric Cre recombinase.
Collapse
|
6
|
Donovan SL, McCasland JS. GAP-43 is critical for normal targeting of thalamocortical and corticothalamic, but not trigeminothalamic axons in the whisker barrel system. Somatosens Mot Res 2008; 25:33-47. [PMID: 18344146 DOI: 10.1080/08990220701830696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
7
|
Garel S, Rubenstein JLR. Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci 2004; 27:533-9. [PMID: 15331235 DOI: 10.1016/j.tins.2004.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Topography of axonal projections has been generally thought to arise from positional information located within the projecting and targeted structures, independent of events along the path or within the axonal bundle. Recent evidence suggests that in the projection from the dorsal thalamus to the neocortex, initial rostrocaudal targeting of axons is regulated at the level of an intermediate target, the subcortical telencephalon. In this system, thalamic axons are spatially positioned within the subcortical telencephalon, partly via interactions between EphAs and ephrin-As, and this positioning apparently determines the rostrocaudal level of the neocortex that the axons will initially target.
Collapse
Affiliation(s)
- Sonia Garel
- INSERM U368, Ecole Normale Supérieure- 46 rue d'Ulm 75230 Paris cedex 05, France
| | | |
Collapse
|
8
|
Okhotin VE, Kalinichenko SG. Neurons of layer I and their significance in the embryogenesis of the neocortex. ACTA ACUST UNITED AC 2004; 34:49-66. [PMID: 15109083 DOI: 10.1023/b:neab.0000003247.01201.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- V E Okhotin
- Laboratory of Neurogenetics and the Genetics of Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
9
|
Funatsu N, Inoue T, Nakamura S. Gene expression analysis of the late embryonic mouse cerebral cortex using DNA microarray: identification of several region- and layer-specific genes. ACTA ACUST UNITED AC 2004; 14:1031-44. [PMID: 15142957 DOI: 10.1093/cercor/bhh063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mammalian neocortex develops layer organizations with regional differences represented by expression of multiple genes at embryonic stages. These genes could play important roles in the formation of areal cyto-architecture, yet, the number of genes identified so far is not sufficient to explain such intricate processes. Here we collected five regions--the medial, dorsal, lateral, rostral and occipital--from the dissected E16.5 mouse cerebral cortex and performed extensive gene expression analysis using the Affymetrix U74Av2 array with probes for 12,500 genes. After relative quantitative analysis, 34, 33 and 15 genes were selected as highly expressed genes in the medial, dorsal and lateral regions, respectively. The combination of GeneChip system, real-time quantitative reverse transcription polymerase chain reaction and in situ hybridization analyses allowed the successful identification of seven genes from the dorsal region (Neuropeptide Y, Wnt7b, TGF-beta RI, Nrf3, Bcl-6, MT4-MMP and Rptp kappa), three genes from the medial region (Hop-pending, HtrA and Crystallin), and three genes from the lateral region (Somatostatin, Ngef and Fxyd7). Particularly, all seven genes identified in the dorsal region demarcated the future somatosensory and auditory areas in the cortical plate with high rostrolateral-low caudomedial gradation. Their expression patterns were not uniform, but delineated either the superficial or the deep layer in the cortical plate. Furthermore, the regional expression pattern of Neuropeptide Y was shifted rostrally and the layer specificity was disorganized in the Pax6-deficient mice. Our results provide new information about a subclass of regionally expressed genes in the cortical plate at the late embryonic stage, which may help understand the molecular mechanisms of neocortical arealization.
Collapse
Affiliation(s)
- Nobuo Funatsu
- Department of Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi Kodaira, Tokyo 187-8502, Japan.
| | | | | |
Collapse
|
10
|
Bushong EA, Martone ME, Ellisman MH. Examination of the relationship between astrocyte morphology and laminar boundaries in the molecular layer of adult dentate gyrus. J Comp Neurol 2003; 462:241-51. [PMID: 12794746 DOI: 10.1002/cne.10728] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes are known to play an integral role in the development of compartmental boundaries in the brain and in the creation of trauma-induced boundaries. However, the physical relationship between astrocytes and such boundaries in the adult brain is less clear. If astrocytes do respect or play an ongoing role in maintaining such boundaries, a correlation between the position of such a boundary and the morphology of neighboring astrocytes might be observable. In this study, we examined the distribution of astrocytes with respect to the laminar boundaries compartmentalizing afferents to the dentate gyrus molecular layer. In addition, we attempted to determine whether astrocyte morphology is influenced by these laminar boundaries. To this end, protoplasmic astrocytes in the adult rat dentate gyrus were revealed with fluorescent tracer dyes and subsequently analyzed with respect to laminar boundaries demarcated by means of immunolabeling for the lamina-specific molecules EphA4 and neural cell adhesion molecule (N-CAM). We find that astrocyte distribution is influenced by the boundary separating the associational/commissural and perforant path afferents. In addition, we show that astrocytes in this region are polarized in their morphology, unlike typically stellate astrocytes, but that the laminar boundaries themselves do not appear to confer this morphology. This polarized morphology, however acquired, may have import for the functioning of astrocytes within the highly organized composition of the dentate gyrus molecular layer and for the overall microphysiology of this and other brain regions.
Collapse
Affiliation(s)
- Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California- San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
11
|
Garel S, Huffman KJ, Rubenstein JLR. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 2003; 130:1903-14. [PMID: 12642494 DOI: 10.1242/dev.00416] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neocortex is divided into multiple areas with specific architecture, molecular identity and pattern of connectivity with the dorsal thalamus. Gradients of transcription factor expression in the cortical primordium regulate molecular regionalization and potentially the patterning of thalamic projections. We show that reduction of Fgf8 levels in hypomorphic mouse mutants shifts early gradients of gene expression rostrally, thereby modifying the molecular identity of rostral cortical progenitors. This shift correlates with a reduction in the size of a molecularly defined rostral neocortical domain and a corresponding rostral expansion of more caudal regions. Despite these molecular changes, the topography of projections between the dorsal thalamus and rostral neocortex in mutant neonates appears the same as the topography of wild-type littermates. Overall, our study demonstrates the role of endogenous Fgf8 in regulating early gradients of transcription factors in cortical progenitor cells and in molecular regionalization of the cortical plate.
Collapse
Affiliation(s)
- Sonia Garel
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
12
|
Gaillard A, Nasarre C, Roger M. Early (E12) cortical progenitors can change their fate upon heterotopic transplantation. Eur J Neurosci 2003; 17:1375-83. [PMID: 12713640 DOI: 10.1046/j.1460-9568.2003.02576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To help understand how the cortical map is set up during the early stages of corticogenesis, we have examined the developmental fate of embryonic day (E) 12 cortical progenitors in the rat. We have analysed the pattern of thalamic connections and cytoarchitectonic organization developed by progenitor cells removed at E12 from the presumptive parietal or occipital cortex and grafted into the parietal cortex of newborn hosts. Occipital progenitors grafted into the parietal cortex differentiated into neurons that developed reciprocal connections with the ventrobasal complex of the host thalamus. They could also form barrel-like structures, within which axons of the ventrobasal complex were distributed in dense patches. Some of these barrel-like structures were arranged in rows. Moreover, these progenitors failed to develop characteristic traits of occipital cortex cells as they did not establish connections with the dorsal lateral geniculate nucleus. We propose that cortical progenitors are not committed at E12 and, upon heterotopic transplantation, have the capacity to respond to local cues and to subsequently differentiate and maintain major phenotypic characteristics of neurons in their new environment. Only early progenitors are multipotent. By E13/E14, indeed, most cortical cells become irreversibly committed and upon heterotopic transplantation differentiate neurons with phenotypic characteristics of their cortical site of origin (Pinaudeau et al., 2000, Eur. J. Neurosci., 12, 2486-2496).
Collapse
Affiliation(s)
- Afsaneh Gaillard
- CNRS: UMR 6558, Biomembranes et Signalisation Cellulaire, Université de Poitiers, PBS, Faculté des Sciences, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | |
Collapse
|
13
|
Garel S, Yun K, Grosschedl R, Rubenstein JLR. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 2002; 129:5621-34. [PMID: 12421703 DOI: 10.1242/dev.00166] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prevailing model to explain the formation of topographic projections in the nervous system stipulates that this process is governed by information located within the projecting and targeted structures. In mammals, different thalamic nuclei establish highly ordered projections with specific neocortical domains and the mechanisms controlling the initial topography of these projections remain to be characterized. To address this issue, we examined Ebf1(-/-) embryos in which a subset of thalamic axons does not reach the neocortex. We show that the projections that do form between thalamic nuclei and neocortical domains have a shifted topography, in the absence of regionalization defects in the thalamus or neocortex. This shift is first detected inside the basal ganglia, a structure on the path of thalamic axons, and which develops abnormally in Ebf1(-/-) embryos. A similar shift in the topography of thalamocortical axons inside the basal ganglia and neocortex was observed in Dlx1/2(-/-) embryos, which also have an abnormal basal ganglia development. Furthermore, Dlx1 and Dlx2 are not expressed in the dorsal thalamus or in cortical projections neurons. Thus, our study shows that: (1) different thalamic nuclei do not establish projections independently of each other; (2) a shift in thalamocortical topography can occur in the absence of major regionalization defects in the dorsal thalamus and neocortex; and (3) the basal ganglia may contain decision points for thalamic axons' pathfinding and topographic organization. These observations suggest that the topography of thalamocortical projections is not strictly determined by cues located within the neocortex and may be regulated by the relative positioning of thalamic axons inside the basal ganglia.
Collapse
Affiliation(s)
- Sonia Garel
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco, San Francisco, CA 94143-0984, USA
| | | | | | | |
Collapse
|
14
|
O'Leary DDM, Nakagawa Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 2002; 12:14-25. [PMID: 11861160 DOI: 10.1016/s0959-4388(02)00285-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The adult mammalian neocortex, the major region of the cerebral cortex, is divided into functionally specialized areas, defined by distinct architecture and axonal connections. Extrinsic influences, such as thalamocortical input, and genetic regulation, intrinsic to the dorsal telencephalon, control the gradual emergence of area-specific properties during development. Major recent advances in this field include: the first demonstration of the genetic regulation of arealization, implicating the transcription factors Emx2 and Pax6 in the direct control of area identities; and the demonstration of the potential role of the signaling protein, fibroblast growth factor 8, in the early patterning of arealization genes, such as Emx2.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 96037, USA.
| | | |
Collapse
|