1
|
Abou Hamad N, Akintola J, Schlenoff JB. Quantifying Hydrophilicity in Polyelectrolytes and Polyzwitterions. Macromolecules 2025; 58:3422-3430. [PMID: 40224165 PMCID: PMC11984477 DOI: 10.1021/acs.macromol.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
The affinity of charged polymers for water is of central interest in polyelectrolyte science. Hydration controls the solution properties of polyelectrolytes as well as their performance in materials having a balance of positive and negative repeat units, such as polyelectrolyte complexes, PECs, and polyzwitterions, PZs. As with neutral polymers, a ranking of water affinity, loosely termed hydrophilicity, is often sought. Apart from the solubility in water, there are few methods for determining relative hydrophilicity. The scaling exponent of size with molecular weight provides, for polymers in general, a classical measure of solvent quality. In this work, using aqueous size exclusion chromatography coupled with static light scattering, the radius of gyration scaling with molecular weight was determined for a range of cationic and anionic polyelectrolytes and for some polyzwitterions. For a more definitive comparison of hydrophilicity, solution calorimetry was used to measure the enthalpy of solution, ΔH sol, when rigorously dried samples of these polymers were dissolved in aqueous 0.1 M NaCl. All polymers yielded strongly exothermic ΔH sol, which provided a ranking of hydrophilicity. The first four molecules of water appear to generate almost all of the heat. Methacryl versions of polymers were more hydrophilic, as ΔH sol was 3-5 kJ mol-1 more exothermic than the nonmethacryl polymer. Polyzwitterions were shown to be strongly hydrated, consistent with the proposed mechanisms for their antifouling properties, although water is not necessarily more strongly held for PZs compared to PEs.
Collapse
Affiliation(s)
- Nagham Abou Hamad
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| |
Collapse
|
2
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional Zwitterionic Polyurethanes: State-of-the-Art Review. Macromol Rapid Commun 2024; 45:e2300606. [PMID: 38087799 DOI: 10.1002/marc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
3
|
Landoulsi J. Surface (bio)-functionalization of metallic materials: How to cope with real interfaces? Adv Colloid Interface Sci 2024; 325:103054. [PMID: 38359674 DOI: 10.1016/j.cis.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Metallic materials are an important class of biomaterials used in various medical devices, owing to a suitable combination of their mechanical properties. The (bio)-functionalization of their surfaces is frequently performed for biocompatibility requirements, as it offers a powerful way to control their interaction with biological systems. This is particularly important when physicochemical processes and biological events, mainly involving proteins and cells, are initiated at the host-material interface. This review addresses the state of "real interfaces" in the context of (bio)-functionalization of metallic materials, and the necessity to cope with it to avoid frequent improper evaluation of the procedure used. This issue is, indeed, well-recognized but often neglected and emerges from three main issues: (i) ubiquity of surface contamination with organic compounds, (ii) reactivity of metallic surfaces in biological medium, and (iii) discrepancy in (bio)-functionalization procedures between expectations and reality. These disturb the assessment of the strategies adopted for surface modifications and limit the possibilities to provide guidelines for their improvements. For this purpose, X-ray photoelectrons spectroscopy (XPS) comes to the rescue. Based on significant progresses made in methodological developments, and through a large amount of data compiled to generate statistically meaningful information, and to insure selectivity, precision and accuracy, the state of "real interfaces" is explored in depth, while looking after the two main constituents: (i) the bio-organic adlayer, in which the discrimination between the compounds of interest (anchoring molecules, coupling agents, proteins, etc) and organic contaminants can be made, and (ii) the metallic surface, which undergoes dynamic processes due to their reactivity. Moreover, through one of the widespread (bio)-functionalization strategy, given as a case study, a particular attention is devoted to describe the state of the interface at different stages (composition, depth distribution of contaminants and (bio)compounds of interest) and the mode of protein retention. It is highlighted, in particular, that the occurrence or improvement of bioactivity does not demonstrate that the chemical schemes worked in reality. These aspects are particularly essential to make progress on the way to choose the suitable (bio)-functionalization strategy and to provide guidelines to improve its efficiency.
Collapse
Affiliation(s)
- Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris, France; Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, 20529 F-60205 Compiègne Cedex, France.
| |
Collapse
|
4
|
Guo X, You M, Zhang L, Yuan G, Pei J. Enhanced Adsorption Stability and Biofunction Durability with Phosphonate-Grafted, PEGylated Copolymer on Hydroxyapatite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3190-3201. [PMID: 38294184 DOI: 10.1021/acs.langmuir.3c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nonfouling surfaces are crucial in applications such as biosensors, medical implants, marine coatings, and drug delivery vehicles. However, their long-term coating stability and robust surface binding strength in physiological media remain challenging. Herein, a phosphonate-grafted, PEGylated copolymer on the hydroxyapatite (HA) surface is proposed to significantly improve the adsorption stability and thus enhance the biofunction durability accordingly. The phosphoryl (-PO3) grafted branch is employed in the functional polymer to facilitate attaching to the HA substrate. In addition, the polymer integrates the nonfouling polymer brushes of poly(ethylene glycol) (PEG) with the cell-adhesive moiety of cyclic Arg-Gly-Asp-d-Phe-Cys peptides (cRGD). A systematic study on the as-synthesized PEGylated graft copolymer indicates a synergistic binding mechanism of the NH2 and PO3 groups to HA, achieving a high surface coverage with desirable adsorption stability. The cRGD/PEGylated copolymers of optimized grafting architecture are proven to effectively adsorb to HA surfaces as a self-assembled copolymer monolayer, showing stability with minimal desorption even in a complex, physiological medium and effectively preventing nonspecific protein adsorption as examined with X-ray photoelectron spectroscopy (XPS) and a quartz crystal microbalance with dissipation (QCM-D). Direct adhesion assays further confirm that the enhanced coating stability and biofunction durability of the phosphonate-grafted, cRGD-PEGylated copolymer can considerably promote osteoblast attachment on HA surfaces, meanwhile preventing microbial adhesion. This research has resulted in a solution of self-assembly polymer structure optimization that exhibits stable nonfouling characteristics.
Collapse
Affiliation(s)
- Xin Guo
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
6
|
White TG, Santhumayor BA, Turpin J, Shah K, Toscano D, Teron I, Link T, Patsalides A, Woo HH. Flow diverter surface modifications for aneurysm treatment: A review of the mechanisms and data behind existing technologies. Interv Neuroradiol 2023:15910199231207550. [PMID: 37899636 DOI: 10.1177/15910199231207550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Flow diversion (FD) has become a mainstay treatment for large wide-necked aneurysms. Despite excellent safety and efficacy, the risk of thromboembolic complications necessitates the use of dual antiplatelet therapy (DAPT). The use of DAPT makes hemorrhagic complications of stenting carry high morbidity and mortality. Additionally, DAPT usage carries a risk of "nuisance" complications that do not directly impact intracranial circulation but need to be managed nonetheless. To circumvent this issue, the most recent generation of flow diverters have undergone surface modification with various compounds to confer blood compatibility to limit clotting and thrombosis. While these newer generation flow diverters are marketed to enhance ease of deployment, the goal is to eventually facilitate single antiplatelet use with flow diverter treatment. This generation of FDs have potential to expand indications beyond unruptured wide-necked aneurysms to include ruptured intracranial aneurysms without the necessity of DAPT. Currently, no comprehensive review details the molecular mechanisms and pre-clinical and clinical data on these modifications. We seek to fill this gap in the literature by consolidating information on the coating technology for four major FDs currently in clinical use-PipelineTM Flex and Vantage Shield TechnologyTM, FREDTMX, p48/64 hydrophilic coating, and Acandis Dervio® 2heal-to serve as a reference guide in neurointerventional aneurysm treatment. Although the Balt silkTM was one of the first FDs, it is uncoated, thus we will not cover this device in our review. A literature review was performed to obtain information on each coating technology for the major flow diverters currently on the market using international databases (PUBMED, Embase, Medline, Google Scholar). The search criteria used the keywords for each coating technology of interest "phosphorylcholine," "poly 2-methoxyethyl acrylate," "hydrophilic polymer coating," and "fibrin-heparin" Keywords related to the device names "Pipeline Shield," "Pipeline Shield with Flex Technology," "FRED," "FREDX," "p64," "p64-HPC," "Derivo 2heal" were also used. Studies that detailed the mechanism of action of the coating, any pre-clinical studies with surface-modified intravascular devices, and any clinical retrospective series, prospective series, or randomized clinical trials with surface-modified devices for aneurysm treatment were included.
Collapse
Affiliation(s)
- Timothy G White
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Brandon A Santhumayor
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Kevin Shah
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Daniel Toscano
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Ina Teron
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Thomas Link
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Athos Patsalides
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA
| |
Collapse
|
7
|
Filipecka-Szymczyk K, Makowska-Janusik M, Marczak W. Molecular Dynamics Simulation of Hydrogels Based on Phosphorylcholine-Containing Copolymers for Soft Contact Lens Applications. Molecules 2023; 28:6562. [PMID: 37764338 PMCID: PMC10535866 DOI: 10.3390/molecules28186562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The structure and dynamics of copolymers of 2-hydroxyethyl methacrylate (HEMA) with 2-methacryloyloxyethyl phosphorylcholine (MPC) were studied by molecular dynamics simulations. In total, 20 systems were analyzed. They differed in numerical fractions of the MPC in the copolymer chain, equal to 0.26 and 0.74, in the sequence of mers, block and random, and the water content, from 0 to 60% by mass. HEMA side chains proved relatively rigid and stable in all considered configurations. MPC side chains, in contrast, were mobile and flexible. Water substantially influenced their dynamics. The copolymer swelling caused by water resulted in diffusion channels, pronounced in highly hydrated systems. Water in the hydrates existed in two states: those that bond to the polymer chain and the free one; the latter was similar to bulk water but with a lower self-diffusion coefficient. The results proved that molecular dynamics simulations could facilitate the preliminary selection of the polymer materials for specific purposes before their synthesis.
Collapse
Affiliation(s)
| | | | - Wojciech Marczak
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (K.F.-S.); (M.M.-J.)
| |
Collapse
|
8
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
9
|
Synthesis of Superhydrophilic Gradient-Like Copolymers: Kinetics of the RAFT Copolymerization of Methacryloyloxyethyl Phosphorylcholine with PEO Methacrylate. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Zhang D, Zhao S, Rong Z, Zhang K, Gao C, Wu Y, Liu Y. Silicone low surface energy antifouling coating modified by zwitterionic side chains with strong substrate adhesion. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zhang X, Bai R, Sun Q, Zhuang Z, Zhang Y, Chen S, Han B. Bio-inspired special wettability in oral antibacterial applications. Front Bioeng Biotechnol 2022; 10:1001616. [PMID: 36110327 PMCID: PMC9468580 DOI: 10.3389/fbioe.2022.1001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Most oral diseases originate from biofilms whose formation is originated from the adhesion of salivary proteins and pioneer bacteria. Therefore, antimicrobial materials are mainly based on bactericidal methods, most of which have drug resistance and toxicity. Natural antifouling surfaces inspire new antibacterial strategies. The super wettable surfaces of lotus leaves and fish scales prompt design of biomimetic oral materials covered or mixed with super wettable materials to prevent adhesion. Bioinspired slippery surfaces come from pitcher plants, whose porous surfaces are infiltrated with lubricating liquid to form superhydrophobic surfaces to reduce the contact with liquids. It is believed that these new methods could provide promising directions for oral antimicrobial practice, improving antimicrobial efficacy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
12
|
Pham TT, Yusa SI. Thermo-Responsive Polyion Complex of Polysulfobetaine and a Cationic Surfactant in Water. Polymers (Basel) 2022; 14:polym14153171. [PMID: 35956686 PMCID: PMC9370920 DOI: 10.3390/polym14153171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Poly(4-((3-methacrylamidopropyl)dimethylammonium)butane-1-sulfonate) (PSBP) was prepared via controlled radical polymerization. PSBP showed upper critical solution temperature (UCST) behavior in aqueous solutions, which could be controlled by adjusting the polymer and NaCl concentrations. Owing to its pendant sulfonate anions, PSBP exhibited a negative zeta potential of −7.99 mV and formed a water-soluble ion complex with the cationic surfactant cetyltrimethylammonium bromide (CTAB) via attractive electrostatic interaction. A neutral PSBP/CTAB complex was formed under equimolar concentrations of the pendant sulfonate group in PSBP and the quaternary ammonium group in CTAB. Transmittance electron microscopic images revealed the spherical shape of the complex. The stoichiometrically neutral-charge PSBP/CTAB complex exhibited UCST behavior in aqueous solutions. Similar to PSBP, the phase transition temperature of the PSBP/CTAB complex could be tuned by modifying the polymer and NaCl concentrations. In 0.1 M aqueous solution, the PSBP/CTAB complex showed UCST behavior at a low complex concentration of 0.084 g/L, whereas PSBP did not exhibit UCST behavior at concentrations below 1.0 g/L. This observation suggests that the interaction between PSBP and CTAB in the complex was stronger than the interpolymer interaction of PSBP.
Collapse
Affiliation(s)
| | - Shin-ichi Yusa
- Correspondence: ; Tel.: +81-79-267-4954; Fax: +81-79-266-8868
| |
Collapse
|
13
|
Polymer-solvent interaction and conformational changes at a molecular level: Implication to solvent-assisted deformation and aggregation at the polymer surface. J Colloid Interface Sci 2022; 616:221-233. [DOI: 10.1016/j.jcis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
|
14
|
Ma X, Fu X, Sun J. Preparation of a Novel Type of Zwitterionic Polymer and the Antifouling PDMS Coating. Biomimetics (Basel) 2022; 7:biomimetics7020050. [PMID: 35645177 PMCID: PMC9149847 DOI: 10.3390/biomimetics7020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/02/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022] Open
Abstract
As awareness of environmental protection increases, environmentally friendly coatings have been receiving great interest. Zwitterionic polymers are considered promising candidates due to their biocompatibility and excellent antifouling properties. In this paper, a type of polypeptoid containing zwitterions on the side chain was synthesized via ring-opening polymerization (ROP) and post-modification. This obtained polypeptoid was subsequently grafted onto the surface of polydimethylsiloxane (PDMS) via plasma and UV-induced surface polymerization. Surface morphology and protein adsorption tests of the resulting coating were systematically carried out. The results show that the modified coating has excellent antifouling properties and thus has great potential for environmentally friendly coating applications.
Collapse
Affiliation(s)
- Xutao Ma
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.M.); (X.F.)
| | - Xiaohui Fu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.M.); (X.F.)
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
15
|
Synthesis and Characterization of Polyurethanes from Residual Palm Oil with High Poly-Unsaturated Fatty Acid Oils as Additive. Polymers (Basel) 2021; 13:polym13234214. [PMID: 34883717 PMCID: PMC8659934 DOI: 10.3390/polym13234214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
In the effort to produce renewable and biodegradable polymers, more studies are being undertaken to explore environmentally friendly sources to replace petroleum-based sources. The oil palm industry is not only the biggest vegetable-oil producer from crops but also one the biggest producers of residual oil that cannot be used for edible purposes due to its low quality. In this paper the development of biopolymers from residual palm oil, residual palm oil with 10% jatropha oil, and residual palm oil with 10% algae oil as additives were explored. Polyols from the different oils were prepared by epoxydation with peroxyacetic acid and alcoholysis under the same conditions and further reacted with poly isocyanate to form polyurethanes. Epoxidized oils, polyols and polyurethanes were analyzed by different techniques such as TGA, DSC, DMA, FTIR and H-NMR. Overall, although the IV of algae oil is slightly higher than that of jatropha oil, the usage of algae oil as additive into the residual palm oil was shown to significantly increase the hard segments and thermal stability of the bio polyurethane compared to the polymer with jatropha oil. Furthermore, when algae oil was mixed with the residual palm oil, it was possible to identify phosphate groups in the polyol which might enhance the fire-retardant properties of the final biopolymer.
Collapse
|
16
|
Zwitterionic Polysulfone Copolymer/Polysulfone Blended Ultrafiltration Membranes with Excellent Thermostability and Antifouling Properties. MEMBRANES 2021; 11:membranes11120932. [PMID: 34940433 PMCID: PMC8707127 DOI: 10.3390/membranes11120932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized by 1HNMR spectroscopy. The PSf/PSf-co-SBPSf blend membranes with various zwitterionic SBPSf segment contents exhibited better surface hydrophilicity and excellent antifouling ability compared to PSf and PSf/PEG membranes. The significant increase of both porosity and water permeance indicates that the PSf-co-SBPSf has a pore-forming effect. The pure water flux and flux recovery ratio of the PSf/PSf-co-SBPSf blend membranes were both remarked to improve 286.43 L/m2h and 92.26%, while bovine serum albumin (BSA) rejection remained at a high level (97.66%). More importantly, the water flux and BSA rejection see minimal variance after heat treatment, indicating excellent thermostability. Overall, the PSf/PSf-co-SBPSf blend membranes achieved a comprehensive performance of sustainable hydrophilic, high permeation flux, and remarkable antifouling ability, thus becoming a promising candidate in high-temperature separation application.
Collapse
|
17
|
Thongthai P, Kitagawa H, Noree S, Iwasaki Y, Liu Y, Abe GL, Yamaguchi S, Imazato S. Evaluation of the long-term antibiofilm effect of a surface coating with dual functionality of antibacterial and protein-repellent effects. Dent Mater J 2021; 41:189-196. [PMID: 34759128 DOI: 10.4012/dmj.2021-205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The provision of antibacterial properties to resinous restorative/reconstructive materials by incorporating polymerizable bactericides such as 12-methacryloyloxydodecylpyridinium bromide (MDPB) has been attempted. Previously, MDPB was combined with 2-methacryloyloxyethyl phosphorylcholine (MPC) to fabricate a copolymer coating to increase antibacterial effectiveness by protein repelling. In this study, we assessed the longevity of the protein-repelling, antibacterial, and antibiofilm effects of the MDPB-MPC copolymer. After 28 days of water immersion, MPC-containing copolymers exhibited lower adsorption of bovine serum albumin and salivary proteins; after 24 h of incubation, MDPB-containing copolymers demonstrated antibacterial effects against Streptococcus mutans. The copolymer containing both MDPB and MPC showed thinner biofilm formation with a higher percentage of membrane-compromised bacteria than control. The results were consistent with those before aging, indicating the long-lasting antibacterial, protein-repellent, and antibiofilm effects of this copolymer. The durable copolymer developed in this study can be applied to dental resins to control bacteria in the oral environment.
Collapse
Affiliation(s)
- Pasiree Thongthai
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Susita Noree
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University.,ORDIST, Kansai University
| | - Yuhan Liu
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | | | - Satoshi Yamaguchi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
18
|
Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Woitschach F, Kloss M, Schlodder K, Rabes A, Mörke C, Oschatz S, Senz V, Borck A, Grabow N, Reisinger EC, Sombetzki M. The Use of Zwitterionic Methylmethacrylat Coated Silicone Inhibits Bacterial Adhesion and Biofilm Formation of Staphylococcus aureus. Front Bioeng Biotechnol 2021; 9:686192. [PMID: 34249887 PMCID: PMC8267815 DOI: 10.3389/fbioe.2021.686192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 02/04/2023] Open
Abstract
In recent decades, biofilm-associated infections have become a major problem in many medical fields, leading to a high burden on patients and enormous costs for the healthcare system. Microbial infestations are caused by opportunistic pathogens which often enter the incision already during implantation. In the subsequently formed biofilm bacteria are protected from the hosts immune system and antibiotic action. Therefore, the development of modified, anti-microbial implant materials displays an indispensable task. Thermoplastic polyurethane (TPU) represents the state-of-the-art material in implant manufacturing. Due to the constantly growing areas of application and the associated necessary adjustments, the optimization of these materials is essential. In the present study, modified liquid silicone rubber (LSR) surfaces were compared with two of the most commonly used TPUs in terms of bacterial colonization and biofilm formation. The tests were conducted with the clinically relevant bacterial strains Staphylococcus aureus and Staphylococcus epidermidis. Crystal violet staining and scanning electron microscopy showed reduced adhesion of bacteria and thus biofilm formation on these new materials, suggesting that the investigated materials are promising candidates for implant manufacturing.
Collapse
Affiliation(s)
- Franziska Woitschach
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Marlen Kloss
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | | | - Anne Rabes
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Caroline Mörke
- Division of Cardiology, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock, Germany
| | | | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock, Germany
| | - Emil Christian Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
20
|
Beattie DL, Mykhaylyk OO, Ryan AJ, Armes SP. Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels. SOFT MATTER 2021; 17:5602-5612. [PMID: 33998622 DOI: 10.1039/d1sm00460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC26-PHPMA280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al., J. Am. Chem. Soc., 2011, 133, 15707-15713). Informed by our recent studies (N. J. Warren et al., Macromolecules, 2018, 51, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC15-PHPMA150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 (≈2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Collapse
Affiliation(s)
- Deborah L Beattie
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Oleksandr O Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Anthony J Ryan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| |
Collapse
|
21
|
Zhong R, He Z, Zhang X, Han D, Wang H, Liu J. The strategy of modulation blood responses by surface modification with different functional groups on polyester film. J Biomed Mater Res A 2021; 109:1955-1966. [PMID: 34085403 DOI: 10.1002/jbm.a.37188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
A main problem in the design of blood-contacting biomaterials has been the deficiency of a systematic understanding of blood-biomaterial interactions and the strategy to modulate blood responses. In this work, different functional groups including carboxyl (COOH), hydroxyl (OH) and zwitterionic sulfobetaine group (⊕N((CH3 )2 )(CH2 )3 SO3-○- , SMDB) were grafted on the poly (butylene terephthalate) (PBT) film to study how the functional groups modulate blood responses and in terms of interaction with the coagulation system, the complement system, and platelets. The results showed protein absorption and platelet adhesion was stronger on the PBT bearing COOH group than PBT films bearing OH and zwitterionic sulfobetaine groups (total protein (μg/cm2 ): 32.92 ± 5.89 vs. 22.02 ± 1.44 vs. 19.09 ± 1.59; platelet adhesion (/mm2 ): 1,626.7 ± 120.1 vs. 1,395.6 ± 363.3 vs. 1,102.2 ± 373.7), which had a rougher and negatively charged surface, and the coagulation system was inhibited by binding fibrinogen (Fg) and coagulation factors. Meanwhile, PBT-PSMDB showed anticoagulant property and induced platelet activation. As a result, complement formation on these two films were less than PBT bearing OH groups by inhibiting the coagulation system (C3a (ng/ml): 3,745.4 ± 143.9 vs. 3,290.9 ± 249.7 vs. 4,887.9 ± 88.9; C5a (ng/ml): 22.1 ± 2.6 vs. 22.3 ± 1.8 vs. 27.9 ± 2.0). On the other hand, PBT bearing OH groups did not facilitate remarkable platelet adhesion and activation, and had no influence on platelet aggregation, hypotonic shock response, and coagulation system. The above results showed that the blood responses were highly interlinked, and could be modulated by grafting with different functional groups on the biomaterial surfaces. These findings may help identify a strategy to design materials with better hemocompatibility for blood contact, filtration, and purification applications.
Collapse
Affiliation(s)
- Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zeng He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuejun Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dingding Han
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Șaramet V, Meleșcanu-Imre M, Țâncu AMC, Albu CC, Ripszky-Totan A, Pantea M. Molecular Interactions between Saliva and Dental Composites Resins: A Way Forward. MATERIALS (BASEL, SWITZERLAND) 2021; 14:ma14102537. [PMID: 34068320 PMCID: PMC8153278 DOI: 10.3390/ma14102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Dentin and enamel loss related to trauma or especially caries is one of the most common pathological issues in dentistry that requires restoration of the teeth by using materials with appropriate properties. The composite resins represent dental materials with significant importance in today’s dentistry, presenting important qualities, including their mechanical behavior and excellent aesthetics. This paper focuses on the saliva interactions with these materials and on their biocompatibility, which is continuously improved in the new generations of resin-based composites. Starting from the elements involved on the molecular landscape of the dental caries process, the paper presents certain strategies for obtaining more advanced new dental composite resins, as follows: suppression of oral biofilm acids formation, promotion of remineralization process, counteraction of the proteolytic attack, and avoidance of cytotoxic effects; the relation between dental composite resins and salivary oxidative stress biomarkers is also presented in this context.
Collapse
Affiliation(s)
| | - Marina Meleșcanu-Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
- Correspondence: (A.M.C.Ț.); (C.C.A.)
| | - Crenguța Cristina Albu
- Department of Genetics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania
- Correspondence: (A.M.C.Ț.); (C.C.A.)
| | - Alexandra Ripszky-Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| |
Collapse
|
23
|
Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20921-20937. [PMID: 33914499 PMCID: PMC8130912 DOI: 10.1021/acsami.1c01389] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, periprosthetic bacterial infection remains a major challenge for orthopedic and dental implants. Bacterial colonization/biofilm formation around implants and their invasion into the dense skeletal tissue matrices are difficult to treat and could lead to implant failure and osteomyelitis. These complications require major revision surgeries and extended antibiotic therapies that are associated with high treatment cost, morbidity, and even mortality. Effective preventative measures mitigating risks for implant-related infections are thus in dire need. This review focuses on recent developments of anti-periprosthetic infection strategies aimed at either reducing bacterial adhesion, colonization, and biofilm formation or killing bacteria directly in contact with and/or in the vicinity of implants. These goals are accomplished through antifouling, quorum-sensing interfering, or bactericidal implant surface topographical engineering or surface coatings through chemical modifications. Surface topographical engineering of lotus leaf mimicking super-hydrophobic antifouling features and cicada wing-mimicking, bacterium-piercing nanopillars are both presented. Conventional physical coating/passive release of bactericidal agents is contrasted with their covalent tethering to implant surfaces through either stable linkages or linkages labile to bacterial enzyme cleavage or environmental perturbations. Pros and cons of these emerging anti-periprosthetic infection approaches are discussed in terms of their safety, efficacy, and translational potentials.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
24
|
Banerjee SL, Saha P, Ganguly R, Bhattacharya K, Kalita U, Pich A, Singha NK. A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent “on-off” core. J Colloid Interface Sci 2021; 589:110-126. [DOI: 10.1016/j.jcis.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
|
25
|
Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polym J 2021. [DOI: 10.1038/s41428-021-00482-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Parekh A, Sood A, Monsef JB, Hamouda M, Hussain A, Gonzalez M. Second-Generation Highly Cross-Linked Polyethylene in Total Hip Arthroplasty. JBJS Rev 2021; 9:e20.00065. [PMID: 33982980 DOI: 10.2106/jbjs.rvw.20.00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Amit Parekh
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Anshum Sood
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Jad Bou Monsef
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Awais Hussain
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Mark Gonzalez
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| |
Collapse
|
27
|
Delgado A, Briciu-Burghina C, Regan F. Antifouling Strategies for Sensors Used in Water Monitoring: Review and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:E389. [PMID: 33429907 PMCID: PMC7827029 DOI: 10.3390/s21020389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/01/2022]
Abstract
Water monitoring sensors in industrial, municipal and environmental monitoring are advancing our understanding of science, aid developments in process automatization and control and support real-time decisions in emergency situations. Sensors are becoming smaller, smarter, increasingly specialized and diversified and cheaper. Advanced deployment platforms now exist to support various monitoring needs together with state-of-the-art power and communication capabilities. For a large percentage of submersed instrumentation, biofouling is the single biggest factor affecting the operation, maintenance and data quality. This increases the cost of ownership to the extent that it is prohibitive to maintain operational sensor networks and infrastructures. In this context, the paper provides a brief overview of biofouling, including the development and properties of biofilms. The state-of-the-art established and emerging antifouling strategies are reviewed and discussed. A summary of the currently implemented solutions in commercially available sensors is provided and current trends are discussed. Finally, the limitations of the currently used solutions are reviewed, and future research and development directions are highlighted.
Collapse
Affiliation(s)
| | | | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; (A.D.); (C.B.-B.)
| |
Collapse
|
28
|
Takano S, Sakurai K, Fujii S. Internalization into cancer cells of zwitterionic amino acid polymers via amino acid transporter recognition. Polym Chem 2021. [DOI: 10.1039/d1py01010g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zwitterionic amino acid polymers are internalized into cancer cells via their recognition capability for amino acid transporters, which is overexpressed on cancer cells compared with normal cells.
Collapse
Affiliation(s)
- Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
29
|
Shahid A, Aslam B, Muzammil S, Aslam N, Shahid M, Almatroudi A, Allemailem KS, Saqalein M, Nisar MA, Rasool MH, Khurshid M. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater 2021; 19:22808000211040304. [PMID: 34409896 DOI: 10.1177/22808000211040304] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The implants are increasingly being a part of modern medicine in various surgical procedures for functional or cosmetic purposes. The progressive use of implants is associated with increased infectious complications and prevention of such infections always remains precedence in the clinical settings. The preventive approaches include the systemic administration of antimicrobial agents before and after the surgical procedures as well as the local application of antibiotics. The relevant literature and existing clinical practices have highlighted the role of antimicrobial coating approaches in the prevention of implants associated infections, although the applications of these strategies are not yet standardized, and the clinical efficacy is not much clear. The adequate data from the randomized control trials is challenging because of the unavailability of a large sample size although it is compulsory in this context to assess the clinical efficacy of preemptive practices. This review compares the efficacy of preventive approaches and the prospects of antimicrobial-coated implants in preventing implant-related infections.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
30
|
Dong D, Tsao C, Hung HC, Yao F, Tang C, Niu L, Ma J, MacArthur J, Sinclair A, Wu K, Jain P, Hansen MR, Ly D, Tang SGH, Luu TM, Jain P, Jiang S. High-strength and fibrous capsule-resistant zwitterionic elastomers. SCIENCE ADVANCES 2021; 7:7/1/eabc5442. [PMID: 33523839 PMCID: PMC7775767 DOI: 10.1126/sciadv.abc5442] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/06/2020] [Indexed: 05/20/2023]
Abstract
The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a "swelling" and "locking" mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule-resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.
Collapse
Affiliation(s)
- Dianyu Dong
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
- School of Chemical Engineering and Technology, and Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Caroline Tsao
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Fanglian Yao
- School of Chemical Engineering and Technology, and Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Chenjue Tang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Liqian Niu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Jinrong Ma
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Joel MacArthur
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Andrew Sinclair
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Priyesh Jain
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Mitchell Ryan Hansen
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Dorathy Ly
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | | | - Tammy My Luu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Parul Jain
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98185, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Takano S, Islam W, Nakazawa K, Maeda H, Sakurai K, Fujii S. Phosphorylcholine-Grafted Molecular Bottlebrush-Doxorubicin Conjugates: High Structural Stability, Long Circulation in Blood, and Efficient Anticancer Activity. Biomacromolecules 2020; 22:1186-1196. [PMID: 33378181 DOI: 10.1021/acs.biomac.0c01704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Controlling the particle structure of tumor-targeting nanomedicines in vivo remains challenging but must be achieved to control their in vivo fate and functions. Molecular bottlebrushes (MBs), where brush side chains are densely grafted from a main chain, have recently received attention as building blocks of polymer-based prodrugs because their rigid structure would be expected to demonstrate high structural stability in vivo. Here, we synthesized a poly(methacryloyloxyethyl phosphorylcholine) (pMPC)-grafted molecular bottlebrush (PCMB) conjugated with a cancer drug, doxorubicin (DOX), via an acid-cleavable hydrazone bond. A pMPC-based linear polymer (LP) conjugated with DOX was also prepared for comparison. We confirmed the lack of structural transition in the PCMB between before and after conjugation with DOX using small-angle light and X-ray scattering techniques, whereas the structure of LP was significantly influenced by DOX conjugation and transformed from a random-coil structure to a large agglomerate via hydrophobic interactions among DOXs. Although PCMB-DOX and LP-DOX showed comparable tissue permeability, pharmacokinetics, and ability to accumulate in tumor tissues, the antitumor efficacy of PCMB-DOX was better than that of LP-DOX. This was presumably due to the formation of LP-DOX agglomerates. The diffusion of cleaved DOX would be restricted in the hydrophobic core of the agglomerate, resulting in the DOX release at the tumor site being compromised. In contrast to LP-DOX, DOX release from PCMB-DOX was not compromised after accumulation in tumor tissues because it did not form such an agglomerate, resulting in the strong antitumor effect. We have demonstrated the potential of MBs as building blocks of drug carriers and believe that these findings can contribute to the design of polymer-based nanomedicines.
Collapse
Affiliation(s)
- Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Biodynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Kohji Nakazawa
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Biodynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
32
|
Racovita S, Baranov N, Macsim AM, Lionte C, Cheptea C, Sunel V, Popa M, Vasiliu S, Desbrieres J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules 2020; 25:E5451. [PMID: 33233752 PMCID: PMC7699957 DOI: 10.3390/molecules25225451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
New grafted copolymers possessing structural units of 1-vinyl-3-(1-carboxymethyl) imidazolium betaine were obtained by graft copolymerization of N-vinylimidazole onto gellan gum followed by the polymer-analogous reactions on grafted polymer with the highest grafting percentage using sodium chloroacetate as the betainization agent. The grafted copolymers were prepared using ammonium persulfate/N,N,N',N' tetramethylethylenediamine in a nitrogen atmosphere. The grafting reaction conditions were optimized by changing one of the following reaction parameters: initiator concentration, monomer concentration, polymer concentration, reaction time or temperature, while the other parameters remained constant. The highest grafting yield was obtained under the following reaction conditions: ci = 0.08 mol/L, cm = 0.8 mol/L, cp = 8 g/L, tr = 4 h and T = 50 °C. The kinetics of the graft copolymerization of N-vinylimidazole onto gellan was discussed and a suitable reaction mechanism was proposed. The evidence of the grafting reaction was confirmed through FTIR spectroscopy, X-ray diffraction, 1H-NMR spectroscopy and scanning electron microscopy. The grafted copolymer with betaine structure was obtained by a nucleophilic substitution reaction where the betainization agent was sodium chloroacetate. Preliminary results prove the ability of the grafted copolymers to bind amphoteric drugs (cefotaxime) and, therefore, the possibility of developing the new sustained drug release systems.
Collapse
Affiliation(s)
- Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Nicolae Baranov
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Ana Maria Macsim
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Catalina Lionte
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, Universitatii Street, No.16, 700115 Iasi, Romania;
| | - Corina Cheptea
- Department of Biomedical Sciences, Faculty of Biomedical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street No. 9-13, 700454 Iasi, Romania;
| | - Valeriu Sunel
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|
33
|
Abstract
We investigated how the shape of polymeric vesicles, made by the exact same material, impacts the replication activity and metabolic state of both cancer and non-cancer cell types. First, we isolated discrete geometrical structures (spheres and tubes) from a heterogeneous sample using density-gradient centrifugation. Then, we characterized the cellular internalization and the kinetics of uptake of both types of polymersomes in different cell types (either cancer or non-cancer cells). We also investigated the cellular metabolic response as a function of the shape of the structures internalized and discovered that tubular vesicles induce a significant decrease in the replication activity of cancer cells compared to spherical vesicles. We related this effect to the significant up-regulation of the tumor suppressor genes p21 and p53 with a concomitant activation of caspase 3/7. Finally, we demonstrated that combining the intrinsic shape-dependent effects of tubes with the delivery of doxorubicin significantly increases the cytotoxicity of the system. Our results illustrate how the geometrical conformation of nanoparticles could impact cell behavior and how this could be tuned to create novel drug delivery systems tailored to specific biomedical application.
Collapse
|
34
|
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020; 24:4237-4260. [PMID: 33111157 PMCID: PMC7666681 DOI: 10.1007/s00784-020-03646-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Ralf Helbig
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| |
Collapse
|
35
|
Beattie DL, Mykhaylyk OO, Armes SP. Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem Sci 2020; 11:10821-10834. [PMID: 33209249 PMCID: PMC7654191 DOI: 10.1039/d0sc01320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023] Open
Abstract
Over the past two decades, block copolymer vesicles have been widely used by many research groups to encapsulate small molecule drugs, genetic material, nanoparticles or enzymes. They have also been used to design examples of autonomous self-propelled nanoparticles. Traditionally, such vesicles are prepared via post-polymerization processing using a water-miscible co-solvent such as DMF or THF. However, such protocols are invariably conducted in dilute solution, which is a significant disadvantage. In addition, the vesicle size distribution is often quite broad, whereas aqueous dispersions of relatively small vesicles with narrow size distributions are highly desirable for potential biomedical applications. Alternatively, concentrated dispersions of block copolymer vesicles can be directly prepared via polymerization-induced self-assembly (PISA). Moreover, using a binary mixture of a relatively long and a relatively short steric stabilizer block enables the convenient PISA synthesis of relatively small vesicles with reasonably narrow size distributions in alcoholic media (C. Gonzato et al., JACS, 2014, 136, 11100-11106). Unfortunately, this approach has not yet been demonstrated for aqueous media, which would be much more attractive for commercial applications. Herein we show that this important technical objective can be achieved by judicious use of two chemically distinct, enthalpically incompatible steric stabilizer blocks, which ensures the desired microphase separation across the vesicle membrane. This leads to the formation of well-defined vesicles of around 200 nm diameter (size polydispersity = 13-16%) in aqueous media at 10% w/w solids as judged by transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Deborah L Beattie
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| |
Collapse
|
36
|
Application of Antimicrobial Polymers in the Development of Dental Resin Composite. Molecules 2020; 25:molecules25204738. [PMID: 33076515 PMCID: PMC7587579 DOI: 10.3390/molecules25204738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.
Collapse
|
37
|
Huang Z, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv Colloid Interface Sci 2020; 284:102264. [PMID: 32947152 DOI: 10.1016/j.cis.2020.102264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023]
Abstract
Anti-biofouling materials that combat microorganism attachment have been intensively studied due to the ever-growing demand on smart and durable coatings. Although various hydrophilic polymer surfaces demonstrated superior anti-biofouling properties, their practical application was hampered by the undesired mechanical vulnerability and complicated fabrication process. In this review, we summarized the mechanically and chemically robust anti-biofouling coatings into six strategies namely (i) 3D-grafted coatings, (ii) hierarchical spheres-based coatings, (iii) inorganic nanomaterials-reinforced coatings, (iv) hydrolysis-based coating, (v) semi-interpenetrating structure-based coatings, and (vi) layer-by-layer (LbL) assembled coatings. The anti-biofouling efficacy and durability of these coatings over a series of challenges were also comprehensively presented. The purpose of this review is to inspire researchers to develop novel anti-biofouling coatings for future practical applications.
Collapse
|
38
|
Birajdar MS, Kim BH, Sutthiwanjampa C, Kang SH, Heo CY, Park H. Inhibition of Capsular Contracture of Poly (Dimethyl Siloxane) Medical Implants by Surface Modification with Itaconic Acid Conjugated Gelatin. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Jeong JO, Kim S, Park J, Lee S, Park JS, Lim YM, Lee JY. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays. J Mater Chem B 2020; 8:7225-7232. [PMID: 32638708 DOI: 10.1039/c9tb02087j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioelectrodes, including metallic and conductive polymer (CP) bioelectrodes, often suffer from biofouling by contamination from microbacteria and/or biomolecules in biological systems, which can cause substantial impairment of biofunctionality and biocompatibility. Herein, we have employed an in situ polymerization of methacryloyloxyethyl phosphorylcholine (MPC) by gamma radiation to introduce fouling-resistant properties onto the surface of the conductive polymer, polypyrrole (PPy). The concentrations of an MPC monomer were varied during the grafting. PPy electrodes modified with MPC (PPy-g-MPC) revealed excellent anti-biofouling properties, as demonstrated by multiple analyses, such as serum protein adsorption, fibroblast adhesion, bacteria adhesion, and scar tissue formation in vivo. Importantly, PPy-g-MPC, which was modified with 0.2 M MPC using gamma radiation, exhibited electrical properties similar to unmodified PPy electrodes, indicating that our MPC grafting strategies did not cause impairment of electrical/electrochemical properties of the original PPy electrodes while successfully introducing anti-biofouling properties. Zwitterionic MPC polymer grafting on PPy electrodes by in situ polymerization with gamma radiation will benefit the development of highly biocompatible and functional bioelectrodes, such as neural electrodes, stimulators, and biosensors.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. and Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Semin Kim
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jong-Seok Park
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Youn-Mook Lim
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
40
|
Hammond OS, Moura L, Level G, Imberti S, Holbrey JD, Blesic M. Hydration of sulfobetaine dizwitterions as a function of alkyl spacer length. Phys Chem Chem Phys 2020; 22:16040-16050. [PMID: 32706356 DOI: 10.1039/d0cp02654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation and structure of bolaform dizwitterions containing two sulfobetaine moieties in concentrated aqueous solution were determined using neutron diffraction with isotopic substitution (NDIS) combined with modelling of the measured structure factors using Empirical Potential Structure Refinement (EPSR). Strongly directional local hydration was observed in the polar regimes of the dizwitterions with 48-52 water molecules shared between dizwitterion molecules in a first shell water network around each zwitterion pair. Overall, the double zwitterions were highly hydrated, providing experimental evidence in support of the potential formation of protein-resistant hydration layers at zwitterion-water interfaces.
Collapse
Affiliation(s)
- Oliver S Hammond
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Leila Moura
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Gaelle Level
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Silvia Imberti
- ISIS, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - John D Holbrey
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Marijana Blesic
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
41
|
Roth Y, Y. Lewitus D. The Grafting of Multifunctional Antithrombogenic Chemical Networks on Polyurethane Intravascular Catheters. Polymers (Basel) 2020; 12:E1131. [PMID: 32429046 PMCID: PMC7284597 DOI: 10.3390/polym12051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Intravascular catheters (IVCs) and other medical tubing are commonly made of polymeric materials such as polyurethane (PU). Polymers tend to be fouled by surface absorption of proteins and platelets, often resulting in the development of bacterial infections and thrombosis during catheterization, which can lead to embolism and death. Existing solutions to fouling are based on coating the IVCs with hydrophilic, anti-thrombogenic, or antimicrobial materials. However, the delamination of the coatings themselves is associated with significant morbidity, as reported by the United States Food and Drug Administration (FDA). We developed a lubricious, antimicrobial, and antithrombogenic coating complex, which can be covalently attached to the surface of industrial PU catheters. The coating complex is pre-synthesized and comprises 2-methacryloyloxyethyl phosphorylcholine (MPC) as an antifouling agent, covalently attached to branched polyethyleneimine (bPEI) as a lubricating agent. The two-step coating procedure involves PU-amine surface activation using a diisocyanate, followed by chemical grafting of the bPEI-S-MPC complex. Compared with neat PU, the coating was found to reduce the coefficient of friction of the IVC surface by 30% and the hemolysis ratio by more than 50%. Moreover, the coating exhibited a significant antimicrobial activity under JIS Z2801:2000 standard compared with neat PU. Finally, in in-vivo acute rabbit model studies, the coating exhibited significant antithrombogenic properties, reducing the thrombogenic potential to a score of 1.3 on coated surfaces compared with 3.3 on uncoated surfaces. The materials and process developed could confer lubricious, antithrombogenic, and antimicrobial properties on pre-existing PU-based catheters.
Collapse
Affiliation(s)
| | - Dan Y. Lewitus
- Department of Plastics and Polymer Engineering, Shenkar Engineering, Design, Art, Ramat Gan 52526, Israel;
| |
Collapse
|
42
|
Hosoi T, Hasegawa M, Tone S, Nakasone S, Kishida N, Marin E, Zhu W, Pezzotti G, Sudo A. MPC
‐grafted highly cross‐linked polyethylene liners retrieved from short‐term total hip arthroplasty: Further evidences for the unsuitability of the
MPC
method. J Biomed Mater Res B Appl Biomater 2020; 108:2857-2867. [DOI: 10.1002/jbm.b.34617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Takashi Hosoi
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Masahiro Hasegawa
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Shine Tone
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| | - Satoshi Nakasone
- Department of Orthopedic Surgery, Graduate School of Medicine University of the Ryukyus Nakagami‐gun Okinawa Japan
| | - Narifumi Kishida
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Elia Marin
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory Kyoto Institute of Technology Kyoto Japan
- Department of Orthopedic Surgery Tokyo Medical University Tokyo Japan
- The Center for Advanced Medical Engineering and Informatics Osaka University Osaka Japan
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Graduate School of Medicine Mie University Tsu City Mie Japan
| |
Collapse
|
43
|
Ishihara K, Yanokuchi S, Teramura Y, Fukazawa K. Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly(ether ether ketone) substrate. Colloids Surf B Biointerfaces 2020; 192:111021. [PMID: 32380403 DOI: 10.1016/j.colsurfb.2020.111021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
To enhance the total antithrombogenicity of poly(ether ether ketone) (PEEK), we examined a combination of two methodologies for the suppression of activation in both the platelet and coagulation systems. A random copolymer (PMT) composed of a zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) unit and a cationic 2-methacryloyloxyethyl trimethylammonium chloride (TMAEMA) unit was grafted onto the PEEK surface by photoinduced self-initiated graft polymerization of the PEEK substrate (PMTx-g-PEEK). Then, negatively charged heparin was immobilized by ionic binding with TMAEMA units (Hep/PMTx-g-PEEK). The TMAEMA unit composition on grafted PMT altered the surface ζ-potentials of the PEEK substrates. Amounts of immobilized heparin depended on the ζ-potential. The concentration of heparin became constant on the sample surface where the TMAEMA unit composition was 30% or more, and was approximately 2.0 μg/cm2. The Hep/PMTx-g-PEEK with a TMAEMA unit composition of 50% showed not only decreased platelet adhesion, but also a 4-fold extension of the blood coagulation time of the poly(MPC)-g-PEEK substrate. The poly(MPC) layer could inhibit platelet adhesion and activation, resulting in surface antithrombogenic properties. Additionally, heparin released from the Hep/PMTx-g-PEEK prevented activation of the coagulation system in whole blood. Therefore, the combination of these antithrombogenic methodologies was promising for prolonging the blood coagulation period of the materials.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoshi Yanokuchi
- Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
44
|
Liu J, Xiong Z, Shen M, Banyai I, Shi X. Characterization of zwitterion-modified poly(amidoamine) dendrimers in aqueous solution via a thorough NMR investigation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:7. [PMID: 32006191 DOI: 10.1140/epje/i2020-11931-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Zwitterions are a class of unique molecules that can be modified onto nanomaterials to render them with antifouling properties. Here we report a thorough NMR investigation of dendrimers modified with zwitterions in terms of their structure, hydrodynamic size, and diffusion time in aqueous solution. In this present work, poly(amidoamine) (PAMAM) dendrimers of generation 5 (G5) were partially decorated with carboxybetaine acrylamide (CBAA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and 1,3-propane sultone (1,3-PS), respectively with different modification degrees. The formed zwitterion-modified G5 dendrimers were characterized using NMR techniques. We show that the zwitterion modification leads to increased G5 dendrimer size in aqueous solution, suggesting that the modified zwitterions can form a hydration layer on the surface of G5 dendrimers. In addition, the hydrodynamic sizes of G5 dendrimers modified with different zwitterions but with the same degree of surface modification are discrepant depending on the type of zwitterions. The present study provides a new physical insight into the structure of zwitterion-modified G5 dendrimers by NMR techniques, which is beneficial for further design of different biomedical applications.
Collapse
Affiliation(s)
- Jinyuan Liu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Istvan Banyai
- Department of Physical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Xiangyang Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, China.
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
45
|
Zhang P, Ratner BD, Hoffman AS, Jiang S. Nonfouling Surfaces. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Zhang R, Inoue Y, Konno T, Ishihara K. Hybridization of a phospholipid polymer hydrogel with a natural extracellular matrix using active cell immobilization. Biomater Sci 2019; 7:2793-2802. [PMID: 31044192 DOI: 10.1039/c9bm00093c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional tissue organization is still an obstacle in the field of tissue engineering, which generally involves cell immobilization, proliferation, and organization. As an artificial extracellular matrix (ECM) for providing a suitable environment of cells to construct tissues, combination of cytocompatible polymer hydrogels and natural ECM produced by the immobilized cells was considered. In this research, we designed a spontaneously forming hydrogel system between two water-soluble polymers for the immobilization of cells. These polymers were poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-vinylphenylboronic acid-co-N-succinimidyloxycarbonyl tetra(ethylene glycol)methacrylate) (PMBVS) and poly(vinyl alcohol) (PVA) to form a PMBVS/PVA hydrogel in a cell culture medium under mild conditions. Basic fibroblast growth factor (bFGF) was conjugated with PMBVS (PMBV-bFGF). To enhance the growth of the immobilized cells, mouse fibroblast L929 cells were immobilized in the PMBVS/PVA hydrogel and the PMBV-bFGF/PVA hydrogel, and their proliferation and secretion of the ECM under stimulation with bFGF was observed. The ECM infiltrated and replaced the hydrogel, resulting in the formation of a hybrid hydrogel with the ECM and laden cells.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku 113-8656, 7-3-1 Hongo, Japan.
| | | | | | | |
Collapse
|
47
|
Performance analysis of grafted poly (2-methacryloyloxyethyl phosphorylcholine) on additively manufactured titanium substrate for hip implant applications. J Mech Behav Biomed Mater 2019; 100:103412. [PMID: 31487620 DOI: 10.1016/j.jmbbm.2019.103412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022]
Abstract
The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity behaviour resulting in reducing surgical recurrence number and increasing implant lifetime. Investigating thermal stability and mechanical properties of the grafted polymer is, therefore, extremely important as these properties define the failure mechanism of implants. This study focuses on optimising monomer concentration to achieve the best physical, thermal and mechanical properties of the grafted additively manufactured titanium (Ti6Al4V) implants. Three different concentration of monomers, 0.4 M, 0.6 M and 0.8 M, were investigated, and grafted implants were characterised. The results from thermal analysis confirmed that the PMPC polymer is thermally stable for implant applications regardless of the monomer concentrations. A significant reduction in Young's modulus of polymer grafted samples (33.2-42.9%), in comparison with untreated Ti6Al4V samples and consequent improvement of wear resistance and elasticity behaviour, proved the potentiality of polymer films for implant applications. In summary, polymer grafted implant prepared with 0.6 M monomer concentration showed the optimal thermal, physical and wear resistance properties.
Collapse
|
48
|
Hu H, Xu Y, Deng X, Luo Z, Zhou L, Shen M. Heparin-grafted PVA hydrogels: a material for the optical part of artificial cornea. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2019; 8:171-180. [DOI: 10.1680/jbibn.18.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Heparin (Hep) was grafted to a poly(vinyl alcohol) (PVA) hydrogel surface by using the covalent grafting method. The structure of the modified hydrogel was determined from Fourier transform infrared attenuated total reflection and X-ray photoelectron spectroscopy. The thermal stability of the samples was investigated by thermogravimetry–differential thermal analysis. The effects of the concentration of (3-aminopropyl)triethoxysilane (kh550) and Hep on visible light transmittance, moisture content, equilibrium swelling, hydrophilicity and percentage of Hep sodium release of the composite hydrogel were studied. The visible light transmittance of the modified PVA hydrogel was above 94%. The time of swelling equilibrium was about 60 min and the equilibrium swelling ratio ranged from 3·0 to 3·5. The hydrophilicity was enhanced, and the static water contact angle decreased from 41 to 28°. The bioeffects of the PVA–kh550–Hep hydrogel were evaluated by studying cell adhesion and proliferation. During the adhesion assay in vitro, cell adhesion significantly decreased after the interfaces had been modified with Hep. The Cell Counting Kit-8 assay showed that the biocompatibility of the PVA–kh550–Hep hydrogel improved obviously compared to that of pure PVA. The experimental results demonstrated that the PVA–kh550–Hep hydrogel had good stability, bioactivity and biocompatibility, suggesting its potential applications in artificial corneas.
Collapse
Affiliation(s)
- Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Youqun Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xinwang Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Mingcheng Shen
- College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, China
| |
Collapse
|
49
|
Means AK, Dong P, Clubb FJ, Friedemann MC, Colvin LE, Shrode CA, Coté GL, Grunlan MA. A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:79. [PMID: 31240399 PMCID: PMC6988489 DOI: 10.1007/s10856-019-6282-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Long-term, subcutaneously implanted continuous glucose biosensors have the potential to improve diabetes management and reduce associated complications. However, the innate foreign body reaction (FBR) both alters the local glucose concentrations in the surrounding tissues and compromises glucose diffusion to the biosensor due to the recruitment of high-metabolizing inflammatory cells and the formation of a dense, collagenous fibrous capsule. Minimizing the FBR has mainly focused on "passively antifouling" materials that reduce initial cellular attachment, including poly(ethylene glycol) (PEG). Instead, the membrane reported herein utilizes an "actively antifouling" or "self-cleaning" mechanism to inhibit cellular attachment through continuous, cyclic deswelling/reswelling in response to normal temperature fluctuations of the subcutaneous tissue. This thermoresponsive double network (DN) membrane is based on N-isopropylacrylamide (NIPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) (75:25 and 100:0 NIPAAm:AMPS in the 1st and 2nd networks, respectively; "DN-25%"). The extent of the FBR reaction of a subcutaneously implanted DN-25% cylindrical membrane was evaluated in rodents in parallel with a PEG-diacrylate (PEG-DA) hydrogel as an established benchmark biocompatible control. Notably, the DN-25% implants were more than 25× stronger and tougher than the PEG-DA implants while maintaining a modulus near that of subcutaneous tissue. From examining the FBR at 7, 30 and 90 days after implantation, the thermoresponsive DN-25% implants demonstrated a rapid healing response and a minimal fibrous capsule (~20-25 µm), similar to the PEG-DA implants. Thus, the dynamic self-cleaning mechanism of the DN-25% membranes represents a new approach to limit the FBR while achieving the durability necessary for long-term implantable glucose biosensors.
Collapse
Affiliation(s)
- A Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Ping Dong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Fred J Clubb
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Molly C Friedemann
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lydia E Colvin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Courtney A Shrode
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Melissa A Grunlan
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA.
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, TX, 77843-3120, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
| |
Collapse
|
50
|
Mabrouk M, Rajendran R, Soliman IE, Ashour MM, Beherei HH, Tohamy KM, Thomas S, Kalarikkal N, Arthanareeswaran G, Das DB. Nanoparticle- and Nanoporous-Membrane-Mediated Delivery of Therapeutics. Pharmaceutics 2019; 11:E294. [PMID: 31234394 PMCID: PMC6631283 DOI: 10.3390/pharmaceutics11060294] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmaceutical particulates and membranes possess promising prospects for delivering drugs and bioactive molecules with the potential to improve drug delivery strategies like sustained and controlled release. For example, inorganic-based nanoparticles such as silica-, titanium-, zirconia-, calcium-, and carbon-based nanomaterials with dimensions smaller than 100 nm have been extensively developed for biomedical applications. Furthermore, inorganic nanoparticles possess magnetic, optical, and electrical properties, which make them suitable for various therapeutic applications including targeting, diagnosis, and drug delivery. Their properties may also be tuned by controlling different parameters, e.g., particle size, shape, surface functionalization, and interactions among them. In a similar fashion, membranes have several functions which are useful in sensing, sorting, imaging, separating, and releasing bioactive or drug molecules. Engineered membranes have been developed for their usage in controlled drug delivery devices. The latest advancement in the technology is therefore made possible to regulate the physico-chemical properties of the membrane pores, which enables the control of drug delivery. The current review aims to highlight the role of both pharmaceutical particulates and membranes over the last fifteen years based on their preparation method, size, shape, surface functionalization, and drug delivery potential.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Rajakumari Rajendran
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Islam E Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | | | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | | | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK.
| |
Collapse
|