1
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Hayashi T, Tomomizu T, Sushida T, Akiyama M, Ei SI, Sato M. Tiling mechanisms of the Drosophila compound eye through geometrical tessellation. Curr Biol 2022; 32:2101-2109.e5. [PMID: 35390281 DOI: 10.1016/j.cub.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Tiling patterns are observed in many biological structures. The compound eye is an interesting example of tiling and is often constructed by hexagonal arrays of ommatidia, the optical unit of the compound eye. Hexagonal tiling may be common due to mechanical restrictions such as structural robustness, minimal boundary length, and space-filling efficiency. However, some insects exhibit tetragonal facets.1-4 Some aquatic crustaceans, such as shrimp and lobsters, have evolved with tetragonal facets.5-8 Mantis shrimp is an insightful example as its compound eye has a tetragonal midband region sandwiched between hexagonal hemispheres.9,10 This casts doubt on the naive explanation that hexagonal tiles recur in nature because of their mechanical stability. Similarly, tetragonal tiling patterns are also observed in some Drosophila small-eye mutants, whereas the wild-type eyes are hexagonal, suggesting that the ommatidial tiling is not simply explained by such mechanical restrictions. If so, how are the hexagonal and tetragonal patterns controlled during development? Here, we demonstrate that geometrical tessellation determines the ommatidial tiling patterns. In small-eye mutants, the hexagonal pattern is transformed into a tetragonal pattern as the relative positions of neighboring ommatidia are stretched along the dorsal-ventral axis. We propose that the regular distribution of ommatidia and their uniform growth collectively play an essential role in the establishment of tetragonal and hexagonal tiling patterns in compound eyes.
Collapse
Affiliation(s)
- Takashi Hayashi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| | - Takeshi Tomomizu
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, 4-6-8 Oyamagaoka, Machida, Tokyo 194-0215, Japan
| | - Masakazu Akiyama
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shin-Ichiro Ei
- Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
3
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
4
|
Li D, March ME, Fortugno P, Cox LL, Matsuoka LS, Monetta R, Seiler C, Pyle LC, Bedoukian EC, Sánchez-Soler MJ, Caluseriu O, Grand K, Tam A, Aycinena ARP, Camerota L, Guo Y, Sleiman P, Callewaert B, Kumps C, Dheedene A, Buckley M, Kirk EP, Turner A, Kamien B, Patel C, Wilson M, Roscioli T, Christodoulou J, Cox TC, Zackai EH, Brancati F, Hakonarson H, Bhoj EJ. Pathogenic variants in CDH11 impair cell adhesion and cause Teebi hypertelorism syndrome. Hum Genet 2021; 140:1061-1076. [PMID: 33811546 DOI: 10.1007/s00439-021-02274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Teebi hypertelorism syndrome (THS; OMIM 145420) is a rare craniofacial disorder characterized by hypertelorism, prominent forehead, short nose with broad or depressed nasal root. Some cases of THS have been attributed to SPECC1L variants. Homozygous variants in CDH11 truncating the transmembrane and intracellular domains have been implicated in Elsahy-Waters syndrome (EWS; OMIM 211380) with hypertelorism. We report THS due to CDH11 heterozygous missense variants on 19 subjects from 9 families. All affected residues in the extracellular region of Cadherin-11 (CHD11) are highly conserved across vertebrate species and classical cadherins. Six of the variants that cluster around the EC2-EC3 and EC3-EC4 linker regions are predicted to affect Ca2+ binding that is required for cadherin stability. Two of the additional variants [c.164G > C, p.(Trp55Ser) and c.418G > A, p.(Glu140Lys)] are also notable as they are predicted to directly affect trans-homodimer formation. Immunohistochemical study demonstrates that CDH11 is strongly expressed in human facial mesenchyme. Using multiple functional assays, we show that five variants from the EC1, EC2-EC3 linker, and EC3 regions significantly reduced the cell-substrate trans adhesion activity and one variant from EC3-EC4 linker results in changes in cell morphology, focal adhesion, and migration, suggesting dominant negative effect. Characteristic features in this cohort included depressed nasal root, cardiac and umbilical defects. These features distinguished this phenotype from that seen in SPECC1L-related hypertelorism syndrome and CDH11-related EWS. Our results demonstrate heterozygous variants in CDH11, which decrease cell-cell adhesion and increase cell migratory behavior, cause a form of THS, as termed CDH11-related THS.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paola Fortugno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Liza L Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Leticia S Matsuoka
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosanna Monetta
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Louise C Pyle
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - María José Sánchez-Soler
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, España
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,The Stollery Pediatric Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Allison Tam
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alicia R P Aycinena
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Letizia Camerota
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michael Buckley
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Edwin P Kirk
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Tony Roscioli
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Timothy C Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Elaine H Zackai
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Calaf GM, Bleak TC, Muñoz JP, Aguayo F. Markers of epithelial-mesenchymal transition in an experimental breast cancer model induced by organophosphorous pesticides and estrogen. Oncol Lett 2020; 20:84. [PMID: 32863917 PMCID: PMC7436934 DOI: 10.3892/ol.2020.11945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health problem and accounted for 11.6% of all new cancer cases and 6.6% of all cancer deaths among women worldwide in 2018. However, its etiology has remained elusive. According to epidemiological studies, environmental factors are influencing the increase in the incidence of breast cancer risk. Components such as chemicals, including pesticides, are agents that produce deleterious effects on wildlife and humans. Among them, the organophosphorus pesticides, such as malathion, have largely been considered in this etiology. The epithelial-mesenchymal transition serves a key role in tumor progression and it is proposed that malathion is closely associated with the origin of this transition, among other causes. Moreover, proteins participating in this process are primordial in the transformation of a normal cell to a malignant tumor cell. The aim of the current study was to evaluate markers that indicated oncogenic properties. The results indicated greater expression levels of proteins associated with the epithelial-to-mesenchymal transition, including E-cadherin, Vimentin, Axl, and Slug in the rat mammary glands treated with malathion alone and combined with estrogen. Atropine was demonstrated to counteract the malathion effect as a muscarinic antagonist. The understanding of the use of markers in experimental models is crucial to identify different stages in the cancer process. The alteration of these markers may serve as a predicting factor that can be used to indicate whether a person has altered ducts or lobules in breast tissue within biopsies of individuals exposed to OPs or other environmental substances.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
6
|
Abstract
Breast cancer is considered a major and common health problem in both developing and developed countries. The etiology of breast cancer, the most frequent malignancy diagnosed in women in the western world, has remained unidentified. Chemicals as the organophosphorous pesticide malathion have been used to control a wide range of sucking and chewing pests of field crops, and are involved in the etiology of breast cancers. The association between breast cancer initiation and prolonged exposure to estrogen suggests that this hormone may also have an etiologic role in such a process. However, the key factors behind the initiation of breast cancer remain to be elucidated. The effect of environmental substances, such as malathion and estrogen was analyzed in an experimental rat mammary gland model. Different cytoplasmic proteins are key in the transformation of a normal cell to a malignant tumor cell and among these are the Ras super family and Ras homologous A (Rho-A). Both types of proteins were greater in animals treated with malathion than those with estrogens. E-Cadherins constitute a large family of cell surface proteins.Resultsshowed greater expression of E-Cadherin and vimentin than c-Ha-ras and Rho-A in rats treated by estrogens. In breast cancer, analysis using immunohistochemical markers is an essential component of routine pathological examinations, and plays an important role in the management of the disease by providing diagnostic and prognostic strategies.The aimof the present study was to identify markers that can be used as a prognostic tool for breast cancer patients.
Collapse
|
7
|
Wu X, Fu Y, Sun X, Liu C, Chai M, Chen C, Dai L, Gao Y, Jiang H, Zhang J. The possible FAT1-mediated apoptotic pathways in porcine cumulus cells. Cell Biol Int 2016; 41:24-32. [DOI: 10.1002/cbin.10695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/15/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Xinhui Wu
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Yao Fu
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Xulei Sun
- College of Animal Sciences; Jilin University; Changchun Jilin China
- Shenyang Jiuzhou Hosipital; Shenyang Liaoning China
| | - Chang Liu
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Menglong Chai
- College of Animal Sciences; Jilin University; Changchun Jilin China
- College of Animal Science and Technology; China Agriculture University; Beijing China
| | - Chengzhen Chen
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Lisheng Dai
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Yan Gao
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Hao Jiang
- College of Animal Sciences; Jilin University; Changchun Jilin China
| | - Jiabao Zhang
- College of Animal Sciences; Jilin University; Changchun Jilin China
| |
Collapse
|
8
|
Hegsted A, Wright FA, Votra S, Pruyne D. INF2- and FHOD-related formins promote ovulation in the somatic gonad of C. elegans. Cytoskeleton (Hoboken) 2016; 73:712-728. [PMID: 27770600 PMCID: PMC5148669 DOI: 10.1002/cm.21341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 11/06/2022]
Abstract
Formins are regulators of actin filament dynamics. We demonstrate here that two formins, FHOD-1 and EXC-6, are important in the nematode Caenorhabditis elegans for ovulation, during which actomyosin contractions push a maturing oocyte from the gonad arm into a distensible bag-like organ, the spermatheca. EXC-6, a homolog of the disease-associated mammalian formin INF2, is highly expressed in the spermatheca, where it localizes to cell-cell junctions and to circumferential actin filament bundles. Loss of EXC-6 does not noticeably affect the organization the actin filament bundles, and causes only a very modest increase in the population of junction-associated actin filaments. Despite absence of a strong cytoskeletal phenotype, approximately half of ovulations in exc-6 mutants exhibit extreme defects, including failure of the oocyte to enter the spermatheca, or breakage of the oocyte as the distal spermatheca entrance constricts during ovulation. Loss of FHOD-1 alone has little effect, and we cannot detect FHOD-1 in the spermatheca. However, combined loss of these formins in double fhod-1;exc-6 mutants results in profound ovulation defects, with significant slowing of the entry of oocytes into the spermatheca, and failure of nearly 80% of ovulations. We suggest that EXC-6 plays a role directly in the spermatheca, perhaps by modulating the ability of the spermatheca wall to rapidly accommodate an incoming oocyte, while FHOD-1 may play an indirect role relating to its known importance in the growth and function of the egg-laying muscles. © 2016 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Forrest A Wright
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - SarahBeth Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
9
|
Dlg5 maintains apical polarity by promoting membrane localization of Crumbs during Drosophila oogenesis. Sci Rep 2016; 6:26553. [PMID: 27211898 PMCID: PMC4876392 DOI: 10.1038/srep26553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
Apical-basal polarity plays critical roles in the functions of epithelial tissues. However, the mechanisms of epithelial polarity establishment and maintenance remain to be fully elucidated. Here we show that the membrane-associated guanylate kinase (MAGUK) family protein Dlg5 is required for the maintenance of apical polarity of follicle epithelium during Drosophila oogenesis. Dlg5 localizes at the apical membrane and adherens junction (AJ) of follicle epithelium in early stage egg chambers. Specifically, we demonstrate that the major function of Dlg5 is to promote apical membrane localization of Crumbs, since overexpression of Crumbs but not other major apical or AJ components could rescue epithelial polarity defects resulted from loss of Dlg5. Furthermore, we performed a structure-function analysis of Dlg5 and found that the C-terminal PDZ3 and PDZ4 domains are required for all Dlg5’s functions as well as its ability to localize to apical membrane. The N-terminal coiled-coil motif could be individually targeted to the apical membrane, while the central linker region could be targeted to AJ. Lastly, the MAGUK core domains of PDZ4-SH3-GUK could be individually targeted to apical, AJ and basolateral membranes.
Collapse
|
10
|
Ragni E, Lommel M, Moro M, Crosti M, Lavazza C, Parazzi V, Saredi S, Strahl S, Lazzari L. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cell Mol Life Sci 2016; 73:445-58. [PMID: 26245304 PMCID: PMC11108538 DOI: 10.1007/s00018-015-2007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.
Collapse
Affiliation(s)
- E Ragni
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M Lommel
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - M Moro
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - M Crosti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - C Lavazza
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Parazzi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Saredi
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S Strahl
- Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - L Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
11
|
Von Stetina SE, Mango SE. PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Dev Biol 2015; 403:5-14. [PMID: 25773364 DOI: 10.1016/j.ydbio.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single β-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with β-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner β-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, β-integrin and β-laminin.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| |
Collapse
|
12
|
Baumgartner W. Possible roles of LI-Cadherin in the formation and maintenance of the intestinal epithelial barrier. Tissue Barriers 2014; 1:e23815. [PMID: 24665380 PMCID: PMC3879124 DOI: 10.4161/tisb.23815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 02/07/2023] Open
Abstract
LI-cadherin belongs to the so called 7D-cadherins, exceptional members of the cadherin superfamily which are characterized by seven extracellular cadherin repeats and a small cytosolic domain. Under physiological conditions LI-cadherin is expressed in the intestine and colon in human and mouse and in the rat also in hepatocytes. LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells and a lot of biophysical and biochemical parameters were determined in the last time. It is also known that dysregulated LI-cadherin expression can be found in a variety of diseases. Although there are several hypothesis and theoretical models concerning the function of LI-cadherin, the physiological role of LI-cadherin is still enigmatic.
Collapse
Affiliation(s)
- Werner Baumgartner
- Department of Cellular Neurobionics; RWTH-Aachen University; Aachen; Germany
| |
Collapse
|
13
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
14
|
Mu L, Jing C, Guo Z. Expression of N-cadherin proteins in myocardial hypertrophy in rats. Exp Ther Med 2014; 7:355-359. [PMID: 24396404 PMCID: PMC3881044 DOI: 10.3892/etm.2013.1431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine the expression of N-cadherin in the myocardial tissues of isoproterenol-induced myocardial hypertrophy in rats. In addition, the present study provided morphological data to investigate the signal transduction mechanisms of myocardial hypertrophy and reverse myocardial hypertrophy. A myocardial hypertrophy model was established by subcutaneously injecting isoprenaline into healthy adult Sprague-Dawley rats. The myocardial tissue was collected, embedded in conventional paraffin, sectioned and stained with hematoxylin and the pathological changes were observed. The expression and distribution of N-cadherin were detected by immunohistochemistry (IHC) and the changes in mRNA expression of N-cadherin in the myocardial tissues of rats were detected by reverse transcription polymerase chain reaction. Image analysis software was used to quantitatively analyze the expression of N-cadherin. The IHC and immunofluorescence results showed that there was no statistically significant difference between the experimental and control groups in the positive expression of N-cadherin. Furthermore, mRNA expression of N-cadherin, in the myocardial tissues of rats, was consistent with the IHC and immunofluorescence results. Thus, N-cadherin may have a significant function in the occurrence and development of myocardial hypertrophy.
Collapse
Affiliation(s)
- Lingmin Mu
- Morphological Laboratory, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Changqin Jing
- Life Science and Technology Department, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhikun Guo
- Key Open Laboratory for Tissue Regeneration in Henan Province, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
15
|
Panda D, Rose PP, Hanna SL, Gold B, Hopkins KC, Lyde RB, Marks MS, Cherry S. Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus entry. Cell Rep 2013; 5:1737-48. [PMID: 24332855 DOI: 10.1016/j.celrep.2013.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
Alphaviruses are a large class of insect-borne human pathogens and little is known about the host-factor requirements for infection. To identify such factors, we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV), the prototypical alphavirus. We identified a conserved role for SEC61A and valosin-containing protein (VCP) in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss or pharmacological inhibition of these proteins leads to altered NRAMP2 trafficking to lysosomal compartments and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron-imbalance disorders.
Collapse
Affiliation(s)
- Debasis Panda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick P Rose
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheri L Hanna
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randolph B Lyde
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Fagotto F, Rohani N, Touret AS, Li R. A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Dev Cell 2013; 27:72-87. [PMID: 24094740 DOI: 10.1016/j.devcel.2013.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022]
Abstract
The mechanism responsible for subdividing the embryo into individual tissues is a fundamental, yet still poorly understood, question in developmental biology. Various general hypotheses have been proposed, involving differences in cell adhesion, contractility, or contact-mediated repulsion. However, the key parameter in tissue separation, i.e., the regulation of cadherin-based adhesion at the boundary, has not yet been investigated. We show that cadherin clustering is specifically inhibited at the vertebrate notochord-presomitic mesoderm boundary, preventing formation of adhesive bonds between cells of the two different types. This local regulation depends on differentially expressed ephrins and Eph receptors, which increase cell contractility and generate a membrane blebbing-like behavior along the boundary. Inhibiting myosin activity is sufficient to induce cadherin clustering and formation of stable contacts across the boundary, causing notochord and presomitic tissues to fuse. Local inhibition of cadherin adhesion explains how sharp separation can be achieved in response to cell-cell contact signals.
Collapse
Affiliation(s)
- François Fagotto
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | | | | | | |
Collapse
|
17
|
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 2012; 24:702-12. [PMID: 22938782 DOI: 10.1016/j.ceb.2012.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Collapse
|
18
|
Lee AR, Park JW, Nam M, Bang HJ, Yang JW, Choi KS, Kim SK, Chung JH, Kwack KB. Polymorphisms of CDH9 and CDH10 in Chromosome 5p14 Associated with Autism in the Korean Population. Soa Chongsonyon Chongsin Uihak 2011. [DOI: 10.5765/jkacap.2011.22.4.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DCH, Zheng G. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 2011:567305. [PMID: 22007144 PMCID: PMC3191826 DOI: 10.1155/2011/567305] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
E-Cadherin/β-catenin complex plays an important role in maintaining epithelial integrity and disrupting this complex affect not only the adhesive repertoire of a cell, but also the Wnt-signaling pathway. Aberrant expression of the complex is associated with a wide variety of human malignancies and disorders of fibrosis resulting from epithelial-mesenchymal transition. These associations provide insights into the complexity that is likely responsible for the fibrosis/tumor suppressive action of E-cadherin/β-catenin.
Collapse
Affiliation(s)
- Xinrui Tian
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
- Department of Respiratory, Second Hospital of Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Zhuola Liu
- Department of Respiratory, Second Hospital of Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Bo Niu
- Biotechnology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianlin Zhang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Thian Kui Tan
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - So Ra Lee
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - Ye Zhao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - David C. H. Harris
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
20
|
Gandille P, Narbonne-Reveau K, Boissonneau E, Randsholt N, Busson D, Pret AM. Mutations in the polycomb group gene polyhomeotic lead to epithelial instability in both the ovary and wing imaginal disc in Drosophila. PLoS One 2010; 5:e13946. [PMID: 21085656 PMCID: PMC2978711 DOI: 10.1371/journal.pone.0013946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most human cancers originate from epithelial tissues and cell polarity and adhesion defects can lead to metastasis. The Polycomb-Group of chromatin factors were first characterized in Drosophila as repressors of homeotic genes during development, while studies in mammals indicate a conserved role in body plan organization, as well as an implication in other processes such as stem cell maintenance, cell proliferation, and tumorigenesis. We have analyzed the function of the Drosophila Polycomb-Group gene polyhomeotic in epithelial cells of two different organs, the ovary and the wing imaginal disc. RESULTS Clonal analysis of loss and gain of function of polyhomeotic resulted in segregation between mutant and wild-type cells in both the follicular and wing imaginal disc epithelia, without excessive cell proliferation. Both basal and apical expulsion of mutant cells was observed, the former characterized by specific reorganization of cell adhesion and polarity proteins, the latter by complete cytoplasmic diffusion of these proteins. Among several candidate target genes tested, only the homeotic gene Abdominal-B was a target of PH in both ovarian and wing disc cells. Although overexpression of Abdominal-B was sufficient to cause cell segregation in the wing disc, epistatic analysis indicated that the presence of Abdominal-B is not necessary for expulsion of polyhomeotic mutant epithelial cells suggesting that additional polyhomeotic targets are implicated in this phenomenon. CONCLUSION Our results indicate that polyhomeotic mutations have a direct effect on epithelial integrity that can be uncoupled from overproliferation. We show that cells in an epithelium expressing different levels of polyhomeotic sort out indicating differential adhesive properties between the cell populations. Interestingly, we found distinct modalities between apical and basal expulsion of ph mutant cells and further studies of this phenomenon should allow parallels to be made with the modified adhesive and polarity properties of different types of epithelial tumors.
Collapse
Affiliation(s)
- Pierre Gandille
- Centre de Génétique Moléculaire (FRE 3144), Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Karine Narbonne-Reveau
- Institut de Biologie du Développement de Marseille-Luminy (UMR 6216), Centre National de la Recherche Scientifique/Université de la Méditérannée Aix-Marseille II, Marseille, France
- Institut Jacques Monod (UMR7592), Centre National de la Recherche Scientifique/Université Pierre et Marie Curie-Paris VI, Université Denis Diderot-Paris VII, Paris, France
| | - Elisabeth Boissonneau
- Centre de Génétique Moléculaire (FRE 3144), Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Neel Randsholt
- Centre de Génétique Moléculaire (FRE 3144), Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- Laboratoire de Biologie du Développement (UMR7622), Centre National de la Recherche Scientifique/Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Denise Busson
- Institut Jacques Monod (UMR7592), Centre National de la Recherche Scientifique/Université Pierre et Marie Curie-Paris VI, Université Denis Diderot-Paris VII, Paris, France
- Systematique Adaptation Evolution (UMR7138), Université Pierre et Marie Curie Paris VI, Paris, France
| | - Anne-Marie Pret
- Centre de Génétique Moléculaire (FRE 3144), Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- Institut Jacques Monod (UMR7592), Centre National de la Recherche Scientifique/Université Pierre et Marie Curie-Paris VI, Université Denis Diderot-Paris VII, Paris, France
- Université de Versailles-St Quentin, Versailles, France
| |
Collapse
|
21
|
Abstract
Classical cadherins mediate specific adhesion at intercellular adherens junctions. Interactions between cadherin ectodomains from apposed cells mediate cell-cell contact, whereas the intracellular region functionally links cadherins to the underlying cytoskeleton. Structural, biophysical, and biochemical studies have provided important insights into the mechanism and specificity of cell-cell adhesion by classical cadherins and their interplay with the cytoskeleton. Adhesive binding arises through exchange of beta strands between the first extracellular cadherin domains (EC1) of partner cadherins from adjacent cells. This "strand-swap" binding mode is common to classical and desmosomal cadherins, but sequence alignments suggest that other cadherins will bind differently. The intracellular region of classical cadherins binds to p120 and beta-catenin, and beta-catenin binds to the F-actin binding protein alpha-catenin. Rather than stably bridging beta-catenin to actin, it appears that alpha-catenin actively regulates the actin cytoskeleton at cadherin-based cell-cell contacts.
Collapse
|
22
|
Bauer R, Weimbs A, Lechner H, Hoch M. DE-Cadherin, a Core Component of the Adherens Junction Complex Modifies Subcellular Localization of theDrosophilaGap Junction Protein Innexin2. ACTA ACUST UNITED AC 2009; 13:103-14. [PMID: 16613784 DOI: 10.1080/15419060600631839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Drosophila innexin multigene family of gap junction encoding proteins consists of eight family members whose function in epithelial morphogenesis is mostly unknown. We have recently shown that innexin2 plays a crucial role in the organization of embryonic epithelia. Innexin2 protein accumulates in the epidermis in the apico-lateral membrane domain and colocalizes with core proteins of adherens junctions, such as DE-cadherin and Armadillo, the ss -catenin homolog. Innexin2 localization is altered in both armadillo and DE-cadherin mutants Biochemical interaction studies point to a direct interaction of DE-cadherin and Armadillo with innexin2 suggesting a close link between gap junction and adherens junction biogenesis. We have used the Drosophila Schneider cell tissue culture system to further study the interaction of innexin2 with DE-cadherin. Our results provide evidence that DE-cadherin may be a key component to control trafficking, and localization of Innexin2 to the plasma membrane.
Collapse
Affiliation(s)
- R Bauer
- Institute of Molecular Physiology and Developmental Biology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
23
|
Berndt-Weis ML, Kauri LM, Williams A, White P, Douglas G, Yauk C. Global transcriptional characterization of a mouse pulmonary epithelial cell line for use in genetic toxicology. Toxicol In Vitro 2009; 23:816-33. [PMID: 19406224 DOI: 10.1016/j.tiv.2009.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 02/02/2023]
Abstract
Prior to its application for in vitro toxicological assays, thorough characterization of a cell line is essential. The present study uses global transcriptional profiling to characterize a lung epithelial cell line (FE1) derived from MutaMouse [White, P.A., Douglas, G.R., Gingerich, J., Parfett, C., Shwed, P., Seligy, V., Soper, L., Berndt, L., Bayley, J., Wagner, S., Pound, K., Blakey, D., 2003. Development and characterization of a stable epithelial cell line from Muta Mouse lung. Environmental and Molecular Mutagenesis 42, 166-184]. Results presented here demonstrate the origin of the FE1 lung cell line as epithelial, presenting both type I and type II alveolar phenotype. An assessment of toxicologically-relevant genes, including those involved in the response to stress and stimuli, DNA repair, cellular metabolism, and programmed cell death, revealed changes in expression of 22-27% of genes in one or more culture type (proliferating and static FE1 cultures, primary epithelial cultures) compared with whole lung isolates. Gene expression analysis at 4 and 24h following benzo(a)pyrene exposure revealed the induction of cyp1a1, cyp1a2, and cyp1b1 in FE1 cells and lung isolates. The use of DNA microarrays for gene expression profiling allows an improved understanding of global, coordinated cellular events arising in cells under different physiological conditions. Taken together, these data indicate that the FE1 cell line is derived from a cell type relevant to toxic responses in vivo, and shows some similarity in response to chemical insult as the original tissue.
Collapse
Affiliation(s)
- M Lynn Berndt-Weis
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Zartman JJ, Yakoby N, Bristow CA, Zhou X, Schlichting K, Dahmann C, Shvartsman SY. Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis. Dev Biol 2008; 322:289-301. [PMID: 18708045 PMCID: PMC2808026 DOI: 10.1016/j.ydbio.2008.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 11/27/2022]
Abstract
Drosophila egg development is an established model for studying epithelial patterning and morphogenesis, but the connection between signaling pathways and egg morphology is still incompletely understood. We have identified a non-classical cadherin, Cad74A, as a putative adhesion gene that bridges epithelial patterning and morphogenesis in the follicle cells. Starting in mid-oogenesis, Cad74A is expressed in the follicle cells that contact the oocyte, including the border cells and most of the columnar follicle cells. However, Cad74A is repressed in two dorsolateral patches of follicle cells, which participate in the formation of tubular respiratory appendages. We show genetically that Cad74A is downstream of the EGFR and BMP signaling pathways and is repressed by the Zn-finger transcription factor Broad. The correlation of Cad74A repression in the cells that bend out of the plane of the follicular epithelium is preserved across Drosophila species and mutant backgrounds exhibiting a range of eggshell phenotypes. Complete removal of Cad74A from the follicle cells causes defects in dorsal appendage formation. Ectopic expression of Cad74A in the roof cells results in shortened, flattened appendages due to the hindered migration of the roof cells. Based on these results, we propose that Cad74A is part of the adhesive machinery that enables robust dorsal appendage formation, and as such provides a link between the patterning of the follicle cells and eggshell morphogenesis.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute and Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zartman JJ, Kanodia JS, Yakoby N, Schafer X, Watson C, Schlichting K, Dahmann C, Shvartsman SY. Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expr Patterns 2008; 9:31-6. [PMID: 18817893 DOI: 10.1016/j.gep.2008.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/28/2008] [Accepted: 09/03/2008] [Indexed: 01/31/2023]
Abstract
In Drosophila oogenesis, the follicular epithelium that envelops the oocyte is patterned by a small set of inductive signals and gives rise to an elaborate three-dimensional eggshell. Several eggshell structures provide sensitive readouts of the patterning signals, but the formation of these structures is still poorly understood. In other systems, epithelial morphogenesis is guided by the spatial patterning of cell adhesion and cytoskeleton genes. As a step towards developing a comprehensive description of patterning events leading to eggshell morphogenesis, we report the expression of Drosophila cadherins, calcium-dependent adhesion molecules that are repeatedly used throughout development. We found that 9/17 of Drosophila cadherins are expressed in the follicular epithelium in dynamic patterns during oogenesis. In late oogenesis, the expression patterns of cadherin genes in the main body follicle cells is summarized using a compact set of simple geometric shapes, reflecting the integration of the EGFR and DPP inductive signals. The multi-layered composite patterning of the cadherins is hypothesized to play a key role in the formation of the eggshell. Of particular note is the complex patterning of the region of the follicular epithelium that gives rise to the dorsal appendages, which are tubular structures that serve as respiratory organs for the developing embryo.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cadherins are Ca(2+)-dependent cell adhesion molecules found in several kinds of cell-cell contact, including adherens junctions and desmosomes. In the presence of Ca(2+), cells expressing the same type of cadherin form stable contacts with one another, a phenomenon designated homophilic, or homotypic, adhesion. Most cadherins are single-pass transmembrane proteins whose extracellular regions mediate specific cell-cell interactions. The intracellular faces of these contacts are associated with the actin cytoskeleton in adherens junctions or the intermediate-filament system in desmosomes. The close coordination of the transmembrane adhesion molecules with the cytoskeleton is believed to be essential in coordinating morphogenetic movements of tissues during development and in conferring the appropriate mechanical properties to cell-cell contacts. Structural, biochemical, and biophysical analysis of the molecules that comprise these contacts has provided unique mechanistic insights into the specificity of homophilic adhesion, the functional connection to the underlying cytoskeleton, and the dynamics of junction formation.
Collapse
Affiliation(s)
- Sabine Pokutta
- Department of Structural Biology and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
27
|
Kashyap L, Tabish M. Alternatively spliced isoforms encoded by cadherin genes from C. elegansgenome. Bioinformation 2007; 2:50-6. [PMID: 18188420 PMCID: PMC2174417 DOI: 10.6026/97320630002050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/05/2007] [Accepted: 09/11/2007] [Indexed: 11/30/2022] Open
Abstract
Cadherins are calcium-dependent, homophilic, cell-cell adhesion receptors that regulate morphogenesis, pattern formation and cell migration. The C. elegans Genome Sequencing Consortium has reported 12 genes from C. elegansgenome encoding members of the cadherin superfamily. Alternative splicing of eukaryotic pre-mRNAs is a mechanism for generating potentially many transcript isoforms from a single gene. Here, using a combination of various gene or exon finding programmes and several other bioinformatics tools followed by experimental validation using RT-PCR, we have studied alternative splicing pattern in the cadherin encoding genes from C. elegansgenome. We have predicted that 7 of the 12 genes encoding the cadherin superfamily undergo extensive alternative splicing and encode for 12 new unreported alternatively spliced transcripts. Most of the alternatively spliced exons were found to be present at the 5' end of genes. These new previously un-detected spliced variants in C. eleganscadherin superfamily of genes could play vital roles in explaining the way cadherins act to control the processes like cell adhesion and morphogenesis.
Collapse
Affiliation(s)
- Luv Kashyap
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Ezaki T, Guo RJ, Li H, Reynolds AB, Lynch JP. The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing beta- and p120-catenin tyrosine phosphorylation. Am J Physiol Gastrointest Liver Physiol 2007; 293:G54-65. [PMID: 17463179 DOI: 10.1152/ajpgi.00533.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, alpha-, beta-, or gamma-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of beta-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of beta- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated beta- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored beta- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing beta- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.
Collapse
Affiliation(s)
- Toshihiko Ezaki
- Division of Gastroenterology/650 CRB, Department of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Bécam I, Huynh JR. [Genetic control of intercellular adhesion or how cadherins shape the fruitfly Drosophila melanogaster]. Med Sci (Paris) 2007; 23:285-90. [PMID: 17349290 DOI: 10.1051/medsci/2007233285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The beauty and diversity of cell shapes have always fascinated both biologists and physicists. In the early 1950, J. Holtfreter coined the term "tissue affinities" to describe the forces behind the spontaneous shaping of groups of cells. These tissue affinites were later on related to adhesive properties of cell membranes. In the 1960, Malcom Steinberg proposed the differential adhesion hypothesis (DAH) as a physical explanation of the liquid-like behaviour of tissues and cells during morphogenesis. However, the link between the cellular properties of adhesion molecules, such as the cadherins, and the physical rules that shape the body, has remained unclear. Recent in vitro studies have now shown that surface tensions, which drive the spontaneous liquid-like behaviour of cell rearrangements, are a direct and linear function of cadherin expression levels. Tissue surface tensions thus arise from differences in intercellular adhesiveness, which validates the DAH in vitro. The DAH was also vindicated in vivo by stunning experiments in Drosophila. The powerful genetic tools available in Drosophila allow to manipulate the levels and patterns of expression of several cadherins and to create artificially differences in intercellular adhesiveness. The results showed that simple laws of thermodynamics, as well as quantitative and qualitative differences in cadherins expression were sufficient to explain processes as complex as the establishment of the anterior-posterior axis and the formation of the compound eye in Drosophila.
Collapse
Affiliation(s)
- Isabelle Bécam
- Institut Jacques-Monod, CNRS, Universités Paris 6 et 7, 2, place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
30
|
Seifert JRK, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8:126-38. [PMID: 17230199 DOI: 10.1038/nrg2042] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.
Collapse
Affiliation(s)
- Jessica R K Seifert
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
31
|
Abstract
Neural development and the organization of complex neuronal circuits involve a number of processes that require cell-cell interaction. During these processes, axons choose specific partners for synapse formation and dendrites elaborate arborizations by interacting with other dendrites. The cadherin superfamily is a group of cell surface receptors that is comprised of more than 100 members. The molecular structures and diversity within this family suggest that these molecules regulate the contacts or signalling between neurons in a variety of ways. In this review I discuss the roles of three subfamilies - classic cadherins, Flamingo/CELSRs and protocadherins - in the regulation of neuronal recognition and connectivity.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
32
|
Matakatsu H, Blair SS. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development 2006; 133:2315-24. [PMID: 16687445 DOI: 10.1242/dev.02401] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protocadherins Fat (Ft) and Dachsous (Ds) are required for several processes in the development of Drosophila, including controlling growth of imaginal discs, planar cell polarity (PCP) and the proximodistal patterning of appendages. Ft and Ds bind in a preferentially heterophilic fashion, and Ds is expressed in distinct patterns along the axes of polarity. It has thus been suggested that Ft and Ds serve not as adhesion molecules, but as receptor and ligand in a poorly understood signaling pathway. To test this hypothesis, we performed a structure-function analysis of Ft and Ds, separating their adhesive and signaling functions. We found that the extracellular domain of Ft is not required for its activity in growth, PCP and proximodistal patterning. Thus, ligand binding is not necessary for Ft activity. By contrast, the extracellular domain of Ds is necessary and sufficient to mediate its effects on PCP, consistent with the model that Ds acts as a ligand during PCP. However, we also provide evidence that Ds can regulate growth independently of Ft, and that the intracellular domain of Ds can affect proximodistal patterning, both suggestive of functions independent of binding Ft. Finally, we show that ft mutants or a dominant-negative Ft construct can affect disc growth without changes in the expression of wingless and Wingless target genes.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Rashid D, Newell K, Shama L, Bradley R. A requirement for NF-protocadherin and TAF1/Set in cell adhesion and neural tube formation. Dev Biol 2006; 291:170-81. [PMID: 16426602 DOI: 10.1016/j.ydbio.2005.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 12/01/2005] [Accepted: 12/12/2005] [Indexed: 01/22/2023]
Abstract
Neurulation in vertebrates is an intricate process requiring extensive alterations in cell contacts and cellular morphologies as the cells in the neural ectoderm shape and form the neural folds and neural tube. Despite these complex interactions, little is known concerning the molecules that mediate cell adhesion within the embryonic neural plate and neural folds. Here, we demonstrate the requirement for NF-protocadherin (NFPC) and its cytosolic partner TAF1/Set for proper neurulation in Xenopus. Both NFPC and TAF1 function in cell-cell adhesion in the neural ectoderm, and disruptions in either NFPC or TAF1 result in a failure of the neural tube to close. This neural tube defect can be attributed to a lack of proper organization of the cells in the dorsal neural folds, manifested by a loss in the columnar epithelial morphology and apical localization of F-actin. However, the epidermal ectoderm is still able to migrate and cover the open neural tube, indicating that the fusions of the neural tube and epidermis are separate events. These studies demonstrate that NFPC and TAF1 function to maintain proper cell-cell interactions within the neural folds and suggest that NFPC and TAF1 participate in novel adhesive mechanisms that contribute to the final events of vertebrate neurulation.
Collapse
Affiliation(s)
- Dana Rashid
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
34
|
Chu YS, Eder O, Thomas WA, Simcha I, Pincet F, Ben-Ze'ev A, Perez E, Thiery JP, Dufour S. Prototypical Type I E-cadherin and Type II Cadherin-7 Mediate Very Distinct Adhesiveness through Their Extracellular Domains. J Biol Chem 2006; 281:2901-10. [PMID: 16253998 DOI: 10.1074/jbc.m506185200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Using a dual pipette assay that measures the force required to separate adherent cell doublets, we have quantitatively compared intercellular adhesiveness mediated by Type I (E- or N-cadherin) or Type II (cadherin-7 or -11) cadherins. At similar cadherin expression levels, cells expressing Type I cadherins adhered much more rapidly and strongly than cells expressing Type II cadherins. Using chimeric cadherins, we found that the extracellular domain exerts by far the dominant effect on cell adhesivity, that of E-cadherin conferring high adhesivity, and that of cadherin-7 conferring low adhesivity. Type I cadherins were incorporated to a greater extent into detergent-insoluble cytoskeletal complexes, and their cytoplasmic tails were much more effective in disrupting strong adherent junctions, suggesting that Type II cadherins form less stable complexes with beta-catenin. The present study demonstrates compellingly, for the first time, that cadherins are dramatically different in their ability to promote intercellular adhesiveness, a finding that has profound implications for the regulation of tissue morphogenesis.
Collapse
Affiliation(s)
- Yeh-Shiu Chu
- UMR 144 CNRS-Institut Curie, 75248 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, Raz E. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 2005; 118:4027-38. [PMID: 16129886 DOI: 10.1242/jcs.02522] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The migration of zebrafish primordial germ cells (PGCs) is directed by SDF-1a and serves as a model for long-range chemokine-guided cell migration. Whereas the development and migration of zebrafish PGCs have been studied in great detail starting at mid-gastrulation stages when the cells exhibit guided active migration [7-8 hours post fertilization (hpf)], earlier stages have not yet been examined. Here we show that the PGCs acquire competence to respond to the chemokine following discrete maturation steps. Using the promoter of the novel gene askopos and RNA elements of nanos1 to drive GFP expression in PGCs, we found that immediately after their specification (about 3 hpf) PGCs exhibit simple cell shape. This stage is followed by a phase at which the cells assume complex morphology yet they neither change their position nor do they respond to SDF-1a. During the third phase, a transition into a ;migratory stage' occurs as PGCs become responsive to directional cues provided by somatic cells secreting the chemokine SDF-1a. This transition depends on zygotic transcription and on the function of the RNA-binding protein Dead end and is correlated with down regulation of the cell adhesion molecule E-cadherin. These distinctive morphological and molecular alterations could represent a general occurrence in similar processes critical for development and disease.
Collapse
Affiliation(s)
- Heiko Blaser
- Germ Cell Development, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Dasgupta A, Hughey R, Lancin P, Larue L, Moghe PV. E-cadherin synergistically induces hepatospecific phenotype and maturation of embryonic stem cells in conjunction with hepatotrophic factors. Biotechnol Bioeng 2005; 92:257-66. [PMID: 16167333 DOI: 10.1002/bit.20676] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since effective cell sourcing is a major challenge for the therapeutic management of liver disease and liver failure, embryonic stem (ES) cells are being widely investigated as a promising source of hepatic-like cells with their proliferative and pluripotent capacities. Cell-cell interactions are crucial in embryonic development modulating adhesive and signaling functions; specifically, the cell-cell adhesion ligand, cadherin is instrumental in gastrulation and hepatic morphogenesis. Inspired by the role of cadherins in development, we investigated the role of expression of E-cadherin in cultured murine ES cells on the induction of hepatospecific phenotype and maturation. The cadherin-expressing embryonic stem (CE-ES) cells intrinsically formed pronounced cell aggregates and cuboidal morphology whereas cadherin-deficient cadherin-expressing embryonic stem (CD-ES) cells remained more spread out and corded in morphology. Through controlled stimulation with single or combined forms of hepatotrophic growth factors; hepatocyte growth factor (HGF), dexamethasone (DEX) and oncostatin M (OSM), we investigated the progressive maturation of CE-ES cells, in relation to the control, CD-ES cells. Upon growth factor treatment, the CE-ES cells adopted a more compacted morphology, which exhibited a significant hepatocyte-like cuboidal appearance in the presence of DEX-OSM-HGF. In contrast, the CD-ES cells exhibited a mixed morphology and appeared to be more elongated in the presence of DEX-OSM-HGF. Reverse-transcriptase polymerase chain reaction was used to delineate the most differentiating condition in terms of early (alpha-fetoprotein (AFP)), mid (albumin), and late-hepatic (glucose-6-phosphatase) markers in relation to growth factor presentation for both CE-ES and CD-ES cells. We report that following the most differentiating condition of DEX-OSM-HGF stimulation, CE-ES cells expressed increased levels of albumin and glucose-6-phosphatase, whereas the CD-ES cells showed low levels of AFP and marginal levels of albumin and glucose-6-phosphatase. These trends suggest that the membrane expression of E-cadherin in ES cells can elicit a marked response to growth factor stimulation and lead to the induction of later stages of hepatocytic maturation. Thus, cadherin-engineered ES cells could be used to harness the cross-talk between the hepatotrophic and cadherin-based signaling pathways for controlled acceleration of ES hepatodifferentiation.
Collapse
Affiliation(s)
- Anouska Dasgupta
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08873, USA
| | | | | | | | | |
Collapse
|
37
|
Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW. Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns 2005; 5:483-90. [PMID: 15749076 DOI: 10.1016/j.modgep.2004.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 12/14/2004] [Accepted: 12/14/2004] [Indexed: 11/16/2022]
Abstract
The cadherin superfamily members play an important role in mediating cell-cell contact and adhesion (Takeichi, M., 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455). A distinct subfamily, neither belonging to the classical or protocadherins includes Fat, the largest member of the cadherin super-family. Fat was originally identified in Drosophila. Subsequently, orthologues of Fat have been described in man (Dunne, J., Hanby, A. M., Poulsom, R., Jones, T. A., Sheer, D., Chin, W. G., Da, S. M., Zhao, Q., Beverley, P. C., Owen, M. J., 1995. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207-223), rat (Ponassi, M., Jacques, T. S., Ciani, L., ffrench, C. C., 1999. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech. Dev. 80, 207-212) and mouse (Cox, B., Hadjantonakis, A. K., Collins, J. E., Magee, A. I., 2000. Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat [In Process Citation]. Dev. Dyn. 217, 233-240). In Drosophila, Fat has been shown to play an important role in both planar cell polarity and cell boundary formation during development. In this study we describe the characterization of zebrafish Fat, the first non-mammalian, vertebrate Fat homologue to be identified. The Fat protein has 64% amino acid identity and 80% similarity to human FAT and an identical domain structure to other vertebrate Fat proteins. During embryogenesis fat mRNA is expressed in the developing brain, specialised epithelial surfaces the notochord, ears, eyes and digestive tract, a pattern similar but distinct to that found in mammals.
Collapse
Affiliation(s)
- Michelle Down
- Leukaemia Foundation Laboratory, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Qld 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Epithelial cells regulate their contacts with neighboring cells during embryonic development and in disease states such as tumor metastasis. The intercellular adherens junctions (AJs) are specialized subapical structures that function as principle mediators of cell-cell adhesion. Their disassembly correlates with a loss of cell-cell contact and an acquisition of migratory potential. Regulation of the expression of AJ components by gene transcription can dictate the stability of intercellular adhesive contacts, and accruing evidence indicates that the coordinated regulation of cellular processes such as membrane trafficking and cytoskeletal remodeling can also result in the effective dissolution of AJs. Studies of the posttranscriptional mechanisms by which adhesive interactions are regulated in response to growth factors and/or developmental cues have opened new avenues for investigating cell-cell adhesion during development and in disease.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, IN 46556-0369, USA. D'
| |
Collapse
|
39
|
Tucker M, Sieber M, Morphew M, Han M. The Caenorhabditis elegans aristaless orthologue, alr-1, is required for maintaining the functional and structural integrity of the amphid sensory organs. Mol Biol Cell 2005; 16:4695-704. [PMID: 16055504 PMCID: PMC1237075 DOI: 10.1091/mbc.e05-03-0205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The homeobox-containing aristaless-related protein ARX has been directly linked to the development of a number of human disorders involving mental retardation and epilepsy and clearly plays a critical role in development of the vertebrate central nervous system. In this work, we investigate the role of ALR-1, the Caenorhabditis elegans aristaless orthologue, in amphid sensory function. Our studies indicate that ALR-1 is required for maintenance of the amphid organ structure throughout larval development. Mutant analysis indicates a progressive loss in the amphid neurons' ability to fill with lipophilic dyes as well as a declining chemotactic response. The degeneration in amphid function corresponds with a failure of the glial-like amphid socket cell to maintain its specific cell shape and cell-cell contacts. Consistent with ALR-1 expression within the amphid socket cell, our results indicate a cell autonomous role for ALR-1 in maintaining cell shape. Furthermore, we demonstrate a role for ALR-1 in the proper morphogenesis of the anterior hypodermis. Genetic interaction tests also suggest that ALR-1 may function cooperatively with the cell adhesion processes in maintaining the amphid sensory organs.
Collapse
Affiliation(s)
- Morgan Tucker
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, Boulder, CO 80303, USA
| | | | | | | |
Collapse
|
40
|
Fan X, She YM, Bagshaw RD, Callahan JW, Schachter H, Mahuran DJ. Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology 2005; 15:952-64. [PMID: 15888633 DOI: 10.1093/glycob/cwi075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hydrophobic proteins such as integral membrane proteins are difficult to separate, and therefore to study, at a proteomics level. However, the Asn-linked (N-linked) carbohydrates (N-glycans) contained in membrane glycoproteins are important in differentiation, embryogenesis, inflammation, cancer and metastasis, and other vital cellular processes. Thus, the identification of these proteins and their sites of glycosylation in a well-characterized model organism is the first step toward understanding the mechanisms by which N-glycans and their associated proteins function in vivo. In this report, a proteomics method recently developed by our group was applied to identify 117 hydrophobic N-glycosylated proteins of Caenorhabditis elegans extracts by analysis of 195 glycopeptides containing 199 Asn-linked oligosaccharides. Most of the proteins identified are involved in cell adhesion, metabolism, or the transport of small molecules. In addition, there are 18 proteins for which no function is known or predictable by sequence homologies and two proteins which were previously predicted to exist only on the basis of genomic sequences in the C. elegans database. Because N-glycosylation is initiated in the lumen of the endoplasmic reticulum (ER), our data can be used to reassess the previously predicted subcellular localizations of these proteins. As well, the identification of N-glycosylation sites helps establish the membrane topology of the associated glycoproteins. Caenorhabditis elegans strains are presently available with mutations in 17 of the genes we have identified. The powerful genetic tools available for C. elegans can be used to make other strains with mutations in genes encoding N-glycosylated proteins and thereby determine N-glycan function.
Collapse
Affiliation(s)
- Xiaolian Fan
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
41
|
Higginson DM, Morin S, Nyboer ME, Biggs RW, Tabashnik BE, Carrière Y. EVOLUTIONARY TRADE-OFFS OF INSECT RESISTANCE TO BACILLUS THURINGIENSIS CROPS: FITNESS COST AFFECTING PATERNITY. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01765.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Higginson DM, Morin S, Nyboer ME, Biggs RW, Tabashnik BE, Carrière Y. EVOLUTIONARY TRADE-OFFS OF INSECT RESISTANCE TO BACILLUS THURINGIENSIS CROPS: FITNESS COST AFFECTING PATERNITY. Evolution 2005. [DOI: 10.1554/04-737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Wang F, Dumstrei K, Haag T, Hartenstein V. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev Biol 2004; 270:350-63. [PMID: 15183719 DOI: 10.1016/j.ydbio.2004.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/04/2004] [Accepted: 03/05/2004] [Indexed: 11/21/2022]
Abstract
The Drosophila E-cadherin homolog, DE-cadherin, is expressed and required in all epithelial tissues throughout embryogenesis. Due to a strong maternal component of DE-cadherin, its early function during embryogenesis has remained elusive. The expression of a dominant negative DE-cadherin construct (UAS-DE-cad(ex)) using maternally active driver lines allowed us to analyze the requirements for DE-cadherin during this early phase of development. Maternally expressed DE-cad(ex) result in phenotype with variable expressivity. Most severely affected embryos have abnormalities in epithelialization of the blastoderm, resulting in loss of the blastodermal cells' apico-basal polarity and monolayered structure. Another phenotypic class forms a rather normal blastoderm, but shows abnormalities in proliferation and morphogenetic movements during gastrulation and neurulation. Mitosis of the mesoderm occurs prematurely before invagination, and proliferation in the ectoderm, normally a highly ordered process, occurs in a random pattern. Mitotic spindles of ectodermal cells, normally aligned horizontally, frequently occurred vertically or at an oblique angle. This finding further supports recent findings indicating that, in the wild-type ectoderm, the zonula adherens is required for the horizontal orientation of mitotic spindles. Proliferation defects in DE-cad(ex)-expressing embryos are accompanied by the loss of epithelial structure of ectoderm and neuroectoderm. These germ layers form irregular double or triple layers of rounded cells that lack zonula adherens. In the multilayered neuroectoderm, epidermal precursors, neuroblasts and ganglion mother cells occurred intermingled, attesting to the pivotal role of DE-cadherin in delamination and polarized division of neuroblasts. By contrast, the overall number and spacing of neuroblasts was grossly normal, indicating that DE-cadherin-mediated adhesion is less important for cell-cell interaction controlling the ratio of epidermal vs. neural progenitors.
Collapse
Affiliation(s)
- Fay Wang
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
44
|
Rodríguez I. The dachsous gene, a member of the cadherin family, is required for Wg-dependent pattern formation in the Drosophila wing disc. Development 2004; 131:3195-206. [PMID: 15175250 DOI: 10.1242/dev.01195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dachsous (ds) gene encodes a member of the cadherin family involved in the non-canonical Wnt signaling pathway that controls the establishment of planar cell polarity (PCP) in Drosophila. ds is the only known cadherin gene in Drosophila with a restricted spatial pattern of expression in imaginal discs from early stages of larval development. In the wing disc, ds is first expressed distally, and later is restricted to the hinge and lateral regions of the notum. Flies homozygous for strong ds hypomorphic alleles display previously uncharacterized phenotypes consisting of a reduction of the hinge territory and an ectopic notum. These phenotypes resemble those caused by reduction of the canonical Wnt signal Wingless (Wg) during early wing disc development. An increase in Wg activity can rescue these phenotypes,indicating that Ds is required for efficient Wg signaling. This is further supported by genetic interactions between ds and several components of the Wg pathway in another developmental context. Ds and Wg show a complementary pattern of expression in early wing discs, suggesting that Ds acts in Wg-receiving cells. These results thus provide the first evidence for a more general role of Ds in Wnt signaling during imaginal development, not only affecting cell polarization but also modulating the response to Wg during the subdivision of the wing disc along its proximodistal (PD) axis.
Collapse
Affiliation(s)
- Isabel Rodríguez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
45
|
Affiliation(s)
- Elisabeth A Cox
- Department of Zoology, University of Wisconsin, 1117 W. Johnson St, Madison, WI 53706, USA
| | | | | |
Collapse
|
46
|
Bauer R, Lehmann C, Martini J, Eckardt F, Hoch M. Gap junction channel protein innexin 2 is essential for epithelial morphogenesis in the Drosophila embryo. Mol Biol Cell 2004; 15:2992-3004. [PMID: 15047872 PMCID: PMC420120 DOI: 10.1091/mbc.e04-01-0056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Direct communication of neighboring cells by gap junction channels is essential for the development of tissues and organs in the body. Whereas vertebrate gap junctions are composed of members of the connexin family of transmembrane proteins, in invertebrates gap junctions consist of Innexin channel proteins. Innexins display very low sequence homology to connexins. In addition, very little is known about their cellular role during developmental processes. In this report, we examined the function and the distribution of Drosophila Innexin 2 protein in embryonic epithelia. Both loss-of-function and gain-of-function innexin 2 mutants display severe developmental defects due to cell death and a failure of proper epithelial morphogenesis. Furthermore, immunohistochemical analyses using antibodies against the Innexins 1 and 2 indicate that the distribution of Innexin gap junction proteins to specific membrane domains is regulated by tissue specific factors. Finally, biochemical interaction studies together with genetic loss- and gain-of-function experiments provide evidence that Innexin 2 interacts with core proteins of adherens and septate junctions. This is the first study, to our knowledge, of cellular distribution and protein-protein interactions of an Innexin gap junctional channel protein in the developing epithelia of Drosophila.
Collapse
Affiliation(s)
- Reinhard Bauer
- Institut für Molekulare Physiologie und Entwicklungsbiologie der Universität Bonn, Abt. für Molekulare Entwicklungsbiologie, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
47
|
Abstract
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.
Collapse
Affiliation(s)
- H-Arno J Müller
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.
| | | |
Collapse
|
48
|
Abstract
DE-cadherin and its novel regulator, the transmembrane protein Fear of Intimacy, have been found to control the adhesive interactions between germline and somatic cells that lead to gonad formation in Drosophila.
Collapse
Affiliation(s)
- Dorothea Godt
- Department of Zoology, University of Toronto, 25 Harbord Street, M5S 3G5, Toronto, Ontario, Canada.
| | | |
Collapse
|
49
|
Jenkins AB, McCaffery JM, Van Doren M. Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development 2003; 130:4417-26. [PMID: 12900457 DOI: 10.1242/dev.00639] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.
Collapse
Affiliation(s)
- Allison B Jenkins
- Department of Biology, Mudd Hall, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
50
|
Truong K, Ikura M. The cadherin superfamily database. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:135-43. [PMID: 12836704 DOI: 10.1023/a:1021352716284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cadherin superfamily is a large protein family with diverse structures and functions. Because of this diversity and the growing biological interest in cell adhesion and signaling processes, in which many members of the cadherin superfamily play a crucial role, it is becoming increasingly important to develop tools to manage, distribute and analyze sequences in this protein family. Current profile and motif databases classify protein sequences into a broad spectrum of protein superfamilies, however to provide a more specific functional annotation, the next step should include classification of subfamilies of these protein superfamilies. Here, we present a tool that classified greater than 90% of the proteins belonging to the cadherin superfamily found in the SWISS PROT database. Therefore, for most members of the cadherin superfamily, this tool can assist in adding more specific functional annotations than can be achieved with current profile and motif databases. Finally, the classification tool and the results of our analysis were integrated into a web-accessible database (http://calcium.uhnres. utoronto.ca/cadherin).
Collapse
Affiliation(s)
- Kevin Truong
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|