1
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
2
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Qian P, De Kumar B, He XC, Nolte C, Gogol M, Ahn Y, Chen S, Li Z, Xu H, Perry JM, Hu D, Tao F, Zhao M, Han Y, Hall K, Peak A, Paulson A, Zhao C, Venkatraman A, Box A, Perera A, Haug JS, Parmely T, Li H, Krumlauf R, Li L. Retinoid-Sensitive Epigenetic Regulation of the Hoxb Cluster Maintains Normal Hematopoiesis and Inhibits Leukemogenesis. Cell Stem Cell 2019; 22:740-754.e7. [PMID: 29727682 DOI: 10.1016/j.stem.2018.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Hox genes modulate the properties of hematopoietic stem cells (HSCs) and reacquired Hox expression in progenitors contributes to leukemogenesis. Here, our transcriptome and DNA methylome analyses revealed that Hoxb cluster and retinoid signaling genes are predominantly enriched in LT-HSCs, and this coordinate regulation of Hoxb expression is mediated by a retinoid-dependent cis-regulatory element, distal element RARE (DERARE). Deletion of the DERARE reduced Hoxb expression, resulting in changes to many downstream signaling pathways (e.g., non-canonical Wnt signaling) and loss of HSC self-renewal and reconstitution capacity. DNA methyltransferases mediate DNA methylation on the DERARE, leading to reduced Hoxb cluster expression. Acute myeloid leukemia patients with DNMT3A mutations exhibit DERARE hypomethylation, elevated HOXB expression, and adverse outcomes. CRISPR-Cas9-mediated specific DNA methylation at DERARE attenuated HOXB expression and alleviated leukemogenesis. Collectively, these findings demonstrate pivotal roles for retinoid signaling and the DERARE in maintaining HSCs and preventing leukemogenesis by coordinate regulation of Hoxb genes.
Collapse
Affiliation(s)
- Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hanzhang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - John M Perry
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Tianjin Medical University School of Basic Medicine, Tian Jin 300070, China
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Yingli Han
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
4
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
5
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
7
|
Effect of Indigofera oblongifolia on the Hepatic Oxidative Status and Expression of Inflammatory and Apoptotic Genes during Blood-Stage Murine Malaria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8264861. [PMID: 30838089 PMCID: PMC6374864 DOI: 10.1155/2019/8264861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 01/24/2023]
Abstract
Malaria is a dangerous disease spread across several countries. Recent studies have focused on medicinal plants to discover alternative agents to the currently used drugs for malaria treatment. Here, we investigated the potential role of Indigofera oblongifolia leaf extract (IE) on hepatic inflammation in mice with Plasmodium chabaudi-infected erythrocytes. Female C57BL/6 mice were divided into three groups. The first group served as a control noninfected group, while the second and third groups were intraperitoneally injected with 106 erythrocytes parasitized by P. chabaudi. Mice from the third group were treated daily with a dose of 100 mg/kg of IE for 7 days. IE significantly reduced the number of leukocytes and apoptotic cells. The numbers of CD68-positive cells decreased in the livers of mice from the treatment group. Moreover, IE raised the hepatic antioxidant levels (glutathione and catalase) and reduced the levels of hepatic oxidative stress markers (malondialdehyde, nitric oxide, and reactive oxygen species). IE regulated some functions of the genes related to immune responses, including apoptotic genes (B-cell lymphoma-2, Bax, and caspase-3) and cytokine genes (interleukin-1β (IL-1β), IL-6, interferon-γ, and tumor necrosis factor-α). Therefore, IE exerts significant effects against malaria and protects the liver from injury caused by P. chabaudi via antioxidant and anti-inflammatory ways.
Collapse
|
8
|
Li J, Zhao Y, He L, Huang Y, Yang X, Yu L, Zhao Q, Dong X. Znfl1s are essential for patterning the anterior-posterior axis of zebrafish posterior hindbrain by acting as direct target genes of retinoic acid. Mech Dev 2018; 155:27-33. [PMID: 30472261 DOI: 10.1016/j.mod.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
RA (retinoic acid) signaling is essential for the patterning the hindbrain of vertebrates. Although hundreds of potential RA targets genes are identified, the ones other than hox genes playing roles in patterning anterior-posterior axis of hindbrain by mediating RA signaling remains largely unknown. Previously, we reported that znfl1s play essential roles in the formation of posterior neuroectoderm in zebrafish embryos. Here, we revealed that znfl1s play a critical role in patterning the posterior axis of hindbrain by maintaining the homeostasis of RA signaling in zebrafish embryos. Knocking down znfl1s shortened the length of the posterior hindbrain in a similar way of reducing RA signaling in zebrafish embryos and the defective posterior hindbrain was effectively rescued by elevating RA signaling. By performing mutagenesis assays and chromatin immunoprecipitation assays on the promoter of znfl1s, we demonstrated that znfl1s are direct target genes of RA to mediate RA signaling through a functional DR1 RA response element. Taken together, our results showed that Znfl1s are essential for patterning the anterior-posterior axis development of posterior hindbrain by acting as direct target genes of RA signaling.
Collapse
Affiliation(s)
- Jingyun Li
- Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Luqingqing He
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Yun Huang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Xiaojing Yang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China.
| |
Collapse
|
9
|
Mubaraki MA, Dkhil MA, Hafiz TA, Khalil MF, Al-Shaebi EM, Delic D, Elshaikh K, Al-Quraishy S. Vitamin D receptor regulates intestinal inflammatory response in mice infected with blood stage malaria. Microb Pathog 2018; 117:299-303. [PMID: 29496525 DOI: 10.1016/j.micpath.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
Malaria is a harmful disease affecting both tropical and subtropical countries and causing sometimes fatal complications. The effects of malaria-related complications on the intestine have been relatively neglected, and the reasons for the intestinal damage caused by malaria infection are not yet clear. The present study aims to evaluate the influence of intestinal vitamin D receptor on host-pathogen interactions during malaria induced in mice by Plasmodium chabaudi. To induce the infection, animals were infected with 106P. chabaudi-parasitized erythrocytes. Mice were sacrificed on day 8 post-infection. The infected mice experienced a significant body weight loss and parasitaemia affecting about 46% of RBCs. Infection caused marked pathological changes in the intestinal tissue indicated by shortening of the intestine and villi. Moreover, the phagocytic activity of macrophages increased significantly (P < 0.01) in the infected villi compared to the non-infected ones. Infection by the parasite also induced marked upregulation of nuclear factor-kappa B, inducible nitric oxide synthase, Vitamin D Receptor, interleukin-1β, tumour necrosis factor alpha and interferon gamma-mRNA. It can be implied from this that vitamin D receptor has a role in regulating malarial infection.
Collapse
Affiliation(s)
- Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt.
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mona F Khalil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt; Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, 1982, Dammam, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Denis Delic
- Boehringer-Ingelheim Pharma, Biberach, Germany
| | - Kamal Elshaikh
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt; Department of Biology, Faculty of Science, Taibah University, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
11
|
Indigofera oblongifolia leaf extract regulates spleen macrophage response during Plasmodium chabaudi infection. Saudi J Biol Sci 2017; 24:1663-1666. [PMID: 29062263 PMCID: PMC5643835 DOI: 10.1016/j.sjbs.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 12/05/2022] Open
Abstract
Malaria is a major health problem that still affects numerous countries. The current study aimed to identify the role of Indigofera oblongifolia leaf extract in regulating mouse spleen macrophages during the progression of Plasmodium chabaudi infection. Three doses of the leaf extract (100, 200, and 300 mg/kg) were administered to mice inoculated with P. chabaudi infected erythrocytes. The weight of the infected mice improved after the treatment with I. oblongifolia. The infection causes disorganization of macrophage distribution in the spleen. After the mice had been treated with the leaf extract, the macrophages appeared to be reorganized in the white and red pulp areas. In addition, the I. oblongifolia leaf extract (IOLE) significantly increased the total antioxidant capacity of the mice spleens infected with P. chabaudi. The phagocytic activity of spleen macrophages was increased in the infected group as indicated by the significant decrease in the number of fluorescent particles in the spleen sections. This number increased in the mice spleens after treatment with IOLE. Based on these results, it is suggested that IOLE regulate macrophage response of the spleen during the blood stage of malaria in mice.
Collapse
|
12
|
Abstract
The subdivision of tissues into sharply demarcated regions with distinct and homogenous identity is an essential aspect of embryonic development. Along the anteroposterior axis of the vertebrate nervous system, this involves signaling which induces spatially restricted expression of transcription factors that specify regional identity. The spatial expression of such transcription factors is initially imprecise, with overlapping expression of genes that specify distinct identities, and a ragged border at the interface of adjacent regions. This pattern becomes sharpened by establishment of mutually exclusive expression of transcription factors, and by cell segregation that underlies formation of a straight border. In this review, we discuss studies of the vertebrate hindbrain which have revealed how discrete regional identity is established, the roles of Eph-ephrin signaling in cell segregation and border sharpening, and how cell identity and cell segregation are coupled.
Collapse
|
13
|
Ibaraki H, Wu X, Uji S, Yokoi H, Sakai Y, Suzuki T. Transcriptome analysis of vertebral bone in the flounder, Paralichthys olivaceus (Teleostei, Pleuronectiformes), using Illumina sequencing. Mar Genomics 2015; 24 Pt 3:269-76. [PMID: 26452303 DOI: 10.1016/j.margen.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023]
Abstract
The processes underlying vertebral development in teleosts and tetrapods differ markedly in a variety of ways. At present, the molecular basis of teleost vertebral development and growth is poorly understood. Understanding vertebral development at the molecular level is important for aquaculture to prevent vertebral anomalies that can arise from a variety of factors, including excess vitamin A (all-trans retinol, VA) in the diet. To facilitate studies on teloest vertebral development, we performed transcriptome analysis of four month old flounder, Paralichthys olivaceus, vertebrae using next-generation sequencing. Expression profile obtained demonstrates that some members of the hh, bmp, fgf, wnt gene families, and their receptors, hox, pax, sox, dlx and tbx gene families and ntl, which are known to function in notochord and somite development in embryos, are expressed in the vertebrae. It was also showed that in addition to the retinoic acid receptor (Rar), the vertebrae express alcohol dehydrogenase 1 and retinal dehydrogenase 2 which convert VA to all-trans-retinoic acid (RA). The assembled contigs also included cytochrome p450 family members, which inactivate RA, as well as phosphatidylcholine-retinol O-acetyltransferase, which converts VA to all-trans-retinyl ester, a stock form of VA. These data suggest that in teleost vertebrae, expression of various signals and transcription factors which function in the notochord and somite development is maintained until adult stage, and RA metabolism and signaling are active to regulate transcription of RA-responsible genes, such as hedgehog and hox genes. This is the first transcriptome analysis of teleost fish vertebrae.
Collapse
Affiliation(s)
- Harumi Ibaraki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Xiaoming Wu
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Susumu Uji
- National Research Institute of Aquaculture, Farming Biology Division, Fisheries Research Agency, Mie 516-0193, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshifumi Sakai
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
14
|
Willaredt MA, Schlüter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci 2015; 72:519-535. [PMID: 25332098 PMCID: PMC11113740 DOI: 10.1007/s00018-014-1759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/28/2023]
Abstract
Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.
Collapse
Affiliation(s)
- Marc A Willaredt
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| | - Tina Schlüter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
15
|
Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 2015; 16:110-23. [PMID: 25560970 PMCID: PMC4636111 DOI: 10.1038/nrm3932] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
16
|
Bérubé-Simard FA, Prudhomme C, Jeannotte L. YY1 acts as a transcriptional activator of Hoxa5 gene expression in mouse organogenesis. PLoS One 2014; 9:e93989. [PMID: 24705708 PMCID: PMC3976385 DOI: 10.1371/journal.pone.0093989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Christelle Prudhomme
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| |
Collapse
|
17
|
Ahn Y, Mullan HE, Krumlauf R. Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 2014; 388:134-44. [PMID: 24525295 DOI: 10.1016/j.ydbio.2014.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/13/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hillary E Mullan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
19
|
Kappen C, Yaworsky PJ, Muller YL, Salbaum JM. Transgenic studies on homeobox genes in nervous system development: spina bifida in Isl1 transgenic mice. Transgenic Res 2013; 22:343-58. [PMID: 23054727 PMCID: PMC3891654 DOI: 10.1007/s11248-012-9643-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/11/2012] [Indexed: 02/05/2023]
Abstract
To develop in vivo assays for homeobox gene function in neural development, we generated transgenic mice in which the expression of a homeobox gene is altered only within the nervous system, in neurons or neuronal precursor cells. Transgenic expression of Hoxc8 did not result in gross abnormalities, while a Hoxd4 transgene caused death shortly after birth. In neural progenitor cells, the motorneuron-specific homeodomain transcription factor Isl1 induced early developmental defects, including absence of anterior neural structures, profound defects in the neuroepithelium and defective neural tube closure. A fraction of Isl1 transgenic mice exhibited spina bifida. Isl1 transgene expression was also associated with decreased proliferation and increased Pbx1 expression in the ventral neural tube. Our results suggest a function for some homeobox genes in development of the nervous system, and that cell-type- and region-specific transgenic models will be useful to identify the cellular and molecular targets of homeobox transcription factors in nervous system development.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70810, USA
| | - Paul J. Yaworsky
- Pfizer Research Technology Center, 87 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Yunhua L. Muller
- National Institute of Diabetes and Kidney Diseases, Diabetes Epidemiology and Clinical Research Section, 445 N. 5th Street, Phoenix, AZ 85004, USA
| | - J. Michael Salbaum
- Laboratory for Regulation of Gene Expression, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70810, USA
| |
Collapse
|
20
|
Gaunt SJ, Paul YL. Changes in Cis-regulatory Elements during Morphological Evolution. BIOLOGY 2012; 1:557-74. [PMID: 24832508 PMCID: PMC4009813 DOI: 10.3390/biology1030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Accepted: 10/09/2012] [Indexed: 11/23/2022]
Abstract
How have animals evolved new body designs (morphological evolution)? This requires explanations both for simple morphological changes, such as differences in pigmentation and hair patterns between different Drosophila populations and species, and also for more complex changes, such as differences in the forelimbs of mice and bats, and the necks of amphibians and reptiles. The genetic changes and pathways involved in these evolutionary steps require identification. Many, though not all, of these events occur by changes in cis-regulatory (enhancer) elements within developmental genes. Enhancers are modular, each affecting expression in only one or a few tissues. Therefore it is possible to add, remove or alter an enhancer without producing changes in multiple tissues, and thereby avoid widespread (pleiotropic) deleterious effects. Ideally, for a given step in morphological evolution it is necessary to identify (i) the change in phenotype, (ii) the changes in gene expression, (iii) the DNA region, enhancer or otherwise, affected, (iv) the mutation involved, (v) the nature of the transcription or other factors that bind to this site. In practice these data are incomplete for most of the published studies upon morphological evolution. Here, the investigations are categorized according to how far these analyses have proceeded.
Collapse
Affiliation(s)
| | - Yu-Lee Paul
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK.
| |
Collapse
|
21
|
Natale A, Sims C, Chiusano ML, Amoroso A, D'Aniello E, Fucci L, Krumlauf R, Branno M, Locascio A. Evolution of anterior Hox regulatory elements among chordates. BMC Evol Biol 2011; 11:330. [PMID: 22085760 PMCID: PMC3227721 DOI: 10.1186/1471-2148-11-330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/15/2011] [Indexed: 11/10/2022] Open
Abstract
Background The Hox family of transcription factors has a fundamental role in segmentation pathways and axial patterning of embryonic development and their clustered organization is linked with the regulatory mechanisms governing their coordinated expression along embryonic axes. Among chordates, of particular interest are the Hox paralogous genes in groups 1-4 since their expression is coupled to the control of regional identity in the anterior nervous system, where the highest structural diversity is observed. Results To investigate the degree of conservation in cis-regulatory components that form the basis of Hox expression in the anterior nervous system, we have used assays for transcriptional activity in ascidians and vertebrates to compare and contrast regulatory potential. We identified four regulatory sequences located near the CiHox1, CiHox2 and CiHox4 genes of the ascidian Ciona intestinalis which direct neural specific domains of expression. Using functional assays in Ciona and vertebrate embryos in combination with sequence analyses of enhancer fragments located in similar positions adjacent to Hox paralogy group genes, we compared the activity of these four Ciona cis-elements with a series of neural specific enhancers from the amphioxus Hox1-3 genes and from mouse Hox paralogous groups 1-4. Conclusions This analysis revealed that Kreisler and Krox20 dependent enhancers critical in segmental regulation of the hindbrain appear to be specific for the vertebrate lineage. In contrast, neural enhancers that function as Hox response elements through the action of Hox/Pbx binding motifs have been conserved during chordate evolution. The functional assays reveal that these Hox response cis-elements are recognized by the regulatory components of different and extant species. Together, our results indicate that during chordate evolution, cis-elements dependent upon Hox/Pbx regulatory complexes, are responsible for key aspects of segmental Hox expression in neural tissue and appeared with urochordates after cephalochordate divergence.
Collapse
Affiliation(s)
- Alfonso Natale
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Phua SLC, Sivakamasundari V, Shao Y, Cai X, Zhang LF, Lufkin T, Featherstone M. Nuclear accumulation of an uncapped RNA produced by Drosha cleavage of a transcript encoding miR-10b and HOXD4. PLoS One 2011; 6:e25689. [PMID: 21991333 PMCID: PMC3185001 DOI: 10.1371/journal.pone.0025689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Patterning of the animal embryo's antero-posterior (AP) axis is dependent on spatially and temporally regulated Hox gene expression. The murine Hoxd4 gene has been proposed to harbour two promoters, an upstream promoter P2, and a downstream promoter P1, that lie 5.2 and 1.1 kilobase pairs (kb) upstream of the coding region respectively. The evolutionarily conserved microRNA-10b (miR-10b) gene lies in the Hoxd4 genomic locus in the intron separating the non-coding exons 4 and 5 of the P2 transcript and directly adjacent to the proposed P1 promoter. Hoxd4 transcription is regulated by a 3′ neural enhancer that harbours a retinoic acid response element (RARE). Here, we show that the expression profiles of Hoxd4 and miR-10b transcripts during neural differentiation of mouse embryonal carcinoma (EC) P19 cells are co-ordinately regulated, suggesting that both Hoxd4 and miR-10b expression is governed by the neural enhancer. Our observation that P1 transcripts are uncapped, together with the mapping of their 5′ ends, strongly suggests that they are generated by Drosha cleavage of P2 transcripts rather than by transcriptional initiation. This is supported by the colocalization of P1 and P2 transcripts to the same posterior expression domain in the mouse embryo. These uncapped P1 transcripts do not appear to possess an Internal Ribosomal Entry Site (IRES), but accumulate within multiple punctate bodies within the nucleus suggesting that they play a functional role. Finally, similar uncapped Drosha-cleaved P1-like transcripts originating from the paralogous Hoxb4/miR-10a locus were also identified. We propose that these transcripts may belong to a novel class of regulatory RNAs.
Collapse
Affiliation(s)
| | | | - Yu Shao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiaohan Cai
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Mark Featherstone
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
23
|
Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proc Natl Acad Sci U S A 2011; 108:16687-92. [PMID: 21930923 DOI: 10.1073/pnas.1103877108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retinoic acid (RA), an active vitamin A metabolite, is a key signaling molecule in vertebrate embryos. Morphogenetic RA gradients are thought to be set up by tissue-specific actions of retinaldehyde dehydrogenases (RALDHs) and catabolizing enzymes. According to the species, two enzymatic pathways (β-carotene cleavage and retinol oxidation) generate retinaldehyde, the substrate of RALDHs. Placental species depend on maternal retinol transferred to the embryo. The retinol-to-retinaldehyde conversion was thought to be achieved by several redundant enzymes; however, a random mutagenesis screen identified retinol dehydrogenase 10 [Rdh10(Trex) allele; Sandell LL, et al. (2007) Genes Dev 21:1113-1124] as responsible for a homozygous lethal phenotype with features of RA deficiency. We report here the production and characterization of unique murine Rdh10 loss-of-function alleles generated by gene targeting. We show that although Rdh10(-/-) mutants die at an earlier stage than Rdh10(Trex) mutants, their molecular patterning defects do not reflect a complete state of RA deficiency. Furthermore, we were able to correct most developmental abnormalities by administering retinaldehyde to pregnant mothers, thereby obtaining viable Rdh10(-/-) mutants. This demonstrates the rescue of an embryonic lethal phenotype by simple maternal administration of the missing retinoid compound. These results underscore the importance of maternal retinoids in preventing congenital birth defects, and lead to a revised model of the importance of RDH10 and RALDHs in controlling embryonic RA distribution.
Collapse
|
24
|
Stevens CB, Cameron DA, Stenkamp DL. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC DEVELOPMENTAL BIOLOGY 2011; 11:51. [PMID: 21878117 PMCID: PMC3189157 DOI: 10.1186/1471-213x-11-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022]
Abstract
Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor mediates the effects of endogenous, as well as exogenous RA, on rod development.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | |
Collapse
|
25
|
He X, Yan YL, Eberhart JK, Herpin A, Wagner TU, Schartl M, Postlethwait JH. miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol 2011; 357:463-77. [PMID: 21787766 DOI: 10.1016/j.ydbio.2011.07.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/18/2022]
Abstract
Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in embryos showed that the rarab 3'UTR is a miR-196 target for pectoral fin bud initiation. These results show that a Hox cluster microRNA modulates development of axial patterning similar to nearby protein-coding Hox genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling.
Collapse
Affiliation(s)
- Xinjun He
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
28
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
29
|
Punnamoottil B, Kikuta H, Pezeron G, Erceg J, Becker TS, Rinkwitz S. Enhancer detection in zebrafish permits the identification of neuronal subtypes that express Hox4 paralogs. Dev Dyn 2008; 237:2195-208. [DOI: 10.1002/dvdy.21618] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Cañestro C, Postlethwait JH. Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev Biol 2007; 305:522-38. [PMID: 17397819 DOI: 10.1016/j.ydbio.2007.02.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/18/2007] [Accepted: 02/26/2007] [Indexed: 11/23/2022]
Abstract
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.
Collapse
Affiliation(s)
- Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
31
|
Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 2007; 134:177-87. [PMID: 17164423 PMCID: PMC1765950 DOI: 10.1242/dev.02706] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) is essential for normal vertebrate development, including the patterning of the central nervous system. During early embryogenesis, RA is produced in the trunk mesoderm through the metabolism of vitamin A derived from the maternal diet and behaves as a morphogen in the developing hindbrain where it specifies nested domains of Hox gene expression. The loss of endogenous sources of RA can be rescued by treatment with a uniform concentration of exogenous RA, indicating that domains of RA responsiveness can be shaped by mechanisms other than the simple diffusion of RA from a localized posterior source. Here, we show that the cytochrome p450 enzymes of the Cyp26 class, which metabolize RA into polar derivatives, function redundantly to shape RA-dependent gene-expression domains during hindbrain development. In zebrafish embryos depleted of the orthologs of the three mammalian CYP26 genes CYP26A1, CYP26B1 and CYP26C1, the entire hindbrain expresses RA-responsive genes that are normally restricted to nested domains in the posterior hindbrain. Furthermore, we show that Cyp26 enzymes are essential for exogenous RA to rescue hindbrain patterning in RA-depleted embryos. We present a ;gradient-free' model for hindbrain patterning in which differential RA responsiveness along the hindbrain anterior-posterior axis is shaped primarily by the dynamic expression of RA-degrading enzymes.
Collapse
Affiliation(s)
- Rafael E Hernandez
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
32
|
Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol 2006; 299:582-93. [PMID: 17010333 DOI: 10.1016/j.ydbio.2006.08.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 12/14/2022]
Abstract
The antero-posterior (AP) and dorso-ventral (DV) patterning of the neural tube is controlled in part by HOX and PAX transcription factors, respectively. We have reported on a neural enhancer of Hoxd4 that directs expression in the CNS with the correct anterior border in the hindbrain. Comparison to the orthologous enhancer of zebrafish revealed seven conserved footprints including an obligatory retinoic acid response element (RARE), and adjacent sites D, E and F. Whereas enhancer function in the embryonic CNS is destroyed by separation of the RARE from sites D-E-F by a half turn of DNA, it is rescued by one full turn, suggesting stereospecific constraints between DNA-bound retinoid receptors and the factor(s) recognizing sites D-E-F. Alterations in the DV trajectory of the Hoxd4 anterior expression border following mutation of site D or E implicated transcriptional regulators active across the DV axis. We show that PAX6 specifically binds sites D and E in vitro, and use chromatin immunoprecipitation to demonstrate recruitment of PAX6 to the Hoxd4 neural enhancer in mouse embryos. Hoxd4 expression throughout the CNS is reduced in Pax6 mutant Sey(Neu) animals on embryonic day 8. Additionally, stage-matched zebrafish embryos having decreased pax6a and/or pax6b activity display malformed rhombomere boundaries and an anteriorized hoxd4a expression border. These results reveal an evolutionarily conserved role for Pax6 in AP-restricted expression of vertebrate Hoxd4 orthologs.
Collapse
Affiliation(s)
- Christof Nolte
- McGill Cancer Centre, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 2006; 281:25926-39. [PMID: 16757478 DOI: 10.1074/jbc.m602555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct patterning of the antero-posterior axis of the embryonic trunk is dependent on spatiotemporally restricted Hox gene expression. In this study, we identified components of the Hoxd4 P1 promoter directing expression in neurally differentiating retinoic acid-treated P19 cells. We mapped three nucleosomes that are subsequently remodeled into an open chromatin state upon retinoic acid-induced Hoxd4 transcription. These nucleosomes spanned the Hoxd4 transcriptional start site in addition to a GC-rich positive regulatory element located 3' to the initiation site. We further identified two major cis-acting regulatory elements. An autoregulatory element was shown to recruit HOXD4 and its cofactor PBX1 and to positively regulate Hoxd4 expression in differentiating P19 cells. Conversely, the Polycomb group (PcG) protein Ying-Yang 1 (YY1) binds to an internucleosomal linker and represses Hoxd4 transcription before and during transcriptional activation. Sequential chromatin immunoprecipitation studies revealed that the PcG protein MEL18 was co-recruited with YY1 only in undifferentiated P19 cells, suggesting a role for MEL18 in silencing Hoxd4 transcription in undifferentiated P19 cells. This study links for the first time local chromatin remodeling events that take place during transcriptional activation with the dynamics of transcription factor association and DNA accessibility at a Hox regulatory region.
Collapse
Affiliation(s)
- Laila Kobrossy
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6 Canada
| | | | | |
Collapse
|
34
|
Lee AP, Koh EGL, Tay A, Brenner S, Venkatesh B. Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci U S A 2006; 103:6994-9. [PMID: 16636282 PMCID: PMC1459007 DOI: 10.1073/pnas.0601492103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes in vertebrates are clustered, and the organization of the clusters has been highly conserved during evolution. The conservation of Hox clusters has been attributed to enhancers located within and outside the Hox clusters that are essential for the coordinated "temporal" and "spatial" expression patterns of Hox genes in developing embryos. To identify evolutionarily conserved regulatory elements within and outside the Hox clusters, we obtained contiguous sequences for the conserved syntenic blocks from the seven Hox loci in fugu and carried out a systematic search for conserved noncoding sequences (CNS) in the human, mouse, and fugu Hox loci. Our analysis has uncovered unusually large conserved syntenic blocks at the HoxA and HoxD loci. The conserved syntenic blocks at the human and mouse HoxA and HoxD loci span 5.4 Mb and 4 Mb and contain 21 and 19 genes, respectively. The corresponding regions in fugu are 16- and 12-fold smaller. A large number of CNS was identified within the Hox clusters and outside the Hox clusters spread over large regions. The CNS include previously characterized enhancers and overlap with the 5' global control regions of HoxA and HoxD clusters. Most of the CNS are likely to be control regions involved in the regulation of Hox and other genes in these loci. We propose that the regulatory elements spread across large regions on either side of Hox clusters are a major evolutionary constraint that has maintained the exceptionally long syntenic blocks at the HoxA and HoxD loci.
Collapse
Affiliation(s)
- Alison P. Lee
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Esther G. L. Koh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Alice Tay
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| |
Collapse
|
35
|
Abstract
Retinoid signaling plays an important role in the developmental patterning of the hindbrain. Studies of the teratogenic effects of retinoids showed early on that the hindbrain suffered patterning defects in cases of retinoid excess or deficiency. Closer examination of these effects in animal models suggested that retinoids might play a physiological role in specifying the antero-posterior axis of the hindbrain. This idea was supported by the localization of retinoid synthetic and degradative enzymes, binding proteins, and receptors to the hindbrain and neighboring regions of the neuroepithelium and the mesoderm. In parallel, it became clear that the molecular patterning of the hindbrain, in terms of the regionalized expression of Hox genes and other developmental regulatory genes, is profoundly influenced by retinoid signaling.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Physiology, PB 1103 Blindern, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
36
|
Wada H, Escriva H, Zhang S, Laudet V. Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Dev Dyn 2006; 235:1522-31. [PMID: 16538655 DOI: 10.1002/dvdy.20730] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3' AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3' AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3' flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5' flanking region, and this drives an expression pattern similar to the RARE element found in the 3' flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression.
Collapse
Affiliation(s)
- Hiroshi Wada
- Seto Marine Biological Laboratory, FSERC, Kyoto University, Wakayama, Japan.
| | | | | | | |
Collapse
|
37
|
Parisi MA, Lipman NS, Clarke CM, Taylor B, Kapur RP. Evaluation of Hox11L1 in the fmc/fmc rat model of chronic intestinal pseudo-obstruction. J Pediatr Surg 2005; 40:1760-5. [PMID: 16291166 DOI: 10.1016/j.jpedsurg.2005.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/PURPOSE The spontaneous rat mutation, familial megacecum and colon (fmc), is responsible for an autosomal recessive phenotype similar to intestinal pseudo-obstruction observed in Hox11L1-/- mice. We hypothesized that fmc is a mutant allele of the rat Hox11L1 gene and tested this hypothesis by direct sequencing. METHODS DNA was extracted from fmc/fmc rats and wild-type littermates. All exons, introns, and DNA 5' to the transcriptional start site of rat Hox11L1 were directly sequenced, and data from the mutant and wild-type animals were compared with each other and corresponding genomic data from humans and mice. RESULTS Alignment of sequences obtained from rat, human, and mouse indicates that putative regulatory elements of the Hox11L1 gene are conserved in rat, mice, and humans. No mutations were identified in the Hox11L1 allele of fmc/fmc rats. CONCLUSIONS Despite the phenotypic similarities between fmc/fmc rats and Hox11L1-/- mice, fmc does not appear to be a mutant allele of the Hox11L1 gene.
Collapse
Affiliation(s)
- Melissa A Parisi
- Department of Pediatrics, Children's Hospital and Regional Medical Center and University of Washington, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
38
|
Szutorisz H, Dillon N, Tora L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 2005; 30:593-9. [PMID: 16126390 DOI: 10.1016/j.tibs.2005.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 11/23/2022]
Abstract
Activation of eukaryotic genes requires a tight temporal control of trans-acting-factor binding to different types of sequence elements. General transcription factors (GTFs) have a central role in the regulation of RNA polymerase II (Pol II) function because they are involved in the initiation of transcription at all class II promoters. Recent studies have shown that GTFs and Pol II are recruited to enhancer elements and that this binding is an early event in gene activation. We propose that an important role of some enhancers is to function as nucleation centres for the assembly of the pre-initiation complex to regulate the timing of gene activation during development, differentiation and the cell cycle.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
39
|
Prabhudesai SN, Cameron DA, Stenkamp DL. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish. Dev Biol 2005; 287:157-67. [PMID: 16197938 PMCID: PMC2804901 DOI: 10.1016/j.ydbio.2005.08.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/25/2005] [Accepted: 08/30/2005] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA) is a signaling molecule important for photoreceptor development in vertebrates. The purpose of this study was to examine the mechanisms of the effects of RA upon developing rod and cone photoreceptors in the embryonic zebrafish. Exposure to exogenous RA increased the number of photoreceptors expressing rod opsin and red cone opsin, and decreased the number of photoreceptors expressing the blue and UV cone opsins, suggesting targeted effects of RA on photoreceptor development. RA exposure also increased opsin expression in individual rods and red cones, but decreased opsin expression in individual blue and UV cones, as indicated by differences in the strength of opsin hybridization in identified photoreceptors. RA exposure did not, however, significantly alter quantitative measures of photoreceptor pattern in a manner expected for changes in photoreceptor fate. These observations collectively indicate that RA treatment does not affect photoreceptor fate, but rather differentially influences opsin transcription in determined photoreceptors. An enzyme involved in RA synthesis, RALDH2, was immunocytochemically localized to retinal progenitor cells and the retinal pigmented epithelium (RPE), suggesting the presence of RA in the vicinity of developing photoreceptors. However, expression of an RA response element-driven transgene was restricted to the RPE, retinal progenitors, and a small population of neurons in ventral retina, suggesting that the endogenous RA signaling system is spatially limited within the eye.
Collapse
Affiliation(s)
- Shubhangi N. Prabhudesai
- Department of Biological Sciences, and Neuroscience Program, University of Idaho, Moscow, ID 83844-3051, USA
| | - David A. Cameron
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, and Neuroscience Program, University of Idaho, Moscow, ID 83844-3051, USA
- Corresponding author. Fax: +1 208 885 7905. (D.L. Stenkamp)
| |
Collapse
|
40
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
41
|
Postlethwait J, Ruotti V, Carvan MJ, Tonellato PJ. Automated analysis of conserved syntenies for the zebrafish genome. Methods Cell Biol 2005; 77:255-71. [PMID: 15602916 DOI: 10.1016/s0091-679x(04)77014-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
42
|
Serpente P, Tümpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dollé P, Chambon P, Krumlauf R, Gould AP. Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development 2005; 132:503-13. [PMID: 15634700 DOI: 10.1242/dev.01593] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During anteroposterior (AP) patterning of the developing hindbrain, the expression borders of many transcription factors are aligned at interfaces between neural segments called rhombomeres (r). Mechanisms regulating segmental expression have been identified for Hox genes, but for other classes of AP patterning genes there is only limited information. We have analysed the murine retinoic acid receptor β gene (Rarb) and show that it is induced prior to segmentation, by retinoic-acid (RA) signalling from the mesoderm. Induction establishes a diffuse expression border that regresses until, at later stages, it is stably maintained at the r6/r7 boundary by inputs from Hoxb4 and Hoxd4. Separate RA- and Hox-responsive enhancers mediate the two phases of Rarb expression: a regulatory mechanism remarkably similar to that of Hoxb4. By showing that Rarb is a direct transcriptional target of Hoxb4, this study identifies a new molecular link, completing a feedback circuit between Rarb, Hoxb4 and Hoxd4. We propose that the function of this circuit is to align the initially incongruent expression of multiple RA-induced genes at a single segment boundary.
Collapse
MESH Headings
- Aldehyde Oxidoreductases/genetics
- Aldehyde Oxidoreductases/metabolism
- Animals
- Base Sequence
- Binding Sites
- Chickens
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Rhombencephalon/cytology
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Sequence Alignment
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Patricia Serpente
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cell Biol 2004; 24:8090-103. [PMID: 15340071 PMCID: PMC515066 DOI: 10.1128/mcb.24.18.8090-8103.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.0) and E10.5 mouse embryos. During Hoxd4 induction in both systems, we observed that histone modifications typical of transcriptionally active chromatin occurred first at the 3' neural enhancer and then at the promoter. Moreover, the sequential distribution of histone modifications between E8.0 and E10.5 was consistent with a spreading of open chromatin, starting with the enhancer, followed by successively more 5' intervening sequences, and culminating at the promoter. Neither RNA polymerase II (Pol II) nor CBP associated with the inactive gene. During Hoxd4 induction, CBP and RNA Pol II were recruited first to the enhancer and then to the promoter. Whereas the CBP association was transient, RNA Pol II remained associated with both regulatory regions. Histone modification and transcription factor recruitment occurred in posterior, Hox-expressing embryonic tissues, but never in anterior tissues, where such genes are inactive. Together, our observations demonstrate that the direction of histone modifications at Hoxd4 mirrors colinear gene activation across Hox clusters and that the establishment of anterior and posterior compartments is accompanied by the imposition of distinct chromatin states.
Collapse
Affiliation(s)
- Mojgan Rastegar
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
44
|
Wilson L, Gale E, Chambers D, Maden M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev Biol 2004; 269:433-46. [PMID: 15110711 DOI: 10.1016/j.ydbio.2004.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 11/21/2022]
Abstract
The development of neural subtypes in the dorsoventral (DV) axis of the vertebrate central nervous system (CNS) involves the integration of signalling pathways coupled with the combinatorial expression of homeodomain transcription factors. Previous studies have implicated a role for retinoic acid in the specification of a subtype of motor neurons (MN) and in the patterning of a group of interneurons within the ventral spinal cord. In this study, we use the vitamin A-deficient (VAD) quail model to further investigate the role of retinoids in the patterning of the neural tube. Using genetic markers specific to neuronal cell populations, we demonstrate that in the absence of retinoic acid, there is a disruption to the molecular mechanisms associated with the dorsoventral patterning of the spinal cord. In particular, we observe an uneven dorsal expansion of ventral-specific genes, accompanied by a reduction in the domain of roof plate and dorsal patterning genes, both of which are rescued upon addition of retinoids during development. In addition, there is a loss of V1 interneuron-specific gene expression and a decrease in the ventricular zone expression of motor neuron patterning genes. Interestingly, these effects are localised to the rostral half of the spinal cord, indicating that RA is integrated in both anteroposterior (AP) and dorsoventral patterning processes. Using differential display techniques, we have isolated 27 retinoic acid-regulated genes within the spinal cord that together reveal several interesting potential biological functions for retinoids within the avian neural tube. In summary, we propose that retinoids have an essential role in the patterning of the dorsoventral axis of the spinal cord, and are also required for the correct integration of anteroposterior patterning signals with dorsoventral determinants in the rostral spinal cord.
Collapse
Affiliation(s)
- Leigh Wilson
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
45
|
Houle M, Sylvestre JR, Lohnes D. Retinoic acid regulates a subset of Cdx1 function in vivo. Development 2004; 130:6555-67. [PMID: 14660544 DOI: 10.1242/dev.00889] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox gene products are key players in establishing positional identity along the anteroposterior (AP) axis. In vertebrates, gain or loss of Hox expression along the AP axis often leads to inappropriate morphogenesis, typically manifesting as homeotic transformations that affect the vertebrae and/or hindbrain. Various signalling pathways are known to impact on Hox expression, including the retinoid signalling pathway. Exogenous retinoic acid (RA), disruption of enzymes involved in maintaining normal embryonic RA distribution or mutation of the retinoid receptors (RARs and RXRs) can all impact on Hox expression with concomitant effects on AP patterning. Several Hox loci have well characterized RA response elements (RAREs), which have been shown to regulate functionally relevant Hox expression in the neurectoderm. A similar crucial function for any RARE in mesodermal Hox expression has, however, not been documented. The means by which RA regulates mesodermal Hox expression could therefore be either through an undocumented direct mechanism or through an intermediary; these mechanisms are not necessarily exclusive. In this regard, we have found that Cdx1 may serve as such an intermediary. Cdx1 encodes a homeobox transcription factor that is crucial for normal somitic expression of several Hox genes, and is regulated by retinoid signalling in vivo and in vitro likely through an atypical RARE in the proximal promoter. In order to more fully understand the relationship between retinoid signalling, Cdx1 expression and AP patterning, we have derived mice in which the RARE has been functionally inactivated. These RARE-null mutants exhibit reduced expression of Cdx1 at all stages examined, vertebral homeotic transformations and altered Hox gene expression which correlates with certain of the defects seen in Cdx1-null offspring. These findings are consistent with a pivotal role for retinoid signalling in governing a subset of expression of Cdx1 crucial for normal vertebral patterning.
Collapse
Affiliation(s)
- Martin Houle
- Department of Molecular Biology, Université de Montréal, 110 ave des Pins, ouest, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
46
|
Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 2004; 14:1-10. [PMID: 14707165 PMCID: PMC314266 DOI: 10.1101/gr.1717804] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pufferfish skeleton lacks ribs and pelvic fins, and has fused bones in the cranium and jaw. It has been hypothesized that this secondarily simplified pufferfish morphology is due to reduced complexity of the pufferfish Hox complexes. To test this hypothesis, we determined the genomic structure of Hox clusters in the Southern pufferfish Spheroides nephelus and interrogated genomic databases for the Japanese pufferfish Takifugu rubripes (fugu). Both species have at least seven Hox clusters, including two copies of Hoxb and Hoxd clusters, a single Hoxc cluster, and at least two Hoxa clusters, with a portion of a third Hoxa cluster in fugu. Results support genome duplication before divergence of zebrafish and pufferfish lineages, followed by loss of a Hoxc cluster in the pufferfish lineage and loss of a Hoxd cluster in the zebrafish lineage. Comparative analysis shows that duplicate genes continued to be lost for hundreds of millions of years, contrary to predictions for the permanent preservation of gene duplicates. Gene expression analysis in fugu embryos by in situ hybridization revealed evolutionary change in gene expression as predicted by the duplication-degeneration-complementation model. These experiments rule out the hypothesis that the simplified pufferfish body plan is due to reduction in Hox cluster complexity, and support the notion that genome duplication contributed to the radiation of teleosts into half of all vertebrate species by increasing developmental diversification of duplicate genes in daughter lineages.
Collapse
Affiliation(s)
- Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97402, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mainguy G, In der Rieden PMJ, Berezikov E, Woltering JM, Plasterk RHA, Durston AJ. A position-dependent organisation of retinoid response elements is conserved in the vertebrate Hox clusters. Trends Genet 2003; 19:476-9. [PMID: 12957539 DOI: 10.1016/s0168-9525(03)00202-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Gaëll Mainguy
- Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|