1
|
Johal S, Elsayed R, Panfilio KA, Nelson AC. The molecular basis for functional divergence of duplicated SOX factors controlling endoderm formation and left-right patterning in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579092. [PMID: 39605568 PMCID: PMC11601245 DOI: 10.1101/2024.02.06.579092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endoderm, one of three primary germ layers of vertebrate embryos, makes major contributions to the respiratory and gastrointestinal tracts and associated organs, including liver and pancreas. In mammals, the transcription factor SOX17 is vital for endoderm organ formation and can induce endoderm progenitor identity. Duplication of ancestral sox17 in the teleost lineage produced the paralogues sox32 and sox17 in zebrafish. Sox32 is required for specification of endoderm and progenitors of the left-right organiser (Kupffer's Vesicle, KV), with Sox17 a downstream target of Sox32 that is implicated in further KV development. Phenotypic evidence therefore suggests functional similarities between zebrafish Sox32 and Sox17 and mammalian SOX17. Here, we directly compare these orthologues and paralogues, using the early zebrafish embryo as a biological platform for functional testing. Our results indicate that, unlike Sox32, human SOX17 cannot induce endoderm specification in zebrafish. Furthermore, using hybrid protein functional analyses, we show that Sox32 specificity for the endoderm gene regulatory network is linked to evolutionary divergence in its DNA-binding HMG domain from its paralogue Sox17. Additionally, changes in the C-terminal regions of Sox32 and Sox17 underpin their differing target specificities. Finally, we establish that specific conserved peptides in the C-terminal domain are essential for the role of Sox17 in establishing correct organ asymmetry. Overall, our results illuminate the molecular basis for functional divergence of Sox32 and Sox17 in vertebrate endoderm development and left-right patterning, and the evolution of SoxF transcription factor function.
Collapse
|
2
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
3
|
Augustine-Wofford K, Connaughton VP, McCarthy E. Are Hyperglycemia-Induced Changes in the Retina Associated with Diabetes-Correlated Changes in the Brain? A Review from Zebrafish and Rodent Type 2 Diabetes Models. BIOLOGY 2024; 13:477. [PMID: 39056672 PMCID: PMC11273949 DOI: 10.3390/biology13070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes is prevalent worldwide, with >90% of the cases identified as Type 2 diabetes. High blood sugar (hyperglycemia) is the hallmark symptom of diabetes, with prolonged and uncontrolled levels contributing to subsequent complications. Animal models have been used to study these complications, which include retinopathy, nephropathy, and peripheral neuropathy. More recent studies have focused on cognitive behaviors due to the increased risk of dementia/cognitive deficits that are reported to occur in older Type 2 diabetic patients. In this review, we collate the data reported from specific animal models (i.e., mouse, rat, zebrafish) that have been examined for changes in both retina/vision (retinopathy) and brain/cognition, including db/db mice, Goto-Kakizaki rats, Zucker Diabetic Fatty rats, high-fat diet-fed rodents and zebrafish, and hyperglycemic zebrafish induced by glucose immersion. These models were selected because rodents are widely recognized as established models for studying diabetic complications, while zebrafish represent a newer model in this field. Our goal is to (1) summarize the published findings relevant to these models, (2) identify similarities in cellular mechanisms underlying the disease progression that occur in both tissues, and (3) address the hypothesis that hyperglycemic-induced changes in retina precede or predict later complications in brain.
Collapse
Affiliation(s)
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| | - Elizabeth McCarthy
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
4
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
5
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Juliana CA, Benjet J, De Leon DD. Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism. BMJ Open Diabetes Res Care 2024; 12:e003735. [PMID: 38575153 PMCID: PMC11005463 DOI: 10.1136/bmjdrc-2023-003735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.
Collapse
Affiliation(s)
- Christine A Juliana
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua Benjet
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
8
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
9
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
10
|
Reuter AS, Stern D, Bernard A, Goossens C, Lavergne A, Flasse L, Von Berg V, Manfroid I, Peers B, Voz ML. Identification of an evolutionarily conserved domain in Neurod1 favouring enteroendocrine versus goblet cell fate. PLoS Genet 2022; 18:e1010109. [PMID: 35286299 PMCID: PMC8959185 DOI: 10.1371/journal.pgen.1010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/28/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
ARP/ASCL transcription factors are key determinants of cell fate specification in a wide variety of tissues, coordinating the acquisition of generic cell fates and of specific subtype identities. How these factors, recognizing highly similar DNA motifs, display specific activities, is not yet fully understood. To address this issue, we overexpressed different ARP/ASCL factors in zebrafish ascl1a-/- mutant embryos to determine which ones are able to rescue the intestinal secretory lineage. We found that Ascl1a/b, Atoh1a/b and Neurod1 factors are all able to trigger the first step of the secretory regulatory cascade but distinct secretory cells are induced by these factors. Indeed, Neurod1 rescues the enteroendocrine lineage while Ascl1a/b and Atoh1a/b rescue the goblet cells. Gain-of-function experiments with Ascl1a/Neurod1 chimeric proteins revealed that the functional divergence is encoded by a 19-aa ultra-conserved element (UCE), present in all Neurod members but absent in the other ARP/ASCL proteins. Importantly, inserting the UCE into the Ascl1a protein reverses the rescuing capacity of this Ascl1a chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This novel domain acts indeed as a goblet cell fate repressor that inhibits gfi1aa expression, known to be important for goblet cell differentiation. Deleting the UCE domain of the endogenous Neurod1 protein leads to an increase in the number of goblet cells concomitant with a reduction of the enteroendocrine cells, phenotype also observed in the neurod1 null mutant. This highlights the crucial function of the UCE domain for NeuroD1 activity in the intestine. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates. It is not yet clear how highly related factors like the ARP/Ascl factors display specific activities even though they recognize the same consensus DNA motif. This specificity could be provided by their cellular environment or by intrinsic properties of the factors themselves. To distinguish between these two possibilities, we have expressed several ARP/Ascl factors in the ascl1a-/- mutant to determine which ones are able to rescue the intestinal secretory defects. We found that Ascl1a/b and Atoh1a/b are able to rescue the goblet cells while Neurod1 rescues the enteroendocrine lineage. Furthermore, we show that the specific Neurod1 activity is conferred by the presence of a 19-aa ultra-conserved element (UCE), present in all vertebrate Neurod members but absent in all the other ARP/ASCL proteins. This UCE domain, so far uncharacterized, acts as a goblet cell fate repressor and inhibits gfi1aa expression, known to be important for goblet cell differentiation. Inserting the UCE into Ascl1a protein reverses the rescuing capacity of this chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This study therefore highlights an unique intrinsic property of Neurod1 allowing it to repress Gfi1 to influence the balance between cell fates. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates.
Collapse
Affiliation(s)
- Anne Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - David Stern
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Alice Bernard
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Chiara Goossens
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Virginie Von Berg
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
11
|
Perez-Frances M, Abate MV, Baronnier D, Scherer PE, Fujitani Y, Thorel F, Herrera PL. Adult pancreatic islet endocrine cells emerge as fetal hormone-expressing cells. Cell Rep 2022; 38:110377. [PMID: 35172145 PMCID: PMC8864465 DOI: 10.1016/j.celrep.2022.110377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
The precise developmental dynamics of the pancreatic islet endocrine cell types, and their interrelation, are unknown. Some authors claim the persistence of islet cell differentiation from precursor cells after birth (“neogenesis”). Here, using four conditional cell lineage tracing (“pulse-and-chase”) murine models, we describe the natural history of pancreatic islet cells, once they express a hormone gene, until late in life. Concerning the contribution of early-appearing embryonic hormone-expressing cells to the formation of islets, we report that adult islet cells emerge from embryonic hormone-expressing cells arising at different time points during development, without any evidence of postnatal neogenesis. We observe specific patterns of hormone gene activation and switching during islet morphogenesis, revealing that, within each cell type, cells have heterogeneous developmental trajectories. This likely applies to most maturating cells in the body, and explains the observed phenotypic variability within differentiated cell types. Such knowledge should help devising novel regenerative therapies. Adult pancreatic islet endocrine cells arise as embryonic hormone-expressing cells No detectable islet cell differentiation from putative precursor cells after birth Some embryonic hormone-producing cells display a switch in hormone gene expression
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Valentina Abate
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Fabrizio Thorel
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
13
|
Amorim JP, Gali-Macedo A, Marcelino H, Bordeira-Carriço R, Naranjo S, Rivero-Gil S, Teixeira J, Galhardo M, Marques J, Bessa J. A Conserved Notochord Enhancer Controls Pancreas Development in Vertebrates. Cell Rep 2021; 32:107862. [PMID: 32640228 PMCID: PMC7355232 DOI: 10.1016/j.celrep.2020.107862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
The notochord is an evolutionary novelty in vertebrates that functions as an important signaling center during development. Notochord ablation in chicken has demonstrated that it is crucial for pancreas development; however, the molecular mechanism has not been fully described. Here, we show that in zebrafish, the loss of function of nog2, a Bmp antagonist expressed in the notochord, impairs β cell differentiation, compatible with the antagonistic role of Bmp in β cell differentiation. In addition, we show that nog2 expression in the notochord is induced by at least one notochord enhancer and its loss of function reduces the number of pancreatic progenitors and impairs β cell differentiation. Tracing Nog2 diffusion, we show that Nog2 emanates from the notochord to the pancreas progenitor domain. Finally, we find a notochord enhancer in human and mice Nog genomic landscapes, suggesting that the acquisition of a Nog notochord enhancer occurred early in the vertebrate phylogeny and contributes to the development of complex organs like the pancreas.
Collapse
Affiliation(s)
- João Pedro Amorim
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Ana Gali-Macedo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Hugo Marcelino
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Renata Bordeira-Carriço
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Silvia Naranjo
- CABD (Centro Andaluz de Biología del Desarrollo), Universidad Pablo de Olavide, Seville, Spain
| | - Solangel Rivero-Gil
- CABD (Centro Andaluz de Biología del Desarrollo), Universidad Pablo de Olavide, Seville, Spain
| | - Joana Teixeira
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Mafalda Galhardo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; CIBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Vairão, Portugal
| | - Joana Marques
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - José Bessa
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
14
|
Yang L, Webb SE, Jin N, Lee HM, Chan TF, Xu G, Chan JC, Miller AL, Ma RC. Investigating the role of dachshund b in the development of the pancreatic islet in zebrafish. J Diabetes Investig 2021; 12:710-727. [PMID: 33449448 PMCID: PMC8089008 DOI: 10.1111/jdi.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
Aims/Introduction β‐Cell dysfunction is a hallmark of type 2 diabetes. In a previous pilot study, we identified an association between genetic variants within the human DACH1 gene and young‐onset type 2 diabetes. Here, we characterized the function of dachb, the only dach homologue to be expressed in the pancreas, in developing zebrafish embryos. Materials and Methods We injected one‐cell stage embryos with a dachb‐morpholino (MO) or with the dachb‐MO and dachb messenger ribonucleic acid, and determined the effect on the development of the pancreatic islet. We also carried out quantitative polymerase chain reaction and ribonucleic acid sequencing on the dachb‐MO group to determine the effect of dachb knockdown on gene expression. Results MO‐mediated dachb knockdown resulted in impaired islet cell development, with a significant decrease in both the β‐cell and islet cell numbers. This islet developmental defect was rescued when embryos were co‐injected with dachb‐MO and dachb messenger ribonucleic acid. Knockdown of dachb was associated with a significant downregulation of the β‐cell specific marker gene, insa, and the somatostatin cell marker, sst2, as well as regulators of pancreas development, ptf1a, neuroD, pax6a and nkx6.1, and the cell cycle gene, insm1a. Furthermore, ribonucleic sequencing analysis showed an upregulation of genes enriched in the forkhead box O and mitogen‐activated protein kinase signaling pathways in the dachb‐MO group, when compared with the control groups. Conclusions Together, our results suggest the possible role of dachb in islet development in zebrafish.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Nana Jin
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Teaching and Research Division, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ronald Cw Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
Mawed SA, Zhang J, Ren F, He Y, Mei J. atg7 and beclin1 are essential for energy metabolism and survival during the larval-to-juvenile transition stage of zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Dalgin G, Prince VE. Midline morphogenesis of zebrafish foregut endoderm is dependent on Hoxb5b. Dev Biol 2020; 471:1-9. [PMID: 33290819 DOI: 10.1016/j.ydbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
During vertebrate embryonic development complex morphogenetic events drive the formation of internal organs associated with the developing digestive tract. The foregut organs derive from hepatopancreatic precursor cells that originate bilaterally within the endoderm monolayer, and subsequently converge toward the midline where they coalesce to produce the gut tube from which the liver and pancreas form. The progenitor cells of these internal organs are influenced by the lateral plate mesoderm (LPM), which helps direct them towards their specific fates. However, it is not completely understood how the bilateral organ precursors move toward the embryonic midline and ultimately coalesce to form functional organs. Here we demonstrate that the zebrafish homeobox gene hoxb5b regulates morphogenesis of the foregut endoderm at the midline. At early segmentation stages, hoxb5b is expressed in the LPM adjacent to the developing foregut endoderm. By 24 hpf hoxb5b is expressed directly in the endoderm cells of the developing gut tube. When Hoxb5b function is disrupted, either by morpholino knockdown or sgRNA/Cas9 somatic disruption, the process of foregut morphogenesis is disrupted, resulting in a bifurcated foregut. By contrast, knockdown of the paralogous hoxb5a gene does not alter gut morphology. Further analysis has indicated that Hoxb5b knockdown specimens produce endocrine pancreas cell types, but liver cells are absent. Finally, cell transplantation experiments revealed that Hoxb5b function in the endoderm is not needed for proper coalescence of the foregut at the midline. Together, our findings imply that midline morphogenesis of foregut endoderm is guided by a hoxb5b-mediated mechanism that functions extrinsically, likely within the LPM. Loss of hoxb5b function prevents normal coalescence of endoderm cells at the midline and thus disrupts gut morphogenesis.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, 60637, USA
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
17
|
Abstract
Type 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.
Collapse
Affiliation(s)
| | - Leah R. Padgett
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Jonathan A. Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Integrative Data Science Initiative, Purdue University, West Lafayette, IN, USA
| | - Teresa L. Mastracci
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Department of Biology, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- CONTACT Teresa L. Mastracci Department of Biology, Indiana University, Indianapolis, IN46202, USA
| |
Collapse
|
18
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Réka Lőrincz
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Yixi Wang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Nathaniel W. York
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Soma S. Singareddy
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Jennifer M. Ikle
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Robert C. Tryon
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Conor McClenaghan
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Zeenat A. Shyr
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Yan Huang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Christopher A. Reissaus
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
| | - Dirk Meyer
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - David W. Piston
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Maria S. Remedi
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Colin G. Nichols
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| |
Collapse
|
19
|
Tanvir Z, Nelson RF, DeCicco-Skinner K, Connaughton VP. One month of hyperglycemia alters spectral responses of the zebrafish photopic electroretinogram. Dis Model Mech 2018; 11:dmm.035220. [PMID: 30158110 PMCID: PMC6215424 DOI: 10.1242/dmm.035220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Prolonged hyperglycemia can alter retinal function, ultimately resulting in blindness. Adult zebrafish adults exposed to alternating conditions of 2% glucose/0% glucose display a 3× increase in blood sugar levels. After 4 weeks of treatment, electroretinograms (ERGs) were recorded from isolated, perfused, in vitro eyecups. Control animals were exposed to alternating 2% mannitol/0% mannitol (osmotic control) or to alternating water (0% glucose/0% glucose; handling control). Two types of ERGs were recorded: (1) native ERGs measured using white-light stimuli and medium without synaptic blockers; and (2) spectral ERGs measured with an AMPA/kainate receptor antagonist, isolating photoreceptor-to-ON-bipolar-cell synapses, and a spectral protocol that separated red (R), green (G), blue (B) and UV cone signals. Retinas were evaluated for changes in layer thickness and for the inflammatory markers GFAP and Nf-κB (RelA or p65). In native ERGs, hyperglycemic b- and d-waves were lower in amplitude than the b- and d-waves of mannitol controls. Alteration of waveshape became severe, with b-waves becoming more transient and ERG responses showing more PIII-like (a-wave) characteristics. For spectral ERGs, waveshape appeared similar in all treatment groups. However, a1- and b2-wave implicit times were significantly longer, and amplitudes were significantly reduced, in response to hyperglycemic treatment, owing to the functional reduction in signals from R, G and B cones. Nf-κB increased significantly in hyperglycemic retinas, but the increase in GFAP was not significant and retinal layer thickness was unaffected. Thus, prolonged hyperglycemia triggers an inflammatory response and functional deficits localized to specific cone types, indicating the rapid onset of neural complications in the zebrafish model of diabetic retinopathy. Summary: Zebrafish can be used to examine diabetic complications, including vision loss. Here, in zebrafish, we show that prolonged (4 week) hyperglycemia causes an inflammatory response associated with functional deficits localized to specific cone types.
Collapse
Affiliation(s)
- Zaid Tanvir
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Ralph F Nelson
- Neural Circuitry Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 5625 Fisher's Lane, Rockville, MD 20852, USA
| | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Victoria P Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| |
Collapse
|
20
|
Zang L, Maddison LA, Chen W. Zebrafish as a Model for Obesity and Diabetes. Front Cell Dev Biol 2018; 6:91. [PMID: 30177968 PMCID: PMC6110173 DOI: 10.3389/fcell.2018.00091] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity and diabetes now considered global epidemics. The prevalence rates of diabetes are increasing in parallel with the rates of obesity and the strong connection between these two diseases has been coined as “diabesity.” The health risks of overweight or obesity include Type 2 diabetes mellitus (T2DM), coronary heart disease and cancer of numerous organs. Both obesity and diabetes are complex diseases that involve the interaction of genetics and environmental factors. The underlying pathogenesis of obesity and diabetes are not well understood and further research is needed for pharmacological and surgical management. Consequently, the use of animal models of obesity and/or diabetes is important for both improving the understanding of these diseases and to identify and develop effective treatments. Zebrafish is an attractive model system for studying metabolic diseases because of the functional conservation in lipid metabolism, adipose biology, pancreas structure, and glucose homeostasis. It is also suited for identification of novel targets associated with the risk and treatment of obesity and diabetes in humans. In this review, we highlight studies using zebrafish to model metabolic diseases, and discuss the advantages and disadvantages of studying pathologies associated with obesity and diabetes in zebrafish.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Lisette A Maddison
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
21
|
Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ 2018; 60:393-399. [DOI: 10.1111/dgd.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
- Department of Biomedical Sciences; College of Life Sciences; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|
22
|
Reid RM, D'Aquila AL, Biga PR. The validation of a sensitive, non-toxic in vivo metabolic assay applicable across zebrafish life stages. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:29-37. [PMID: 29162498 PMCID: PMC5936655 DOI: 10.1016/j.cbpc.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/23/2023]
Abstract
Energy expenditure and metabolism, is a well-studied field as it is linked to many diseases as dysregulation of metabolism is associated with cancer, neurodegeneration, and aging. Classical methods of studying metabolism in vivo are well established, but most are tedious and expensive, thus, finding methods of accurately measuring metabolism in living organisms that is quick and non-invasive is of strong interest. In this work, we validate the use of resazurin; a compound that is conformationally changed into fluorescent resorufin upon metabolic reduction by NADH2, as a metabolic assay for adult zebrafish. This assay is based on the principle that increases in resorufin fluorescence intensity (FI) conveys relative changes in metabolic output of the organisms. We demonstrate the effectiveness of resazurin in measuring metabolic changes in zebrafish larvae and adults in relation to number of pooled fish, as well as temperature alteration. Moreover, we provide details on the appropriate and optimized diluents and concentrations of resazurin. Further, by using a novel sample collection technique, we can increase the temporal possibilities that were previously limited, as well as show that samples can be stored and measured at a later time point with no decrease in accuracy. Thus, the validation of this assay in adult zebrafish may increase the versatility and complexity of the types of experiments that can be performed and have many practical applications in the field.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Andrea L D'Aquila
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON, Canada
| | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA.
| |
Collapse
|
23
|
Lorincz R, Emfinger CH, Walcher A, Giolai M, Krautgasser C, Remedi MS, Nichols CG, Meyer D. In vivo monitoring of intracellular Ca 2+ dynamics in the pancreatic β-cells of zebrafish embryos. Islets 2018; 10:221-238. [PMID: 30521410 PMCID: PMC6300091 DOI: 10.1080/19382014.2018.1540234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assessing the response of pancreatic islet cells to glucose stimulation is important for understanding β-cell function. Zebrafish are a promising model for studies of metabolism in general, including stimulus-secretion coupling in the pancreas. We used transgenic zebrafish embryos expressing a genetically-encoded Ca2+ sensor in pancreatic β-cells to monitor a key step in glucose induced insulin secretion; the elevations of intracellular [Ca2+]i. In vivo and ex vivo analyses of [Ca2+]i demonstrate that β-cell responsiveness to glucose is well established in late embryogenesis and that embryonic β-cells also respond to free fatty acid and amino acid challenges. In vivo imaging of whole embryos further shows that indirect glucose administration, for example by yolk injection, results in a slow and asynchronous induction of β-cell [Ca2+]i responses, while intravenous glucose injections cause immediate and islet-wide synchronized [Ca2+]i fluctuations. Finally, we demonstrate that embryos with disrupted mutation of the CaV1.2 channel gene cacna1c are hyperglycemic and that this phenotype is associated with glucose-independent [Ca2+]i fluctuation in β-cells. The data reveal a novel central role of cacna1c in β-cell specific stimulus-secretion coupling in zebrafish and demonstrate that the novel approach we propose - to monitor the [Ca2+]i dynamics in embryonic β-cells in vivo - will help to expand the understanding of β-cell physiological functions in healthy and diseased states.
Collapse
Affiliation(s)
- Reka Lorincz
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Christopher H. Emfinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Walcher
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Michael Giolai
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Claudia Krautgasser
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
- CONTACT Dirk Meyer Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| |
Collapse
|
24
|
Kowalska M, Rupik W. Ultrastructure of endocrine pancreatic granules during pancreatic differentiation in the grass snake, Natrix natrix L. (Lepidosauria, Serpentes). J Morphol 2017; 279:330-348. [PMID: 29148072 DOI: 10.1002/jmor.20775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
Abstract
We used transmission electron microscopy to study the pancreatic main endocrine cell types in the embryos of the grass snake Natrix natrix L. with focus on the morphology of their secretory granules. The embryonic endocrine part of the pancreas in the grass snake contains four main types of cells (A, B, D, and PP), which is similar to other vertebrates. The B granules contained a moderately electron-dense crystalline-like core that was polygonal in shape and an electron-dense outer zone. The A granules had a spherical electron-dense eccentrically located core and a moderately electron-dense outer zone. The D granules were filled with a moderately electron-dense non-homogeneous content. The PP granules had a spherical electron-dense core with an electron translucent outer zone. Within the main types of granules (A, B, D, PP), different morphological subtypes were recognized that indicated their maturity, which may be related to the different content of these granules during the process of maturation. The sequence of pancreatic endocrine cell differentiation in grass snake embryos differs from that in many vertebrates. In the grass snake embryos, the B and D cells differentiated earlier than A and PP cells. The different sequence of endocrine cell differentiation in snakes and other vertebrates has been related to phylogenetic position and nutrition during early developmental stages.
Collapse
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St, Katowice, 40-007, Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St, Katowice, 40-007, Poland
| |
Collapse
|
25
|
Facchinello N, Tarifeño-Saldivia E, Grisan E, Schiavone M, Peron M, Mongera A, Ek O, Schmitner N, Meyer D, Peers B, Tiso N, Argenton F. Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Sci Rep 2017; 7:9605. [PMID: 28851992 PMCID: PMC5575064 DOI: 10.1038/s41598-017-09867-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from β-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on β-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations.
Collapse
Affiliation(s)
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, I-35131, Padova, Italy
| | - Marco Schiavone
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Margherita Peron
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | | | - Olivier Ek
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Nicole Schmitner
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, A-6020, Innsbruck, Austria
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models, GIGA-R, University of Liege, B-4000, Sart Tilman, Belgium
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy.
| | | |
Collapse
|
26
|
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 2017; 7:719. [PMID: 28389647 PMCID: PMC5428266 DOI: 10.1038/s41598-017-00350-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture.
Collapse
|
27
|
Kowalska M, Hermyt M, Rupik W. Three-dimensional reconstruction of the embryonic pancreas in the grass snake Natrix natrix L. (Lepidosauria, Serpentes) based on histological studies. ZOOLOGY 2017; 121:91-110. [DOI: 10.1016/j.zool.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/27/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
28
|
Villasenor A, Stainier DYR. On the development of the hepatopancreatic ductal system. Semin Cell Dev Biol 2017; 66:69-80. [PMID: 28214561 DOI: 10.1016/j.semcdb.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
The hepatopancreatic ductal system is the collection of ducts that connect the liver and pancreas to the digestive tract. The formation of this system is necessary for the transport of exocrine secretions, for the correct assembly of the pancreatobiliary ductal system, and for the overall function of the digestive system. Studies on endoderm organ formation have significantly advanced our understanding of the molecular mechanisms that govern organ induction, organ specification and morphogenesis of the major foregut-derived organs. However, little is known about the mechanisms that control the development of the hepatopancreatic ductal system. Here, we provide a description of the different components of the system, summarize its development from the endoderm to a complex system of tubes, list the pathologies produced by anomalies in its development, as well as the molecules and signaling pathways that are known to be involved in its formation. Finally, we discuss its proposed potential as a multipotent cell reservoir and the unresolved questions in the field.
Collapse
Affiliation(s)
- Alethia Villasenor
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
29
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|
30
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
31
|
Caballero-Gallardo K, Olivero-Verbel J, Freeman JL. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model. Curr Genomics 2016; 17:515-527. [PMID: 28217008 PMCID: PMC5282603 DOI: 10.2174/1389202917666160513105959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | | |
Collapse
|
32
|
In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis. PLoS One 2016; 11:e0149497. [PMID: 26900852 PMCID: PMC4763017 DOI: 10.1371/journal.pone.0149497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/02/2016] [Indexed: 01/04/2023] Open
Abstract
The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.
Collapse
|
33
|
Li M, Dean ED, Zhao L, Nicholson WE, Powers AC, Chen W. Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. J Endocrinol 2015; 227:93-103. [PMID: 26446275 PMCID: PMC4598637 DOI: 10.1530/joe-15-0284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon antagonism is a potential treatment for diabetes. One potential side effect is α-cell hyperplasia, which has been noted in several approaches to antagonize glucagon action. To investigate the molecular mechanism of the α-cell hyperplasia and to identify the responsible factor, we created a zebrafish model in which glucagon receptor (gcgr) signaling has been interrupted. The genetically and chemically tractable zebrafish, which provides a robust discovery platform, has two gcgr genes (gcgra and gcgrb) in its genome. Sequence, phylogenetic, and synteny analyses suggest that these are co-orthologs of the human GCGR. Similar to its mammalian counterparts, gcgra and gcgrb are mainly expressed in the liver. We inactivated the zebrafish gcgra and gcgrb using transcription activator-like effector nuclease (TALEN) first individually and then both genes, and assessed the number of α-cells using an α-cell reporter line, Tg(gcga:GFP). Compared to WT fish at 7 days postfertilization, there were more α-cells in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish and there was an increased rate of α-cell proliferation in the gcgra-/-;gcgrb-/- fish. Glucagon levels were higher but free glucose levels were lower in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish, similar to Gcgr-/- mice. These results indicate that the compensatory α-cell hyperplasia in response to interruption of glucagon signaling is conserved in zebrafish. The robust α-cell hyperplasia in gcgra-/-;gcgrb-/- larvae provides a platform to screen for chemical and genetic suppressors, and ultimately to identify the stimulus of α-cell hyperplasia and its signaling mechanism.
Collapse
Affiliation(s)
- Mingyu Li
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - E Danielle Dean
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Liyuan Zhao
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wendell E Nicholson
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Alvin C Powers
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| |
Collapse
|
34
|
Lodh S, Hostelley TL, Leitch CC, O'Hare EA, Zaghloul NA. Differential effects on β-cell mass by disruption of Bardet-Biedl syndrome or Alstrom syndrome genes. Hum Mol Genet 2015; 25:57-68. [PMID: 26494903 DOI: 10.1093/hmg/ddv447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Rare genetic syndromes characterized by early-onset type 2 diabetes have revealed the importance of pancreatic β-cells in genetic susceptibility to diabetes. However, the role of genetic regulation of β-cells in disorders that are also characterized by highly penetrant obesity, a major additional risk factor, is unclear. In this study, we investigated the contribution of genes associated with two obesity ciliopathies, Bardet-Biedl Syndrome and Alstrom Syndrome, to the production and maintenance of pancreatic β-cells. Using zebrafish models of these syndromes, we identified opposing effects on production of β-cells. Loss of the Alstrom gene, alms1, resulted in a significant decrease in β-cell production whereas loss of BBS genes, bbs1 or bbs4, resulted in a significant increase. Examination of the regulatory program underlying β-cell production suggested that these effects were specific to β-cells. In addition to the initial production of β-cells, we observed significant differences in their continued maintenance. Under prolonged exposure to high glucose conditions, alms1-deficient β-cells were unable to continually expand as a result of decreased proliferation and increased cell death. Although bbs1-deficient β-cells were similarly susceptible to apoptosis, the overall maintenance of β-cell number in those animals was sustained likely due to increased proliferation. Taken together, these findings implicate discrepant production and maintenance of β-cells in the differential susceptibility to diabetes found between these two genetic syndromes.
Collapse
Affiliation(s)
- Sukanya Lodh
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy L Hostelley
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carmen C Leitch
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elizabeth A O'Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
35
|
Otsuka T, Tsukahara T, Takeda H. Development of the pancreas in medaka, Oryzias latipes, from embryo to adult. Dev Growth Differ 2015; 57:557-69. [PMID: 26435359 DOI: 10.1111/dgd.12237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 12/17/2022]
Abstract
To address conserved and unique features of fish pancreas development, we performed extensive analyses of pancreatic development in medaka embryos and adults using pdx1- and ptf1a-transgenic medaka, in situ hybridization and immunohistochemistry. The markers used in these analyses included pdx1, nkx6.1, nkx6.2, nkx2.2, Islet1, insulin, Somatostatin, glucagon, ptf1a, ela3l, trypsin, and amylase. The double transgenic (Tg) fish produced in the present study visualizes the development of endocrine (pdx1+) and exocrine (ptf1a+) parts simultaneously in living fishes. Like other vertebrates, the medaka pancreas develops as two (dorsal and ventral) buds in the anterior gut tube, which soon fuse into a single anlagen. The double Tg fish demonstrates that the differential property between the two buds is already established at the initial phase of bud development as indicated by strong pdx1 expression in the dorsal one. This Tg fish also allowed us to examine the gross morphology and the structure of adult pancreas and revealed unique characters of medaka pancreas such as broad and multiple connections with the gut tube along the anterior-posterior axis.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
36
|
Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas. Proc Natl Acad Sci U S A 2015; 112:12426-31. [PMID: 26392552 DOI: 10.1073/pnas.1517033112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.
Collapse
|
37
|
Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biol 2015; 13:70. [PMID: 26329351 PMCID: PMC4556004 DOI: 10.1186/s12915-015-0179-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
Background In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Results Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. Conclusions We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0179-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Id2a is required for hepatic outgrowth during liver development in zebrafish. Mech Dev 2015; 138 Pt 3:399-414. [PMID: 26022495 DOI: 10.1016/j.mod.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
During development, inhibitor of DNA binding (Id) proteins, a subclass of the helix-loop-helix family of proteins, regulate cellular proliferation, differentiation, and apoptosis in various organs. However, a functional role of Id2a in liver development has not yet been reported. Here, using zebrafish as a model organism, we provide in vivo evidence that Id2a regulates hepatoblast proliferation and cell death during liver development. Initially, in the liver, id2a is expressed in hepatoblasts and after their differentiation, id2a expression is restricted to biliary epithelial cells. id2a knockdown in zebrafish embryos had no effect on hepatoblast specification or hepatocyte differentiation. However, liver size was greatly reduced in id2a morpholino-injected embryos, indicative of a hepatic outgrowth defect attributable to the significant decrease in proliferating hepatoblasts concomitant with the significant increase in hepatoblast cell death. Altogether, these data support the role of Id2a as an important regulator of hepatic outgrowth via modulation of hepatoblast proliferation and survival during liver development in zebrafish.
Collapse
|
39
|
Cebola I, Rodríguez-Seguí SA, Cho CHH, Bessa J, Rovira M, Luengo M, Chhatriwala M, Berry A, Ponsa-Cobas J, Maestro MA, Jennings RE, Pasquali L, Morán I, Castro N, Hanley NA, Gomez-Skarmeta JL, Vallier L, Ferrer J. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat Cell Biol 2015; 17:615-626. [PMID: 25915126 PMCID: PMC4434585 DOI: 10.1038/ncb3160] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/13/2015] [Indexed: 02/02/2023]
Abstract
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Candy H.-H. Cho
- Wellcome Trust and MRC Stem Cells Centre, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery and Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC), 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Meritxell Rovira
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Mario Luengo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Mariya Chhatriwala
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Joan Ponsa-Cobas
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Miguel Angel Maestro
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Rachel E. Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Lorenzo Pasquali
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Ignasi Morán
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Natalia Castro
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Neil A. Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
- Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WU, United Kingdom
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Ludovic Vallier
- Wellcome Trust and MRC Stem Cells Centre, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery and Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jorge Ferrer
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
40
|
Seth A, Stemple DL, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech 2014; 6:1080-8. [PMID: 24046387 PMCID: PMC3759328 DOI: 10.1242/dmm.011346] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The zebrafish research community is celebrating! The zebrafish genome has recently been sequenced, the Zebrafish Mutation Project (launched by the Wellcome Trust Sanger Institute) has published the results of its first large-scale ethylnitrosourea (ENU) mutagenesis screen, and a host of new techniques, such as the genome editing technologies TALEN and CRISPR-Cas, are enabling specific mutations to be created in model organisms and investigated in vivo. The zebrafish truly seems to be coming of age. These powerful resources invoke the question of whether zebrafish can be increasingly used to model human disease, particularly common, chronic diseases of metabolism such as obesity and type 2 diabetes. In recent years, there has been considerable success, mainly from genomic approaches, in identifying genetic variants that are associated with these conditions in humans; however, mechanistic insights into the role of implicated disease loci are lacking. In this Review, we highlight some of the advantages and disadvantages of zebrafish to address the organism’s utility as a model system for human metabolic diseases.
Collapse
Affiliation(s)
- Asha Seth
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
41
|
Aldh1-expressing endocrine progenitor cells regulate secondary islet formation in larval zebrafish pancreas. PLoS One 2013; 8:e74350. [PMID: 24147152 PMCID: PMC3798260 DOI: 10.1371/journal.pone.0074350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/31/2013] [Indexed: 12/03/2022] Open
Abstract
Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
Collapse
|
42
|
Hochgreb-Hägele T, Yin C, Koo DES, Bronner ME, Stainier DYR. Laminin β1a controls distinct steps during the establishment of digestive organ laterality. Development 2013; 140:2734-45. [PMID: 23757411 DOI: 10.1242/dev.097618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visceral organs, including the liver and pancreas, adopt asymmetric positions to ensure proper function. Yet the molecular and cellular mechanisms controlling organ laterality are not well understood. We identified a mutation affecting zebrafish laminin β1a (lamb1a) that disrupts left-right asymmetry of the liver and pancreas. In these mutants, the liver spans the midline and the ventral pancreatic bud remains split into bilateral structures. We show that lamb1a regulates asymmetric left-right gene expression in the lateral plate mesoderm (LPM). In particular, lamb1a functions in Kupffer's vesicle (KV), a ciliated organ analogous to the mouse node, to control the length and function of the KV cilia. Later during gut-looping stages, dynamic expression of Lamb1a is required for the bilayered organization and asymmetric migration of the LPM. Loss of Lamb1a function also results in aberrant protrusion of LPM cells into the gut. Collectively, our results provide cellular and molecular mechanisms by which extracellular matrix proteins regulate left-right organ morphogenesis.
Collapse
Affiliation(s)
- Tatiana Hochgreb-Hägele
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
43
|
Flasse LC, Pirson JL, Stern DG, Von Berg V, Manfroid I, Peers B, Voz ML. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 2013; 11:78. [PMID: 23835295 PMCID: PMC3726459 DOI: 10.1186/1741-7007-11-78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. Results We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. Conclusions This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.
Collapse
Affiliation(s)
- Lydie C Flasse
- Laboratory of zebrafish development and disease models, University of Liege (ULg), Liege 4000, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol 2013; 378:25-37. [PMID: 23518338 PMCID: PMC3657195 DOI: 10.1016/j.ydbio.2013.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation. • Overlapping functions of islet1, islet2a and islet2b in exocrine pancreas formation. • Islet1/2a/2b are not required for pancreatic mesenchyme formation. • Islet1 but not islet2a/b is required for endocrine cell maturation. • Endocrine cell types are differently affected by the loss of islet1.
Collapse
Affiliation(s)
- Armin Wilfinger
- Institute for Molecular Biology/ CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
45
|
Flasse LC, Stern DG, Pirson JL, Manfroid I, Peers B, Voz ML. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Dev Biol 2013; 376:187-97. [PMID: 23352790 DOI: 10.1016/j.ydbio.2013.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is essential to build the regulatory cascade controlling the differentiation of gastrointestinal progenitors into the different intestinal cell types. The expression of the ARP/ASCL factors was analyzed in zebrafish to identify, among all the ARP/ASCL factors found in the zebrafish genome, those expressed in the gastrointestinal tract. ascl1a was found to be the earliest factor detected in the intestine. Loss-of-function analyses using the pia/ascl1a mutant, revealed that ascl1a is crucial for the differentiation of all secretory cells. Furthermore, we identify a battery of transcription factors expressed during secretory cell differentiation and downstream of ascl1a. Finally, we show that the repression of secretory cell fate by Notch signaling is mediated by the inhibition of ascl1a expression. In conclusion, this work identifies Ascl1a as a key regulator of the secretory cell lineage in the zebrafish intestine, playing the same role as Atoh1 in the mouse intestine. This highlights the diversity in the ARP/ASCL family members acting as cell fate determinants downstream from Notch signaling.
Collapse
Affiliation(s)
- Lydie C Flasse
- Unit of Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, B-4000 Sart-Tilman (Liège), Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Djiotsa J, Verbruggen V, Giacomotto J, Ishibashi M, Manning E, Rinkwitz S, Manfroid I, Voz ML, Peers B. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC DEVELOPMENTAL BIOLOGY 2012; 12:37. [PMID: 23244389 PMCID: PMC3563606 DOI: 10.1186/1471-213x-12-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies β- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into β-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating β-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on β- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of β- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS In zebrafish, pax4 is not required for the generation of the first β- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in β-cells differentiation appeared later in vertebrate evolution.
Collapse
Affiliation(s)
- Joachim Djiotsa
- Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, Sart-Tilman B-4000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dalgin G, Ward AB, Hao LT, Beattie CE, Nechiporuk A, Prince VE. Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas. Development 2011; 138:4597-608. [PMID: 21989909 DOI: 10.1242/dev.067736] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vertebrate endocrine pancreas has the crucial function of maintaining blood sugar homeostasis. This role is dependent upon the development and maintenance of pancreatic islets comprising appropriate ratios of hormone-producing cells. In all vertebrate models studied, an initial precursor population of Pdx1-expressing endoderm cells gives rise to separate endocrine and exocrine cell lineages. Within the endocrine progenitor pool a variety of transcription factors influence cell fate decisions, such that hormone-producing differentiated cell types ultimately arise, including the insulin-producing beta cells and the antagonistically acting glucagon-producing alpha cells. In previous work, we established that the development of all pancreatic lineages requires retinoic acid (RA) signaling. We have used the zebrafish to uncover genes that function downstream of RA signaling, and here we identify mnx1 (hb9) as an RA-regulated endoderm transcription factor-encoding gene. By combining manipulation of gene function, cell transplantation approaches and transgenic reporter analysis we establish that Mnx1 functions downstream of RA within the endoderm to control cell fate decisions in the endocrine pancreas progenitor lineage. We confirm that Mnx1-deficient zebrafish lack beta cells, and, importantly, we make the novel observation that they concomitantly gain alpha cells. In Mnx1-deficient embryos, precursor cells that are normally destined to differentiate as beta cells instead take on an alpha cell fate. Our findings suggest that Mnx1 functions to promote beta and suppress alpha cell fates.
Collapse
Affiliation(s)
- Gokhan Dalgin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
48
|
Yang SL, Aw SS, Chang C, Korzh S, Korzh V, Peng J. Depletion of Bhmt elevates sonic hedgehog transcript level and increases β-cell number in zebrafish. Endocrinology 2011; 152:4706-17. [PMID: 21952238 DOI: 10.1210/en.2011-1306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Betaine homocysteine S-methyltransferase (BHMT, EC 2.1.1.5) is a key enzyme in the methionine cycle and is highly expressed in the liver. Despite its important biochemical function, it is not known whether BHMT plays a role during organ development. In this report, we showed that early in development of zebrafish before endoderm organogenesis, bhmt is first expressed in the yolk syncytial layer and then after liver formation becomes a liver-enriched gene. By using the anti-bhmt morpholinos that deplete the Bhmt, we found that in morphant embryos, several endoderm-derived organs, including liver, exocrine pancreas, and intestine are hypoplastic. Strikingly, the number of β-cells in the pancreatic islet was increased rather than reduced in the morphant. Additional studies showed that Bhmt depletion elevates the sonic hedgehog (shh) transcript level in the morphant, whereas Bhmt-depletion in the Shh-deficient mutant syu failed to rescue the isletless phenotype. These molecular and genetic data strongly suggest that Shh functions downstream of Bhmt to promote β-cell development. Therefore, although there are still many intriguing questions to be answered, our finding may identify a novel function for Bhmt involving modulation of Shh signaling to control β-cell development.
Collapse
Affiliation(s)
- Shu-Lan Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| | | | | | | | | | | |
Collapse
|
49
|
Kimmel RA, Onder L, Wilfinger A, Ellertsdottir E, Meyer D. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 2011; 9:75. [PMID: 22034951 PMCID: PMC3215967 DOI: 10.1186/1741-7007-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022] Open
Abstract
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
50
|
Doll CA, Burkart JT, Hope KD, Halpern ME, Gamse JT. Subnuclear development of the zebrafish habenular nuclei requires ER translocon function. Dev Biol 2011; 360:44-57. [PMID: 21945073 DOI: 10.1016/j.ydbio.2011.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/01/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The dorsal habenular nuclei (Dh) of the zebrafish are characterized by significant left-right differences in gene expression, anatomy, and connectivity. Notably, the lateral subnucleus of the Dh (LsDh) is larger on the left side of the brain than on the right, while the medial subnucleus (MsDh) is larger on the right compared to the left. A screen for mutations that affect habenular laterality led to the identification of the sec61a-like 1(sec61al1) gene. In sec61al1(c163) mutants, more neurons in the LsDh and fewer in the MsDh develop on both sides of the brain. Generation of neurons in the LsDh occurs more rapidly and continues for a longer time period in mutants than in WT. Expression of Nodal pathway genes on the left side of the embryos is unaffected in mutants, as is the left sided placement of the parapineal organ, which promotes neurogenesis in the LsDh of WT embryos. Ultrastructural analysis of the epithalamus indicates that ventricular precursor cells, which form an epithelium in WT embryos, lose apical-basal polarity in sec61al1(c163) mutants. Our results show that in the absence of sec61al1, an excess of precursor cells for the LsDh exit the ventricular region and differentiate, resulting in formation of bilaterally symmetric habenular nuclei.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|