1
|
Farmer AJ, Katariya R, Islam S, Rayhan MSA, Inlow MH, Ahmad SM, Schwab KR. trithorax is an essential regulator of cardiac Hox gene expression and anterior-posterior patterning of the Drosophila embryonic heart tube. Biol Open 2025; 14:bio061919. [PMID: 40172069 PMCID: PMC11993250 DOI: 10.1242/bio.061919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
The precise regulation of transcription required for embryonic development is partially controlled by the actions of the Trithorax group (TrxG) and Polycomb group (PcG) proteins. The genes trithorax (trx), trithorax-related (trr), and SET domain containing 1 (Set1) encode COMPASS-like histone methyltransferases, a subgroup of TrxG proteins that impart H3K4 methylation modifications onto chromatin in order to activate and maintain transcription. In this study, we identify the role of these genes in the development of the embryonic heart of the fruit fly Drosophila melanogaster. trx, trr, and Set1 independently ensure proper cardiac cell divisions. Additionally, trx regulation of collinear Hox expression is necessary for the anterior-posterior cardiac patterning of the linear heart tube. trx inactivation in Drosophila results in a remarkable homeotic transformation of the posterior heart-proper segment into an aorta-like fate due to the loss of posterior abdominal A expression. Furthermore, cardiac expression of Antennapedia, Ultrabithorax, and Abdominal B is also deregulated in trx mutants. Together, these data suggest that the COMPASS-like histone methyltransferases are essential developmental regulators of cardiogenesis, being necessary for both cardiac cell divisions and heart patterning.
Collapse
Affiliation(s)
- Adam J. Farmer
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Sumaiya Islam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Md. Sayeed Abu Rayhan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H. Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Modeling a variant of unknown significance in the Drosophila ortholog of the human cardiogenic gene NKX2.5. Dis Model Mech 2023; 16:dmm050059. [PMID: 37691628 PMCID: PMC10548113 DOI: 10.1242/dmm.050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brenna Blotz
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Cayleen Bileckyj
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
4
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved chamber-specific polyploidy maintains heart function in Drosophila. Development 2023; 150:dev201896. [PMID: 37526609 PMCID: PMC10482010 DOI: 10.1242/dev.201896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
Affiliation(s)
- Archan Chakraborty
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nora G. Peterson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juliet S. King
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan T. Gross
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Kevin C. Zhou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Sophia DeLuca
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nenad Bursac
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Matthew J. Wolf
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Huang X, Fu Y, Lee H, Zhao Y, Yang W, van de Leemput J, Han Z. Single-cell profiling of the developing embryonic heart in Drosophila. Development 2023; 150:dev201936. [PMID: 37526610 PMCID: PMC10482008 DOI: 10.1242/dev.201936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.
Collapse
Affiliation(s)
- Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yulong Fu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wendy Yang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Using Drosophila to model a variant of unknown significance in the human cardiogenic gene Nkx2.5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546937. [PMID: 37425758 PMCID: PMC10327092 DOI: 10.1101/2023.06.28.546937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.
Collapse
|
7
|
Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, Thennavan A, Zhou KC, DeLuca S, Bursac N, Bowles DE, Wolf MJ, Fox DT. Conserved Chamber-Specific Polyploidy Maintains Heart Function in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528086. [PMID: 36798187 PMCID: PMC9934670 DOI: 10.1101/2023.02.10.528086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.
Collapse
|
8
|
Regular Exercise in Drosophila Prevents Age-Related Cardiac Dysfunction Caused by High Fat and Heart-Specific Knockdown of skd. Int J Mol Sci 2023; 24:ijms24021216. [PMID: 36674733 PMCID: PMC9865808 DOI: 10.3390/ijms24021216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Skuld (skd) is a subunit of the Mediator complex subunit complex. In the heart, skd controls systemic obesity, is involved in systemic energy metabolism, and is closely linked to cardiac function and aging. However, it is unclear whether the effect of cardiac skd on cardiac energy metabolism affects cardiac function. We found that cardiac-specific knockdown of skd showed impaired cardiac function, metabolic impairment, and premature aging. Drosophila was subjected to an exercise and high-fat diet (HFD) intervention to explore the effects of exercise on cardiac skd expression and cardiac function in HFD Drosophila. We found that Hand-Gal4>skd RNAi (KC) Drosophila had impaired cardiac function, metabolic impairment, and premature aging. Regular exercise significantly improved cardiac function and metabolism and delayed aging in HFD KC Drosophila. Thus, our study found that the effect of skd on cardiac energy metabolism in the heart affected cardiac function. Exercise may counteract age-related cardiac dysfunction and metabolic disturbances caused by HFD and heart-specific knockdown of skd. Skd may be a potential therapeutic target for heart disease.
Collapse
|
9
|
Wang T, Wang Z, de Fabritus L, Tao J, Saied EM, Lee HJ, Ramazanov BR, Jackson B, Burkhardt D, Parker M, Gleinich AS, Wang Z, Seo DE, Zhou T, Xu S, Alecu I, Azadi P, Arenz C, Hornemann T, Krishnaswamy S, van de Pavert SA, Kaech SM, Ivanova NB, Santori FR. 1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Dev Cell 2021; 56:3128-3145.e15. [PMID: 34762852 PMCID: PMC8628544 DOI: 10.1016/j.devcel.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.
Collapse
Affiliation(s)
- Ting Wang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lauriane de Fabritus
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Essa M Saied
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ho-Joon Lee
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Bulat R Ramazanov
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Benjamin Jackson
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Daniel Burkhardt
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Mikhail Parker
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ting Zhou
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Christoph Arenz
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich 8091, Switzerland
| | | | - Serge A van de Pavert
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Natalia B Ivanova
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Fabio R Santori
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
11
|
King TR, Kramer J, Cheng YS, Swope D, Kramer SG. Enabled/VASP is required to mediate proper sealing of opposing cardioblasts during Drosophila dorsal vessel formation. Dev Dyn 2021; 250:1173-1190. [PMID: 33587326 DOI: 10.1002/dvdy.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The Drosophila dorsal vessel (DV) is comprised of two opposing rows of cardioblasts (CBs) that migrate toward the dorsal midline during development. While approaching the midline, CBs change shape, enabling dorsal and ventral attachments with their contralateral partners to create a linear tube with a central lumen. We previously demonstrated DV closure occurs via a "buttoning" mechanism where specific CBs advance ahead of their lateral neighbors, and attach creating transient holes, which eventually seal. RESULTS Here, we investigate the role of the actin-regulatory protein enabled (Ena) in DV closure. Loss of Ena results in DV cell shape and alignment defects. Live analysis of DV formation in ena mutants shows a reduction in CB leading edge protrusion length and gaps in the DV between contralateral CB pairs. These gaps occur primarily between a specific genetic subtype of CBs, which express the transcription factor seven-up (Svp) and form the ostia inflow tracts of the heart. In WT embryos these gaps between Svp+ CBs are observed transiently during the final stages of DV closure. CONCLUSIONS Our data suggest that Ena modulates the actin cytoskeleton in order to facilitate the complete sealing of the DV during the final stages of cardiac tube formation.
Collapse
Affiliation(s)
- Tiffany R King
- Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, Department of Pathology and Laboratory Medicine, Piscataway, New Jersey, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
12
|
Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:jcdd7020022. [PMID: 32498427 PMCID: PMC7345553 DOI: 10.3390/jcdd7020022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
Left-sided congenital heart defects (CHDs) are among the most common forms of congenital heart disease, but a disease-causing gene has only been identified in a minority of cases. Here, we identified a candidate gene for CHDs, KIF1A, that was associated with a chromosomal balanced translocation t(2;8)(q37;p11) in a patient with left-sided heart and aortic valve defects. The breakpoint was in the 5′ untranslated region of the KIF1A gene at 2q37, which suggested that the break affected the levels of Kif1A gene expression. Transgenic fly lines overexpressing Kif1A specifically in the heart muscle (or all muscles) caused diminished cardiac contractility, myofibrillar disorganization, and heart valve defects, whereas cardiac knockdown had no effect on heart structure or function. Overexpression of Kif1A also caused increased collagen IV deposition in the fibrous network that normally surrounds the fly heart. Kif1A overexpression in C2C12 myoblasts resulted in specific displacement of the F-actin fibers, probably through a direct interaction with G-actin. These results point to a Kif1A-mediated disruption of F-actin organization as a potential mechanism for the pathogenesis in at least some human CHDs.
Collapse
|
13
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Matsushita R, Nishimura T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun Biol 2020; 3:170. [PMID: 32265497 PMCID: PMC7138798 DOI: 10.1038/s42003-020-0889-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved molecular mechanisms to ensure consistent and invariant phenotypes in the face of environmental fluctuations. Developmental homeostasis is determined by two factors: robustness, which buffers against environmental variations; and developmental stability, which buffers against intrinsic random variations. However, our understanding of these noise-buffering mechanisms remains incomplete. Here, we showed that appropriate glycemic control confers developmental homeostasis in the fruit fly Drosophila. We found that circulating glucose levels are buffered by trehalose metabolism, which acts as a glucose sink in circulation. Furthermore, mutations in trehalose synthesis enzyme (Tps1) increased the among-individual and within-individual variations in wing size. Whereas wild-type flies were largely resistant to changes in dietary carbohydrate and protein levels, Tps1 mutants experienced significant disruptions in developmental homeostasis in response to dietary stress. These results demonstrate that glucose homeostasis against dietary stress is crucial for developmental homeostasis.
Collapse
Affiliation(s)
- Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
15
|
Hughes CJR, Turner S, Andrews RM, Vitkin A, Jacobs JR. Matrix metalloproteinases regulate ECM accumulation but not larval heart growth in Drosophila melanogaster. J Mol Cell Cardiol 2020; 140:42-55. [PMID: 32105665 DOI: 10.1016/j.yjmcc.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The Drosophila heart provides a simple model to examine the remodelling of muscle insertions with growth, extracellular matrix (ECM) turnover, and fibrosis. Between hatching and pupation, the Drosophila heart increases in length five-fold. If major cardiac ECM components are secreted remotely, how is ECM "self assembly" regulated? We explored whether ECM proteases were required to maintain the morphology of a growing heart while the cardiac ECM expanded. An increase in expression of Drosophila's single tissue inhibitor of metalloproteinase (TIMP), or reduced function of metalloproteinase MMP2, resulted in fibrosis and ectopic deposition of two ECM Collagens; type-IV and fibrillar Pericardin. Significant accumulations of Collagen-IV (Viking) developed on the pericardium and in the lumen of the heart. Congenital defects in Pericardin deposition misdirected further assembly in the larva. Reduced metalloproteinase activity during growth also increased Pericardin fibre accumulation in ECM suspending the heart. Although MMP2 expression was required to remodel and position cardiomyocyte cell junctions, reduced MMP function did not impair expansion of the heart. A previous study revealed that MMP2 negatively regulates the size of the luminal cell surface in the embryonic heart. Cardiomyocytes align at the midline, but do not adhere to enclose a heart lumen in MMP2 mutant embryos. Nevertheless, these embryos hatch and produce viable larvae with bifurcated hearts, indicating a secondary pathway to lumen formation between ipsilateral cardiomyocytes. MMP-mediated remodelling of the ECM is required for organogenesis, and to prevent assembly of excess or ectopic ECM protein during growth. MMPs are not essential for normal growth of the Drosophila heart.
Collapse
Affiliation(s)
- C J R Hughes
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - S Turner
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - R M Andrews
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - A Vitkin
- Dept. Biomedical Physics, University of Toronto, Toronto, Cananda.
| | - J R Jacobs
- Dept. Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
16
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
17
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
18
|
Selective Filopodia Adhesion Ensures Robust Cell Matching in the Drosophila Heart. Dev Cell 2018; 46:189-203.e4. [PMID: 30016621 DOI: 10.1016/j.devcel.2018.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
The ability to form specific cell-cell connections within complex cellular environments is critical for multicellular organisms. However, the underlying mechanisms of cell matching that instruct these connections remain elusive. Here, we quantitatively explored the dynamics and regulation of cell matching processes utilizing Drosophila cardiogenesis. We found that cell matching is highly robust at boundaries between cardioblast (CB) subtypes, and filopodia of different CB subtypes have distinct binding affinities. Cdc42 is involved in regulating this selective filopodia binding adhesion and influences CB matching. Further, we identified adhesion molecules Fasciclin III (Fas3) and Ten-m, both of which also regulate synaptic targeting, as having complementary differential expression in CBs. Altering Fas3 expression changes differential filopodia adhesion and leads to CB mismatch. Furthermore, only when both Fas3 and Ten-m are lost is CB alignment severely impaired. Our results show that differential adhesion mediated by selective filopodia binding efficiently regulates precise and robust cell matching.
Collapse
|
19
|
Drosophila pericardial nephrocyte ultrastructure changes during ageing. Mech Ageing Dev 2018; 173:9-20. [DOI: 10.1016/j.mad.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
20
|
Zmojdzian M, de Joussineau S, Da Ponte JP, Jagla K. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila. Development 2018; 145:dev.158717. [PMID: 29247145 PMCID: PMC5825839 DOI: 10.1242/dev.158717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
Abstract
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA-negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis.
Collapse
Affiliation(s)
- Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Svetlana de Joussineau
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jean Philippe Da Ponte
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
22
|
Melkani GC, Bhide S, Han A, Vyas J, Livelo C, Bodmer R, Bernstein SI. TRiC/CCT chaperonins are essential for maintaining myofibril organization, cardiac physiological rhythm, and lifespan. FEBS Lett 2017; 591:3447-3458. [PMID: 28963798 PMCID: PMC5683924 DOI: 10.1002/1873-3468.12860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023]
Abstract
We recently reported that CCT chaperonin subunits are upregulated in a cardiac-specific manner under time-restricted feeding (TRF) [Gill S et al. (2015) Science 347, 1265-1269], suggesting that TRiC/CCT has a heart-specific function. To understand the CCT chaperonin function in cardiomyocytes, we performed its cardiac-specific knock-down in the Drosophila melanogaster model. This resulted in disorganization of cardiac actin- and myosin-containing myofibrils and severe physiological dysfunction, including restricted heart diameters, elevated cardiac dysrhythmia and compromised cardiac performance. We also noted that cardiac-specific knock-down of CCT chaperonin significantly shortens lifespans. Additionally, disruption of circadian rhythm yields further deterioration of cardiac function of hypomorphic CCT mutants. Our analysis reveals that both the orchestration of protein folding and circadian rhythms mediated by CCT chaperonin are critical for maintaining heart contractility.
Collapse
Affiliation(s)
- Girish C. Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Jay Vyas
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Catherine Livelo
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University San Diego, CA 92182, USA
| |
Collapse
|
23
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
24
|
Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:791-806. [PMID: 28612236 DOI: 10.1007/s00359-017-1191-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae. To simulate the release of modulators from the nervous system in response to environmental influences, we have directed expression of channel-rhodopsin variants to targeted neuronal populations to assess the role of these neural ensembles in directing release of modulators that may affect heart rate in vivo. Our observations show that the activation of targeted neurons, including cholinergic, dopaminergic, and serotonergic neurons, stimulate the release of cardioactive substances that increase heart rate after the initial activation at both room temperature and in a cold environment. This parallels previous studies suggesting these modulators play a crucial role in altering heart rate when applied to exposed hearts and adds to our understanding of chemical modulation of heart rate in intact Drosophila larvae.
Collapse
|
25
|
Ocorr K, Zambon A, Nudell Y, Pineda S, Diop S, Tang M, Akasaka T, Taylor E. Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations. PLoS Genet 2017; 13:e1006786. [PMID: 28542428 PMCID: PMC5459509 DOI: 10.1371/journal.pgen.1006786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/05/2017] [Accepted: 04/30/2017] [Indexed: 12/03/2022] Open
Abstract
Understanding the cellular-molecular substrates of heart disease is key to the development of cardiac specific therapies and to the prevention of off-target effects by non-cardiac targeted drugs. One of the primary targets for therapeutic intervention has been the human ether a go-go (hERG) K+ channel that, together with the KCNQ channel, controls the rate and efficiency of repolarization in human myocardial cells. Neither of these channels plays a major role in adult mouse heart function; however, we show here that the hERG homolog seizure (sei), along with KCNQ, both contribute significantly to adult heart function as they do in humans. In Drosophila, mutations in or cardiac knockdown of sei channels cause arrhythmias that become progressively more severe with age. Intracellular recordings of semi-intact heart preparations revealed that these perturbations also cause electrical remodeling that is reminiscent of the early afterdepolarizations seen in human myocardial cells defective in these channels. In contrast to KCNQ, however, mutations in sei also cause extensive structural remodeling of the myofibrillar organization, which suggests that hERG channel function has a novel link to sarcomeric and myofibrillar integrity. We conclude that deficiency of ion channels with similar electrical functions in cardiomyocytes can lead to different types or extents of electrical and/or structural remodeling impacting cardiac output. We have used the fruit fly cardiac model to show that seizure, the fly homolog of the human ether a go-go K+ channel hERG, is functional in the fly heart. This channel plays a major role in cardiac repolarization in humans but not in adult rodent hearts. Loss of channel function in the fly causes bradycardia, electrical arrhythmia and altered myofibrillar structure. Gene expression analysis indicates that Wnt signaling is affected and we show a genetic interaction between sei and pygopus, a Wnt pathway component, on heart function.
Collapse
Affiliation(s)
- Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail:
| | - Alexander Zambon
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Yoav Nudell
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Santiago Pineda
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Soda Diop
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Min Tang
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Takeshi Akasaka
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Erika Taylor
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
26
|
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. On the Evolution of the Cardiac Pacemaker. J Cardiovasc Dev Dis 2017; 4:jcdd4020004. [PMID: 29367536 PMCID: PMC5715705 DOI: 10.3390/jcdd4020004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.
Collapse
Affiliation(s)
- Silja Burkhard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent van Eif
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Laurence Garric
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
27
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
28
|
Shahrestani P, Burke MK, Birse R, Kezos JN, Ocorr K, Mueller LD, Rose MR, Bodmer R. Experimental Evolution and Heart Function in Drosophila. Physiol Biochem Zool 2017; 90:281-293. [PMID: 28277957 DOI: 10.1086/689288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drosophila melanogaster is a good model species for the study of heart function. However, most previous work on D. melanogaster heart function has focused on the effects of large-effect genetic variants. We compare heart function among 18 D. melanogaster populations that have been selected for altered development time, aging, or stress resistance. We find that populations with faster development and faster aging have increased heart dysfunction, measured as percentage heart failure after electrical pacing. Experimental evolution of different triglyceride levels, by contrast, has little effect on heart function. Evolved differences in heart function correlate with allele frequency changes at many loci of small effect. Genomic analysis of these populations produces a list of candidate loci that might affect cardiac function at the intersection of development, aging, and metabolic control mechanisms.
Collapse
|
29
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Lammers K, Abeln B, Hüsken M, Lehmacher C, Psathaki OE, Alcorta E, Meyer H, Paululat A. Formation and function of intracardiac valve cells in the Drosophila heart. J Exp Biol 2017; 220:1852-1863. [DOI: 10.1242/jeb.156265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
Drosophila harbors a simple tubular heart that ensures hemolymph circulation within the body. The heart is built by a few different cell types, including cardiomyocytes that define the luminal heart channel and ostia cells that constitute openings in the heart wall allowing hemolymph to enter the heart chamber. Regulation of flow directionality within a tube, such as blood flow in arteries or insect hemolymph within the heart lumen, requires a dedicated gate, valve, or flap-like structure that prevents backflow of fluids. In the Drosophila heart, intracardiac valves provide this directionality of hemolymph streaming, with one valve being present in larvae and three valves in the adult fly. Each valve is built by two specialized cardiomyocytes that exhibit a unique histology. We found that the capacity to open and close the heart lumen relies on a unique myofibrillar setting as well as on the presence of large membranous vesicles. These vesicles are of endocytic origin and probably represent unique organelles of valve cells. Moreover, we characterised the working mode of the cells in real time. Valve cells exhibit a highly flexible shape and during each heartbeat, oscillating shape changes result in closing and opening of the heart channel. Finally, we identified a set of novel valve cell markers useful for future in-depth analyses of cell differentiation in wildtype and mutant animals.
Collapse
Affiliation(s)
- Kay Lammers
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Bettina Abeln
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Mirko Hüsken
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Christine Lehmacher
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | | | - Esther Alcorta
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, C/ Julián Clavería s/n, 33.006 Oviedo, Spain
| | - Heiko Meyer
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Achim Paululat
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| |
Collapse
|
31
|
|
32
|
Men J, Jerwick J, Wu P, Chen M, Alex A, Ma Y, Tanzi RE, Li A, Zhou C. Drosophila Preparation and Longitudinal Imaging of Heart Function In Vivo Using Optical Coherence Microscopy (OCM). J Vis Exp 2016. [PMID: 28060288 DOI: 10.3791/55002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Longitudinal study of the heartbeat in small animals contributes to understanding structural and functional changes during heart development. Optical coherence microscopy (OCM) has been demonstrated to be capable of imaging small animal hearts with high spatial resolution and ultrahigh imaging speed. The high image contrast and noninvasive properties make OCM ideal for performing longitudinal studies without requiring tissue dissections or staining. Drosophila has been widely used as a model organism in cardiac developmental studies due to its high number of orthologous human disease genes, its similarity of molecular mechanisms and genetic pathways with vertebrates, its short life cycle, and its low culture cost. Here, the experimental protocols are described for the preparation of Drosophila and optical imaging of the heartbeat with a custom OCM system throughout the life cycle of the specimen. By following the steps provided in this report, transverse M-mode and 3D OCM images can be acquired to conduct longitudinal studies of the Drosophila cardiac morphology and function. The en face and axial sectional OCM images and the heart rate (HR) and cardiac activity period (CAP) histograms, were also shown to analyze the heart structural changes and to quantify the heart dynamics during Drosophila metamorphosis, combined with the videos constructed with M-mode images to trace cardiac activity intuitively. Due to the genetic similarity between Drosophila and vertebrates, longitudinal study of heart morphology and dynamics in fruit flies could help reveal the origins of human heart diseases. The protocol here would provide an effective method to perform a wide range of studies to understand the mechanisms of cardiac diseases in humans.
Collapse
Affiliation(s)
- Jing Men
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Jason Jerwick
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Penghe Wu
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Mingming Chen
- Department of Electrical and Computer Engineering, Lehigh University; State Key Laboratory of Software Engineering, Wuhan University
| | - Aneesh Alex
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Yutao Ma
- State Key Laboratory of Software Engineering, Wuhan University
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Chao Zhou
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University;
| |
Collapse
|
33
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
34
|
Trujillo GV, Nodal DH, Lovato CV, Hendren JD, Helander LA, Lovato TL, Bodmer R, Cripps RM. The canonical Wingless signaling pathway is required but not sufficient for inflow tract formation in the Drosophila melanogaster heart. Dev Biol 2016; 413:16-25. [PMID: 26983369 PMCID: PMC4834244 DOI: 10.1016/j.ydbio.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
The inflow tracts of the embryonic Drosophila cardiac tube, termed ostia, arise in its posterior three segments from cardiac cells that co-express the homeotic transcription factor Abdominal-A (abdA), the orphan nuclear receptor Seven-up (Svp), and the signaling molecule Wingless (Wg). To define the roles of these factors in inflow tract development, we assessed their function in inflow tract formation. We demonstrate, using several criteria, that abdA, svp, and wg are each critical for normal inflow tract formation. We further show that Wg acts in an autocrine manner to impact ostia fate, and that it mediates this effect at least partially through the canonical Wg signaling pathway. By contrast, neither wg expression nor Wg signaling are sufficient for inflow tract formation when expressed in anterior Svp cells that do not normally form inflow tracts in the embryo. Instead, ectopic abd-A expression throughout the cardiac tube is required for the formation of ectopic inflow tracts, indicating that autocrine Wg signaling must be supplemented by additional Hox-dependent factors to effect inflow tract formation. Taken together, these studies define important cellular and molecular events that contribute to cardiac inflow tract development in Drosophila. Given the broad conservation of the cardiac regulatory network through evolution, our studies provide insight into mechanisms of cardiac development in higher animals.
Collapse
Affiliation(s)
- Gloriana V Trujillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; Sanford Burnham Medical Research Institute, Development and Aging Program, La Jolla, CA 92037, USA
| | - Dalea H Nodal
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Candice V Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jill D Hendren
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lynda A Helander
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rolf Bodmer
- Sanford Burnham Medical Research Institute, Development and Aging Program, La Jolla, CA 92037, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
35
|
Hirota Y, Sawamoto K, Okano H. tincar encodes a novel transmembrane protein expressed in the Tinman-expressing cardioblasts of Drosophila. Mech Dev 2016; 119 Suppl 1:S279-83. [PMID: 14516698 DOI: 10.1016/s0925-4773(03)00129-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We cloned and characterized the Drosophila gene, tincar (tinc), which encodes a novel protein with eight putative transmembrane domains. The tinc mRNA was expressed specifically in four of the six pairs of cardioblasts in each segment, in a pattern identical to that of tinman (tin), a homeobox gene required for the specification of the dorsal vessel. In the non-Tin-expressing pairs of cardioblasts, tinc transcription seemed to be repressed by Seven-up.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
36
|
On the Morphology of the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020015. [PMID: 29367564 PMCID: PMC5715677 DOI: 10.3390/jcdd3020015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
The circulatory system of Drosophilamelanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing human heart disease are also present in Drosophila, where they play the same or similar roles in heart development, maintenance or physiology as their respective counterparts in humans. This review will attempt to briefly introduce the anatomy of the Drosophila circulatory system and then focus on the different cell types and non-cellular tissue that constitute the heart.
Collapse
|
37
|
Chen Z, Zhu JY, Fu Y, Richman A, Han Z. Wnt4 is required for ostia development in the Drosophila heart. Dev Biol 2016; 413:188-98. [PMID: 26994311 DOI: 10.1016/j.ydbio.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/β-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction remains unclear. We observed high levels of Wnt4 gene expression in Drosophila ostia progenitor cells, immediately prior to morphological differentiation of these cells associated with ostia formation. This differentiation was blocked in Wnt4 mutants and in flies expressing canonical Wnt signaling pathway inhibitors but not inhibitors of the planar cell polarity pathway. High levels of Wnt4 dependent activation of a canonical Wnt signaling reporter was observed specifically in ostia progenitor cells. In vertebrate valve formation Wnt signaling is active in cells undergoing early endothelial-mesenchymal transition (EMT) and the Wnt9 homolog of Drosophila Wnt4 is expressed in valve progenitors. In demonstrating an essential role for Wnt4 in ostia development we have identified similarities between molecular and cellular events associated with early EMT during vertebrate valve development and the differentiation and partial delamination of ostia progenitor cells in the process of ostia formation.
Collapse
Affiliation(s)
- Zhimin Chen
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
38
|
Chakraborty M, Selma-Soriano E, Magny E, Couso JP, Pérez-Alonso M, Charlet-Berguerand N, Artero R, Llamusi B. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction. Dis Model Mech 2015; 8:1569-78. [PMID: 26515653 PMCID: PMC4728315 DOI: 10.1242/dmm.021428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/19/2015] [Indexed: 02/01/2023] Open
Abstract
Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.
Collapse
Affiliation(s)
- Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Estela Selma-Soriano
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Emile Magny
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Juan Pablo Couso
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Manuel Pérez-Alonso
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Nicolas Charlet-Berguerand
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| |
Collapse
|
39
|
Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 2015; 186:45-57. [DOI: 10.1007/s00360-015-0934-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
|
40
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|
41
|
Lovato TL, Sensibaugh CA, Swingle KL, Martinez MM, Cripps RM. The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate. PLoS One 2015. [PMID: 26225919 PMCID: PMC4520567 DOI: 10.1371/journal.pone.0132965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur) expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Cheryl A. Sensibaugh
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Kirstie L. Swingle
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Melody M. Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131–1091, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bataillé L, Frendo JL, Vincent A. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles. Mech Dev 2015. [PMID: 26219857 DOI: 10.1016/j.mod.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| | - Jean-Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| |
Collapse
|
43
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
44
|
Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart. Curr Biol 2015; 25:488-94. [PMID: 25660543 DOI: 10.1016/j.cub.2014.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 01/27/2023]
Abstract
Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development.
Collapse
|
45
|
League GP, Onuh OC, Hillyer JF. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae. ACTA ACUST UNITED AC 2014; 218:370-80. [PMID: 25524976 DOI: 10.1242/jeb.114942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the malaria mosquito Anopheles gambiae. Using intravital video imaging we show that, unlike the adult heart, the larval heart contracts exclusively in the anterograde direction and does not undergo heartbeat directional reversals. The larval heart contracts 24% slower than the adult heart, and hemolymph travels across the larval dorsal vessel at a velocity that is 68% slower than what is seen in adults. By fluorescently labeling muscle tissue we show that although the general structure of the heart and its ostia are similar across life stages, the heart-associated alary muscles are significantly less robust in larvae. Furthermore, unlike the adult ostia, which are the entry points for hemolymph into the heart, the larval ostia are almost entirely lacking in incurrent function. Instead, hemolymph enters the larval heart through incurrent openings located at the posterior terminus of the heart. These posterior openings are structurally similar across life stages, but in adults have an opposite, excurrent function. Finally, the larval aorta and heart differ significantly in the arrangement of their cardiomyocytes. In summary, this study provides an in-depth developmental comparison of the circulatory system of larval and adult mosquitoes.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ogechukwu C Onuh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
46
|
Swope D, Kramer J, King TR, Cheng YS, Kramer SG. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure. Dev Biol 2014; 392:221-32. [PMID: 24949939 DOI: 10.1016/j.ydbio.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a "buttoning" pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Collapse
Affiliation(s)
- David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Tiffany R King
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
48
|
Zmojdzian M, Jagla K. Tailup plays multiple roles during cardiac outflow assembly in Drosophila. Cell Tissue Res 2014; 354:639-45. [PMID: 23797334 DOI: 10.1007/s00441-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/22/2013] [Indexed: 01/15/2023]
Abstract
The Drosophila LIM-homeodomain transcription factor Tailup and its vertebrate counterpart Islet1 are expressed in cardiac progenitor cells where they play a specification role. Loss of function of Islet1 leads to a complete absence of the right ventricle and affects the development of the cardiac outflow tract in mouse embryos. Similarly, tailup mutant embryos display a reduced number of cardiac cells but the role of tailup in cardiac outflow formation in Drosophila remains unknown. Here, we show that tailup is expressed in the main Drosophila cardiac outflow components, i.e., heart anchoring cells (HANC) and cardiac outflow muscles (COM) and that loss of its function and/or tissue-specific knockdowns dramatically affect cardiac outflow morphogenesis. Our data demonstrate that tailup plays many roles and is required for the acquisition of HANC and COM properties. We also show that tailup regulates HANC motility, COM shapes and their attachment to the heart tip and genetically interacts with ladybird, shotgun and slit, which are known to be involved in cardiac outflow assembly. Furthemore, using tissue-specific overexpression of dominant negative tailup constructs lacking sequences encoding either the homeodomain or the LIM domain, we demonstrate that tailup can exert its function not only in transcription factor mode but also via its protein-protein interaction domain. We identify Tailup as an evolutionarily-conserved regulator of cardiac outflow formation and provide further evidence for its conserved role in heart development.
Collapse
|
49
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
50
|
Tang M, Yuan W, Bodmer R, Wu X, Ocorr K. The role of pygopus in the differentiation of intracardiac valves in Drosophila. Genesis 2013; 52:19-28. [PMID: 24265259 DOI: 10.1002/dvg.22724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/14/2022]
Abstract
Cardiac valves serve an important function; they support unidirectional blood flow and prevent blood regurgitation. Wnt signaling plays an important role in the formation of mouse cardiac valves and cardiac valve proliferation in Zebrafish, but identification of the specific signaling components involved has not been addressed systematically. Of the components involved in Wnt signal transduction, pygopus (pygo), first identified as a core component of Wnt signaling in Drosophila, has not yet to be investigated with respect to valve development and differentiation. Here, we take advantage of the Drosophila heart model to study the role of pygo in formation of valves between the cardiac chambers. We found that cardiac-specific pygo knockdown in the Drosophila heart causes dilation in the region of these cardiac valves, and their characteristic dense mesh of myofibrils does not form and resembles that of neighboring cardiomyocytes. In contrast, heart-specific knockdown of the transcription factors, arm/β-Cat, lgs/BCL9, or pan/TCF, which mediates canonical Wnt signal transduction, shows a much weaker valve differentiation defect. Double-heterozygous combinations of mutants for pygo and the Wnt-signaling components have no additional effect on heart function compared with pygo heterozygotes alone. These results are consistent with the idea that pygo functions independently of canonical Wnt signaling in the differentiation of the adult interchamber cardiac valves.
Collapse
Affiliation(s)
- Min Tang
- The Center for Heart Development, Key Laboratory of MOE for Developmental Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China; Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, 92037
| | | | | | | | | |
Collapse
|