1
|
Martianov I, Le Gras S, Davidson G, Davidson I. The transcription factor IID subunit Taf13 is dispensable for TATA binding protein promoter recruitment and RNA polymerase II transcription. iScience 2025; 28:112286. [PMID: 40491483 PMCID: PMC12148609 DOI: 10.1016/j.isci.2025.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/22/2024] [Accepted: 03/21/2025] [Indexed: 06/11/2025] Open
Abstract
The multiprotein complex TFIID, comprising the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is an essential component of the RNA polymerase II (Pol II) preinitiation complex (PIC). Cryo-electron microscopy studies suggested a critical role of the TAF11-TAF13 heterodimer in TBP promoter deposition upstream of the transcription start site. To investigate this hypothesis, we inactivated the gene encoding Taf13 in mice and embryonic stem cells (ESCs). Taf13-null embryos implant and survive until E6.5, but fail to undergo gastrulation, while Taf13-null ESCs are viable, but fail to form embryoid bodies and differentiate. Taf13 loss had little effect on TFIID integrity and led to only a mild reduction of TBP promoter recruitment, but led to altered PIC formation and globally reduced Pol II recruitment. Thus, the Taf11-Taf13 heterodimer is not essential for TBP/TFIID recruitment, revealing plasticity in the pathways of PIC formation.
Collapse
Affiliation(s)
- Igor Martianov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Stephanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- GenomEast Sequencing Platform, 67404 Illkirch, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
2
|
Haantjes RR, Strik J, de Visser J, Postma M, van Amerongen R, van Boxtel AL. Towards an integrated view and understanding of embryonic signalling during murine gastrulation. Cells Dev 2025:204028. [PMID: 40316255 DOI: 10.1016/j.cdev.2025.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
At the onset of mammalian gastrulation, secreted signalling molecules belonging to the Bmp, Wnt, Nodal and Fgf signalling pathways induce and pattern the primitive streak, marking the start for the cellular rearrangements that generate the body plan. Our current understanding of how signalling specifies and organises the germ layers in three dimensions, was mainly derived from genetic experimentation using mouse embryos performed over many decades. However, the exact spatiotemporal sequence of events is still poorly understood, both because of a lack of tractable models that allow for real time visualisation of signalling and differentiation and because of the molecular and cellular complexity of these early developmental events. In recent years, a new wave of in vitro embryo models has begun to shed light on the dynamics of signalling during primitive streak formation. Here we discuss the similarities and differences between a widely adopted mouse embryo model, termed gastruloids, and real embryos from a signalling perspective. We focus on the gene regulatory networks that underlie signalling pathway interactions and outline some of the challenges ahead. Finally, we provide a perspective on how embryo models may be used to advance our understanding of signalling dynamics through computational modelling.
Collapse
Affiliation(s)
- Rhanna R Haantjes
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Jeske Strik
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, the Netherlands.
| | - Joëlle de Visser
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Marten Postma
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Thowfeequ S, Hanna CW, Srinivas S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat Rev Mol Cell Biol 2025; 26:255-275. [PMID: 39627419 DOI: 10.1038/s41580-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Courtney W Hanna
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Szenker-Ravi E, Ott T, Yusof A, Chopra M, Khatoo M, Pak B, Xuan Goh W, Beckers A, Brady AF, Ewans LJ, Djaziri N, Almontashiri NAM, Alghamdi MA, Alharby E, Dasouki M, Romo L, Tan WH, Maddirevula S, Alkuraya FS, Giordano JL, Alkelai A, Wapner RJ, Stals K, Alfadhel M, Alswaid AF, Bogusch S, Schafer-Kosulya A, Vogel S, Vick P, Schweickert A, Wakeling M, Moreau de Bellaing A, Alshamsi AM, Sanlaville D, Mbarek H, Saad C, Ellard S, Eisenhaber F, Tripolszki K, Beetz C, Bauer P, Gossler A, Eisenhaber B, Blum M, Bouvagnet P, Bertoli-Avella A, Amiel J, Gordon CT, Reversade B. CIROZ is dispensable in ancestral vertebrates but essential for left-right patterning in humans. Am J Hum Genet 2025; 112:353-373. [PMID: 39753129 PMCID: PMC11866977 DOI: 10.1016/j.ajhg.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects. While the knockout of Ciroz in mice also leads to situs anomalies, we unexpectedly find that its targeted inactivation in zebrafish and Xenopus does not lead to observable LR anomalies. Moreover, CIROZ is absent or obsolete in select animals with motile cilia at their LRO, including Carnivora, Atherinomorpha fish, or jawless vertebrates. In summary, this evo-devo study identifies CIROZ as an essential gene for breaking bilateral embryonic symmetry in humans and mice, whereas we witness its contemporary pseudogenization in discrete vertebrate species.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Amirah Yusof
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Muznah Khatoo
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Beatrice Pak
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Wei Xuan Goh
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow HA1 3UJ, UK
| | - Lisa J Ewans
- Center for Clinical Genetics, Sydney Children's Hospitals Network Randwick, Discipline of Pediatrics and Child Health, Faculty of Medicine and Health, UNSW, Center for Community Genomics, the Garvan Institute, Sydney, NSW, Australia
| | - Nabila Djaziri
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetics Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Majed Dasouki
- AdventHealth Genomics & Personalized Health at Orlando, Department of Medical Genetics & Genomics, 601 E. Rollins St., Suite 125, Orlando, FL 32804, USA
| | - Lindsay Romo
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA; Harvard Medical Genetics Training Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wen-Hann Tan
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jessica L Giordano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ronald J Wapner
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Karen Stals
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Majid Alfadhel
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, MNG-HA, Riyadh, Saudi Arabia
| | - Abdulrahman Faiz Alswaid
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia
| | - Susanne Bogusch
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Anna Schafer-Kosulya
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Sebastian Vogel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Matthew Wakeling
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Anne Moreau de Bellaing
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1 Claude Bernard, Lyon, France
| | - Aisha M Alshamsi
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Damien Sanlaville
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Sian Ellard
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | | | | | | | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Patrice Bouvagnet
- CPDP, Hôpital MFME, CHU de Martinique, BP632, 97200 Fort de France, France
| | | | - Jeanne Amiel
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Christopher T Gordon
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Kretzschmar J, Goodwin K, McDole K. Organizer activity in the mouse embryo. Cells Dev 2025:204001. [PMID: 39921092 DOI: 10.1016/j.cdev.2025.204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The discovery of the embryonic organizer by Hilde Mangold and Hans Spemann in 1924 was one of the most ground-breaking achievements in the 1900 century for developmental biologists and beyond. Ever since the organizer was first described in newts, developmental biologists have been trying to uncover similar structures in other organisms. While the Spemann-Mangold organizer as an axis-inducing centre is evolutionary conserved in vertebrates, similar organizing centres have yet to be observed in mammals. In this review, we will provide a brief historical overview of the discovery of the mouse gastrula organizer and discuss its potential as an organizer throughout early post-implantation mouse development. We discuss cell migrations through the mouse organizer region and morphogenesis of organizer cells and tissues. Finally, we examine the evidence arguing for and against the existence of a head organizer in mice, and the role of the anterior visceral endoderm and the prechordal plate in organizing head structures.
Collapse
Affiliation(s)
- Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Katharine Goodwin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
6
|
Hongo I, Yamaguchi C, Okamoto H. Brain enlargement with rostral bias in larvae from a spontaneously occurring female variant line of Xenopus; role of aberrant embryonic Wnt/β-catenin signaling. Cells Dev 2024; 179:203918. [PMID: 38574816 DOI: 10.1016/j.cdev.2024.203918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Increased brain size and its rostral bias are hallmarks of vertebrate evolution, but the underlying developmental and genetic basis remains poorly understood. To provide clues to understanding vertebrate brain evolution, we investigated the developmental mechanisms of brain enlargement observed in the offspring of a previously unrecognized, spontaneously occurring female variant line of Xenopus that appears to reflect a genetic variation. Brain enlargement in larvae from this line showed a pronounced rostral bias that could be traced back to the neural plate, the primordium of the brain. At the gastrula stage, the Spemann organizer, which is known to induce the neural plate from the adjacent dorsal ectoderm and give it the initial rostrocaudal patterning, was expanded from dorsal to ventral in a large proportion of the offspring of variant females. Consistently, siamois expression, which is required for Spemann organizer formation, was expanded laterally from dorsal to ventral at the blastula stage in variant offspring. This implies that the active region of the Wnt/β-catenin signaling pathway was similarly expanded in advance on the dorsal side, as siamois is a target gene of this pathway. Notably, the earliest detectable change in variant offspring was in fertilized eggs, in which maternal wnt11b mRNA, a candidate dorsalizing factor responsible for activating Wnt/β-catenin signaling in the dorsal embryonic region, had a wider distribution in the vegetal cortical cytoplasm. Since lateral spreading of wnt11b mRNA, and possibly that of other potential maternal dorsalizing factors in these eggs, is expected to facilitate lateral expansion of the active region of the Wnt/β-catenin pathway during subsequent embryonic stages, we concluded that aberrant Wnt/β-catenin signaling could cause rostral-biased brain enlargement via expansion of siamois expression and consequent expansion of the Spemann organizer in Xenopus. Our studies of spontaneously occurring variations in brain development in Xenopus would provide hints for uncovering genetic mutations that drive analogous morphogenetic variations during vertebrate brain evolution.
Collapse
Affiliation(s)
- Ikuko Hongo
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Chihiro Yamaguchi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Harumasa Okamoto
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
7
|
Harmoush B, Viebahn C, Tsikolia N. Development of node architecture and emergence of molecular organizer characteristics in the pig embryo. Dev Dyn 2024. [PMID: 38733144 DOI: 10.1002/dvdy.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The avian node is the equivalent of the amphibian Spemann's organizer, as indicated by its ability to induce a secondary axis, cellular contribution, and gene expression, whereas the node of the mouse, which displays limited inductive capacities, was suggested to be a part of spatially distributed signaling. Furthermore, the structural identity of the mouse node is subject of controversy, while little is known about equivalent structures in other mammals. RESULTS We analyzed the node and emerging organizer in the pig using morphology and the expression of selected organizer genes prior to and during gastrulation. The node was defined according to the "four-quarter model" based on comparative consideration. The node of the pig displays a multilayered, dense structure that includes columnar epithelium, bottle-like cells in the dorsal part, and mesenchymal cells ventrally. Expression of goosecoid (gsc), chordin, and brachyury, together with morphology, reveal the consecutive emergence of three distinct domains: the gastrulation precursor domain, the presumptive node, and the mature node. Additionally, gsc displays a ventral expression domain prior to epiblast epithelialization. CONCLUSION Our study defines the morphological and molecular context of the emerging organizer equivalent in the pig and suggests a sequential development of its function.
Collapse
Affiliation(s)
- Braah Harmoush
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Tisler M, Ott T, Blum M, Schweickert A. Expression and cilia associated localization of Histone deacetylases 6 in Xenopus. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000919. [PMID: 37649557 PMCID: PMC10463039 DOI: 10.17912/micropub.biology.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Histone deacetylases (HDACs) are key posttranslational modulators of the proteome. We show that expression of histone deacetylase 6 ( hdac6 ) is dynamic and appears in a tissue specific manner throughout embryonic development of the frog Xenopus laevis . Interestingly, hdac6 transcripts often associate with ciliated tissues, like the left-right organizer at neurula stage or the pronephros. In the embryonic skin, Hdac6 protein localizes to the cilia base, suggesting a functional link.
Collapse
Affiliation(s)
- Matthias Tisler
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Bavaria, Germany
| | - Tim Ott
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Martin Blum
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Axel Schweickert
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
11
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
14
|
Imoto Y, Nakamura T, Escolar EG, Yoshiwaki M, Kojima Y, Yabuta Y, Katou Y, Yamamoto T, Hiraoka Y, Saitou M. Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Sci Alliance 2022; 5:e202201591. [PMID: 35944930 PMCID: PMC9363502 DOI: 10.26508/lsa.202201591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell-level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data.
Collapse
Affiliation(s)
- Yusuke Imoto
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Emerson G Escolar
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | | | - Yoji Kojima
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuaki Hiraoka
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
- Center for Advanced Study, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Tingler M, Brugger A, Feistel K, Schweickert A. dmrt2 and myf5 Link Early Somitogenesis to Left-Right Axis Determination in Xenopus laevis. Front Cell Dev Biol 2022; 10:858272. [PMID: 35813209 PMCID: PMC9260042 DOI: 10.3389/fcell.2022.858272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The vertebrate left-right axis is specified during neurulation by events occurring in a transient ciliated epithelium termed left-right organizer (LRO), which is made up of two distinct cell types. In the axial midline, central LRO (cLRO) cells project motile monocilia and generate a leftward fluid flow, which represents the mechanism of symmetry breakage. This directional fluid flow is perceived by laterally positioned sensory LRO (sLRO) cells, which harbor non-motile cilia. In sLRO cells on the left side, flow-induced signaling triggers post-transcriptional repression of the multi-pathway antagonist dand5. Subsequently, the co-expressed Tgf-β growth factor Nodal1 is released from Dand5-mediated repression to induce left-sided gene expression. Interestingly, Xenopus sLRO cells have somitic fate, suggesting a connection between LR determination and somitogenesis. Here, we show that doublesex and mab3-related transcription factor 2 (Dmrt2), known to be involved in vertebrate somitogenesis, is required for LRO ciliogenesis and sLRO specification. In dmrt2 morphants, misexpression of the myogenic transcription factors tbx6 and myf5 at early gastrula stages preceded the misspecification of sLRO cells at neurula stages. myf5 morphant tadpoles also showed LR defects due to a failure of sLRO development. The gain of myf5 function reintroduced sLRO cells in dmrt2 morphants, demonstrating that paraxial patterning and somitogenesis are functionally linked to LR axis formation in Xenopus.
Collapse
|
16
|
Identification of the central intermediate in the extra-embryonic to embryonic endoderm transition through single-cell transcriptomics. Nat Cell Biol 2022; 24:833-844. [PMID: 35681011 DOI: 10.1038/s41556-022-00923-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
High-resolution maps of embryonic development suggest that acquisition of cell identity is not limited to canonical germ layers but proceeds via alternative routes. Despite evidence that visceral organs are formed via embryonic and extra-embryonic trajectories, the production of organ-specific cell types in vitro focuses on the embryonic one. Here we resolve these differentiation routes using massively parallel single-cell RNA sequencing to generate datasets from FOXA2Venus reporter mouse embryos and embryonic stem cell differentiation towards endoderm. To relate cell types in these datasets, we develop a single-parameter computational approach and identify an intermediate en route from extra-embryonic identity to embryonic endoderm, which we localize spatially in embryos at embryonic day 7.5. While there is little evidence for this cell type in embryonic stem cell differentiation, by following the extra-embryonic trajectory starting with naïve extra-embryonic endoderm stem cells we can generate embryonic gut spheroids. Exploiting developmental plasticity therefore offers alternatives to pluripotent cells and opens alternative avenues for in vitro differentiation.
Collapse
|
17
|
Sears KE, Gullapalli K, Trivedi D, Mihas A, Bukys MA, Jensen J. Controlling neural territory patterning from pluripotency using a systems developmental biology approach. iScience 2022; 25:104133. [PMID: 35434550 PMCID: PMC9010746 DOI: 10.1016/j.isci.2022.104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/09/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Successful manufacture of specialized human cells requires process understanding of directed differentiation. Here, we apply high-dimensional Design of Experiments (HD-DoE) methodology to identify critical process parameters (CPPs) that govern neural territory patterning from pluripotency—the first stage toward specification of central nervous system (CNS) cell fates. Using computerized experimental design, 7 developmental signaling pathways were simultaneously perturbed in human pluripotent stem cell culture. Regionally specific genes spanning the anterior-posterior and dorsal-ventral axes of the developing embryo were measured after 3 days and mathematical models describing pathway control were developed using regression analysis. High-dimensional models revealed particular combinations of signaling inputs that induce expression profiles consistent with emerging CNS territories and defined CPPs for anterior and posterior neuroectoderm patterning. The results demonstrate the importance of combinatorial control during neural induction and challenge the use of generic neural induction strategies such as dual-SMAD inhibition, when seeking to specify particular lineages from pluripotency. Mathematical models describe pathway control of neuroectoderm marker expression Stage 1 media conditions optimized for regionally specific neuroectoderm in 3 days Optimized conditions are more consistent than dual-SMADi across hiPSC lines
Collapse
|
18
|
Szenker-Ravi E, Ott T, Khatoo M, Moreau de Bellaing A, Goh WX, Chong YL, Beckers A, Kannesan D, Louvel G, Anujan P, Ravi V, Bonnard C, Moutton S, Schoen P, Fradin M, Colin E, Megarbane A, Daou L, Chehab G, Di Filippo S, Rooryck C, Deleuze JF, Boland A, Arribard N, Eker R, Tohari S, Ng AYJ, Rio M, Lim CT, Eisenhaber B, Eisenhaber F, Venkatesh B, Amiel J, Crollius HR, Gordon CT, Gossler A, Roy S, Attie-Bitach T, Blum M, Bouvagnet P, Reversade B. Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates. Nat Genet 2022; 54:62-72. [PMID: 34903892 DOI: 10.1038/s41588-021-00970-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/14/2021] [Indexed: 01/24/2023]
Abstract
The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Muznah Khatoo
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Anne Moreau de Bellaing
- Laboratoire de Cardiogénétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Wei Xuan Goh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Yan Ling Chong
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Darshini Kannesan
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Guillaume Louvel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Écologie, Systématique et Évolution, UMR 8079 CNRS - Université Paris-Saclay - AgroParisTech, Orsay, France
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College, London, UK
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Carine Bonnard
- Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Singapore
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - André Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Institut Jérôme LEJEUNE, Paris, France
| | - Linda Daou
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
| | - Ghassan Chehab
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
- Department of Pediatrics, Lebanese University, Faculty of Medical Sciences, Hadath, Greater Beirut, Lebanon
| | - Sylvie Di Filippo
- Service de Cardiologie Pédiatrique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Caroline Rooryck
- Service de Génétique, University of Bordeaux, MRGM, INSERM U1211, CHU de Bordeaux, Bordeaux, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Nicolas Arribard
- Service de Cardiologie Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Rukiye Eker
- Pediatrics Department, Pediatric Cardiology Division, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Alvin Yu-Jin Ng
- Molecular Diagnosis Centre (MDC), National University Hospital (NUH), Singapore, Singapore
| | - Marlène Rio
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Developmental Brain Disorders Laboratory, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Chun Teck Lim
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
| | - Jeanne Amiel
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Achim Gossler
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Tania Attie-Bitach
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Genetics and Development of the Cerebral Cortex, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | | | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore.
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore.
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.
| |
Collapse
|
19
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
20
|
Molè MA, Coorens THH, Shahbazi MN, Weberling A, Weatherbee BAT, Gantner CW, Sancho-Serra C, Richardson L, Drinkwater A, Syed N, Engley S, Snell P, Christie L, Elder K, Campbell A, Fishel S, Behjati S, Vento-Tormo R, Zernicka-Goetz M. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Commun 2021; 12:3679. [PMID: 34140473 PMCID: PMC8211662 DOI: 10.1038/s41467-021-23758-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.
Collapse
Affiliation(s)
- Matteo A Molè
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | - Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Antonia Weberling
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Carlos W Gantner
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Abbie Drinkwater
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Najma Syed
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Stephanie Engley
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | | | | | | | | | - Simon Fishel
- CARE Fertility Group, Nottingham, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospital, NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| | | | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
21
|
Ueda Y, Kimura-Yoshida C, Mochida K, Tsume M, Kameo Y, Adachi T, Lefebvre O, Hiramatsu R, Matsuo I. Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Rep 2021; 31:107637. [PMID: 32433954 DOI: 10.1016/j.celrep.2020.107637] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.
Collapse
Affiliation(s)
- Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Mami Tsume
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoshitaka Kameo
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Olivier Lefebvre
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ryuji Hiramatsu
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
22
|
Dinh TTH, Iseki H, Mizuno S, Iijima-Mizuno S, Tanimoto Y, Daitoku Y, Kato K, Hamada Y, Hasan ASH, Suzuki H, Murata K, Muratani M, Ema M, Kim JD, Ishida J, Fukamizu A, Kato M, Takahashi S, Yagami KI, Wilson V, Arkell RM, Sugiyama F. Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. eLife 2021; 10:50346. [PMID: 33949947 PMCID: PMC8099427 DOI: 10.7554/elife.50346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.
Collapse
Affiliation(s)
- Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.,Department of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyoshi Iseki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Iijima-Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, Toyama, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Experimental Pathology, Faculty of. Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
24
|
Abstract
The polar trophoblast overlays the epiblast in eutherian mammals and, depending on the species, has one of two different fates. It either remains a single-layered, thinning epithelium called "Rauber's layer," which soon disintegrates, or, alternatively, it keeps proliferating, contributing heavily to the population of differentiating, invasive trophoblast cells and, at least in mice, to the induction of gastrulation. While loss of the persistent polar trophoblast in mice leads to reduced induction of gastrulation, we show here that prevention of the loss of the polar trophoblast in cattle results in ectopic domains of the gastrulation marker, BRACHYURY This phenotype, and increased epiblast proliferation, arose when Rauber's layer was maintained for a day longer by countering apoptosis through BCL2 overexpression. This suggests that the disappearance of Rauber's layer is a necessity, presumably to avoid excessive signaling interactions between this layer and the subjacent epiblast. We note that, in all species in which the polar trophoblast persists, including humans and mice, ectopic polar trophoblast signaling is prevented via epiblast cavitation which leads to the (pro)amniotic cavity, whose function is to distance the central epiblast from such signaling interactions.
Collapse
|
25
|
Ashokkumar D, Zhang Q, Much C, Bledau AS, Naumann R, Alexopoulou D, Dahl A, Goveas N, Fu J, Anastassiadis K, Stewart AF, Kranz A. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development 2020; 147:dev186999. [PMID: 32439762 DOI: 10.1242/dev.186999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.
Collapse
Affiliation(s)
- Deepthi Ashokkumar
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Qinyu Zhang
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Christian Much
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Anita S Bledau
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| |
Collapse
|
26
|
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr Top Dev Biol 2019; 136:113-138. [PMID: 31959285 DOI: 10.1016/bs.ctdb.2019.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.
Collapse
|
27
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
28
|
DiStasio A, Paulding D, Chaturvedi P, Stottmann RW. Nubp2 is required for cranial neural crest survival in the mouse. Dev Biol 2019; 458:189-199. [PMID: 31733190 DOI: 10.1016/j.ydbio.2019.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022]
Abstract
The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2null). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.
Collapse
Affiliation(s)
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Kurrle Y, Kunesch K, Bogusch S, Schweickert A. Serotonin and MucXS release by small secretory cells depend on
Xpod
, a SSC specific marker gene. Genesis 2019; 58:e23344. [DOI: 10.1002/dvg.23344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yvonne Kurrle
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | | - Susanne Bogusch
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | |
Collapse
|
30
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
31
|
McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL. Mechanistic insights from the LHX1-driven molecular network in building the embryonic head. Dev Growth Differ 2019; 61:327-336. [PMID: 31111476 DOI: 10.1111/dgd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
Development of an embryo is driven by a series of molecular instructions that control the differentiation of tissue precursor cells and shape the tissues into major body parts. LIM homeobox 1 (LHX1) is a transcription factor that plays a major role in the development of the embryonic head of the mouse. Loss of LHX1 function disrupts the morphogenetic movement of head tissue precursors and impacts on the function of molecular factors in modulating the activity of the WNT signaling pathway. LHX1 acts with a transcription factor complex to regulate the transcription of target genes in multiple phases of development and in a range of embryonic tissues of the mouse and Xenopus. Determining the interacting factors and transcriptional targets of LHX1 will be key to unraveling the ensemble of factors involved in head development and building a head gene regulatory network.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
32
|
Schneider I, Kreis J, Schweickert A, Blum M, Vick P. A dual function of FGF signaling in Xenopus left-right axis formation. Development 2019; 146:dev.173575. [PMID: 31036544 DOI: 10.1242/dev.173575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
Abstract
Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.
Collapse
Affiliation(s)
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Philipp Vick
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
33
|
Nowotschin S, Setty M, Kuo YY, Liu V, Garg V, Sharma R, Simon CS, Saiz N, Gardner R, Boutet SC, Church DM, Hoodless PA, Hadjantonakis AK, Pe'er D. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 2019; 569:361-367. [PMID: 30959515 PMCID: PMC6724221 DOI: 10.1038/s41586-019-1127-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent Liu
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Dana Pe'er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Antonica F, Orietti LC, Mort RL, Zernicka-Goetz M. Concerted cell divisions in embryonic visceral endoderm guide anterior visceral endoderm migration. Dev Biol 2019; 450:132-140. [PMID: 30940540 PMCID: PMC6553843 DOI: 10.1016/j.ydbio.2019.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Migration of Anterior Visceral Endoderm (AVE) is a critical symmetry breaking event in the early post-implantation embryo development and is essential for establishing the correct body plan. Despite much effort, cellular and molecular events influencing AVE migration are only partially understood. Here, using time-lapse live imaging of mouse embryos, we demonstrate that cell division in the embryonic visceral endoderm is coordinated with AVE migration. Moreover, we demonstrate that temporal inhibition of FGF signalling during the pre-implantation specification of embryonic visceral endoderm perturbs cell cycle progression, thus affecting AVE migration. These findings demonstrate that coordinated cell cycle progression during the implantation stages of development is important for post-implantation morphogenesis in the mouse embryo. Cell divisions are concerted in embryonic visceral endoderm of post-implantation mouse embryos. AVE migration is dependent on concerted cell divisions. FGF signalling inhibition during PE specification affects coordinated mitosis and AVE migration in post-implantation embryos.
Collapse
Affiliation(s)
- Francesco Antonica
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK
| | - Lorenzo Carlo Orietti
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK
| | - Richard Lester Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Furness Building, Lancaster LA1 4YG, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
35
|
Ott T, Kaufmann L, Granzow M, Hinderhofer K, Bartram CR, Theiß S, Seitz A, Paramasivam N, Schulz A, Moog U, Blum M, Evers CM. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front Physiol 2019; 10:134. [PMID: 30858804 PMCID: PMC6397843 DOI: 10.3389/fphys.2019.00134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.
Collapse
Affiliation(s)
- Tim Ott
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Christina M Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Wymeersch FJ, Skylaki S, Huang Y, Watson JA, Economou C, Marek-Johnston C, Tomlinson SR, Wilson V. Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. Development 2019; 146:dev168161. [PMID: 30559277 PMCID: PMC6340148 DOI: 10.1242/dev.168161] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022]
Abstract
The elongating mouse anteroposterior axis is supplied by progenitors with distinct tissue fates. It is not known whether these progenitors confer anteroposterior pattern to the embryo. We have analysed the progenitor population transcriptomes in the mouse primitive streak and tail bud throughout axial elongation. Transcriptomic signatures distinguish three known progenitor types (neuromesodermal, lateral/paraxial mesoderm and notochord progenitors; NMPs, LPMPs and NotoPs). Both NMP and LPMP transcriptomes change extensively over time. In particular, NMPs upregulate Wnt, Fgf and Notch signalling components, and many Hox genes as progenitors transit from production of the trunk to the tail and expand in number. In contrast, the transcriptome of NotoPs is stable throughout axial elongation and they are required for normal axis elongation. These results suggest that NotoPs act as a progenitor niche whereas anteroposterior patterning originates within NMPs and LPMPs.
Collapse
Affiliation(s)
- Filip J Wymeersch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Yali Huang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julia A Watson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Constantinos Economou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carylyn Marek-Johnston
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
37
|
Beckers A, Ott T, Schuster-Gossler K, Boldt K, Alten L, Ueffing M, Blum M, Gossler A. The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice. Sci Rep 2018; 8:14678. [PMID: 30279523 PMCID: PMC6168554 DOI: 10.1038/s41598-018-33045-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
The transcription factor FOXJ1 is essential for the formation of motile cilia throughout the animal kingdom. Target genes therefore likely constitute an important part of the motile cilia program. Here, we report on the analysis of one of these targets, Fam183b, in Xenopus and mice. Fam183b encodes a protein with unknown function which is conserved from the green algae Chlamydomonas to humans. Fam183b is expressed in tissues harbouring motile cilia in both mouse and frog embryos. FAM183b protein localises to basal bodies of cilia in mIMCD3 cells and of multiciliated cells of the frog larval epidermis. In addition, FAM183b interacts with NUP93, which also localises to basal bodies. During frog embryogenesis, Fam183b was dispensable for laterality specification and brain development, but required for ciliogenesis and motility of epidermal multiciliated cells and nephrostomes, i.e. the embryonic kidney. Surprisingly, mice homozygous for a null allele did not display any defects indicative of disrupted motile ciliary function. The lack of a cilia phenotype in mouse and the limited requirements in frog contrast with high sequence conservation and the correlation of gene expression with the presence of motile cilia. This finding may be explained through compensatory mechanisms at sites where no defects were observed in our FAM183b-loss-of-function studies.
Collapse
Affiliation(s)
- Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tim Ott
- Institute of Zoology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Karin Schuster-Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Karsten Boldt
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076, Tübingen, Germany
| | - Leonie Alten
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marius Ueffing
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076, Tübingen, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
38
|
Blin G, Wisniewski D, Picart C, Thery M, Puceat M, Lowell S. Geometrical confinement controls the asymmetric patterning of brachyury in cultures of pluripotent cells. Development 2018; 145:dev166025. [PMID: 30115626 PMCID: PMC6176930 DOI: 10.1242/dev.166025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
Diffusible signals are known to orchestrate patterning during embryogenesis, yet diffusion is sensitive to noise. The fact that embryogenesis is remarkably robust suggests that additional layers of regulation reinforce patterning. Here, we demonstrate that geometrical confinement orchestrates the spatial organisation of initially randomly positioned subpopulations of spontaneously differentiating mouse embryonic stem cells. We use micropatterning in combination with pharmacological manipulations and quantitative imaging to dissociate the multiple effects of geometry. We show that the positioning of a pre-streak-like population marked by brachyury (T) is decoupled from the size of its population, and that breaking radial symmetry of patterns imposes polarised patterning. We provide evidence for a model in which the overall level of diffusible signals together with the history of the cell culture define the number of T+ cells, whereas geometrical constraints guide patterning in a multi-step process involving a differential response of the cells to multicellular spatial organisation. Our work provides a framework for investigating robustness of patterning and provides insights into how to guide symmetry-breaking events in aggregates of pluripotent cells.
Collapse
Affiliation(s)
- Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Darren Wisniewski
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Catherine Picart
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Manuel Thery
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire and Végétale, UMR5168, CytoMorpho Lab, 38054 Grenoble, France
- Univ. Paris Diderot, CEA, INSERM, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France
| | - Michel Puceat
- INSERM U1251, Université Aix-Marseille, MMG, 13885 Marseille, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
39
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
40
|
Plöger R, Viebahn C. Pitx2 and nodal as conserved early markers of the anterior-posterior axis in the rabbit embryo. Ann Anat 2018; 218:256-264. [PMID: 29705588 DOI: 10.1016/j.aanat.2018.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionarily conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as a regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals this study analyses pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. Pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development. In the anterior segment of the posterior pitx2 expression domain, the anterior streak domain (ASD) is defined by nodal expression as a hypothetical progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, Universitätsmedizin Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, Universitätsmedizin Göttingen, Germany.
| |
Collapse
|
41
|
Zhang B, Tran U, Wessely O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 2018. [PMID: 29530879 DOI: 10.1242/dev.158931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown - as in the case of Gnas - results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/γ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA.,LSU Health Sciences Center, Department of Cell Biology and Anatomy, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
42
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
43
|
Huang X, Balmer S, Yang F, Fidalgo M, Li D, Guallar D, Hadjantonakis AK, Wang J. Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling. eLife 2017; 6:33333. [PMID: 29168693 PMCID: PMC5708896 DOI: 10.7554/elife.33333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during embryo implantation, followed by cell lineage specification and establishment of the basic body plan, is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.
Collapse
Affiliation(s)
- Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fan Yang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Departamento de Fisioloxia, Centro de Investigacion en Medicina Molecular e Enfermidades Cronicas, Universidade de Santiago de Compostela, Santiago, Spain
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
44
|
Agbu SO, Liang Y, Liu A, Anderson KV. The small GTPase RSG1 controls a final step in primary cilia initiation. J Cell Biol 2017; 217:413-427. [PMID: 29038301 PMCID: PMC5748968 DOI: 10.1083/jcb.201604048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are essential for normal development and tissue homeostasis, but the mechanisms that remodel the centriole to promote cilia initiation are not well understood. Agbu et al. report that mouse RSG1, a small GTPase, regulates a late step in cilia initiation, downstream of TTBK2 and the CPLANE protein INTU. Primary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling. Rsg1 mutant embryos have fewer primary cilia than wild-type embryos, but the cilia that form are of normal length and traffic Hedgehog pathway proteins within the cilium correctly. Rsg1 mother centrioles recruit proteins required for cilia initiation and dock onto ciliary vesicles, but axonemal microtubules fail to elongate normally. RSG1 localizes to the mother centriole in a process that depends on tau tubulin kinase 2 (TTBK2), the CPLANE complex protein Inturned (INTU), and its own GTPase activity. The data suggest a specific role for RSG1 in the final maturation of the mother centriole and ciliary vesicle that allows extension of the ciliary axoneme.
Collapse
Affiliation(s)
- Stephanie O Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
45
|
Bhargava S, Cox B, Polydorou C, Gresakova V, Korinek V, Strnad H, Sedlacek R, Epp TA, Chawengsaksophak K. The epigenetic modifier Fam208a is required to maintain epiblast cell fitness. Sci Rep 2017; 7:9322. [PMID: 28839193 PMCID: PMC5570896 DOI: 10.1038/s41598-017-09490-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency.
Collapse
Affiliation(s)
- Shohag Bhargava
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Christiana Polydorou
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Veronika Gresakova
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Trevor Allan Epp
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| | - Kallayanee Chawengsaksophak
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| |
Collapse
|
46
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
47
|
Shioi G, Hoshino H, Abe T, Kiyonari H, Nakao K, Meng W, Furuta Y, Fujimori T, Aizawa S. Apical constriction in distal visceral endoderm cells initiates global, collective cell rearrangement in embryonic visceral endoderm to form anterior visceral endoderm. Dev Biol 2017; 429:20-30. [PMID: 28712875 DOI: 10.1016/j.ydbio.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
The behavior of visceral endoderm cells was examined as the anterior visceral endoderm (AVE) formed from the distal visceral endoderm (DVE) using the mouse lines R26-H2B-EGFP and R26-PHA7-EGFP to visualize cell nuclei and adherens junction, respectively. The analysis using R26-H2B-EGFP demonstrated global cell rearrangement that was not specific to the DVE cells in the monolayer embryonic visceral endoderm sheet; each population of the endoderm cells moved collectively in a swirling movement as a whole. Most of the AVE cells at E6.5 were not E5.5 DVE cells but were E5.5 cells that were located caudally behind them, as previously reported (Hoshino et al., 2015; Takaoka et al., 2011). In the rearrangement, the posterior embryonic visceral endoderm cells did not move, as extraembryonic visceral endoderm cells did not, and they constituted a distinct population during the process of anterior-posterior axis formation. The analysis using R26-PHA7-EGFP suggested that constriction of the apical surfaces of the cells in prospective anterior portion of the DVE initiated the global cellular movement of the embryonic visceral endoderm to drive AVE formation.
Collapse
Affiliation(s)
- Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Hideharu Hoshino
- Laboratory for Vertebrate Body Plan, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuki Nakao
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine (CDBIM), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yasuhide Furuta
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toshihiko Fujimori
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Division of Embryology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinichi Aizawa
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Vertebrate Body Plan, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
48
|
Wu T, Hadjantonakis AK, Nowotschin S. Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 2017; 6:678-687. [PMID: 28288969 PMCID: PMC5450328 DOI: 10.1242/bio.024638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live imaging is the requisite tool for studying cell behaviors driving embryonic development and tissue formation. Genetically encoded reporters expressed under cell type-specific cis-regulatory elements that drive fluorescent protein expression at sufficient levels for visualization in living specimens have become indispensable for these studies. Increasingly dual-color (red-green) imaging is used for studying the coordinate behaviors of two cell populations of interest, identifying and characterizing subsets within broader cell populations or subcellular features. Many reporters have been generated using green fluorescent protein (GFP) due to its brightness and developmental neutrality. To compliment the large cohort of available GFP reporters that label cellular populations in early mouse embryos, we have generated a red fluorescent protein (RFP)-based transgenic reporter using the red fluorescent tdTomato protein driven by cis-regulatory elements from the mouse Hex locus. The Hex-tdTomato reporter predominantly labels endodermal cells. It is a bright RFP-based reporter of the distal visceral endoderm (DVE)/anterior visceral endoderm (AVE), a migratory population within the early post-implantation embryo. It also labels cells of the definitive endoderm (DE), which emerges at gastrulation. Dual-color visualization of these different early endodermal populations will provide a detailed understanding of the cellular behaviors driving key morphogenetic events involving the endoderm. Summary: A red fluorescent reporter under the regulatory control of the mouse Hex gene permits identification of different endodermal populations and visualization of dynamic cellular behaviors driving endoderm specification and morphogenesis.
Collapse
Affiliation(s)
- Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
49
|
Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 2017; 356:science.aal1810. [PMID: 28254784 DOI: 10.1126/science.aal1810] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos.
Collapse
Affiliation(s)
- Sarah Ellys Harrison
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Berna Sozen
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Neophytos Christodoulou
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Christos Kyprianou
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
50
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|