1
|
Ma X, Ma Y, Lin Z, Ji M. The role of the TGF-β1 signaling pathway in the process of amelogenesis. Front Physiol 2025; 16:1586769. [PMID: 40271211 PMCID: PMC12014465 DOI: 10.3389/fphys.2025.1586769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Amelogenesis is a highly regulated process involving multiple signaling pathways, among which the transforming growth factor-β1 (TGF-β1) signaling pathway plays a pivotal role in enamel formation. This review firstly elucidates the critical functions of TGF-β1 in regulating ameloblast behavior and enamel development, encompassing ameloblast proliferation, differentiation, apoptosis, enamel matrix protein synthesis, and mineralization. Secondly, based on emerging evidence, we further discuss potential interactions between TGF-β signaling and circadian regulation in enamel formation, although this relationship requires further experimental validation. Finally, future research directions are proposed to further investigate the relationship between TGF-β1 and the circadian clock in the context of amelogenesis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Yunjing Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiyong Lin
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ji
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Liu Z, Chen T, Bai D, Tian W, Chen Y. Smad7 Regulates Dental Epithelial Proliferation during Tooth Development. J Dent Res 2019; 98:1376-1385. [PMID: 31499015 DOI: 10.1177/0022034519872487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tooth morphogenesis involves dynamic changes in shape and size as it proceeds through the bud, cap, and bell stages. This process requires exact regulation of cell proliferation and differentiation. Smad7, a general antagonist against transforming growth factor-β (TGF-β) signaling, is necessary for maintaining homeostasis and proper functionality in many organs. While TGF-β signaling is widely involved in tooth morphogenesis, the precise role of Smad7 in tooth development remains unknown. In this study, we showed that Smad7 is expressed in the developing mouse molars with a high level in the dental epithelium but a moderate to weak level in the dental mesenchyme. Smad7 deficiency led to a profound decrease in tooth size primarily due to a severely compromised cell proliferation capability in the dental epithelium. Consistent with the tooth shrinkage phenotype, RNA sequencing (RNA-seq) analysis revealed that Smad7 ablation downregulated genes referred to epithelial cell proliferation and cell cycle G1/S phase transition, whereas the upregulated genes were involved in responding to TGF-β signaling and cell cycle arrest. Among these genes, the expression of Cdkn1a (encoding p21), a negative cell proliferation regulator, was remarkably elevated in parallel with the diminution of Ccnd1 encoding the crucial cell cycle regulator cyclin D1 in the dental epithelium. Meanwhile, the expression level of p-Smad2/3 was ectopically elevated in the developing tooth germ of Smad7 null mice, indicating the hyperactivation of the canonical TGF-β signaling. These effects were reversed by addition of TGF-β signaling inhibitor in cell cultures of Smad7-/- molar tooth germs, with rescued expression of cyclin D1 and cell proliferation rate. In sum, our studies demonstrate that Smad7 functions primarily as a positive regulator of cell proliferation via inhibition of the canonical TGF-β signaling during dental epithelium development and highlight a crucial role for Smad7 in regulating tooth size.
Collapse
Affiliation(s)
- Z Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - T Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - D Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - W Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Y Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
3
|
Song W, Wang Y, Chu Q, Qi C, Gao Y, Gao Y, Xiang L, Zhenzhen X, Gao Y. Loss of transforming growth factor-β1 in epithelium cells affects enamel formation in mice. Arch Oral Biol 2018; 96:146-154. [PMID: 30243146 DOI: 10.1016/j.archoralbio.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES In order to understand the specific in vivo function of transforming growth factor-beta1 (TGF-β1), we successfully established aTGF-β1 deficient mouse model using a conditional knockout method. In the present study, we aimed to further understand the potential role of TGF-β1 in enamel formation. DESIGN Transgenic mice withoutTGF-β1 in epithelial cells were generated. Scanning electron microscopy and micro-computed tomography analysis were used to detect the dental appearance, enamel microstructure and tooth density. Histological analysis was used to examine the residual organic matrix of enamel. Quantitative real-time polymerase chain reaction was used to analyze the expressions of enamel matrix proteins at the mRNA level. RESULTS The enamel of mandibular molars and incisors inTGF-β1 conditional knockout mice displayed severe attrition and lower density compared with the wild-type littermates. A slender microstructure of enamel rod was observed, and enamel matrix proteins were retained in the enamel space at the maturation stage in conditional knockout mice. Moreover, the expressions of enamel matrix protein-encoding genes, such as amelogenin (Amelx), ameloblastin (Ambn), Enamelin (Enam) and matrix metalloproteinase-20 (Mmp-20), were increased in enamel organs of conditional knockout mice. On the other hand, the expressions of Amelotin (Amtn), kallikrein-related peptidase-4 (Klk4), C4orf26 and WD repeat-containing protein 72 (Wdr72) were dramatically decreased at the transition and maturation stages. CONCLUSIONS TGF-β1 played an important role in enamel mineralization through decreasing synthesis ofAmelx, Ambn and Enam and increasing synthesis of Klk4, Amtn, Corf26 and Wdr72.
Collapse
Affiliation(s)
- Wenying Song
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yanli Wang
- Binzhou People's Hospital of Shandong Province, Shandong Binzhou 2566610, People's Republic of China
| | - Qing Chu
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Congcong Qi
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yuehua Gao
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yan Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Lili Xiang
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Xu Zhenzhen
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yuguang Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China.
| |
Collapse
|
4
|
Morkmued S, Hemmerle J, Mathieu E, Laugel-Haushalter V, Dabovic B, Rifkin DB, Dollé P, Niederreither K, Bloch-Zupan A. Enamel and dental anomalies in latent-transforming growth factor beta-binding protein 3 mutant mice. Eur J Oral Sci 2018; 125:8-17. [PMID: 28084688 PMCID: PMC5260799 DOI: 10.1111/eos.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 01/31/2023]
Abstract
Latent‐transforming growth factor beta‐binding protein 3 (LTBP‐3) is important for craniofacial morphogenesis and hard tissue mineralization, as it is essential for activation of transforming growth factor‐β (TGF‐β). To investigate the role of LTBP‐3 in tooth formation we performed micro‐computed tomography (micro‐CT), histology, and scanning electron microscopy analyses of adult Ltbp3‐/‐ mice. The Ltbp3‐/‐ mutants presented with unique craniofacial malformations and reductions in enamel formation that began at the matrix formation stage. Organization of maturation‐stage ameloblasts was severely disrupted. The lateral side of the incisor was affected most. Reduced enamel mineralization, modification of the enamel prism pattern, and enamel nodules were observed throughout the incisors, as revealed by scanning electron microscopy. Molar roots had internal irregular bulbous‐like formations. The cementum thickness was reduced, and microscopic dentinal tubules showed minor nanostructural changes. Thus, LTBP‐3 is required for ameloblast differentiation and for the formation of decussating enamel prisms, to prevent enamel nodule formation, and for proper root morphogenesis. Also, and consistent with the role of TGF‐β signaling during mineralization, almost all craniofacial bone components were affected in Ltbp3‐/‐ mice, especially those involving the upper jaw and snout. This mouse model demonstrates phenotypic overlap with Verloes Bourguignon syndrome, also caused by mutation of LTBP3, which is hallmarked by craniofacial anomalies and amelogenesis imperfecta phenotypes.
Collapse
Affiliation(s)
- Supawich Morkmued
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatric Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Joseph Hemmerle
- Biomaterials and Bioengineering, Inserm UMR1121 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Inserm UMR1121 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Virginie Laugel-Haushalter
- CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Branka Dabovic
- Department of Cell Biology, New York University Medical Center, New York, NY, USA
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Medical Center, New York, NY, USA
| | - Pascal Dollé
- CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,CNRS UMR_7104, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre Européen de Recherche en Biologie et en Médecine (CERBM), Université de Strasbourg, Illkirch, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
6
|
Erickson PA, Cleves PA, Ellis NA, Schwalbach KT, Hart JC, Miller CT. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Dev Biol 2015; 401:310-23. [PMID: 25732776 DOI: 10.1016/j.ydbio.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFβ effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFβ signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin T Schwalbach
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - James C Hart
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
7
|
Romero-Valdovinos M, Bobadilla-Sandoval N, Flisser A, Vadillo-Ortega F. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Med Hypotheses 2014; 83:306-11. [PMID: 24998668 DOI: 10.1016/j.mehy.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.
Collapse
Affiliation(s)
- M Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico
| | - N Bobadilla-Sandoval
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | - A Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - F Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico.
| |
Collapse
|
8
|
TGF-ß regulates enamel mineralization and maturation through KLK4 expression. PLoS One 2013; 8:e82267. [PMID: 24278477 PMCID: PMC3835418 DOI: 10.1371/journal.pone.0082267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/31/2013] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor-ß (TGF-ß) signaling plays an important role in regulating crucial biological processes such as cell proliferation, differentiation, apoptosis, and extracellular matrix remodeling. Many of these processes are also an integral part of amelogenesis. In order to delineate a precise role of TGF-ß signaling during amelogenesis, we developed a transgenic mouse line that harbors bovine amelogenin promoter-driven Cre recombinase, and bred this line with TGF-ß receptor II floxed mice to generate ameloblast-specific TGF-ß receptor II conditional knockout (cKO) mice. Histological analysis of the teeth at postnatal day 7 (P7) showed altered enamel matrix composition in the cKO mice as compared to the floxed mice that had enamel similar to the wild-type mice. The µCT and SEM analyses revealed decreased mineral content in the cKO enamel concomitant with increased attrition and thinner enamel crystallites. Although the mRNA levels remained unaltered, immunostaining revealed increased amelogenin, ameloblastin, and enamelin localization in the cKO enamel at the maturation stage. Interestingly, KLK4 mRNA levels were significantly reduced in the cKO teeth along with a slight increase in MMP-20 levels, suggesting that normal enamel maturation is regulated by TGF-ß signaling through the expression of KLK4. Thus, our study indicates that TGF-ß signaling plays an important role in ameloblast functions and enamel maturation.
Collapse
|
9
|
MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS One 2012; 7:e52256. [PMID: 23272230 PMCID: PMC3525553 DOI: 10.1371/journal.pone.0052256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of rodent tooth development, but little is known about their role in tooth development in large mammals. We identified 637 unique miRNA sequences in a large-scale screen for miRNA expression profiles in the developing lower deciduous molars of miniature pigs (Sus scrofa) using Illumina Solexa deep sequencing. These candidate miRNAs and another 105 known Sus scrofa miRNAs were included in the custom-designed microarray and used to analyze the miRNA expression profile in the bud, cap, early bell, and late bell stages of tooth development. Microarray analysis revealed 166 transcripts that were differentially expressed in the four stages. Bioinformatic analysis identified 18 key miRNAs, including let-7f, miR-128, miR-200b, and miR-200c, that might play key roles in tooth development. Taken together, our results not only identified the specific microRNAome and expression profile in developing lower deciduous molars of the miniature pig, but they also provided useful information for investigating the molecular mechanism of tooth development in the miniature pig.
Collapse
|
10
|
Antunes LDS, Küchler EC, Tannure PN, Lotsch PF, Costa MDC, Gouvêa CVD, Olej B, Granjeiro JM. TGFB3 and BMP4 polymorphism are associated with isolated tooth agenesis. Acta Odontol Scand 2012; 70:202-6. [PMID: 22191848 DOI: 10.3109/00016357.2011.629626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the association of the polymorphisms in the TGFB3 gene (rs2268626) and the BMP4 gene (rs17563) with isolated human tooth agenesis. MATERIALS AND METHODS One hundred and seventy-five unrelated individuals (125 control individuals without tooth agenesis and 50 cases with tooth agenesis) were evaluated using a case-control design. The participants of the study were recruited through the Dental School of the Federal University of Rio de Janeiro, Brazil. Genotyping of the selected polymorphisms for TGFB3 (48 individuals with tooth agenesis and 125 control cases) and BMP4 (46 individuals with tooth agenesis and 88 control cases) were carried out by real-time PCR using the Taqman assay method from a genomic DNA isolated from buccal epithelial cells of all individuals. RESULTS Significant statistical differences were found for genotype frequencies between tooth agenesis and TGFB3 control samples (p = 0.026). In addition, significant differences were also observed for allele and genotype frequencies between unilateral tooth agenesis and TGFB3 control samples (p = 0.014 and 0.004 for allele and genotype frequencies, respectively). For BMP4, genotype distribution had a statistically significant difference between groups (p = 0.047). The GG genotype of BMP4 was more frequent in individuals with three or more missing teeth than in the control group (p < 0.0001). CONCLUSIONS These results indicate that polymorphisms in the TGFB3 gene and in BMP4 genes contribute to tooth agenesis. Nonetheless, the extents to which this polymorphism may actually contribute to the tooth agenesis status should be clarified.
Collapse
|
11
|
Ramachandran A, Ravindran S, George A. Localization of transforming growth factor beta receptor II interacting protein-1 in bone and teeth: implications in matrix mineralization. J Histochem Cytochem 2012; 60:323-37. [PMID: 22260994 DOI: 10.1369/0022155412436879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor beta receptor II (TGFβR-II) interacting protein 1 (TRIP-1) is a WD-40 protein that binds to the cytoplasmic domain of the TGF-β type II receptor in a kinase-dependent manner. To investigate the role of TRIP-1 in mineralized tissues, we examined its pattern of expression in cartilage, bone, and teeth and analyzed the relationship between TRIP-1 overexpression and mineralized matrix formation. Results demonstrate that TRIP-1 was predominantly expressed by osteoblasts, odontoblasts, and chondrocytes in these tissues. Interestingly, TRIP-1 was also localized in the extracellular matrix of bone and at the mineralization front in dentin, suggesting that TRIP-1 is secreted by nonclassical secretory mechanisms, as it is devoid of a signal peptide. In vitro nucleation studies demonstrate a role for TRIP-1 in nucleating calcium phosphate polymorphs. Overexpression of TRIP-1 favored osteoblast differentiation of undifferentiated mesenchymal cells with an increase in mineralized matrix formation. These data indicate an unexpected role for TRIP-1 during development of bone, teeth, and cartilage.
Collapse
Affiliation(s)
- Amsaveni Ramachandran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
12
|
Mohazab L, Koivisto L, Jiang G, Kytömäki L, Haapasalo M, Owen G, Wiebe C, Xie Y, Heikinheimo K, Yoshida T, Smith C, Heino J, Häkkinen L, McKee M, Larjava H. Critical role for αvβ6 integrin in enamel biomineralization. J Cell Sci 2012; 126:732-44. [DOI: 10.1242/jcs.112599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. Thus, we hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6−/− mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6−/− mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6−/− enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6−/− mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, which did not use αvβ6 integrin as an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition/turnover and subsequent enamel biomineralization.
Collapse
|
13
|
Influence of ADAM28 on biological characteristics of human dental follicle cells. Arch Oral Biol 2009; 54:835-45. [PMID: 19580958 DOI: 10.1016/j.archoralbio.2009.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/22/2009] [Accepted: 05/17/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of a disintegrin and metalloproteinase 28 (ADAM28) on the biological characteristics of human dental follicle cells (HDFCs) and possible action mechanism. METHODS Eukaryotic expression plasmid containing ADAM28 coding region and ADAM28 antisense oligodeoxynucleotides (AS-ODN) with FITC labelling were constructed and synthesised by gene clone and recombination. Then we respectively transfected them into HDFCs by Lipofectamine 2000 system and detected their effects on proliferation, differentiation and apoptosis of HDFCs by MTT assay, cell cycle detection, ALP activity and Annexin V-FITC/PI analysis. Finally we observed the effects of ADAM28 AS-ODN on HDFCs expressing extracellular matrix (ECM) proteins by immunocytochemical staining. RESULTS ADAM28 eukaryotic plasmid was constructed and identified successfully, and could be correctly translated and expressed in HDFCs, furthermore overexpression of ADAM28 promoted the HDFCs proliferation and inhibited specific differentiation of HDFCs, while inhibition of ADAM28 exerted the opposite effects and induced apoptosis. Moreover ADAM28 could significantly inhibit the secretion of OPN and type III collagen of HDFCs. CONCLUSIONS ADAM28 might actively participate in the network regulation which associates HDFCs proliferation, differentiation, apoptosis with matrix mineralisation during tooth development by interacting with multiple signal molecules.
Collapse
|
14
|
Zhao Z, Tang L, Deng Z, Wen L, Jin Y. Essential role of ADAM28 in regulating the proliferation and differentiation of human dental papilla mesenchymal cells (hDPMCs). Histochem Cell Biol 2008; 130:1015-25. [PMID: 18690470 DOI: 10.1007/s00418-008-0467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2008] [Indexed: 12/23/2022]
Abstract
Dental papilla mesenchymal cells (DPMCs) have been supposed to possess the relatively independent and critical role for tooth development and morphogenesis. Here, we characterized the role of ADAM28, a member of a disintegrin and metalloproteinase (ADAM) family, in the regulative mechanisms of odontogenic capability of hDPMCs. Immunofluorescence staining showed the ubiquitous expression of ADAM28 in multiple human dental mesenchymal and epithelial cells. After confirming the effect of eukaryotic expression plasmid containing ADAM28 coding region and ADAM28 antisense oligodeoxynucleotide (AS-ODN), we respectively transfected them into hDPMCs and observed the biological markers for proliferation and differentiation. Overexpression of ADAM28 favored the proliferation and lineage-specific differentiation of hDPMCs, while blockage of ADAM28 exerted the opposite effects and induced apoptosis. These results identified an unrecognized hypothesis that ADAM28 may function as positive regulator of growth and differentiation of hDPMCs and act as an important molecule mediating reciprocal epithelial-mesenchymal signaling during tooth organ development.
Collapse
Affiliation(s)
- Zheng Zhao
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, and Department of Otolaryngology, Xijing Hospital, 145 West Changle Road, 710032, Xi'an, China
| | | | | | | | | |
Collapse
|
15
|
Takamori K, Hosokawa R, Xu X, Deng X, Bringas P, Chai Y. Epithelial fibroblast growth factor receptor 1 regulates enamel formation. J Dent Res 2008; 87:238-43. [PMID: 18296607 DOI: 10.1177/154405910808700307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The interaction between epithelial and mesenchymal tissues plays a critical role in the development of organs such as teeth, lungs, and hair. During tooth development, fibroblast growth factor (FGF) signaling is critical for regulating reciprocal epithelial and mesenchymal interactions. FGF signaling requires FGF ligands and their receptors (FGFRs). In this study, we investigated the role of epithelial FGF signaling in tooth development, using the Cre-loxp system to create tissue-specific inactivation of Fgfr1 in mice. In K14-Cre;Fgfr1(fl/fl) mice, the apical sides of enamel-secreting ameloblasts failed to adhere properly to each other, although ameloblast differentiation was unaffected at early stages. Prior to eruption, enamel structure was compromised in the K14-Cre;Fgfr1(fl/fl) mice and displayed severe enamel defects that mimic amelogenesis imperfecta (AI), with a rough, irregular enamel surface. These results suggest that there is a cell-autonomous requirement for FGF signaling in the dental epithelium during enamel formation. Loss of Fgfr1 affects ameloblast organization at the enamel-secretory stage and, hence, the formation of enamel.
Collapse
Affiliation(s)
- K Takamori
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pacheco MS, Reis AH, Aguiar DP, Lyons KM, Abreu JG. Dynamic analysis of the expression of the TGFbeta/SMAD2 pathway and CCN2/CTGF during early steps of tooth development. Cells Tissues Organs 2007; 187:199-210. [PMID: 18089935 DOI: 10.1159/000112640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS CCN2 is present during tooth development. However, the relationship between CCN2 and the transforming growth factor beta (TGFbeta)/SMAD2/3 signaling cascade during early stages of tooth development is unclear. Here, we compare the expression of CCN2 and TGFbeta/SMAD2/3 components during tooth development, and analyze the functioning of TGFbeta/SMAD2/3 in wild-type (WT) and Ccn2 null (Ccn2-/-) mice. METHODS Coronal sections of mice on embryonic day (E)11.5, E12.5, E13.5, E14.5 and E18.5 from WT and Ccn2-/- were immunoreacted to detect CCN2 and components of the TGFbeta signaling pathway and assayed for 5'-bromo-2'-deoxyuridine immunolabeling and proliferating cell nuclear antigen immunostaining. RESULTS CCN2 and TGFbeta signaling components such as TGFbeta1, TGFbeta receptor II, SMADs2/3 and SMAD4 were expressed in inducer tissues during early stages of tooth development. Proliferation analysis in these areas showed that epithelial cells proliferate less than mesenchymal cells from E11.5 to E13.5, while at E14.5 they proliferate more than mesenchymal cells. We did not find a correlation between functioning of the TGFbeta1 cascade and CCN2 expression because Ccn2-/- mice showed neither a reduction in SMAD2 phosphorylation nor a difference in cell proliferation. CONCLUSION CCN2 and the TGFbeta/SMAD2/3 signaling pathway are active in signaling centers of tooth development where proliferation is dynamic, but these mechanisms may act independently.
Collapse
Affiliation(s)
- Marcos S Pacheco
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M. TGF-β superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 2007; 86:781-99. [PMID: 17499880 DOI: 10.1016/j.ejcb.2007.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 12/22/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) superfamily of signaling molecules are involved in the regulation of many developmental processes that involve the interaction between mesenchymal and epithelial tissues. Smad7 is a potent inhibitor of many members of the TGF-beta family, notably TGF-beta and activin. In this study, we show that embryonic overexpression of Smad7 in stratified epithelia using a keratin 5 promoter, results in severe morphogenetic defects in skin and teeth and leads to embryonic and perinatal lethality. To further analyze the functions of Smad7 in epithelial tissues of adult mice, we used an expression system that allowed a controlled overexpression of Smad7 in terms of both space and time. Skin defects in adult mice overexpressing Smad7 were characterized by hyper-proliferation and missing expression of early markers of keratinocyte differentiation. Upon Smad7-mediated blockade of TGF-beta superfamily signaling, ameloblasts failed to produce an enamel layer in incisor teeth. In addition, TGF-beta blockade in adult mice altered the pattern of thymic T cell differentiation and the number of thymic T cells was significantly reduced. This study shows that TGF-beta superfamily signaling is essential for development of hair, tooth and T-cells as well as differentiation and proliferation control in adult tissues.
Collapse
Affiliation(s)
- Borut Klopcic
- I. Medical Department, Section Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shiomi N, Cui XM, Yamamoto T, Saito T, Shuler CF. Inhibition of SMAD2 expression prevents murine palatal fusion. Dev Dyn 2006; 235:1785-93. [PMID: 16607645 DOI: 10.1002/dvdy.20819] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor (TGF)-beta 3 is known to regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Our previous studies showed that SMAD2, a TGF-beta signaling mediator, was expressed and phosphorylated primarily in the MEE and that SMAD2 phosphorylation in the MEE was temporospatially regulated by TGF-beta 3. The goal of this study was to examine the requirement for SMAD2 to complete the developmental events necessary for palatal fusion. SMAD2 expression was inhibited with Smad2 siRNA transfection into palatal tissues in vitro. The results showed that Smad2 siRNA transfection resulted in the maintenance of MEE cells in the palatal midline. Western blot and immunofluorescence analyses confirmed that the endogenous SMAD2 and phospho-SMAD2 levels were reduced following siRNA transfection. The SMAD3 level was not altered by the Smad2 siRNA transfection. The persistence of the MEE and the decreased SMAD2/phospho-SMAD2 levels were coincident with increased MEE cell proliferation. Addition of exogenous TGF-beta 3 increased p-SMAD2 level but not the total SMAD2 level. Therefore, exogenous TGF-beta 3 was not able to induce p-SMAD2 enough to rescue the palatal phenotype in the Smad2 siRNA group. The results indicated that the endogenous SMAD2 level is crucial in the regulation of disappearance of MEE during palatal fusion.
Collapse
Affiliation(s)
- Nobuyuki Shiomi
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033-9062, USA
| | | | | | | | | |
Collapse
|
19
|
Hosokawa R, Urata MM, Ito Y, Bringas P, Chai Y. Functional significance of Smad2 in regulating basal keratinocyte migration during wound healing. J Invest Dermatol 2006; 125:1302-9. [PMID: 16354202 DOI: 10.1111/j.0022-202x.2005.23963.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are critical regulators for wound healing. Transduction of TGF-beta signaling depends on activation of Smad2 and Smad3 by heteromeric complexes of ligand-specific receptors. Mice lacking Smad3 show accelerated wound healing, whereas the biological significance of Smad2-mediated TGF-beta signaling in wound healing remains unknown. To understand the function of Smad2 in regulating wound healing, we investigated the effect of Smad2 overexpression on epithelialization of incision wounds. Cutaneous wounds made in K14-Smad2 mice showed delayed healing. This delay in wound healing resulted from a defect in basal keratinocyte migration in K14-Smad2 mice. Instead of basal keratinocytes, the suprabasal layer of keratinocytes migrated into the wound region. Furthermore, overexpression of Smad2 activated the Smad2/Smad4 complex in keratinocytes and inhibited keratin 16 (K16) expression. As K16 functions as a critical mediator for reorganization of keratin filaments following skin injury, we propose that altered K16 expression affects the migration of basal keratinocytes in the K14-Smad2 mice. Taken together, these findings demonstrate a crucial role of TGF-beta signaling mediator Smad2 in regulating keratinocyte migration and re-epithelialization during wound healing. The K14-Smad2 transgenic mice can serve as an animal model for the investigation of TGF-beta signaling mechanism in regulating wound healing.
Collapse
Affiliation(s)
- Ryoichi Hosokawa
- Center for craniofacial molecular biology, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
20
|
Sasaki T, Ito Y, Xu X, Han J, Bringas P, Maeda T, Slavkin HC, Grosschedl R, Chai Y. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev Biol 2005; 278:130-43. [PMID: 15649466 DOI: 10.1016/j.ydbio.2004.10.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 09/22/2004] [Accepted: 10/28/2004] [Indexed: 11/23/2022]
Abstract
LEF1 is a cell-type-specific transcription factor and mediates Wnt signaling pathway by association with its co-activator beta-catenin. Wnt signaling is known to be critical for the specification of cranial neural crest (CNC) cells and may regulate the fate diversity of the CNC during craniofacial morphogenesis. Loss of Lef1 results in arrested tooth development at the late bud stage and LEF1 is required for a relay of a Wnt signaling to a cascade of FGF signaling activities to mediate the epithelial-mesenchymal interaction during tooth morphogenesis. It remains unclear, however, what is the cellular mechanism of LEF1 signaling in regulating tooth morphogenesis. To test the hypothesis that LEF1 signaling regulates the fate of the dental epithelial and the CNC-derived mesenchymal cells during tooth morphogenesis, we investigated and compared the cellular migration, proliferation, and apoptotic activity within the tooth germ between the wild-type and Lef1 null mutant mice. Using the Wnt1-Cre/R26R transgenic system for indelibly marking the progenies of CNC cells, we show that there is no CNC migration defect in the Lef1 null mutant mice, indicating that the arrest in tooth development is not the result of shortage of the CNC contribution into the first branchial arch in the Lef1 mutant. Furthermore, there is no alteration in cell proliferation or condensation of the CNC-derived dental mesenchyme in the Lef1 null mutant, suggesting that LEF1 may not affect the cell cycle progression of the multipotential CNC cells during tooth morphogenesis. Importantly, apoptotic activity is significantly increased within the dental epithelium in the Lef1 null mutant mice. As the result of this increased cell death, the bud stage tooth germ fails to advance to the cap stage in the absence of Lef1. Inhibition of apoptotic activity by FGF4 rescues the tooth development in the Lef1 null mutant. Our studies suggest that LEF1 is a critical survival factor for the dental epithelial cells during tooth morphogenesis.
Collapse
Affiliation(s)
- Tomoyo Sasaki
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vandevska-Radunovic V, Fristad I, Wimalawansa SJ, Kvinnsland IH. CGRP1 and NK1 receptors in postnatal, developing rat dental tissues. Eur J Oral Sci 2003; 111:497-502. [PMID: 14632686 DOI: 10.1111/j.0909-8836.2003.00086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is little evidence that neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) participate in the regulation of tooth development. The aim of this study was to analyse the expression of their respective receptors, neurokinin (NK) 1 and CGRP1 receptor, in postnatal developing rat molars and supporting tissues, thereby localizing the target areas for neuropeptide activity. Mol:WIST rats were killed at 7, 14 and 21 d after birth and upper and lower jaws were processed for immunohistochemistry. At early crown stage (P7), only a few individual cells in the dental follicle were receptor positive. At the onset of root formation (P14), post-secretory ameloblasts, cells in the stratum intermedium, the reduced enamel epithelium and the developing alveolar bone demonstrated both NK1 and CGRP1 receptor immunoreactivity. The CGRP1 receptor sites were occasionally evident on cells in the odontoblast layer. At advanced root development (P21), neuropeptide receptor expression was evident on cells close to the developing dentin, cementum and alveolar bone. These data demonstrate dynamic changes in the localization of NK1 and CGRP1 receptors in developing rat dental tissues and indicate an active role for their ligands in the regulation of crown and root development.
Collapse
|
22
|
Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130:5269-80. [PMID: 12975342 DOI: 10.1242/dev.00708] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cleft palate and skull malformations represent some of the most frequent congenital birth defects in the human population. Previous studies have shown that TGFbeta signaling regulates the fate of the medial edge epithelium during palatal fusion and postnatal cranial suture closure during skull development. It is not understood, however, what the functional significance of TGFbeta signaling is in regulating the fate of cranial neural crest (CNC) cells during craniofacial development. We show that mice with Tgfbr2 conditional gene ablation in the CNC have complete cleft secondary palate, calvaria agenesis, and other skull defects with complete phenotype penetrance. Significantly, disruption of the TGFbeta signaling does not adversely affect CNC migration. Cleft palate in Tgfbr2 mutant mice results from a cell proliferation defect within the CNC-derived palatal mesenchyme. The midline epithelium of the mutant palatal shelf remains functionally competent to mediate palatal fusion once the palatal shelves are placed in close contact in vitro. Our data suggests that TGFbeta IIR plays a crucial, cell-autonomous role in regulating the fate of CNC cells during palatogenesis. During skull development, disruption of TGFbeta signaling in the CNC severely impairs cell proliferation in the dura mater, consequently resulting in calvaria agenesis. We provide in vivo evidence that TGFbeta signaling within the CNC-derived dura mater provides essential inductive instruction for both the CNC- and mesoderm-derived calvarial bone development. This study demonstrates that TGFbeta IIR plays an essential role in the development of the CNC and provides a model for the study of abnormal CNC development.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han J, Ito Y, Yeo JY, Sucov HM, Maas R, Chai Y. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19(INK4d) expression during odontogenesis. Dev Biol 2003; 261:183-96. [PMID: 12941628 DOI: 10.1016/s0012-1606(03)00300-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.
Collapse
Affiliation(s)
- Jun Han
- School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chai Y, Ito Y, Han J. TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:78-88. [PMID: 12764071 DOI: 10.1177/154411130301400202] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, and control the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During craniofacial development, TGF-beta may regulate the fate specification of cranial neural crest cells. These cells are multipotent progenitors and capable of producing diverse cell types upon differentiation. Here we summarize evidence that TGF-beta ligands and their signaling intermediates have significant roles in patterning and specification of cranial neural crest cells. The biological function of TGF-beta is carried out through the regulation of transcriptional factors during embryogenesis.
Collapse
Affiliation(s)
- Y Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
25
|
David D, Cardoso J, Marques B, Marques R, Silva ED, Santos H, Boavida MG. Molecular characterization of a familial translocation implicates disruption of HDAC9 and possible position effect on TGFbeta2 in the pathogenesis of Peters' anomaly. Genomics 2003; 81:489-503. [PMID: 12706107 DOI: 10.1016/s0888-7543(03)00046-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peters' anomaly (PA) is a congenital defect of the anterior chamber of the eye. We identified a family in which an apparently balanced chromosomal translocation t(1;7) (q41;p21) was associated with PA. Based on this observation, detailed molecular characterizations of the breakpoint regions and candidate genes were carried out. A candidate gene from each breakpoint was identified: on chromosome 7, histone deacetylase 9 (HDAC9), disrupted by the translocation breakpoint, and on chromosome 1, transforming growth factor-beta2 (TGFbeta2) located 500 kb proximal to the breakpoint. An additional lysophospholipase-like 1 gene (LYPLAL1), localized approximately 200 kb distal to the chromosome 1 breakpoint, was also identified and characterized. Although only the HDAC9 gene is disrupted by the breakpoint, we consider that TGFbeta2 represents the main candidate gene in this family, which is elicited in mice by the Tgfbeta2-null status and by the TGFbeta2-induced cataractus changes in animal models. As an alternative scenario, which is supported by the ability of class II HDACs to mediate extracellular TGF-beta stimuli to core histone deacetylation in promoter-adjacent regions, we propose the hypothesis of digenic inheritance. Inappropriate or inadequate TGFbeta2 expression, together with deficient mediation of these signals at the transcription level, due to an altered HDAC9 isoforms ratio, may also lead to the observed ocular phenotype.
Collapse
Affiliation(s)
- Dezsö David
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The prospects for tooth regeneration in the 21st century are compelling. Using the foundations of experimental embryology, developmental and molecular biology, the principles of biomimetics (the mimicking of biological processes), tooth regeneration is becoming a realistic possibility within the next few decades. The cellular, molecular, and developmental "rules" for tooth morphogenesis are rapidly being discovered. The knowledge gained from adult stem cell biology, especially associated with dentin, cartilage, and bone tissue regeneration, provides additional opportunities for eventual tooth organogenesis. The centuries of tooth development using xenotransplantation, allotransplantation, and autotransplantation have resulted in many important insights that can enhance tooth regeneration. In considering the future, several lines of evidence need to be considered: (1) enamel organ epithelia and dental papilla mesenchyme tissues contain stem cells during postnatal stages of life; (2) late cap stage and bell stage tooth organs contain stem cells; (3) odontogenic adult stem cells respond to mechanical as well as chemical "signals"; (4) presumably adult bone marrow as well as dental pulp tissues contain "odontogenic" stem cells; and (5) epithelial-mesenchymal interactions are pre-requisite for tooth regeneration. The authors express "guarded enthusiasm," yet there should be little doubt that adult stem cell-mediated tooth regeneration will be realized in the not too distant future. The prospects for tooth regeneration could be realized in the next few decades and could be rapidly utilized to improve the quality of human life in many nations around the world.
Collapse
Affiliation(s)
- Yang Chai
- School of Dentistry, University of Southern California, Los Angeles 90089-0641, USA
| | | |
Collapse
|
27
|
Nesti LJ, Caterson EJ, Wang M, Chang R, Chapovsky F, Hoek JB, Tuan RS. TGF-beta1 calcium signaling increases alpha5 integrin expression in osteoblasts. J Orthop Res 2002; 20:1042-9. [PMID: 12382972 DOI: 10.1016/s0736-0266(02)00020-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TGF-beta1 is a potent osteoactive factor and exhibits a wide variety of effects on osteoblasts, most of which are mediated through receptor associated Smad proteins. We have recently reported a novel TGF-beta1 intracellular Ca2+ signaling pathway in osteoblasts, and found that this signaling is required for the TGF-beta1 mediated enhancement of osteoblast adhesion to substrate. Given that interaction between the extracellular matrix protein fibronectin and alpha5beta1 integrin on the cell surface is principally responsible for osteoblast substrate adhesion, we examined here whether the TGF-beta1 stimulated Ca2+ signal is involved in this pathway. Our results show that, in primary human osteoblasts, the TGF-beta1 induced intracellular Ca2+ signal is responsible, in part, for the stimulation of expression of alpha5 integrin, but not of beta1 integrin or fibronectin. Increased levels of alpha5 integrin protein and mRNA were seen as early as 12 h after TGF-beta1 treatment, but were inhibited by co-treatment of cells with nifedipine, a selective L-type Ca2+ channel blocker. TGF-beta1 treatment increased both fibronectin and beta1 integrin protein production within 48 h, in a manner unaffected by co-treatment with nifedipine. Immunofluorescence observations revealed that TGF-beta1 treatment resulted in increased alpha5 integrin staining, and more prominent alpha5 integrin clustering, with increased co-localization with the actin cytoskeleton, effects that were blocked by co-treatment with nifedipine. The TGF-beta1 induced intracellular Ca2+ signal in human osteoblasts is thus an important mechanistic step in the regulation of alpha5 integrin expression, later contributing to enhanced cell adhesion.
Collapse
Affiliation(s)
- Leon J Nesti
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ito Y, Bringas P, Mogharei A, Zhao J, Deng C, Chai Y. Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor beta-mediated Meckel's cartilage development. Dev Dyn 2002; 224:69-78. [PMID: 11984875 DOI: 10.1002/dvdy.10088] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proper development of Meckel's cartilage is critical for craniofacial skeletogenesis, because it serves as the primordium for the formation of mandible, malleus, incus, and sphenomandibular ligament. Cranial neural crest (CNC) cells contribute significantly to the formation of Meckel's cartilage. Members of the transforming growth factor beta (TGF-beta) family control the proliferation and differentiation of CNC cells during craniofacial skeletogenesis. TGF-beta signaling is transduced from the cell membrane to the nucleus by means of specific type I and type II receptors and phosphorylated Smad proteins. Here we demonstrate that application of TGF-beta promotes chondrogenesis by specifically increasing proliferation of CNC-derived chondrocytes and production of extracellular matrix. To understand the molecular regulation of TGF-beta signaling, we have examined the biological function of both TGF-beta receptor-regulated and inhibitory Smads during Meckel's cartilage development. The expression patterns of Smad2, 3, and 7 are identical to the ones of endogenous TGF-beta and its cognate receptors during Meckel's cartilage development, establishing the potential that these intracellular signaling Smads may regulate TGF-beta-mediated chondrogenesis. Functional haploinsufficiency of Smad2 delays TGF-beta-mediated Meckel's cartilage development. Overproduction of Smad7 severely inhibits Meckel's cartilage formation, indicating a negative feedback on TGF-beta signaling by inhibitory Smad is critical in orchestrating TGF-beta-mediated gene regulation during embryonic chondrogenesis. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ito Y, Zhao J, Mogharei A, Shuler CF, Weinstein M, Deng C, Chai Y. Antagonistic effects of Smad2 versus Smad7 are sensitive to their expression level during tooth development. J Biol Chem 2001; 276:44163-72. [PMID: 11557747 DOI: 10.1074/jbc.m011424200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, controlling the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During early tooth development, TGF-beta inhibits proliferation of enamel organ epithelial cells but the underlying molecular mechanisms are largely unknown. Here we tested the hypothesis that antagonistic effects between Smad2 and Smad7 regulate TGF-beta signaling during tooth development. Attenuation of Smad2 gene expression resulted in significant advancement of embryonic tooth development with increased proliferation of enamel organ epithelial cells, while attenuation of Smad7 resulted in significant inhibition of embryonic tooth development with increased apoptotic activity within enamel organ epithelium. These findings suggest that different Smads may have differential activities in regulating TGF-beta-mediated cell proliferation and death. Furthermore, functional haploinsufficiency of Smad2, but not Smad3, altered TGF-beta-mediated tooth development. The results indicate that Smads are critical factors in orchestrating TGF-beta-mediated gene regulation during embryonic tooth development. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.
Collapse
Affiliation(s)
- Y Ito
- Center for Craniofacial Molecular Biology School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ito Y, Sarkar P, Mi Q, Wu N, Bringas P, Liu Y, Reddy S, Maxson R, Deng C, Chai Y. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 2001; 236:181-94. [PMID: 11456453 DOI: 10.1006/dbio.2001.0332] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are critical regulators for epithelial growth and can alter the differentiation of keratinocytes. Transduction of TGF-beta signaling depends on the phosphorylation and activation of Smad proteins by heteromeric complexes of ligand-specific type I and II receptors. To understand the function of TGF-beta and activin-specific Smad, we generated transgenic mice that overexpress Smad2 in epidermis under the control of keratin 14 promoter. Overexpression of Smad2 increases endogenous Smad4 and TGF-beta 1 expression while heterozygous loss of Smad2 reduces their expression levels, suggesting a concerted action of Smad2 and -4 in regulating TGF-beta signaling during skin development. These transgenic mice have delayed hair growth, underdeveloped ears, and shorter tails. In their skin, there is severe thickening of the epidermis with disorganized epidermal architecture, indistinguishable basement membrane, and dermal fibrosis. These abnormal phenotypes are due to increased proliferation of the basal epidermal cells and abnormalities in the program of keratinocyte differentiation. The ectodermally derived enamel structure is also abnormal. Collectively, our study presents the first in vivo evidence that, by providing an auto-feedback in TGF-beta signaling, Smad2 plays a pivotal role in regulating TGF-beta-mediated epidermal homeostasis.
Collapse
Affiliation(s)
- Y Ito
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|