1
|
Teng M, Li Y, Qi J, Wu W, Sun X, Gao C, Zhang X, Mamtimin T, Wan J. Effects of Grape Pomace Complete Pellet Feed on Growth Performance, Fatty Acid Composition, and Rumen Fungal Composition in Beef Cattle. Animals (Basel) 2025; 15:930. [PMID: 40218324 PMCID: PMC11988095 DOI: 10.3390/ani15070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Grape pomace, a winemaking byproduct, is nutrient- and polyphenol-rich, but research on its use in beef cattle is limited. This study explored the impact of grape pomace-based complete pellet feed on growth, serum biochemistry, fatty acid profile, and rumen microbiota in beef cattle. Fifteen healthy Simmental cattle were randomly divided into three groups (G0, G15, and G20) and fed a complete pelleted ration containing 0%, 15%, and 20% of grape pomace, respectively, for 60 days. The results showed that the addition of grape pomace to the ration markedly increased the average daily feed intake and average daily weight gain in beef cattle. In terms of biochemistry, the levels of total protein (TP) and albumin (ALB) in the G20 group were higher than in the G0 group (p > 0.05). The levels of oleic acid, linoleic acid, and behenic acid were higher in the G20 group than in the G0 group. Grape pomace had no significant effect on rumen fungal diversity and total volatile fatty acids (TVFAs) in beef cattle. The pH and ammonia nitrogen content in the G15 and G20 groups were significantly higher than that in the G0 group. This indicates that grape pomace can be used as feed raw material for beef cattle.
Collapse
Affiliation(s)
- Meimei Teng
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Yuanqiu Li
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Jiangjiao Qi
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Wenda Wu
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Xinchang Sun
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Chengze Gao
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Xia Zhang
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Tursunay Mamtimin
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- Postdoctoral Station of Grassland Science, Urumqi 830052, China
| | - Jiangchun Wan
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- Postdoctoral Station of Grassland Science, Urumqi 830052, China
| |
Collapse
|
2
|
Galindo LJ, Richards TA, Nirody JA. Evolutionarily diverse fungal zoospores show contrasting swimming patterns specific to ultrastructure. Curr Biol 2024; 34:4567-4576.e3. [PMID: 39265568 DOI: 10.1016/j.cub.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Zoosporic fungi, also called chytrids, produce single-celled motile spores with flagellar swimming tails (zoospores).1,2 These fungi are key components of aquatic food webs, acting as pathogens, saprotrophs, and prey.3,4,5,6,7,8 Little is known about the swimming behavior of fungal zoospores, a crucial factor governing dispersal, biogeographical range, ecological function, and infection dynamics.6,9 Here, we track the swimming patterns of zoospores from 12 evolutionarily divergent species of zoosporic fungi from across seven orders of the Chytridiomycota and the Blastocladiomycota. We report two major swimming patterns that correlate with the cytoskeletal ultrastructure of these zoospores. Specifically, we show that species without major cytoplasmic tubulin components swim in a circular fashion, while species with prominent cytoplasmic tubulin structures swim in a pattern akin to a random walk (move-stop-redirect-move). We confirm cytoskeletal architecture by performing fluorescence confocal microscopy across all 12 species. We then treat representative species with variant swimming behaviors and cytoplasmic-cytoskeletal arrangements with tubulin-stabilizing (Taxol) and depolymerizing (nocodazole) pharmacological compounds. We observed that when treating the "random walk" species with nocodazole, their swimming behavior changed to a circular-swimming pattern. Confocal imaging of the nocodazole-treated zoospores demonstrates that these cells maintain flagellum tubulin structures but lack their characteristic cytoplasmic tubulin structures. Our data demonstrate that the capability of zoospores to perform "complex" random-walk movement is linked to the presence of prominent cytoplasmic tubulin structures and suggest a link between cytology, sensory systems, and swimming behavior in a diversity of zoosporic fungi.
Collapse
Affiliation(s)
| | | | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Fernández-Valero AD, Karpov SA, Sampedro N, Gordi J, Timoneda N, Garcés E, Reñé A. Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates. Eur J Protistol 2024; 93:126053. [PMID: 38350179 DOI: 10.1016/j.ejop.2024.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Sergey A Karpov
- Department of Invertebrate Zoology, Biological Faculty, St Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St Petersburg 199034, Russia; North-Western State Medical University named after I.I. Mechnikov, Kirochnaya st. 41, St Petersburg 191015, Russia
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Zhu Q, Huang Y, Yang Z, Wu X, Zhu Q, Zheng H, Zhu D, Lv Z, Yin Y. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules 2024; 29:1017. [PMID: 38474529 DOI: 10.3390/molecules29051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As a crucial enzyme for cellulose degradation, β-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family β-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic β-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.
Collapse
Affiliation(s)
- Qian Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Yuying Huang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671003, China
| | - Zhengfeng Yang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Xingci Wu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Qianru Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Hongzhao Zheng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Dan Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Zhihua Lv
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| | - Yirui Yin
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
5
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
6
|
Dementiev A, Lillington SP, Jin S, Kim Y, Jedrzejczak R, Michalska K, Joachimiak A, O'Malley MA. Structure and enzymatic characterization of CelD endoglucanase from the anaerobic fungus Piromyces finnis. Appl Microbiol Biotechnol 2023; 107:5999-6011. [PMID: 37548665 PMCID: PMC10485095 DOI: 10.1007/s00253-023-12684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (β/α)8-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with kcat = 6.0 ± 0.6 s-1 and Km = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.
Collapse
Affiliation(s)
- Alexey Dementiev
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Shiyan Jin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Youngchang Kim
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Robert Jedrzejczak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Karolina Michalska
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
- Biological Engineering Program, University of California, Santa Barbara, CA, USA.
- Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
7
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
8
|
The Effect of Combining Millet and Corn Straw as Source Forage for Beef Cattle Diets on Ruminal Degradability and Fungal Community. Animals (Basel) 2023; 13:ani13040548. [PMID: 36830335 PMCID: PMC9951761 DOI: 10.3390/ani13040548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Three ruminal cannulated Simmental crossbreed bulls (approximately 3 years of age and with 380 ± 20 kg live weight at initiation of the experiment) were used in a 3 × 3 Latin square experiment in order to determine the effects of the treatments on ruminal pH and degradability of nutrients, as well as the rumen fungal community. The experimental periods were 21 d, with 18 d of adjustment to the respective dietary treatments and 3 d of sample collection. Treatments consisted of a basal diet containing a 47.11% composition of two sources of forage as follows: (1) 100% millet straw (MILLSTR), (2) 50:50 millet straw and corn straw (COMB), and (3) 100% corn straw (CORNSTR). Dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) were tested for ruminal degradability using the nylon bag method, which was incubated for 6, 12, 24, 36, 48, and 72 h, and rumen fungal community in rumen fluid was determined by high-throughput gene sequencing technology. Ruminal pH was not affected by treatments. At 72 h, compared to MILLSTR, DM degradability of CORNSTR was 4.8% greater (p < 0.05), but when corn was combined with millet straw, the difference in DM degradability was 9.4%. During the first 24 h, degradability of CP was lower for CORNSTR, intermediate for MILLSTR, and higher for COMB. However, at 72 h, MILLSTR and COMB had a similar CP degradability value, staying greater than the CP degradability value of the CORNSTR treatment. Compared to MILLSTR, the rumen degradability of NDF was greater for CORNSTR and intermediate for the COMB. There was a greater degradability for ADF in CORNSTR, intermediate for COMB, and lower for MILLSTR. In all treatments, Ascomycota and Basidiomycota were dominant flora. Abundance of Basidiomycota in the group COMB was higher (p < 0.05) than that in the group CORNSTR at 12 h. Relative to the fungal genus level, the Thelebolus, Cladosporium, and Meyerozyma were the dominant fungus, and the abundance of Meyerozyma in COMB and CORNSTR were greater (p < 0.05) than MILLSTR at 12, 24, and 36 h of incubation. In conclusion, it is suggested to feed beef cattle with different proportions of millet straw and corn straw combinations.
Collapse
|
9
|
Wunderlich G, Bull M, Ross T, Rose M, Chapman B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim Microbiome 2023; 5:3. [PMID: 36635784 PMCID: PMC9837927 DOI: 10.1186/s42523-022-00224-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The equine gastrointestinal tract is a self-sufficient fermentation system, housing a complex microbial consortium that acts synergistically and independently to break down complex lignocellulolytic material that enters the equine gut. Despite being strict herbivores, equids such as horses and zebras lack the diversity of enzymes needed to completely break down plant tissue, instead relying on their resident microbes to carry out fibrolysis to yield vital energy sources such as short chain fatty acids. The bulk of equine digestion occurs in the large intestine, where digesta is fermented for 36-48 h through the synergistic activities of bacteria, fungi, and methanogenic archaea. Anaerobic gut dwelling bacteria and fungi break down complex plant polysaccharides through combined mechanical and enzymatic strategies, and notably possess some of the greatest diversity and repertoire of carbohydrate active enzymes among characterized microbes. In addition to the production of enzymes, some equid-isolated anaerobic fungi and bacteria have been shown to possess cellulosomes, powerful multi-enzyme complexes that further enhance break down. The activities of both anaerobic fungi and bacteria are further facilitated by facultatively aerobic yeasts and methanogenic archaea, who maintain an optimal environment for fibrolytic organisms, ultimately leading to increased fibrolytic microbial counts and heightened enzymatic activity. The unique interactions within the equine gut as well as the novel species and powerful mechanisms employed by these microbes makes the equine gut a valuable ecosystem to study fibrolytic functions within complex communities. This review outlines the primary taxa involved in fibre break down within the equine gut and further illuminates the enzymatic strategies and metabolic pathways used by these microbes. We discuss current methods used in analysing fibrolytic functions in complex microbial communities and propose a shift towards the development of functional assays to deepen our understanding of this unique ecosystem.
Collapse
Affiliation(s)
- Georgia Wunderlich
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Michelle Bull
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Tom Ross
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Michael Rose
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Belinda Chapman
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| |
Collapse
|
10
|
Król B, Słupczyńska M, Wilk M, Asghar M, Cwynar P. Anaerobic rumen fungi and fungal direct-fed microbials
in ruminant feeding. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/153961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Joshi A, Young D, Huang L, Mosberger L, Munk B, Vinzelj J, Flad V, Sczyrba A, Griffith GW, Podmirseg SM, Warthmann R, Lebuhn M, Insam H. Effect of Growth Media on the Diversity of Neocallimastigomycetes from Non-Rumen Habitats. Microorganisms 2022; 10:1972. [PMID: 36296248 PMCID: PMC9612151 DOI: 10.3390/microorganisms10101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 12/02/2022] Open
Abstract
Anaerobic fungi (AF), belonging to the phylum Neocallimastigomycota, are a pivotal component of the digestive tract microbiome of various herbivorous animals. In the last decade, the diversity of AF has rapidly expanded due to the exploration of numerous (novel) habitats. Studies aiming at understanding the role of AF require robust and reliable isolation and cultivation techniques, many of which remained unchanged for decades. Using amplicon sequencing, we compared three different media: medium with rumen fluid (RF), depleted rumen fluid (DRF), and no rumen fluid (NRF) to enrich the AF from the feces of yak, as a rumen control; and Przewalski's horse, llama, guanaco, and elephant, as a non-rumen habitats. The results revealed the selective enrichment of Piromyces and Neocallimastix from the feces of elephant and llama, respectively, in the RF medium. Similarly, the enrichment culture in DRF medium explicitly manifested Piromyces-related sequences from elephant feces. Five new clades (MM1-5) were defined from llama, guanaco, yak, and elephant feces that could as well be enriched from llama and elephant samples using non-conventional DRF and NRF media. This study presents evidence for the selective enrichment of certain genera in medium with RF and DRF from rumen as well as from non-rumen samples. NRF medium is suggested for the isolation of AF from non-rumen environments.
Collapse
Affiliation(s)
- Akshay Joshi
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Diana Young
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Liren Huang
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lona Mosberger
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
| | - Bernhard Munk
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Julia Vinzelj
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Veronika Flad
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Alexander Sczyrba
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Gareth W. Griffith
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth SY23 3DD, UK
| | - Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Rolf Warthmann
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
| | - Michael Lebuhn
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
YÜCEL H, EKİNCİ K. Carbohydrate active enzyme system in rumen fungi: a review. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1075030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hydrolysis and dehydration reactions of carbohydrates, which are used as energy raw materials by all living things in nature, are controlled by Carbohydrate Active Enzyme (CAZy) systems. These enzymes are also used in different industrial areas today. There are different types of microorganisms that have the CAZy system and are used in the industrial sector. Apart from current organisms, there are also rumen fungi within the group of candidate microorganisms with the CAZy system. It has been reported that xylanase (EC3.2.1.8 and EC3.2.1.37) enzyme, a member of the glycoside hydrolase enzyme family obtained from Trichoderma sp. and used especially in areas such as bread, paper, and feed industry, is more synthesized in rumen fungi such as Orpinomyces sp. and Neocallimastix sp. Therefore, this study reviews Neocallimastixsp., Orpinomyces sp., Caecomyces sp., Piromyces sp., and Anaeromyces sp., registered in the CAZy and Mycocosm database for rumen fungi to have both CAZy enzyme activity and to be an alternative microorganism in the industry. Furthermore the CAZy enzyme activities of the strains are investigated. The review shows thatNeocallimax sp. and Orpinomyces sp. areconsidered as candidate microorganisms.
Collapse
Affiliation(s)
- Halit YÜCEL
- KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ
| | | |
Collapse
|
13
|
Xue Y, Shen R, Li Y, Sun Z, Sun X, Li F, Li X, Cheng Y, Zhu W. Anaerobic Fungi Isolated From Bactrian Camel Rumen Contents Have Strong Lignocellulosic Bioconversion Potential. Front Microbiol 2022; 13:888964. [PMID: 35928163 PMCID: PMC9345502 DOI: 10.3389/fmicb.2022.888964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
This study aims to obtain anaerobic fungi from the rumen and fecal samples and investigates their potential for lignocellulosic bioconversion. Multiple anaerobic strains were isolated from rumen contents (CR1–CR21) and fecal samples (CF1–CF10) of Bactrian camel using the Hungate roll tube technique. After screening for fiber degradability, strains from rumen contents (Oontomyces sp. CR2) and feces (Piromyces sp. CF9) were compared with Pecoramyces sp. F1 (earlier isolated from goat rumen, having high CAZymes of GHs) for various fermentation and digestion parameters. The cultures were fermented with different substrates (reed, alfalfa stalk, Broussonetia papyrifera leaves, and Melilotus officinalis) at 39°C for 96 h. The Oontomyces sp. CR2 had the highest total gas and hydrogen production from most substrates in the in vitro rumen fermentation system and also had the highest digestion of dry matter, neutral detergent fiber, acid detergent fiber, and cellulose present in most substrates used. The isolated strains provided higher amounts of metabolites such as lactate, formate, acetate, and ethanol in the in vitro rumen fermentation system for use in various industrial applications. The results illustrated that anaerobic fungi isolated from Bactrian camel rumen contents (Oontomyces sp. CR2) have the highest lignocellulosic bioconversion potential, suggesting that the Bactrian camel rumen could be a good source for the isolation of anaerobic fungi for industrial applications.
Collapse
Affiliation(s)
- Yihan Xue
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Rui Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Fengming Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yanfen Cheng,
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
15
|
Kar B, Özköse E, Ekinci MS. The Comparisons of Fatty Acid Composition in Some Anaerobic Gut Fungi Neocallimastix, Orpinomyces, Piromyces, and Caecomyces. AN ACAD BRAS CIENC 2021; 93:e20200896. [PMID: 34705941 DOI: 10.1590/0001-3765202120200896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
The objective of this study were to identify the fatty acid composition for decanoic (C10:0), tridecanoic (C13:0), myristic (C14:0), pentadecanoic (C15:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1n9c), linoleic (C18:2n6c), arachidic (C20:0), arachidonic (C20:4n6), heneicosanoic (C21:0), erucic (C22:1n9) and Cis-4,7,10,13,16,19-docosahexaenoic (C22:6n3) acids by Neocallimastix, Orpinomyces, Caecomyces and Piromyces species of rumen fungus during in vitro culture. Fatty acid (FA) profi le of anaerobic fungi comprises carbon chains of length ranging from 10 to 22 were analyzed as methyl esters. Analysis of fatty acids was performed using Gas Chromatography-Mass Spectrophotometer (GC-MS). FA measures are presented as proportions of relative amounts (% total fatty acid). The highest amounts of fatty acids for all samples were found as myristic (C14:0) acid. The tridecanoic (C13:0) acid represented the second abundant FA in the fungi in all experimental groups. Stearic acid (C18:0) was the third major fatty acid for isolates investigated in the current study. In addition, another fatty acid was palmitic (C16:0) acid with relative amount representing >20 % of total FA in all samples. Pentadecanoic (C15:0) acid could not be found in any other samples except Orpinomyces sp. (GMLF5). It is concluded that biohydrogenation of fatty acid composition by anaerobic gut fungi are very variable.
Collapse
Affiliation(s)
- Bülent Kar
- Munzur University, Tunceli Vocational School, Department of Organic Agriculture, Aktuluk Street, University Campus, Postal 62000, Tunceli Center/ Tunceli, Turkey
| | - Emin Özköse
- Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Animal Science, Avsar Campus, Postal 46000, Avsar Village/Kahramanmaras, Turkey
| | - Mehmet Sait Ekinci
- Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Animal Science, Avsar Campus, Postal 46000, Avsar Village/Kahramanmaras, Turkey
| |
Collapse
|
16
|
Abstract
Anaerobic gut fungi (Neocallimastigomycetes) live in the digestive tract of large herbivores, where they are vastly outnumbered by bacteria. It has been suggested that anaerobic fungi challenge growth of bacteria owing to the wealth of biosynthetic genes in fungal genomes, although this relationship has not been experimentally tested. Here, we cocultivated the rumen bacteria Fibrobacter succinogenes strain UWB7 with the anaerobic gut fungi Anaeromyces robustus or Caecomyces churrovis on a range of carbon substrates and quantified the bacterial and fungal transcriptomic response. Synthetic cocultures were established for at least 24 h, as verified by active fungal and bacterial transcription. A. robustus upregulated components of its secondary metabolism in the presence of Fibrobacter succinogenes strain UWB7, including six nonribosomal peptide synthetases, one polyketide synthase-like enzyme, and five polyketide synthesis O-type methyltransferases. Both A. robustus and C. churrovis cocultures upregulated S-adenosyl-l-methionine (SAM)-dependent methyltransferases, histone methyltransferases, and an acetyltransferase. Fungal histone 3 lysine 27 trimethylation marks were more abundant in coculture, and heterochromatin protein-1 was downregulated. Together, these findings suggest that fungal chromatin remodeling occurs when bacteria are present. F. succinogenes strain UWB7 upregulated four genes in coculture encoding drug efflux pumps, which likely protect the cell against toxins. Furthermore, untargeted nonpolar metabolomics data revealed at least one novel fungal metabolite enriched in coculture, which may be a defense compound. Taken together, these data suggest that A. robustus and C. churrovis produce antimicrobials when exposed to rumen bacteria and, more broadly, that anaerobic gut fungi are a source of novel antibiotics.
Collapse
|
17
|
Swift CL, Malinov NG, Mondo SJ, Salamov A, Grigoriev IV, O'Malley MA. A Genomic Catalog of Stress Response Genes in Anaerobic Fungi for Applications in Bioproduction. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:708358. [PMID: 37744151 PMCID: PMC10512342 DOI: 10.3389/ffunb.2021.708358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 09/26/2023]
Abstract
Anaerobic fungi are a potential biotechnology platform to produce biomass-degrading enzymes. Unlike model fungi such as yeasts, stress responses that are relevant during bioprocessing have not yet been established for anaerobic fungi. In this work, we characterize both the heat shock and unfolded protein responses of four strains of anaerobic fungi (Anaeromyces robustus, Caecomyces churrovis, Neocallimastix californiae, and Piromyces finnis). The inositol-requiring 1 (Ire1) stress sensor, which typically initiates the fungal UPR, was conserved in all four genomes. However, these genomes also encode putative transmembrane kinases with catalytic domains that are similar to the metazoan stress-sensing enzyme PKR-like endoplasmic reticulum kinase (PERK), although whether they function in the UPR of anaerobic fungi remains unclear. Furthermore, we characterized the global transcriptional responses of Anaeromyces robustus and Neocallimastix californiae to a transient heat shock. Both fungi exhibited the hallmarks of ER stress, including upregulation of genes with functions in protein folding, ER-associated degradation, and intracellular protein trafficking. Relative to other fungi, the genomes of Neocallimastigomycetes contained the greatest gene percentage of HSP20 and HSP70 chaperones, which may serve to stabilize their asparagine-rich genomes. Taken together, these results delineate the unique stress response of anaerobic fungi, which is an important step toward their development as a biotechnology platform to produce enzymes and valuable biomolecules.
Collapse
Affiliation(s)
- Candice L. Swift
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nikola G. Malinov
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
18
|
Abstract
Anaerobic fungi (Neocallimastigomycota) isolated from the guts of herbivores are powerful biomass-degrading organisms that enhance their degradative ability through the formation of cellulosomes, multienzyme complexes that synergistically colocalize enzymes to extract sugars from recalcitrant plant matter. However, a functional understanding of how fungal cellulosomes are deployed in vivo to orchestrate plant matter degradation is lacking, as is knowledge of how cellulosome production and function vary throughout the morphologically diverse life cycle of anaerobic fungi. In this work, we generated antibodies against three major fungal cellulosome protein domains, a dockerin, scaffoldin, and glycoside hydrolase (GH) 48 protein, and used them in conjunction with helium ion and immunofluorescence microscopy to characterize cellulosome localization patterns throughout the life cycle of Piromyces finnis when grown on simple sugars and complex cellulosic carbon sources. Our analyses reveal that fungal cellulosomes are cell-localized entities specifically targeted to the rhizoids of mature fungal cells and bodies of zoospores. Examination of cellulosome localization patterns across life stages also revealed that cellulosome production is independent of growth substrate in zoospores but repressed by simple sugars in mature cells. This suggests that further exploration of gene regulation patterns in zoospores is needed and can inform potential strategies for derepressing cellulosome expression and boosting hydrolytic enzyme yields from fungal cultures. Collectively, these findings underscore how life cycle-dependent cell morphology and regulation of cellulosome production impact biomass degradation by anaerobic fungi, insights that will benefit ongoing efforts to develop these organisms and their cellulosomes into platforms for converting waste biomass into valuable bioproducts.
Collapse
|
19
|
Abstract
Anaerobic gut fungi are important members of the gut microbiome of herbivores, yet they exist in small numbers relative to bacteria. Here, we show that these early-branching fungi produce a wealth of secondary metabolites (natural products) that may act to regulate the gut microbiome. We use an integrated 'omics'-based approach to classify the biosynthetic genes predicted from fungal genomes, determine transcriptionally active genes, and verify the presence of their enzymatic products. Our analysis reveals that anaerobic gut fungi are an untapped reservoir of bioactive compounds that could be harnessed for biotechnology. Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (A. robustus), Caecomyces churrovis (C. churrovis), Neocallimastix californiae (N. californiae), and Piromyces finnis (P. finnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.
Collapse
|
20
|
Mitchell S, Bull M, Muscatello G, Chapman B, Coleman NV. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol 2021; 47:543-561. [PMID: 33899656 DOI: 10.1080/1040841x.2021.1907301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.
Collapse
Affiliation(s)
- Scott Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
SANTRA A, KARIM SA. Nutritional evaluation of some Indian tree pods for livestock feeding. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i11.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate promising tree pods for feeding to the livestock particularly for the small ruminants. Out of eight tested tree pods, seven tree pods, i.e. White siris (Albizia procera), Siris (Albizia lebbeck), White kheri (Acacia senegal), Babul (Acacia arabica), Khejri (Prosopis cineraria), Vilayati babul (Prosopis juliflora) and Sajna (Moringa oleifera) were collected from semiarid region of Rajasthan while one tree pods e.g., Jungle jalebi (Enterolobium timoba) was collected from Dehradun, Uttrakhand, India. Most of the tree pods were rich in CP content. On an average, OM, CP, EE, NDF, ADF and cellulose content of these tree pods were found to be 91.1, 16.7, 2.5, 43.3, 34.7 and 25.4% on DM basis, respectively. Rumen protozoal number decreased due to inclusion of Enterolobium timoba tree pods in the incubation media. The TVFA and propionate production were higher for Acacia Senegal, Acacia arabica tree pods followed by Moringa oleifera tree pods while ammonia nitrogen concentration was lower due to inclusion of Enterolobium timoba tree pods in the incubation media. All the tested tree pods had no effect on xylanase, β-glucosidase and amylase enzyme activity. However, specific activity of carboxymethyl cellulase enzyme reduced due to addition of Enterolobium timoba tree pods in the incubation medium. Highest IVDMD was observed for Acacia arabica tree pods followed by Acacia senegal and Moringa oleifera tree pods. The results indicated that Acacia arabica, Acacia senegal and Moringa oleifera are good tree pods for feeding to the animals.
Collapse
|
22
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|
23
|
Gilbert RA, Dagar SS, Kittelmann S, Edwards JE. Editorial: Advances in the Understanding of the Commensal Eukaryota and Viruses of the Herbivore Gut. Front Microbiol 2021; 12:619287. [PMID: 33737917 PMCID: PMC7960656 DOI: 10.3389/fmicb.2021.619287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rosalind A Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
24
|
The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms 2021; 9:microorganisms9010157. [PMID: 33445538 PMCID: PMC7827659 DOI: 10.3390/microorganisms9010157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
Collapse
|
25
|
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 2021; 6:499-511. [PMID: 33526884 PMCID: PMC8007473 DOI: 10.1038/s41564-020-00861-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities. We assembled 719 high-quality metagenome-assembled genomes (MAGs) that are unique at the species level. More than 90% of these MAGs are from previously unidentified herbivore gut microorganisms. Microbial consortia dominated by anaerobic fungi outperformed bacterially dominated consortia in terms of both methane production and extent of cellulose degradation, which indicates that fungi have an important role in methane release. Metabolic pathway reconstructions from MAGs of 737 bacteria, archaea and fungi suggest that cross-domain partnerships between fungi and methanogens enabled production of acetate, formate and methane, whereas bacterially dominated consortia mainly produced short-chain fatty acids, including propionate and butyrate. Analyses of carbohydrate-active enzyme domains present in each anaerobic consortium suggest that anaerobic bacteria and fungi employ mostly complementary hydrolytic strategies. The division of labour among herbivore anaerobes to degrade plant biomass could be harnessed for industrial bioprocessing.
Collapse
Affiliation(s)
- Xuefeng Peng
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California, Santa Barbara, CA USA
| | - St. Elmo Wilken
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Thomas S. Lankiewicz
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Sean P. Gilmore
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Jennifer L. Brown
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - John K. Henske
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Candice L. Swift
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Asaf Salamov
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Kerrie Barry
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Igor V. Grigoriev
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael K. Theodorou
- grid.417899.a0000 0001 2167 3798Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - David L. Valentine
- grid.133342.40000 0004 1936 9676Department of Earth Science, University of California, Santa Barbara, CA USA
| | - Michelle A. O’Malley
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
26
|
Cut-Lengths of Perennial Ryegrass Leaf-Blades Influences In Vitro Fermentation by the Anaerobic Fungus Neocallimastix frontalis. Microorganisms 2020; 8:microorganisms8111774. [PMID: 33187375 PMCID: PMC7696013 DOI: 10.3390/microorganisms8111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host's ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.
Collapse
|
27
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
28
|
Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Animal 2020; 14:2535-2542. [PMID: 32580813 DOI: 10.1017/s1751731120001603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.
Collapse
|
29
|
Cheng K, Wang C, Zhang G, Du H, Wu Z, Liu Q, Guo G, Huo W, Zhang J, Chen L, Pei C. Effects of betaine and rumen-protected folic acid supplementation on lactation performance, nutrient digestion, rumen fermentation and blood metabolites in dairy cows. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Tasirnafas M, Karimi K, Asgari Jafarabadi G, Seidavi A, Noorbakhsh F. Extraction and purification of β-glucanase from bovine rumen fungus Trichoderma reesei and its effect on performance, carcass characteristics, microbial flora, plasma biochemical parameters, and immunity in a local broiler hybrid Golpayegan-Ross. Trop Anim Health Prod 2020; 52:1833-1843. [PMID: 31938956 DOI: 10.1007/s11250-019-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
The enzyme β-glucanase was extracted from Trichoderma reesei in bovine rumen fluid samples collected from a slaughterhouse and its effect was investigated in broilers. Data collected was broiler performance, carcass characteristics, duodenum microbial flora, hematological, and immunological parameters. β-glucanase activity was assayed through spectrometry and was approximately 0.434 IU per gram culture medium. In the current study, endoglucanase enzymes were extracted from Trichoderma reesei. A total of 160 local broilers (Golpayegan-Ross hybrid) were allocated to 4 treatments with 4 replicates per treatment. Over a 49-day experimental period, broilers were fed a basal diet (T1), basal diet plus 20% barley (T2), basal diet with 10 IU extracted β-glucanase and 20% barley (T3), and basal diet with 10 IU commercial β-glucanase and 20% barley (T4). The T3 treatment resulted in the greatest body weight gain at the end of experiment (P < 0.01). No significant differences were for feed conversion (FCR; P > 0.05). The highest cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and LDL cholesterol ratio was observed in the T3 treatment. The highest concentrations of immunoglobulin G1 (IgG1), immunoglobulin G2 (IgG2), and immunoglobulin M1 (IgM1) were observed in the T4 treatment. The T3 treatment resulted in the best response for all measured carcass characteristics. The highest levels of aerobic bacteria, lactobacilli, anaerobic bacteria, and E. coli were associated with the T4, T3, T4, and T1 treatments, respectively. It is concluded that β-glucanase supplementation can be used to overcome the anti-nutritive effects of water soluble barley non-starch polysaccharides (NSPs) and consequently enhance broiler performance without any adverse effects on humoral immunity parameters.
Collapse
Affiliation(s)
- Mohammadebrahim Tasirnafas
- Department of Animal Science, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran
| | - Kazem Karimi
- Department of Animal Science, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran.
| | - Ghobad Asgari Jafarabadi
- Department of Animal Science, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fatemeh Noorbakhsh
- Department of Microbiology, Biological Science College, Varamin-Pishva Branch, Islamic Azad University, Varamin-Pishva, Iran
| |
Collapse
|
31
|
SANTRA A, KARIM SA. Nutritional evaluation of some Indian tree leaves and herbs as fodder and defaunating agent in sheep. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i10.95018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nutritional evaluation as a fodder and defaunating agent of four multipurpose tree leaves namely Ficus religiosa (Pipal), Ficus bengalensis (Bargad), Mangifera indica (Mango), Enterolobium timoba (Jungle jalebi) and two herbs namely Agave americana (Ramkanta) and Plantago major (Isafghol) was done in vitro. The mean content of OM, CP, EE, NDF, ADF, cellulose and lignin of these tree leaves and herbs were 88.6, 12.6, 2.4, 46.2, 33.5, 25.8 and 7.3% on DM basis, respectively. Enterolobium timoba leaves contained highest amount of CP (22.5%) while highest amount of ADF and lignin content was observed in Ficus bengalensis (41.1% / 12.1%) leaves. Total rumen protozoa as well as Holotrich and spirotrich protozoa number became zero due to inclusion of Agave americana and Enterolobium timoba leaves in the incubation media. Total volatile fatty acids (TVFA) and propionate production was higher where as NH3–N production was lower due to addition of Agave americana leaves in the incubation media. Highest IVTDMD and IVTOMD (61.4% / 64.1%) were observed for the Agave americana followed by Enterolobium timoba (59.8% / 62.5%) and Plantago major (57.5% / 59.2%) leaves. Activity of polysaccharide degrading enzymes like carboxymethyl cellulase and xylanase improved due to addition of Agave americana and Enterolobium timoba leaves in the incubation media. However, activity of β-glucosidase enzyme was similar among all the tested tree leaves and herbs. As a defaunating agent (removal of rumen protozoa / anti ciliate protozoal activity), Agave americana leaves were more effective in comparison to Plantage major leaves. The results indicated that among the tested tree leaves and herbs, Agave americana, Enterolobium timoba and Plantago major were good tree fodder for feeding to the animals and leaves of Agave americana and Enterolobium timoba could be used as defaunating agent for reducing rumen protozoal population to improve animal productivity.
Collapse
|
32
|
Wang XW, Benoit I, Groenewald JZ, Houbraken J, Dai X, Peng M, Yang X, Han DY, Gao C, Guo LD. Community dynamics of Neocallimastigomycetes in the rumen of yak feeding on wheat straw revealed by different primer sets. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments. HYDROGENOSOMES AND MITOSOMES: MITOCHONDRIA OF ANAEROBIC EUKARYOTES 2019. [DOI: 10.1007/978-3-030-17941-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS. Liebetanzomycespolymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 2018:89-110. [PMID: 30364831 PMCID: PMC6198248 DOI: 10.3897/mycokeys.40.28337] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/05/2018] [Indexed: 11/12/2022] Open
Abstract
An extended incubation strategy to culture slow growing members of anaerobic fungi resulted in the isolation of a novel anaerobic fungus from the rumen of a goat after 15 days. The novel genus, represented by type strain G1SC, showed filamentous monocentric thallus development and produced uniflagellate zoospores, hence, showing morphological similarity to the genera Piromyces, Buwchfawromyces, Oontomyces and Pecoramyces. However, strain G1SC showed genetic similarity to the genus Anaeromyces, which, though produces uniflagellate zoospore, also exhibits polycentric thallus development. Moreover, unlike Anaeromyces, strain G1SC did not show hyphal constrictions, instead produced a branched, determinate and anucleate rhizoidal system. This fungus also displayed extensive sporangial variations, both exogenous and endogenous type of development, short and long sporangiophores and produced septate sporangia. G1SC utilised various complex and simple substrates, including rice straw and wheat straw and produced H2, CO2, formate, acetate, lactate, succinate and ethanol. Phylogenetic analysis, using internal transcribed spacer 1 (ITS1) and D1/D2 domain of large-subunit (LSU) rRNA locus, clearly showed a separate lineage for this strain, near Anaeromyces. The ITS1 based geographical distribution studies indicated detection of environmental sequences similar (93–96%) to this strain from cattle faeces. Based on morphological and molecular characterisation results of strain G1SC, we propose a novel anaerobic fungus Liebetanzomycespolymorphusgen. et sp. nov., in the phylum Neocallimastigomycota.
Collapse
Affiliation(s)
- Akshay Joshi
- Bioenergy Group, Agharkar Research Institute, Pune, India Agharkar Research Institute Pune India
| | - Vikram B Lanjekar
- Bioenergy Group, Agharkar Research Institute, Pune, India Agharkar Research Institute Pune India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Pune, India Agharkar Research Institute Pune India
| | - Tony M Callaghan
- Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth, SY23 3DD, Wales, UK Aberystwyth University Aberystwyth United Kingdom.,Commercial Mushroom producers Co-Operative Society Ltd., Units 7 & 8, Newgrove Industrial Estate, Ballinode Road, Monaghan, Ireland Commercial Mushroom producers Co-Operative Society Ltd. Monaghan Ireland
| | - Gareth W Griffith
- Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth, SY23 3DD, Wales, UK Aberystwyth University Aberystwyth United Kingdom
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India Agharkar Research Institute Pune India
| |
Collapse
|
35
|
Rabee AE, Forster RJ, Elekwachi CO, Kewan KZ, Sabra EA, Shawket SM, Mahrous HA, Khamiss OA. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. J Basic Microbiol 2018; 59:101-110. [PMID: 30303547 DOI: 10.1002/jobm.201800323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022]
Abstract
Anaerobic fungi colonize the rumen and degrade cellulose and hemicellulose, which enable them to be key players in the lignocellulose fermentation. Consequently, an expansion of knowledge about rumen fungi could increase animal productivity, utilization of lignified forages like alfalfa hay, and enhance fibrolytic enzymes production. Here, we used an Internal Transcribed Spacer 1 (ITS1) clone library to investigate the anaerobic rumen fungi in camel and to investigate their ability to produce cellulase and xylanase in vitro. Rumen fluid was collected from camels fed Egyptian clover (n = 14), and wheat straw (n = 7) and fecal samples were collected from camels fed wheat straw and concentrates (n = 5), or natural grazing plants (n = 10). Neocallimastix and Cyllamyces were the most abundant anaerobic fungi in all camel groups. An anaerobic rumen fungi media containing alfalfa hay as a carbon source was inoculated by rumen and fecal samples to assess the ability of anaerobic rumen fungi in camel gut to produce cellulase and xylanase. The anaerobic gut fungi in the camel is diverse and has cellulolytic and xylanolytic activities, fungal culture from rumen samples of camel fed wheat straw (R2) exhibited highest cellulase production. In addition, many of the sequences in the current study have no equivalent cultured representative, indicating a novel diversity within the camel gut.
Collapse
Affiliation(s)
- Alaa E Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Robert J Forster
- Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Chijioke O Elekwachi
- Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Kkaled Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Ebrahim A Sabra
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Safinaze M Shawket
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Hoda A Mahrous
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Omaima A Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| |
Collapse
|
36
|
Henske JK, Gilmore SP, Haitjema CH, Solomon KV, O'Malley MA. Biomass‐degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE J 2018. [DOI: 10.1002/aic.16395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- John K. Henske
- Dept. of Chemical Engineering University of California Santa Barbara CA, 93106
| | - Sean P. Gilmore
- Dept. of Chemical Engineering University of California Santa Barbara CA, 93106
| | - Charles H. Haitjema
- Dept. of Chemical Engineering University of California Santa Barbara CA, 93106
| | - Kevin V. Solomon
- Dept. of Chemical Engineering University of California Santa Barbara CA, 93106
| | | |
Collapse
|
37
|
Mobashar M, Hummel J, Blank R, Südekum KH. Contribution of different rumen microbial groups to gas, short-chain fatty acid and ammonium production from different diets-an approach in an in vitro fermentation system. J Anim Physiol Anim Nutr (Berl) 2018; 103:17-28. [PMID: 30280429 DOI: 10.1111/jpn.12996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
In this study, the relative contribution of different microbial groups to ruminal metabolism was investigated for different diets. The rumen microbial cultures included whole rumen fluid, fungi + protozoa, bacteria + protozoa, protozoa and bacteria + fungi and were established by physical and chemical methods. Gas production, short-chain fatty acid (SCFA) and ammonium production were measured at 24 hr in in vitro incubations using the Hohenheim gas test (HGT) procedure. Seven donor animal diets with different concentrate-to-roughage ratios (C:R: 10:90, 30:70, 50:50, 70:30, 70:30BC (BC = NaHCO3 ), 90:10 and 90:10BC) and five HGT diets (C:R: 10:90, 30:70, 50:50, 70:30 and 90:10) were formulated. Incubations in the HGT were always based on inoculum from sheep diets with the respective C:R ratio. Gas and ammonium production increased (p < 0.001) as a result of a gradual increase in concentrate proportion of the diets. In general, SCFA production followed the same trend. Whole rumen fluid and bacteria + fungi produced approximately 50% higher gas volume than protozoa and fungi + protozoa fractions, whereas gas production with bacteria + protozoa was at an intermediate level. Coculture of protozoa either with bacteria or with fungi produced more ammonium. Populations without bacteria were characterized by a particularly high acetate/propionate ratio. Although an interaction between microbial group and diet was observed for several variables, no clear direction could be established. Manipulating rumen fluid by selectively suppressing specific rumen microbial groups may be a helpful tool in elucidating their role in nutrient degradation and turnover in vitro.
Collapse
Affiliation(s)
| | - Jürgen Hummel
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Ralf Blank
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | | |
Collapse
|
38
|
Zhou H, Guo W, Zhang T, Xu B, Zhang D, Teng Z, Tao D, Lou Y, Gao Y. Response of goose intestinal microflora to the source and level of dietary fiber. Poult Sci 2018; 97:2086-2094. [PMID: 29452399 DOI: 10.3382/ps/pey045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Geese are capable of digesting and making use of a high-fiber diet, but the mechanism is not well understood and would be of great significance for the development and utilization of roughage resources. In this study, we investigated the effect of dietary fiber (source: corn stover and alfalfa, included at 5% or 8%) on microflora in goose intestines. We used 35-day-old Carlos geese in which we first studied the influence of fiber ingestion on diet digestibility and immune organ indices of geese and found that high dietary fiber (8% content) significantly increased feed intake, the digestibility of neutral and acid detergent fiber, and thymus, bursa, and spleen size. Subsequently, we investigated the effect of dietary fiber on the microbial flora in the various intestinal segments by high throughput sequencing. The bacterial diversity and relative abundance were significantly affected by the type and amount of dietary fiber fed, including that of cellulolytic bacteria such as Bacteroides, Ruminococcus, Clostridium, and Pseudomonas spp. Finally, we isolated and identified 8 strains with cellulolytic ability from goose intestine and then analyzed their activities in combination. The optimal combination for cellulase activity was Cerea bacillus and Pseudomonas aeruginosa. This study has laid a theoretical and practical foundation for knowledge of the efficient conversion and utilization of cellulose by geese.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wei Guo
- Jilin Municipal General Station for Animal Husbandry and Veterinary Service, Changchun 130062, China
| | - Tao Zhang
- Management Center of Jilin Scientific and Technological Innovation Platform, Changchun 130012, China
| | - Bo Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhanwei Teng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Dapeng Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
39
|
Ho YW, Barr DJS. Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 2018. [DOI: 10.1080/00275514.1995.12026582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Y. W. Ho
- Department of Biology, Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia, 43400 Serdang, Selangor, Malaysia
| | - D. J. S. Barr
- Centre for Land and Biological Resources Research, Central Experimental Farm, Research Branch, Agriculture Canada, Ottawa, Canada
| |
Collapse
|
40
|
Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK, Zhang D, Zhu Y, Xia DP, Li JH. Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol 2018; 80:e22880. [PMID: 29893498 DOI: 10.1002/ajp.22880] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
Recent studies highlight that the gut mycobiota play essential roles in mammalian metabolic and immune systems, but to date we lack information on the forces that naturally shape the gut mycobiota of wild primates. To investigate the contributions of host and environmental factors in the taxonomic variation of the gut mycobiota, we examined the effects of age, sex, and season on the fecal mycobiota in wild-living Tibetan macaques (Macaca thibetana). Using next generation sequencing and a longitudinal set of fecal samples collected over 1 year, we identified a set of core fungal taxa present in the Tibetan macaque's fecal samples. The predominant genera Aspergillus and Penicillium, which promote the digestion of cellulose and hemicellulose in herbivorous mammals, were detected in this study. Similar to humans, we found age and sex effects on the macaques' fecal mycobiota. We also found that both fecal fungal composition and diversity (alpha and beta diversity) varied significantly by season. In particular, the Penicillium enriched mycobiota in summer samples may aid in the digestion of cellulose and hemicellulose present in mature leaves. The high alpha diversity detected in Tibetan macaques' winter fecal samples may facilitate a diet rich in fiber ingested during this season. We propose that the gut mycobiota play an important role in the macaques' ability to adapt to seasonal fluctuations in food availability and nutrient content.
Collapse
Affiliation(s)
- Binghua Sun
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Zhiyuan Gu
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Xi Wang
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | | | - Paul A Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Illinois, Urbana
| | - Lori K Sheeran
- Department of Biological Sciences and Primate Behavior Program, Central Washington University, Ellensburg, Washington
| | - Dao Zhang
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Yong Zhu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Dong-Po Xia
- School of Life Science, Anhui University, Hefei, China
| | - Jin-Hua Li
- School of Resource and Environmental Engineering, Anhui University, Hefei, China.,School of Life Science, Hefei Normal University, Hefei, China
| |
Collapse
|
41
|
Henske JK, Wilken SE, Solomon KV, Smallwood CR, Shutthanandan V, Evans JE, Theodorou MK, O'Malley MA. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol Bioeng 2018; 115:874-884. [DOI: 10.1002/bit.26515] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- John K. Henske
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCalifornia
| | - St. Elmo Wilken
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCalifornia
| | - Kevin V. Solomon
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCalifornia
- Agriculture and Biological EngineeringPurdue UniversityW. LafayetteIndiana
| | - Chuck R. Smallwood
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashington
| | | | - James E. Evans
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashington
| | - Michael K. Theodorou
- Animal ProductionWelfare and Veterinary SciencesHarper Adams UniversityNewportShropshireUK
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCalifornia
| |
Collapse
|
42
|
Gleason FH, Marano AV, Lilje O, Lange L. What has happened to the “aquatic phycomycetes” (sensu Sparrow)? Part I: A brief historical perspective. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O'Malley MA, Griffith GW, Smidt H. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front Microbiol 2017; 8:1657. [PMID: 28993761 PMCID: PMC5622200 DOI: 10.3389/fmicb.2017.01657] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
Collapse
Affiliation(s)
- Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Robert J. Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Tony M. Callaghan
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | - Veronika Dollhofer
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural UniversityNanjing, China
| | - Jongsoo Chang
- Department of Agricultural Science, Korea National Open UniversitySeoul, South Korea
| | - Sandra Kittelmann
- Grasslands Research Centre, AgResearch Ltd.Palmerston North, New Zealand
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics, Czech Academy of SciencesPrague, Czechia
| | - Anil K. Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
- Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - John K. Henske
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Sean P. Gilmore
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Gareth W. Griffith
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
44
|
Gleason FH, Scholz B, Jephcott TG, van Ogtrop FF, Henderson L, Lilje O, Kittelmann S, Macarthur DJ. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0038-2016. [PMID: 28361735 PMCID: PMC11687468 DOI: 10.1128/microbiolspec.funk-0038-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 12/25/2022] Open
Abstract
The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Bettina Scholz
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland
- BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland
| | - Thomas G Jephcott
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Floris F van Ogtrop
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Linda Henderson
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Deborah J Macarthur
- School of Science, Faculty of Health Sciences, Australian Catholic University, NSW 2059, Australia
| |
Collapse
|
45
|
Chen YC, Tsai SD, Cheng HL, Chien CY, Hu CY, Cheng TY. Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Hsueh-Ling Cheng
- Institute of Biotechnology, National Pingtung University of Science and Technology, Neipu Hsiang, Pingtung, 91201 Taiwan, R.O.C
| | - Chiu-Yuan Chien
- Department of Life Sciences, National Taiwan Normal University, Taipei, 10677 Taiwan, R.O.C
| | - Chun-Yi Hu
- Department of Nutrition and Health Science, Fooyin University, Taliao Hsiang, Kaohsiung, 83161 Taiwan, R.O.C
| | - Tai-Yi Cheng
- Yung-Ta Institute of Technology and Commerce, Pingtung, 90901 Taiwan, R.O.C
| |
Collapse
|
46
|
Bełżecki G, McEwan NR, Kowalik B, Michałowski T, Miltko R. Effect of Entodinium caudatum on starch intake and glycogen formation by Eudiplodinium maggii in the rumen and reticulum. Eur J Protistol 2016; 57:38-49. [PMID: 28011297 DOI: 10.1016/j.ejop.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/27/2022]
Abstract
This study aimed to quantify the engulfed starch and reserve α-glucans (glycogen) in the cells of the ciliates Eudiplodinium maggii, as well the α-glucans in defaunated and selectively faunated sheep. The content of starch inside the cell of ciliates varied from 21 to 183mg/g protozoal DM relative to the rumen fauna composition whereas, the glycogen fluctuated between 17 and 126mg/g dry matter (DM) of this ciliate species. Establishment of the population Entodinium caudatum in the rumen of sheep already faunated with E. maggii caused a drop in both types of quantified carbohydrates. The content of α-glucans in the rumen of defaunated sheep varied from 4.4 to 19.9mg/g DM and increased to 7.4-29.9 or 11.8-33.9mg/g DM of rumen contents in the presence of only E. maggii or E. maggii and E. caudatum, respectively. The lowest content of the carbohydrates was always found just before feeding and the highest at 4h thereafter. The α-glucans in the reticulum varied 7.5-40.1, 14.3-76.8 or 21.9-106.1mg/g DM of reticulum content for defaunated, monofaunated or bifaunated sheep, respectively. The results indicated that both ciliate species engulf starch granules and convert the digestion products to the glycogen, diminishing the pool of starch available for amylolytic bacteria.
Collapse
Affiliation(s)
- Grzegorz Bełżecki
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jabłonna, Poland.
| | - Neil R McEwan
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA Wales, United Kingdom
| | - Barbara Kowalik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jabłonna, Poland
| | - Tadeusz Michałowski
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jabłonna, Poland
| | - Renata Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jabłonna, Poland
| |
Collapse
|
47
|
Wang X, Liu X, Groenewald JZ. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie van Leeuwenhoek 2016; 110:87-103. [PMID: 27734254 PMCID: PMC5222902 DOI: 10.1007/s10482-016-0779-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
Abstract
The phylum Neocallimastigomycota contains eight genera (about 20 species) of strictly anaerobic fungi. The evolutionary relationships of these genera are uncertain due to insufficient sequence data to infer their phylogenies. Based on morphology and molecular phylogeny, thirteen isolates obtained from yak faeces and rumen digesta in China were assigned to Neocallimastix frontalis (nine isolates), Orpinomyces joyonii (two isolates) and Caecomyces sp. (two isolates), respectively. The phylogenetic relationships of the eight genera were evaluated using complete ITS and partial LSU sequences, compared to the ITS1 region which has been widely used in this phylum in the past. Five monophyletic lineages corresponding to six of the eight genera were statistically supported. Isolates of Caecomyces and Cyllamyces were present in a single lineage and could not be separated properly. Members of Neocallimastigomycota with uniflagellate zoospores represented by Piromyces were polyphyletic. The Piromyces-like genus Oontomyces was consistently closely related to the traditional Anaeromyces, and separated the latter genus into two clades. The phylogenetic position of the Piromyces-like genus Buwchfawromyces remained unresolved. Orpinomyces and Neocallimastix, sharing polyflagellate zoospores, were supported as sister genera in the LSU phylogeny. Apparently ITS, specifically ITS1 alone, is not a good marker to resolve the generic affinities of the studied fungi. The LSU sequences are easier to align and appear to work well to resolve generic relationships. This study provides a comparative phylogenetic revision of Neocallimastigomycota isolates known from culture and sequence data.
Collapse
Affiliation(s)
- Xuewei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.,CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Johannes Z Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
48
|
Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 2015; 8:749-63. [PMID: 25874383 PMCID: PMC4554464 DOI: 10.1111/1751-7915.12276] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.
Collapse
Affiliation(s)
- Robert Heyer
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| |
Collapse
|
49
|
|
50
|
Lee SM, Guan LL, Eun JS, Kim CH, Lee SJ, Kim ET, Lee SS. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J Appl Microbiol 2015; 118:565-73. [PMID: 25495284 DOI: 10.1111/jam.12724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
AIMS To identify whether the supplement of anaerobic fungi isolates with cellulolytic activities accelerates the silage fermentation. METHODS AND RESULTS Three fungal isolates with the highest cellulolytic activities among 45 strains of anaerobic fungal stock in our laboratory were selected and used as silage inoculants. The rice straw (RS) was ensiled for 10, 30, 60, 90 and 120 days with four treatments of anaerobic fungi derived from the control (no fungus), Piromyces M014 (isolated from the rumen of the Korean native goat), Orpinomyces R001 (isolated from the duodenum of Korean native cattle) and Neocallimastix M010 (isolated from the guts of termites), respectively. The silages inoculated with pure strains of fungi showed a higher fungal population (P < 0.05) when compared to the control silage. In situ ruminal DM disappearance of RS silage (RSS) was improved with fungal treatment. SEM observation showed live fungal cells inoculated in RS could survive during the ensiling process. Overall, this study indicated that the inoculation of anaerobic fungi decreased the cell wall content of the RSS and increased in situ dry matter disappearance. CONCLUSIONS The supplementation of anaerobic fungi isolates to RSS as a silage inoculant improves the RSS quality. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the potential application of supplement of anaerobic fungi isolated from the guts may be applied industrially as an alternate feed additive that improves the silage quality.
Collapse
Affiliation(s)
- S M Lee
- Division of Applied Life Sciences (BK21+), Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|