1
|
Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflam 2013; 2013:141068. [PMID: 23431498 PMCID: PMC3566608 DOI: 10.1155/2013/141068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The docking proteins of the Grb2-associated binder (Gab) family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2) domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.
Collapse
|
2
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
3
|
Botham CM, Wandler AM, Guillemin K. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog 2008; 4:e1000064. [PMID: 18483552 PMCID: PMC2364664 DOI: 10.1371/journal.ppat.1000064] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/10/2008] [Indexed: 12/27/2022] Open
Abstract
Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa–associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA) protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK) pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab) adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS). Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW). These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function. Like many pathogens, the human gastric bacterium Helicobacter pylori orchestrates infection through the activity of proteins that it translocates into host cells. The H. pylori translocated protein, CagA, which shares no homology to any other proteins, is a significant risk factor for H. pylori–associated diseases including gastric cancer. Experiments in tissue culture cells have shown that CagA can activate SHP-2 phosphatase, a component of the receptor tyrosine kinase signaling pathway. Based on this activity, CagA has been proposed to function as a mimic of Gab proteins that serve as adaptors in this signaling pathway. We have developed a transgenic Drosophila model to test this hypothesis in the tissues of an organism. We demonstrate that CagA can substitute for Gab and restore developmental defects caused by the loss of the Drosophila Gab, including promoting photoreceptor specification in the developing eye. Furthermore, we show that CagA functions similarly to Gab because it requires the Drosophila SHP-2 to exert its effect on photoreceptor development. Our transgenic Drosophila model provides new insight into CagA's activity in tissues and will allow us to identify host factors through which CagA functions to manipulate cellular signaling pathways and promote disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Animals, Genetically Modified
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biomarkers/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/cytology
- Drosophila melanogaster/physiology
- Fluorescent Antibody Technique, Indirect
- Gene Silencing
- Helicobacter pylori/pathogenicity
- Helicobacter pylori/physiology
- Larva/cytology
- Larva/physiology
- Models, Animal
- Photoreceptor Cells/cytology
- Photoreceptor Cells/growth & development
- Photoreceptor Cells/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
Collapse
Affiliation(s)
- Crystal M. Botham
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Anica M. Wandler
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hopper NA. The adaptor protein soc-1/Gab1 modifies growth factor receptor output in Caenorhabditis elegans. Genetics 2006; 173:163-75. [PMID: 16547100 PMCID: PMC1461424 DOI: 10.1534/genetics.106.055822] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/06/2006] [Indexed: 12/15/2022] Open
Abstract
Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.
Collapse
Affiliation(s)
- Neil A Hopper
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom.
| |
Collapse
|
5
|
Teal HE, Ni S, Xu J, Finkelstein LD, Cheng AM, Paulson RF, Feng GS, Correll PH. GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene 2005; 25:2433-43. [PMID: 16314834 DOI: 10.1038/sj.onc.1209288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Friend virus induces the development of erythroleukemia in mice through the interaction of a viral glycoprotein, gp55, with a truncated form of the Stk receptor tyrosine kinase, short form-Stk (Sf-Stk), and the EpoR. We have shown previously that the ability of Sf-Stk to participate in the transformation of Friend virus-infected cells requires the kinase activity and Grb2-binding site of Sf-Stk. Here we show that Grb2 heterozygous mice exhibit decreased susceptibility to Friend erythroleukemia and that expansion of erythroid progenitors in response to infection requires the C-terminal SH3 domain of Grb2. A fusion protein in which the Grb2-binding site in Sf-Stk is replaced by Gab2, supports the growth of progenitors from mice lacking Sf-Stk, whereas a Sf-Stk/Gab1 fusion protein does not. Gab2 is expressed in spleens from Friend virus-infected mice, co-immunoprecipitates with Sf-Stk and is tyrosine phosphorylated in the presence of Sf-Stk. Mice with a targeted deletion in Gab2 are less susceptible to Friend erythroleukemia and the expansion of erythroid progenitor cells in response to infection can be rescued by expression of Gab2, but not Gab1. Taken together, these data indicate that a Sf-Stk/Grb2/Gab2 complex mediates the growth of primary erythroid progenitor cells in response to Friend virus.
Collapse
Affiliation(s)
- H E Teal
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802-3500, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Edmead CE, Fox BC, Stace C, Ktistakis N, Welham MJ. The pleckstrin homology domain of Gab-2 is required for optimal interleukin-3 signalsome-mediated responses. Cell Signal 2005; 18:1147-55. [PMID: 16275030 DOI: 10.1016/j.cellsig.2005.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/09/2005] [Indexed: 11/30/2022]
Abstract
The adaptor protein Gab-2 coordinates the assembly of the IL-3 signalsome comprising Gab-2, Grb2, Shc, SHP-2 and PI3K. To investigate the role of the pleckstrin homology domain of Gab-2 in this process, epitope-tagged wild type Gab-2 (WTGab-2), Gab-2 lacking its PH domain (DeltaPHGab-2) and the Gab-2 PH domain alone (PHGab-2) were inducibly expressed in IL-3-dependent BaF/3 cells. Expression of DeltaPHGab-2 reduced IL-3-dependent proliferation and long-term activation of ERK1 and 2 and PKB by IL-3. While we demonstrate that the Gab-2 PH domain can bind PI(3,4,5)P3, it is dispensable for Gab-2 membrane localisation, tyrosine phosphorylation and signalsome formation. Rather, the proline-rich motifs of Gab-2 appear to contribute to the constitutive membrane localisation we observe, independently of tyrosine phosphorylation or the PH domain. Taken together, these findings suggest that once Gab-2 is tyrosine phosphorylated its PH domain is required for the optimal stabilisation of the signalsome, enabling full activation of downstream signals.
Collapse
Affiliation(s)
- Christine E Edmead
- Department of Pharmacy and Pharmacology, The University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | |
Collapse
|
7
|
Lock LS, Frigault MM, Saucier C, Park M. Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain. J Biol Chem 2003; 278:30083-90. [PMID: 12766170 DOI: 10.1074/jbc.m302675200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gab1 docking protein forms a platform for the assembly of a multiprotein signaling complex downstream from receptor tyrosine kinases. In general, recruitment of Gab1 occurs indirectly, via the adapter protein Grb2. In addition, Gab1 interacts with the Met/hepatocyte growth factor receptor in a Grb2-independent manner. This interaction requires a Met binding domain (MBD) in Gab1 and is essential for Met-mediated epithelial morphogenesis. The Gab1 MBD has been proposed to act as a phosphotyrosine binding domain that binds Tyr-1349 in the Met receptor. We show that a 16-amino acid motif within the Gab1 MBD is sufficient for interaction with the Met receptor, suggesting that it is unlikely that the Gab1 MBD forms a structured domain. Alternatively, the structural integrity of the Met receptor, and residues upstream of Tyr-1349 located in the C-terminal lobe of the kinase domain, are required for Grb2-independent interaction with the Gab1 MBD. Moreover, the substitution of Tyr-1349 with an acidic residue allows for the recruitment of the Gab1 MBD and for phosphorylation of Gab1. We propose that Gab1 and the Met receptor interact in a novel manner, such that the activated kinase domain of Met and the negative charge of phosphotyrosine 1349 engage the Gab1 MBD as an extended peptide ligand.
Collapse
Affiliation(s)
- Lisa S Lock
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
The Gab/dos/Soc-1 proteins form a family of multi-adaptor/scaffolding proteins involved in receptor tyrosine kinase signaling. To further understanding of the Gab family and the Drosophila Dos protein in particular, we isolated a dos homolog from both Drosophila pseudoobscura and Drosophila virilis and compared their gene structures and protein sequences with the rest of the Gab family. The presence of two conserved introns confirmed that the dos and gab genes are orthologous, but the Caenorhabditis elegans soc-1 gene had no unambiguously conserved introns with either dos or gab. However, phylogenetic analysis suggests that soc-1 probably represents a divergent member of the Gab family. Apart from the PH domain, which is well conserved in all Gab family members, the proteins show a low level of sequence conservation. Two tyrosines that probably bind to the Src Homology 2 (SH2) domains of a tyrosine phosphatase in all Gab family members are conserved at the C-terminal end; two other potential SH2-binding sites in Dos were also identified, as well as several proline rich sequences that might bind to SH3 or EVH1 domains in other proteins. A major partner for mammalian Gab is phospholipase C-gamma (PLC-gamma); genetic and biochemical tests for a PLC-gamma-SH3::Dos interaction were negative, indicating that if Drosophila PLC-gamma binds to Dos, it must do so indirectly or through an SH2-phosphotyrosine interaction.
Collapse
Affiliation(s)
- Tetteh Abbeyquaye
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | | | | |
Collapse
|
9
|
Neel BG, Gu H, Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003; 28:284-93. [PMID: 12826400 DOI: 10.1016/s0968-0004(03)00091-4] [Citation(s) in RCA: 975] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Src homology-2 (SH2) domain-containing phosphatases (Shps) are a small, highly conserved subfamily of protein-tyrosine phosphatases, members of which are present in both vertebrates and invertebrates. The mechanism of regulation of Shps by ligand binding is now well understood. Much is also known about the normal signaling pathways regulated by each Shp and the consequences of Shp deficiency. Recent studies have identified mutations in human Shp2 as the cause of the inherited disorder Noonan syndrome. Shp2 mutations might also contribute to the pathogenesis of some leukemias. In addition, Shp2 might be a key virulence determinant for the important human pathogen Helicobacter pylori. Despite these efforts, however, the key targets of each Shp have remained elusive. Identifying these substrates remains a major challenge for future research.
Collapse
Affiliation(s)
- Benjamin G Neel
- Cancer Biology Program Division of Hematology-Oncology Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
10
|
Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, Greenberg PD, Rohrschneider LR. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol 2003; 23:2415-24. [PMID: 12640125 PMCID: PMC150735 DOI: 10.1128/mcb.23.7.2415-2424.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.
Collapse
Affiliation(s)
- Martina Seiffert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T. Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene 2003; 22:1546-56. [PMID: 12629518 DOI: 10.1038/sj.onc.1206284] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Grb2-associated binder-1 (Gab1) is a pleckstrin homology (PH) domain-containing adapter molecule that is believed to function downstream of receptors for growth factors and cytokines. We previously found that deficiency in the mouse Gab1 gene led to embryonic lethality and defects in ERK activation in response to growth factors and cytokines. Here, we established immortalized Gab1-/- cell lines and analysed roles of Gab1 in growth factor-mediated signaling and oncogenesis. EGF-dependent activation of c-Raf and Mek1/2, which function upstream of ERKs, was perturbed in Gab1-/- cells. EGF-mediated upregulation of GTP-bound form of Ras was also reduced in these cells. EGF-dependent GTP/GDP exchange activity for Ras was suppressed in the Gab1-/- cells and expression of a constitutively active Sos restored ERK activation in these cells, indicating that Gab1 functions upstream of Ras. Furthermore, activated form of ErbB2 (active ErbB2)-mediated transformation, such as colony formation in soft agar and tumor formation in nude mice, was strongly suppressed when the Gab1-/- cells were transfected with active ErbB2, whereas the active Sos efficiently induced transformation of Gab1-/- cells. The data show that Gab1 plays an essential role in EGF-receptor/ErbB-mediated cell proliferation and oncogenesis.
Collapse
Affiliation(s)
- Satoru Yamasaki
- Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Tyrosine phosphorylation plays an important role in controlling cellular growth, differentiation and function. Abnormal regulation of tyrosine phosphorylation can result in human diseases such as cancer. A major challenge of signal transduction research is to determine how the initial activation of protein-tyrosine kinases (PTKs) by extracellular stimuli triggers multiple downstream signaling cascades, which ultimately elicit diverse cellular responses. Recent studies reveal that members of the Gab/Dos subfamily of scaffolding adaptor proteins (hereafter, "Gab proteins") play a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. Here, we review the structure, mechanism of action and function of these interesting molecules in normal biology and disease.
Collapse
Affiliation(s)
- Haihua Gu
- Cancer Biology Program, Division of Hematology-Oncology, Dept of Medicine, Beth Israel-Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | | |
Collapse
|
13
|
Feller SM, Wecklein H, Lewitzky M, Kibler E, Raabe T. SH3 domain-mediated binding of the Drk protein to Dos is an important step in signaling of Drosophila receptor tyrosine kinases. Mech Dev 2002; 116:129-39. [PMID: 12128212 DOI: 10.1016/s0925-4773(02)00147-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.
Collapse
Affiliation(s)
- Stephan M Feller
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
14
|
Abstract
Gab proteins, including mammalian Gab1, Gab2, Gab3, Drosophila DOS and Caenorhabditis elegans Soc1, comprise a growing family of scaffolding/docking molecules involved in multiple signaling pathways mediated by receptor tyrosine kinases (RTKs) and non-RTK receptors. This paper reviews the structure/function relationships of Gab proteins and their biological roles during normal growth, differentiation and development programs.
Collapse
Affiliation(s)
- Yan Liu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
15
|
Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, Rohrschneider LR. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Mol Cell Biol 2002; 22:231-44. [PMID: 11739737 PMCID: PMC134230 DOI: 10.1128/mcb.22.1.231-244.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.
Collapse
Affiliation(s)
- Ingrid Wolf
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ. The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol 2001; 21:8104-16. [PMID: 11689700 PMCID: PMC99976 DOI: 10.1128/mcb.21.23.8104-8116.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15.
Collapse
Affiliation(s)
- J L Schutzman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | | | | | | | | | |
Collapse
|
17
|
Borland CZ, Schutzman JL, Stern MJ. Fibroblast growth factor signaling in Caenorhabditis elegans. Bioessays 2001; 23:1120-30. [PMID: 11746231 DOI: 10.1002/bies.10007] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth factor receptor tyrosine kinases (RTKs), such as the fibroblast growth factor receptor (FGFR), play a major role in how cells communicate with their environment. FGFR signaling is crucial for normal development, and its misregulation in humans has been linked to developmental abnormalities and cancer. The precise molecular mechanisms by which FGFRs transduce extracellular signals to effect specific biologic responses is an area of intense research. Genetic analyses in model organisms have played a central role in our evolving understanding of these signal transduction cascades. Genetic studies in the nematode C. elegans have contributed to our knowledge of FGFR signaling by identifying genes involved in FGFR signal transduction and linking their gene products together into signaling modules. This review will describe FGFR-mediated signal transduction in C. elegans and focus on how these studies have contributed to our understanding of how FGFRs orchestrate the assembly of intracellular signaling pathways.
Collapse
Affiliation(s)
- C Z Borland
- Yale University School of Medicine, Department of Genetics, New Haven, CT 06520-8005, USA
| | | | | |
Collapse
|
18
|
Johnson Hamlet MR, Perkins LA. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis. Genetics 2001; 159:1073-87. [PMID: 11729154 PMCID: PMC1461857 DOI: 10.1093/genetics/159.3.1073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.
Collapse
Affiliation(s)
- M R Johnson Hamlet
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
19
|
Abstract
Nerve growth factor (NGF) was discovered 50 years ago as a molecule that promoted the survival and differentiation of sensory and sympathetic neurons. Its roles in neural development have been characterized extensively, but recent findings point to an unexpected diversity of NGF actions and indicate that developmental effects are only one aspect of the biology of NGF. This article considers expanded roles for NGF that are associated with the dynamically regulated production of NGF and its receptors that begins in development, extends throughout adult life and aging, and involves a surprising variety of neurons, glia, and nonneural cells. Particular attention is given to a growing body of evidence that suggests that among other roles, endogenous NGF signaling subserves neuroprotective and repair functions. The analysis points to many interesting unanswered questions and to the potential for continuing research on NGF to substantially enhance our understanding of the mechanisms and treatment of neurological disorders.
Collapse
Affiliation(s)
- M V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
20
|
Raabe T. The sevenless signaling pathway: variations of a common theme. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:151-63. [PMID: 10771085 DOI: 10.1016/s0167-4889(00)00020-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many developmental processes are regulated by intercellular signaling mechanisms that employ the activation of receptor tyrosine kinases. One model system that has been particular useful in determining the role of receptor tyrosine kinase-mediated signaling processes in cell fate determination is the developing Drosophila eye. The specification of the R7 photoreceptor cell in each ommatidium of the developing Drosophila eye is dependent on activation of the Sevenless receptor tyrosine kinase. This review will focus on the genetic and biochemical approaches that have identified signaling molecules acting downstream of the Sevenless receptor tyrosine kinase which ultimately trigger differentiation of the R7 photoreceptor cell.
Collapse
Affiliation(s)
- T Raabe
- Department of Genetics, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|