1
|
Puli OR, Gogia N, Chimata AV, Yorimitsu T, Nakagoshi H, Kango-Singh M, Singh A. Genetic mechanism regulating diversity in the placement of eyes on the head of animals. Proc Natl Acad Sci U S A 2024; 121:e2316244121. [PMID: 38588419 PMCID: PMC11032433 DOI: 10.1073/pnas.2316244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH45469
| | | | - Takeshi Yorimitsu
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN47809
| |
Collapse
|
2
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
3
|
Ramanujam PL, Mehrotra S, Kumar RP, Verma S, Deshpande G, Mishra RK, Galande S. Global chromatin organizer SATB1 acts as a context-dependent regulator of the Wnt/Wg target genes. Sci Rep 2021; 11:3385. [PMID: 33564000 PMCID: PMC7873079 DOI: 10.1038/s41598-021-81324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Special AT-rich binding protein-1 (SATB1) integrates higher-order chromatin architecture with gene regulation, thereby regulating multiple signaling pathways. In mammalian cells SATB1 directly interacts with β-catenin and regulates the expression of Wnt targets by binding to their promoters. Whether SATB1 regulates Wnt/wg signaling by recruitment of β-catenin and/or its interactions with other components remains elusive. Since Wnt/Wg signaling is conserved from invertebrates to humans, we investigated SATB1 functions in regulation of Wnt/Wg signaling by using mammalian cell-lines and Drosophila. Here, we present evidence that in mammalian cells, SATB1 interacts with Dishevelled, an upstream component of the Wnt/Wg pathway. Conversely, ectopic expression of full-length human SATB1 but not that of its N- or C-terminal domains in the eye imaginal discs and salivary glands of third instar Drosophila larvae increased the expression of Wnt/Wg pathway antagonists and suppressed phenotypes associated with activated Wnt/Wg pathway. These data argue that ectopically-provided SATB1 presumably modulates Wnt/Wg signaling by acting as negative regulator in Drosophila. Interestingly, comparison of SATB1 with PDZ- and homeo-domain containing Drosophila protein Defective Proventriculus suggests that both proteins exhibit limited functional similarity in the regulation of Wnt/Wg signaling in Drosophila. Collectively, these findings indicate that regulation of Wnt/Wg pathway by SATB1 is context-dependent.
Collapse
Affiliation(s)
- Praveena L Ramanujam
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sonam Mehrotra
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Mumbai, India
| | | | | | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | - Sanjeev Galande
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
4
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
5
|
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 2017; 13:e1006937. [PMID: 28753614 PMCID: PMC5550008 DOI: 10.1371/journal.pgen.1006937] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. Regenerating tissue must initiate the signaling that drives regenerative growth, and then sustain that signaling long enough for regeneration to complete. Drosophila imaginal discs, the epithelial structures in the larva that will form the adult animal during metamorphosis, have been an important model system for tissue repair and regeneration for over 60 years. Here we show that damage-induced JNK signaling leads to the upregulation of a gene called moladietz, which encodes a co-factor for an enzyme, NADPH dual oxidase (Duox), that generates reactive oxygen species (ROS), a key tissue-damage signal. High expression of moladietz induces continuous production of ROS in the regenerating tissue. The sustained production of ROS then continues to activate JNK signaling throughout the course of regeneration, ensuring maximal tissue regrowth.
Collapse
Affiliation(s)
- Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
6
|
Spannl S, Kumichel A, Hebbar S, Kapp K, Gonzalez-Gaitan M, Winkler S, Blawid R, Jessberger G, Knust E. The Crumbs_C isoform of Drosophila shows tissue- and stage-specific expression and prevents light-dependent retinal degeneration. Biol Open 2017; 6:165-175. [PMID: 28202468 PMCID: PMC5312091 DOI: 10.1242/bio.020040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila Crumbs (Crb) is a key regulator of epithelial polarity and fulfils a plethora of other functions, such as growth regulation, morphogenesis of photoreceptor cells and prevention of retinal degeneration. This raises the question how a single gene regulates such diverse functions, which in mammals are controlled by three different paralogs. Here, we show that in Drosophila different Crb protein isoforms are differentially expressed as a result of alternative splicing. All isoforms are transmembrane proteins that differ by just one EGF-like repeat in their extracellular portion. Unlike Crb_A, which is expressed in most embryonic epithelia from early stages onward, Crb_C is expressed later and only in a subset of embryonic epithelia. Flies specifically lacking Crb_C are homozygous viable and fertile. Strikingly, these flies undergo light-dependent photoreceptor degeneration despite the fact that the other isoforms are expressed and properly localised at the stalk membrane. This allele now provides an ideal possibility to further unravel the molecular mechanisms by which Drosophila crb protects photoreceptor cells from the detrimental consequences of light-induced cell stress. Summary: Loss of Crb_C, one protein isoform encoded by Drosophila crumbs, results in light-dependent retinal degeneration, but does not affect any of the other crumbs-specific functions.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alexandra Kumichel
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Katja Kapp
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Sciences II, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4 1211, Switzerland
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Rosana Blawid
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Gregor Jessberger
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
7
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Cavalieri V, Melfi R, Spinelli G. The Compass-like locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo. PLoS Genet 2013; 9:e1003847. [PMID: 24086165 PMCID: PMC3784565 DOI: 10.1371/journal.pgen.1003847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl), a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer activity, and this, in turn, accounts for the different level of accumulation of early linker and nucleosomal transcripts. Mounting evidence in several model organisms collectively demonstrates a role for the DNA-protein complexes known as chromatin insulators in orchestrating the functional domain organization of the eukaryotic genome. Several DNA elements displaying features of insulators, viz barrier and/or directional enhancer-blocking activity, have been identified in yeast, Drosophila, sea urchin, vertebrates and plants; however, proteins that bind these DNA sequences eliciting insulator activities are far less known. Here we identify a novel protein, COMPASS-like (CMPl), which is expressed exclusively by the ambulacrarian group of metazoans and interacts directly with the sea urchin sns5 insulator. Sns5 lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter, where it acts buffering the H1 promoter from the H2A enhancer influence. Intriguingly, we find that CMPl role is absolutely required for the sns5 activity, therefore imposing the different level of accumulation of the linker and nucleosomal transcripts. Overall, our findings add an interesting and novel facet to the chromatin insulator field, highlighting the surprisingly low evolutionary conservation of trans-acting factors binding to chromatin insulators. This opens the possibility that multiple lineage-specific factors modulate chromatin organization in different metazoans.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- * E-mail: (VC); (GS)
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
9
|
Spatial and temporal requirement of defective proventriculus activity during Drosophila midgut development. Mech Dev 2011; 128:258-67. [PMID: 21376808 DOI: 10.1016/j.mod.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/20/2010] [Accepted: 02/26/2011] [Indexed: 11/21/2022]
Abstract
The Drosophila middle midgut cells derived from the endoderm develop into four distinct types of cell. Of these cells, copper cells have invaginated microvillar membranes on their apical surface, and they are involved in two distinct functions, i.e., copper absorption and acid secretion. The homeobox gene defective proventriculus (dve) is expressed in the midgut, and two transcripts, type A (∼4.9kb) and type B (∼3.5kb), have been identified. We isolated the deletion allele dve(E181) that completely removes the first exon for type-A (dve-A) transcript. Dve expression pattern in dve-A mutant background indicates that isoform switching is dynamically regulated in a cell-type specific manner. Using RNAi for dve-A, we examined spatial and temporal requirement of the Dve-A activity. Early Dve-A activity is required to repress isoform switching in copper cells, and for establishment of two gut functions. Late Dve-A activity in copper cells, but not in adjacent interstitial cells, is required for acid secretion, while the activity is redundantly required in both cells for the copper absorptive function. Furthermore, ectopic type-B expression in larval copper cells specifically impaired the copper absorptive function. These results provide insight into molecular mechanisms to establish functional specificity.
Collapse
|
10
|
Bauer R, Weimbs A, Lechner H, Hoch M. DE-Cadherin, a Core Component of the Adherens Junction Complex Modifies Subcellular Localization of theDrosophilaGap Junction Protein Innexin2. ACTA ACUST UNITED AC 2009; 13:103-14. [PMID: 16613784 DOI: 10.1080/15419060600631839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Drosophila innexin multigene family of gap junction encoding proteins consists of eight family members whose function in epithelial morphogenesis is mostly unknown. We have recently shown that innexin2 plays a crucial role in the organization of embryonic epithelia. Innexin2 protein accumulates in the epidermis in the apico-lateral membrane domain and colocalizes with core proteins of adherens junctions, such as DE-cadherin and Armadillo, the ss -catenin homolog. Innexin2 localization is altered in both armadillo and DE-cadherin mutants Biochemical interaction studies point to a direct interaction of DE-cadherin and Armadillo with innexin2 suggesting a close link between gap junction and adherens junction biogenesis. We have used the Drosophila Schneider cell tissue culture system to further study the interaction of innexin2 with DE-cadherin. Our results provide evidence that DE-cadherin may be a key component to control trafficking, and localization of Innexin2 to the plasma membrane.
Collapse
Affiliation(s)
- R Bauer
- Institute of Molecular Physiology and Developmental Biology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
11
|
Ostrowski K, Bauer R, Hoch M. TheDrosophilaInnexin7 Gap Junction Protein Is Required for Development of the Embryonic Nervous System. ACTA ACUST UNITED AC 2009; 15:155-67. [DOI: 10.1080/15419060802013976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Alcalay NI, Vanden Heuvel GB. Regulation of cell proliferation and differentiation in the kidney. Front Biosci (Landmark Ed) 2009; 14:4978-91. [PMID: 19482600 DOI: 10.2741/3582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian cut proteins are a broadly expressed family of nuclear transcription factors related to the Drosophila protein cut. One member of the cut family, Cux1, has been shown to function as a cell cycle dependent transcription factor, regulating the expression of a number of cell cycle regulatory proteins. Cux1 expression is developmentally regulated in multiple tissues suggesting an important regulatory function. Cux1 exists as multiple isoforms that arise from proteolytic processing of a 200 kD protein or use of an alternate promoter. Several mouse models of Cux1 have been generated that suggest important roles for this gene in cell cycle regulation during hair growth, lung development and maturation, and genitourinary tract development. Moreover, the aberrant expression of Cux1 may contribute to diseases such as polycystic kidney disease and cancer. In this review, we will focus on the phenotypes observed in the five existing transgenic mouse models of Cux1, and discuss the role of Cux1 in kidney development and disease.
Collapse
Affiliation(s)
- Neal I Alcalay
- Department of Anatomy, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
13
|
Perea D, Terriente J, Díaz-Benjumea FJ. Temporal and spatial windows delimit activation of the outer ring of wingless in the Drosophila wing. Dev Biol 2009; 328:445-55. [PMID: 19217893 DOI: 10.1016/j.ydbio.2009.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/26/2008] [Accepted: 02/03/2009] [Indexed: 11/29/2022]
Abstract
Extracellular signalling molecules play many roles in the development of higher organisms. They are used reiteratively in different tissues and stages, but the response of the receiving cells is controlled in a context dependent manner. The pattern of expression of the signalling molecule Wingless/WNT in Drosophila is extraordinarily complex. We have studied the mechanism that controls its expression and function in the outer ring of the Drosophila wing hinge. Our findings indicate that wingless expression is controlled by a dual mechanism: its initial activation requires the product of zinc finger homeodomain 2 and is subsequently repressed by the product of the gene complex elbow/no ocelli. This tight regulation restricts the activation of wingless temporally and spatially. Later in development, wingless expression is maintained by an autoregulatory loop that involves the product of homothorax. We have analyzed the phenotype of a wingless allelic combination that specifically removes the outer ring, and our results show that Wingless is required to promote local proliferation of the wing base cells. Thus, cell proliferation in the proximal-distal axis is controlled by the sequential activation of wingless in the inner ring and the outer ring at different stages of development.
Collapse
Affiliation(s)
- Daniel Perea
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-C.S.I.C., Madrid, Spain
| | | | | |
Collapse
|
14
|
Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 2008; 15:470-477. [PMID: 18804441 DOI: 10.1016/j.devcel.2008.07.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/16/2008] [Accepted: 07/23/2008] [Indexed: 01/16/2023]
Abstract
Mechanical deformations associated with embryonic morphogenetic movements have been suggested to actively participate in the signaling cascades regulating developmental gene expression. Here we develop an appropriate experimental approach to ascertain the existence and the physiological relevance of this phenomenon. By combining the use of magnetic tweezers with in vivo laser ablation, we locally control physiologically relevant deformations in wild-type Drosophila embryonic tissues. We demonstrate that the deformations caused by germ band extension upregulate Twist expression in the stomodeal primordium. We find that stomodeal compression triggers Src42A-dependent nuclear translocation of Armadillo/beta-catenin, which is required for Twist mechanical induction in the stomodeum. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, resulting in larval lethality. These experiments show that mechanically induced Twist upregulation in stomodeal cells is necessary for subsequent midgut differentiation.
Collapse
Affiliation(s)
- Nicolas Desprat
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Willy Supatto
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France; Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Philippe-Alexandre Pouille
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France.
| |
Collapse
|
15
|
The Drosophila gene zfh2 is required to establish proximal-distal domains in the wing disc. Dev Biol 2008; 320:102-12. [PMID: 18571155 DOI: 10.1016/j.ydbio.2008.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/08/2008] [Accepted: 04/24/2008] [Indexed: 01/05/2023]
Abstract
Three main events characterize the development of the proximal-distal axis of the Drosophila wing disc: first, generation of nested circular domains defined by different combinations of gene expression; second, activation of wingless (wg) gene expression in a ring of cells; and third, an increase of cell number in each domain in response to Wg. The mechanisms by which these domains of gene expression are established and maintained are unknown. We have analyzed the role of the gene zinc finger homeodomain 2 (zfh2). We report that in discs lacking zfh2 the limits of the expression domains of the genes tsh, nub, rn, dve and nab coincide, and expression of wg in the wing hinge, is lost. We show that zfh2 expression is delimited distally by Vg, Nub and Dpp signalling, and proximally by Tsh and Dpp. Distal repression of zfh2 permits activation of nab in the wing blade and wg in the wing hinge. We suggest that the proximal-most wing fate, the hinge, is specified first and that later repression of zfh2 permits specification of the distal-most fate, the wing blade. We propose that proximal-distal axis development is achieved by a combination of two strategies: on one hand a process involving proximal to distal specification, with the wing hinge specified first followed later by the distal wing blade; on the other hand, early specification of the proximal-distal domains by different combinations of gene expression. The results we present here indicate that Zfh2 plays a critical role in both processes.
Collapse
|
16
|
Ciechanska E, Dansereau DA, Svendsen PC, Heslip TR, Brook WJ. dAP-2 and defective proventriculus regulate Serrate and Delta expression in the tarsus of Drosophila melanogaster. Genome 2008; 50:693-705. [PMID: 17893729 DOI: 10.1139/g07-043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The segmentation of the proximal-distal axis of the Drosophila melanogaster leg depends on the localized activation of the Notch receptor. The expression of the Notch ligand genes Serrate and Delta in concentric, segmental rings results in the localized activation of Notch, which induces joint formation and is required for the growth of leg segments. We report here that the expression of Serrate and Delta in the leg is regulated by the transcription factor genes dAP-2 and defective proventriculus. Previous studies have shown that Notch activation induces dAP-2 in cells distal and adjacent to the Serrate/Delta domain of expression. We find that Serrate and Delta are ectopically expressed in dAP-2 mutant legs and that Serrate and Delta are repressed by ectopic expression of dAP-2. Furthermore, Serrate is induced cell-autonomously in dAP-2 mutant clones in many regions of the leg. We also find that the expression of a defective proventriculus reporter overlaps with dAP-2 expression and is complementary to Serrate expression in the tarsal segments. Ectopic expression of defective proventriculus is sufficient to block joint formation and Serrate and Delta expression. Loss of defective proventriculus results in localized, ectopic Serrate expression and the formation of ectopic joints with reversed polarity. Thus, in tarsal segments, dAP-2 and defective proventriculus are necessary for the correct proximal and distal boundaries of Serrate expression and repression of Serrate by defective proventriculus contributes to tarsal segment asymmetry. The repression of the Notch ligand genes Serrate and Delta by the Notch target gene dAP-2 may be a pattern-refining mechanism similar to those acting in embryonic segmentation and compartment boundary formation.
Collapse
Affiliation(s)
- Ewa Ciechanska
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
17
|
Notch signaling relieves the joint-suppressive activity of Defective proventriculus in the Drosophila leg. Dev Biol 2007; 312:147-56. [PMID: 17950268 DOI: 10.1016/j.ydbio.2007.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 08/21/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.
Collapse
|
18
|
Lechner H, Josten F, Fuss B, Bauer R, Hoch M. Cross regulation of intercellular gap junction communication and paracrine signaling pathways during organogenesis in Drosophila. Dev Biol 2007; 310:23-34. [PMID: 17707365 DOI: 10.1016/j.ydbio.2007.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/22/2007] [Accepted: 07/12/2007] [Indexed: 01/09/2023]
Abstract
The spatial and temporal coordination of patterning and morphogenesis is often achieved by paracrine morphogen signals or by the direct coupling of cells via gap junctions. How paracrine signals and gap junction communication cooperate to control the coordinated behavior of cells and tissues is mostly unknown. We found that hedgehog signaling is required for the expression of wingless and of Delta/Notch target genes in a single row of boundary cells in the foregut-associated proventriculus organ of the Drosophila embryo. These cells coordinate the movement and folding of proventricular cells to generate a multilayered organ. hedgehog and wingless regulate gap junction communication by transcriptionally activating the innexin2 gene, which encodes a member of the innexin family of gap junction proteins. In innexin2 mutants, gap junction-mediated cell-to-cell communication is strongly reduced and the proventricular cell layers fail to fold and invaginate, similarly as in hedgehog or wingless mutants. We further found that innexin2 is required in a feedback loop for the transcriptional activation of the hedgehog and wingless morphogens and of Delta in the proventriculus primordium. We propose that the transcriptional cross regulation of paracrine and gap junction-mediated signaling is essential for organogenesis in Drosophila.
Collapse
Affiliation(s)
- Hildegard Lechner
- LIMES Institute, Laboratory of Molecular Developmental Biology, University of Bonn, Meckenheimer Allee 169, Poppelsdorfer Schloss, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Carr M, Hurley I, Fowler K, Pomiankowski A, Smith HK. Expression of defective proventriculus during head capsule development is conserved in Drosophila and stalk-eyed flies (Diopsidae). Dev Genes Evol 2005; 215:402-9. [PMID: 15834584 DOI: 10.1007/s00427-005-0488-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Hypercephaly, in the form of lateral extensions of the head capsule, is observed in several families of Diptera. A particularly exaggerated form is found in Diopsid stalk-eyed flies, in which both eyes and antennae are laterally displaced at the end of stalks. The processes of early development and specification of the head capsule in stalk-eyed flies are similar to those in Drosophila melanogaster. In Drosophila the homeobox gene ocelliless (oc) shows a mediolateral gradient of expression across the region of the eye-antennal imaginal disc that gives rise to the head capsule and specifies the development of different head structures. The genes and developmental mechanisms that subsequently define head shape in Drosophila and produce hypercephaly in stalk-eyed flies remain unclear. To address this, we performed an enhancer trap screen for Drosophila genes expressed in the same region as oc and identified the homeobox gene defective proventriculus (dve). In the eye-antennal imaginal disc, dve is coexpressed with oc in the region that gives rise to the head capsule and is active along the medial edge of the antennal disc and in the first antennal segment. Analyses of dve expression in mutant eye-antennal discs are consistent with it acting downstream of oc in the development of the head capsule. We confirm that orthologues of dve are present in a diverse panel of five stalk-eyed fly species and analyse patterns of dve sequence variation within the clade. Our results indicate that dve expression and sequence are both highly conserved in stalk-eyed flies.
Collapse
Affiliation(s)
- Martin Carr
- Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
The discovery of homeobox gene clusters led us to realize that the mechanisms for body patterning and other developmental programs are evolutionally-conserved in vertebrates and invertebrates. The endoderm contributes to the lining of the gut and associated organs such as the liver and pancreas, which are critical for physiological functions. Our knowledge of endoderm development is limited; however, recent studies suggest that cooperation between the HNF3/Fork head and GATA transcription factors is crucial for endoderm specification. It is necessary to further understand the mechanism through which cells become functionally organized. Molecular genetic analyses of the Drosophila endoderm would provide insights into this issue. During proventriculus morphogenesis, a simple epithelial tube is folded into a functional multilayered structure, while two functions of midgut copper cells (i.e. copper absorption and acid secretion) can be easily visualized. The homeobox gene defective proventriculus (dve) plays key roles in these functional specifications.
Collapse
Affiliation(s)
- Hideki Nakagoshi
- Graduate School of Natural and Science Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
21
|
Josten F, Fuss B, Feix M, Meissner T, Hoch M. Cooperation of JAK/STAT and Notch signaling in the Drosophila foregut. Dev Biol 2004; 267:181-9. [PMID: 14975725 DOI: 10.1016/j.ydbio.2003.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/07/2003] [Accepted: 11/16/2003] [Indexed: 10/26/2022]
Abstract
Temporal and spatial regulation of morphogenesis is pivotal to the formation of organs from simple epithelial tubes. In a genetic screen for novel genes controlling cell movement during posterior foregut development, we have identified and molecularly characterized two alleles of the domeless gene which encodes the Drosophila Janus kinase (JAK)/STAT receptor. We demonstrate that mutants for domeless or any other known component of the canonical JAK/STAT signaling pathway display a failure of coordinated cell movement during the development of the proventriculus, a multiply folded organ which is formed by stereotyped cell rearrangements in the posterior foregut. Whereas the JAK/STAT receptor is expressed in all proventricular precursor cells, expression of upd encoding its ligand and of STAT92E, the signal transducer of the pathway, is locally restricted to cells that invaginate during proventriculus development. We demonstrate by analyzing gene expression mediated by a model Notch response element and by studying the expression of the Notch target gene short stop, which encodes a cytoskeletal crosslinker protein, that JAK/STAT signaling is required for the activation of Notch-dependent gene expression in the foregut. Our results provide strong evidence that JAK/STAT and Notch signaling cooperate in the regulation of target genes that control epithelial morphogenesis in the foregut.
Collapse
Affiliation(s)
- Frank Josten
- Universität Bonn, Institut für Molekulare Physiologie und Entwicklungsbiologie, Abteilung für Molekulare Entwicklungsbiologie, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
22
|
Fuss B, Josten F, Feix M, Hoch M. Cell movements controlled by the Notch signalling cascade during foregut development inDrosophila. Development 2004; 131:1587-95. [PMID: 14998929 DOI: 10.1242/dev.01057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notch signalling is an evolutionarily conserved cell interaction mechanism,the role of which in controlling cell fate choices has been studied extensively. Recent studies in both vertebrates and invertebrates revealed additional functions of Notch in proliferation and apoptotic events. We provide evidence for an essential role of the Notch signalling pathway during morphogenetic cell movements required for the formation of the foregut-associated proventriculus organ in the Drosophila embryo. We demonstrate that the activation of the Notch receptor occurs in two rows of boundary cells in the proventriculus primordium. The boundary cells delimit a population of foregut epithelial cells that invaginate into the endodermal midgut layer during proventriculus morphogenesis. Notch receptor activation requires the expression of its ligand Delta in the invaginating cells and apical Notch receptor localisation in the boundary cells. We further show that the movement of the proventricular cells is dependent on the short stop gene that encodes the Drosophila plectin homolog of vertebrates and is a cytoskeletal linker protein of the spectraplakin superfamily. short stop is transcriptionally activated in response to the Notch signalling pathway in boundary cells and we demonstrate that the localisation of the Notch receptor and Notch signalling activity depend on short stop activity. Our results provide a novel link between the Notch signalling pathway and cytoskeletal reorganisation controlling cell movement during the development of foregut-associated organs.
Collapse
Affiliation(s)
- Bernhard Fuss
- Universität Bonn, Institut für Molekulare Physiologie und Entwicklungsbiologie, Abteilung für Molekulare Entwicklungsbiologie, Poppelsdorfer Schloss, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
23
|
Bauer R, Martini J, Lehmann C, Hoch M. Cellular distribution of innexin 1 and 2 gap junctional channel proteins in epithelia of the Drosophila embryo. ACTA ACUST UNITED AC 2003; 10:221-5. [PMID: 14681020 DOI: 10.1080/cac.10.4-6.221.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situ hybridization experiments have shown that most of the eight known innexin genes in Drosophila are expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.
Collapse
Affiliation(s)
- Reinhard Bauer
- Institut für Molekulare Physiologie und Entwicklungsbiologie der Universität Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
24
|
Shirai T, Maehara A, Kiritooshi N, Matsuzaki F, Handa H, Nakagoshi H. Differential requirement of EGFR signaling for the expression of defective proventriculus gene in the Drosophila endoderm and ectoderm. Biochem Biophys Res Commun 2003; 311:473-7. [PMID: 14592438 DOI: 10.1016/j.bbrc.2003.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of dve in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, dve expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic dve activation in the ventral ectoderm. Dve expression in the middle midgut depends on Decapentaplegic (Dpp) signaling, while expression of a dominant-negative form of Drosophila EGFR (DER(DN)) also causes a marked decrease in dve expression in the middle midgut. Furthermore, heterozygous mutation of thick veins (tkv), a Dpp receptor, strongly enhances the effect of DER(DN). These results indicate that EGFR signaling is crucial for dve expression in the ventral ectoderm and is required in the middle midgut where it cooperates with Dpp signaling.
Collapse
Affiliation(s)
- Tetsuya Shirai
- Graduate School of Natural and Science Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Kölzer S, Fuss B, Hoch M, Klein T. Defective proventriculus is required for pattern formation along the proximodistal axis, cell proliferation and formation of veins in the Drosophila wing. Development 2003; 130:4135-47. [PMID: 12874133 DOI: 10.1242/dev.00608] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many genes have been identified that are required for the establishment of the dorsoventral (DV) and anteroposterior (AP) axes of the Drosophila wing. By contrast, little is known about the genes and mechanisms that pattern the proximodistal (PD) axis. Vestigial (Vg) is instrumental in patterning this axis, but the genes that mediate its effects and the mechanisms that operate during PD patterning are not known. We show that the gene defective proventriculus (dve) is required for a region of the PD axis encompassing the distal region of the proximal wing (PW) and a small part of the adjacent wing pouch. Loss-of-function of dve results in the deletion of this region and, consequently, shortening of the PD axis. dve expression is activated by Vg in a non-autonomous manner, and is repressed at the DV boundary through the combined activity of Nubbin and Wg. Besides its role in the establishment of the distal part of the PW, dve is also required for the formation of the wing veins 2 and 5, and the proliferation of wing pouch cells, especially in regions anterior to wing vein 3 and posterior to wing vein 4. The study of the regulation of dve expression provides information about the strategies employed to subdivide and pattern the PD axis, and reveals the importance of vg during this process.
Collapse
Affiliation(s)
- Stefan Kölzer
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany
| | | | | | | |
Collapse
|
26
|
Bauer R, Lehmann C, Hoch M. Gastrointestinal development in the Drosophila embryo requires the activity of innexin gap junction channel proteins. CELL COMMUNICATION & ADHESION 2003; 8:307-10. [PMID: 12064608 DOI: 10.3109/15419060109080743] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers.
Collapse
Affiliation(s)
- R Bauer
- Institut für Zoophysiologie der Universität Bonn, Abt. für Entwicklungsbiologie, Germany
| | | | | |
Collapse
|
27
|
Nakagoshi H, Shirai T, Nabeshima YI, Matsuzaki F. Refinement of wingless expression by a wingless- and notch-responsive homeodomain protein, defective proventriculus. Dev Biol 2002; 249:44-56. [PMID: 12217317 DOI: 10.1006/dbio.2002.0746] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product.
Collapse
Affiliation(s)
- Hideki Nakagoshi
- Okayama University Graduate School of Natural Science and Technology, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan.
| | | | | | | |
Collapse
|
28
|
Green RB, Hatini V, Johansen KA, Liu XJ, Lengyel JA. Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of theDrosophilahindgut. Development 2002; 129:3645-56. [PMID: 12117814 DOI: 10.1242/dev.129.15.3645] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elongation of the Drosophila embryonic hindgut epithelium occurs by a process of oriented cell rearrangement requiring the genes drumstick (drm) and lines (lin). The elongating hindgut becomes subdivided into domains – small intestine, large intestine and rectum – each characterized by a specific pattern of gene expression dependent upon normal drm and lin function. We show that drm encodes an 81 amino acid (10 kDa) zinc finger protein that is a member of the Odd-skipped family. drm expression is localized to the developing midgut-hindgut junction and is required to establish the small intestine, while lin is broadly expressed throughout the gut primordium and represses small intestine fate. lin is epistatic to drm, suggesting a model in which localized expression of drm blocks lin activity, thereby allowing small intestine fate to be established. Further supporting this model, ectopic expression of Drm throughout the hindgut produces a lin phenotype. Biochemical and genetic data indicate that the first conserved zinc finger of Drm is essential for its function. We have thus defined a pathway in which a spatially localized zinc finger protein antagonizes a globally expressed protein, thereby leading to specification of a domain (the small intestine) necessary for oriented cell rearrangement.
Collapse
Affiliation(s)
- Ryan B Green
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
29
|
Huet F, Lu JT, Myrick KV, Baugh LR, Crosby MA, Gelbart WM. A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A 2002; 99:9948-53. [PMID: 12096187 PMCID: PMC126605 DOI: 10.1073/pnas.142310099] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 05/23/2002] [Indexed: 11/18/2022] Open
Abstract
With the available eukaryotic genome sequences, there are predictions of thousands of previously uncharacterized genes without known function or available mutational variant. Thus, there is an urgent need for efficient genetic tools for genomewide phenotypic analysis. Here we describe such a tool: a deletion-generator technology that exploits properties of a double transposable element to produce molecularly defined deletions at high density and with high efficiency. This double element, called P[wHy], is composed of a "deleter" element hobo, bracketed by two genetic markers and inserted into a "carrier" P element. We have used this P[wHy] element in Drosophila melanogaster to generate sets of nested deletions of sufficient coverage to discriminate among every transcription unit within 60 kb of the starting insertion site. Because these two types of mobile elements, carrier and deleter, can be found in other species, our strategy should be applicable to phenotypic analysis in a variety of model organisms.
Collapse
Affiliation(s)
- François Huet
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
30
|
Fuss B, Hoch M. Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 2002; 12:171-9. [PMID: 11839268 DOI: 10.1016/s0960-9822(02)00653-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Gut formation is a key event during animal development. Recent genetic analysis in chick, mice, and Drosophila has identified Hedgehog and TGFbeta signals as essential players for the development of the primitive gut tube along its anterior-posterior (AP) axis. However, the genetic programs that control gut patterning along its dorsoventral (DV) axis have remained largely elusive. RESULTS We demonstrate that the activation of the Notch receptor occurs in a single row of boundary cells which separates dorsal from ventral cells in the Drosophila hindgut. rhomboid, which encodes a transmembrane protein, and knirps/knirps-related, which encode nuclear steroid receptors, are Notch target genes required for the expression of crumbs, which encodes a transmembrane protein involved in organizing apical-basal polarity. Notch receptor activation depends on the expression of its ligand Delta in ventral cells, and localizing the Notch receptor to the apical domain of the boundary cells may be required for proper signaling. The analysis of gene expression mediated by a Notch response element suggests that boundary cell-specific expression can be obtained by cooperation of Suppressor of Hairless and the transcription factor Grainyhead or a related factor. CONCLUSIONS Our results demonstrate that Notch signaling plays a pivotal role in determining cell fates along the DV axis of the Drosophila hindgut. The finding that Notch signaling results in the expression of an apical polarity organizer which may be required, in turn, for apical Notch receptor localization suggests a simple mechanism by which the specification of a single cell row might be controlled.
Collapse
Affiliation(s)
- Bernhard Fuss
- Universität Bonn, Institut für Zoophysiologie, Abteilung Entwicklungsbiologie, Poppelsdorfer Schloss, D-53115 Bonn, Germany
| | | |
Collapse
|
31
|
Clements D, Rex M, Woodland HR. Initiation and early patterning of the endoderm. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:383-446. [PMID: 11131522 DOI: 10.1016/s0074-7696(01)03012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review the early stages of endoderm formation in the major animal models. In Amphibia maternal molecules are important in initiating endoderm formation. This is followed by successive signaling events that establish and then pattern the endoderm. In other organisms there are differences in endodermal development, particularly in the initial, prephylotypic stages. Later many of the same key families of transcription factors and signaling cassettes are used in all animals, but more work will be needed to establish exact evolutionary homologies.
Collapse
Affiliation(s)
- D Clements
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
32
|
Fuss B, Meissner T, Bauer R, Lehmann C, Eckardt F, Hoch M. Control of endoreduplication domains in the Drosophila gut by the knirps and knirps-related genes. Mech Dev 2001; 100:15-23. [PMID: 11118880 DOI: 10.1016/s0925-4773(00)00512-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoreduplication cycles that lead to an increase of DNA ploidy and cell size occur in distinct spatial and temporal patterns during Drosophila development. Only little is known about the regulation of these modified cell cycles. We have investigated fore- and hindgut development and we present evidence that the Drosophila knirps and knirps-related genes are key components to spatially restrict endoreduplication domains. Our lack and gain-of-function experiments show that knirps and knirps-related which encode nuclear orphan receptors transcriptionally repress S-phase genes of the cell cycle required for DNA replication and that this down-regulation is crucial for gut morphogenesis. Furthermore, we demonstrate that both genes are activated in overlapping expression domains in the fore- and hindgut in response to Wingless and Hedgehog activities emanating from epithelial signaling centers that control the regionalization of the gut tube. Our results provide a novel link between morphogen-dependent positional information and the spatio-temporal regulation of cell cycle activity in the gut.
Collapse
Affiliation(s)
- B Fuss
- Institut für Zoologie, Universität Bonn, Abteilung Entwicklungsbiologie, Römerstrasse 164, D-53117 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Janody F, Reischl J, Dostatni N. Persistence of Hunchback in the terminal region of the Drosophila blastoderm embryo impairs anterior development. Development 2000; 127:1573-82. [PMID: 10725234 DOI: 10.1242/dev.127.8.1573] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anterior terminal development is controlled by several zygotic genes that are positively regulated at the anterior pole of Drosophila blastoderm embryos by the anterior (bicoid) and the terminal (torso) maternal determinants. Most Bicoid target genes, however, are first expressed at syncitial blastoderm as anterior caps, which retract from the anterior pole upon activation of Torso. To better understand the interaction between Bicoid and Torso, a derivative of the Gal4/UAS system was used to selectively express the best characterised Bicoid target gene, hunchback, at the anterior pole when its expression should be repressed by Torso. Persistence of hunchback at the pole mimics most of the torso phenotype and leads to repression at early stages of a labral (cap'n'collar) and two foregut (wingless and hedgehog) determinants that are positively controlled by bicoid and torso. These results uncovered an antagonism between hunchback and bicoid at the anterior pole, whereas the two genes are known to act in concert for most anterior segmented development. They suggest that the repression of hunchback by torso is required to prevent this antagonism and to promote anterior terminal development, depending mostly on bicoid activity.
Collapse
Affiliation(s)
- F Janody
- LGPD, IBDM, Parc Scientifique de Luminy, Case 907, Marseille, France
| | | | | |
Collapse
|