1
|
Arias Padilla LF, Munera Lopez J, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. J Cell Sci 2024; 137:jcs263436. [PMID: 39239869 PMCID: PMC11491809 DOI: 10.1242/jcs.263436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, which is a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end and is crucial for cytokinesis. How this apical-basal polarity is initiated is unknown. Here, we have examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivities to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Finally, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has a modest impact on the lytic cycle. However, the loss of both proteins results in abnormalities in the microtubule array and in highly reduced plaquing and invasion efficiency.
Collapse
Affiliation(s)
- Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aika Shibata
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Arias Padilla LF, Lopez JM, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603470. [PMID: 39071409 PMCID: PMC11275826 DOI: 10.1101/2024.07.14.603470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human parasite Toxoplasma gondii has a distinctive body plan with a well-defined polarity. In the apical complex, the minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity axis is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex in nascent daughters using expansion microscopy. We found that different substructures in the apical polar ring have different sensitivity to stress. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the construction of the daughter framework progresses towards the centrioles, the apical and the basal arcs co-develop in striking synchrony ahead of the microtubule array, and close into a ring-form before all the microtubules are nucleated. We also found that two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of each protein individually has modest to no impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.
Collapse
|
3
|
Gerien KS, Zhang S, Russell AC, Zhu YH, Purde V, Wu JQ. Roles of Mso1 and the SM protein Sec1 in efficient vesicle fusion during fission yeast cytokinesis. Mol Biol Cell 2020; 31:1570-1583. [PMID: 32432970 PMCID: PMC7521796 DOI: 10.1091/mbc.e20-01-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.
Collapse
Affiliation(s)
- Kenneth S Gerien
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Alexandra C Russell
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Vedud Purde
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Menon VV, Soumya SS, Agarwal A, Naganathan SR, Inamdar MM, Sain A. Asymmetric Flows in the Intercellular Membrane during Cytokinesis. Biophys J 2018; 113:2787-2795. [PMID: 29262371 DOI: 10.1016/j.bpj.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 09/06/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic cells undergo shape changes during their division and growth. This involves flow of material both in the cell membrane and in the cytoskeletal layer beneath the membrane. Such flows result in redistribution of phospholipid at the cell surface and actomyosin in the cortex. Here we focus on the growth of the intercellular surface during cell division in a Caenorhabditis elegans embryo. The growth of this surface leads to the formation of a double-layer of separating membranes between the two daughter cells. The division plane typically has a circular periphery and the growth starts from the periphery as a membrane invagination, which grows radially inward like the shutter of a camera. The growth is typically not concentric, in the sense that the closing internal ring is located off-center. Cytoskeletal proteins anillin and septin have been found to be responsible for initiating and maintaining the asymmetry of ring closure but the role of possible asymmetry in the material flow into the growing membrane has not been investigated yet. Motivated by experimental evidence of such flow asymmetry, here we explore the patterns of internal ring closure in the growing membrane in response to asymmetric boundary fluxes. We highlight the importance of the flow asymmetry by showing that many of the asymmetric growth patterns observed experimentally can be reproduced by our model, which incorporates the viscous nature of the membrane and contractility of the associated cortex.
Collapse
Affiliation(s)
- Vidya V Menon
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - S S Soumya
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Amal Agarwal
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | | | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| | - Anirban Sain
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Wang N, Lee IJ, Rask G, Wu JQ. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis. PLoS Biol 2016; 14:e1002437. [PMID: 27082518 PMCID: PMC4833314 DOI: 10.1371/journal.pbio.1002437] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. Two putative vesicle tethers—the exocyst and TRAPP-II complexes—localize differently at the division plane to ensure efficient plasma-membrane deposition along the whole cleavage furrow during cytokinesis in the fission yeast Schizosaccharomyces pombe. Cytokinesis partitions a mother cell into two daughter cells at the end of each cell-division cycle. A significant amount of new plasma membrane is needed at the cleavage furrow during cytokinesis in many cell types. Membrane expansion is achieved through the balance of exocytosis and endocytosis. It is poorly understood where and when the membrane is deposited and retrieved during cytokinesis. By tracking individual vesicles with high spatiotemporal resolution and using electron microscopy, we found that new membrane is deposited relatively evenly along the cleavage furrow in fission yeast, while the rim of the division plane is the predominant site for endocytosis. The secretory vesicles/compartments carrying new membrane are mainly delivered along formin-nucleated actin cables by myosin-V motors. Surprisingly, we find that both exocytosis and endocytosis at the division site are ramped up before contractile-ring constriction and last until daughter-cell separation. We discovered that two putative vesicle tethers, the exocyst and TRAPP-II complexes, localize to different sites at the cleavage furrow to promote tethering of different, yet overlapping, classes of secretory vesicles/compartments for exocytosis and new membrane deposition.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Galen Rask
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
8
|
Sharifmoghadam MR, Curto MÁ, Hoya M, de León N, Martin-Garcia R, Doncel C, Valdivieso MH. The integrity of the cytokinesis machinery under stress conditions requires the glucan synthase Bgs1p and its regulator Cfh3p. PLoS One 2012; 7:e42726. [PMID: 22905165 PMCID: PMC3419747 DOI: 10.1371/journal.pone.0042726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.
Collapse
Affiliation(s)
- Mohammad Reza Sharifmoghadam
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Rebeca Martin-Garcia
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- * E-mail:
| |
Collapse
|
9
|
Wloka C, Bi E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken) 2012; 69:710-26. [DOI: 10.1002/cm.21046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 01/22/2023]
|
10
|
Tekletsadik YK, Sonn R, Osman MA. A conserved role of IQGAP1 in regulating TOR complex 1. J Cell Sci 2012; 125:2041-52. [PMID: 22328503 DOI: 10.1242/jcs.098947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Defining the mechanisms that control cell growth and division is crucial to understanding cell homeostasis, which impacts human diseases such as cancer and diabetes. IQGAP1, a widely conserved effector and/or regulator of the GTPase CDC42, is a putative oncoprotein that controls cell proliferation; however, its mechanism in tumorigenesis is unknown. The mechanistic target of rapamycin (mTOR) pathway, the center of cell growth control, is commonly activated in human cancers, but has proved to be an ineffective clinical target because of an incomplete understanding of its mechanisms in cell growth inhibition. Using complementary studies in yeast and mammalian cells, we examined a potential role for IQGAP1 in regulating the negative feedback loop (NFL) of mTOR complex 1 (mTORC1) that controls cell growth. Two-hybrid screens identified the yeast TORC1-specific subunit Tco89p as an Iqg1p-binding partner, sharing roles in rapamycin-sensitive growth, axial-bud-site selection and cytokinesis, thus coupling cell growth and division. Mammalian IQGAP1 binds mTORC1 and Akt1 and in response to epidermal growth factor (EGF), cells expressing the mTORC1-Akt1-binding region (IQGAP1(IR-WW)) contained attenuated phosphorylated ERK1/2 (ERK1/2-P) activity and inactive glycogen synthase kinase 3α/β (GSK3α/β), which control apoptosis. Interestingly, these cells displayed a high level of Akt1 S473-P, but an attenuated level of the mTORC1-dependent kinase S6K1 T389-P and induced mTORC1-Akt1- and EGF-dependent transformed phenotypes. Moreover, IQGAP1 appears to influence cell abscission and its activity is elevated in carcinoma cell lines. These findings support the hypothesis that IQGAP1 acts upstream on the mTORC1-S6K1→Akt1 NFL and downstream of it, to couple cell growth and division, and thus like a rheostat, regulates cell homeostasis, dysregulation of which leads to tumorigenesis or other diseases. These results could have implications for the development of the next generation of anticancer therapeutics.
Collapse
Affiliation(s)
- Yemsrach K Tekletsadik
- Institute for Biotechnology and Life Sciences, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
11
|
Laporte D, Coffman VC, Lee IJ, Wu JQ. Assembly and architecture of precursor nodes during fission yeast cytokinesis. ACTA ACUST UNITED AC 2011; 192:1005-21. [PMID: 21422229 PMCID: PMC3063137 DOI: 10.1083/jcb.201008171] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mapping of fission yeast precursor node interaction modules and assembly reveals important steps in contractile ring assembly. The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
12
|
Bertin A, McMurray MA, Thai L, Garcia G, Votin V, Grob P, Allyn T, Thorner J, Nogales E. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol 2010; 404:711-31. [PMID: 20951708 PMCID: PMC3005623 DOI: 10.1016/j.jmb.2010.10.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/15/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
Septins are a conserved family of GTP-binding proteins that assemble into symmetric linear heterooligomeric complexes, which in turn are able to polymerize into apolar filaments and higher-order structures. In budding yeast (Saccharomyces cerevisiae) and other eukaryotes, proper septin organization is essential for processes that involve membrane remodeling, such as the execution of cytokinesis. In yeast, four septin subunits form a Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 heterooctameric rod that polymerizes into filaments thought to form a collar around the bud neck in close contact with the inner surface of the plasma membrane. To explore septin-membrane interactions, we examined the effect of lipid monolayers on septin organization at the ultrastructural level using electron microscopy. Using this methodology, we have acquired new insights into the potential effect of septin-membrane interactions on filament assembly and, more specifically, on the role of phosphoinositides. Our studies demonstrate that budding yeast septins interact specifically with phosphatidylinositol-4,5-bisphosphate (PIP2) and indicate that the N terminus of Cdc10 makes a major contribution to the interaction of septin filaments with PIP2. Furthermore, we found that the presence of PIP2 promotes filament polymerization and organization on monolayers, even under conditions that prevent filament formation in solution or for mutants that prevent filament formation in solution. In the extreme case of septin complexes lacking the normally terminal subunit Cdc11 or the normally central Cdc10 doublet, the combination of the PIP2-containing monolayer and nucleotide permitted filament formation in vitro via atypical Cdc12-Cdc12 and Cdc3-Cdc3 interactions, respectively.
Collapse
Affiliation(s)
- Aurélie Bertin
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC, Kastner PM, Burghardt E, Gerisch G. The STE group kinase SepA controls cleavage furrow formation in Dictyostelium. ACTA ACUST UNITED AC 2010; 66:929-39. [PMID: 19479821 DOI: 10.1002/cm.20386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During a REMI screen for proteins regulating cytokinesis in Dictyostelium discoideum we isolated a mutant forming multinucleate cells. The gene affected in this mutant encoded a kinase, SepA, which is an ortholog of Cdc7, a serine-threonine kinase essential for septum formation in Schizosaccharomyces pombe. Localization of SepA-GFP in live cells and its presence in isolated centrosomes indicated that SepA, like its upstream regulator Spg1, is associated with centrosomes. Knockout mutants of SepA showed a severe cytokinesis defect and a delay in development. In multinucleate SepA-null cells nuclear division proceeded normally and synchronously. However, often cleavage furrows were either missing or atypical: they were extremely asymmetric and constriction was impaired. Cortexillin-I, a marker localizing strictly to the furrow in wild-type cells, demonstrated that large, crescent-shaped furrows expanded and persisted long after the spindle regressed and nuclei returned to the interphase state. Outside the furrow the filamentous actin system of the cell cortex showed strong ruffling activity. These data suggest that SepA is involved in the spatial and temporal control system organizing cortical activities in mitotic and postmitotic cells.
Collapse
|
14
|
Chen SF, Juang YL, Chou WK, Lai JM, Huang CYF, Kao CY, Wang FS. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis. BMC SYSTEMS BIOLOGY 2009; 3:110. [PMID: 19943917 PMCID: PMC2800846 DOI: 10.1186/1752-0509-3-110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 11/27/2009] [Indexed: 11/10/2022]
Abstract
Background Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity (cytokinesis) to avoid full-scale computation from genome-wide databases. Results NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5). Conclusion In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene connectivity datasets for selected cytokinesis-related genes independent of data sizes. The regulated action for four selected cytokinesis-related genes (BUD4, CHS2, IQG1, and CDC5) belongs to the M-phase or M/G1 phase, consistent with the empirical observations that in S. cerevisiae, the Mcm1-Ndd1-Fkh2 transcription factor complex can regulate expression of the cytokinesis-related genes BUD4, CHS2, IQG1, and CDC5. Since Bud4, Iqg1, and Cdc5 are highly conserved between human and yeast, results obtained from NCA for cytokinesis in the budding yeast can lead to a suggestion that human cells should have the transcription regulator(s) as the budding yeast Mcm1-Ndd1-Fkh2 transcription factor complex in controlling occurrence of cytokinesis.
Collapse
Affiliation(s)
- Shun-Fu Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Deng M, Li R. Sperm chromatin-induced ectopic polar body extrusion in mouse eggs after ICSI and delayed egg activation. PLoS One 2009; 4:e7171. [PMID: 19787051 PMCID: PMC2746308 DOI: 10.1371/journal.pone.0007171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/26/2009] [Indexed: 12/05/2022] Open
Abstract
Meiotic chromosomes in an oocyte are not only a maternal genome carrier but also provide a positional signal to induce cortical polarization and define asymmetric meiotic division of the oocyte, resulting in polar body extrusion and haploidization of the maternal genome. The meiotic chromosomes play dual function in determination of meiosis: 1) organizing a bipolar spindle formation and 2) inducing cortical polarization and assembly of a distinct cortical cytoskeleton structure in the overlying cortex for polar body extrusion. At fertilization, a sperm brings exogenous paternal chromatin into the egg, which induces ectopic cortical polarization at the sperm entry site and leads to a cone formation, known as fertilization cone. Here we show that the sperm chromatin-induced fertilization cone formation is an abortive polar body extrusion due to lack of spindle induction by the sperm chromatin during fertilization. If experimentally manipulating the fertilization process to allow sperm chromatin to induce both cortical polarization and spindle formation, the fertilization cone can be converted into polar body extrusion. This suggests that sperm chromatin is also able to induce polar body extrusion, like its maternal counterpart. The usually observed cone formation instead of ectopic polar body extrusion induced by sperm chromatin during fertilization is due to special sperm chromatin compaction which restrains it from rapid spindle induction and therefore provides a protective mechanism to prevent a possible paternal genome loss during ectopic polar body extrusion.
Collapse
Affiliation(s)
- Manqi Deng
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail: (MD); (RL)
| | - Rong Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail: (MD); (RL)
| |
Collapse
|
16
|
Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, Lippincott MF, Han H, Lemmon MA, Pringle JR, Bi E. Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. ACTA ACUST UNITED AC 2009; 185:995-1012. [PMID: 19528296 PMCID: PMC2711614 DOI: 10.1083/jcb.200903125] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rivero F, Cvrcková F. Origins and evolution of the actin cytoskeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:97-110. [PMID: 17977462 DOI: 10.1007/978-0-387-74021-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Francisco Rivero
- Center for Biochemistry and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.
| | | |
Collapse
|
18
|
|
19
|
Vjestica A, Tang XZ, Oliferenko S. The actomyosin ring recruits early secretory compartments to the division site in fission yeast. Mol Biol Cell 2008; 19:1125-38. [PMID: 18184749 DOI: 10.1091/mbc.e07-07-0663] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.
Collapse
|
20
|
Misty R, Martinez R, Ali H, Steimle PA. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration. Biochem Biophys Res Commun 2006; 345:516-22. [PMID: 16682000 DOI: 10.1016/j.bbrc.2006.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/15/2006] [Indexed: 11/17/2022]
Abstract
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.
Collapse
Affiliation(s)
- Russ Misty
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | | | |
Collapse
|
21
|
Baluska F, Menzel D, Barlow PW. Cytokinesis in plant and animal cells: endosomes 'shut the door'. Dev Biol 2006; 294:1-10. [PMID: 16580662 DOI: 10.1016/j.ydbio.2006.02.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/20/2006] [Accepted: 02/26/2006] [Indexed: 11/29/2022]
Abstract
For many years, cytokinesis in eukaryotic cells was considered to be a process that took a variety of forms. This is rather surprising in the face of an apparently conservative mitosis. Animal cytokinesis was described as a process based on an actomyosin-based contractile ring, assembling, and acting at the cell periphery. In contrast, cytokinesis of plant cells was viewed as the centrifugal generation of a new cell wall by fusion of Golgi apparatus-derived vesicles. However, recent advances in animal and plant cell biology have revealed that many features formerly considered as plant-specific are, in fact, valid also for cytokinetic animal cells. For example, vesicular trafficking has turned out to be important not only for plant but also for animal cytokinesis. Moreover, the terminal phase of animal cytokinesis based on midbody microtubule activity resembles plant cytokinesis in that interdigitating microtubules play a decisive role in the recruitment of cytokinetic vesicles and directing them towards the cytokinetic spaces which need to be plugged by fusing endosomes. Presently, we are approaching another turning point which brings cytokinesis in plant and animal cells even closer. As an unexpected twist, new studies reveal that both plant and animal cytokinesis is driven not so much by Golgi-derived vesicles but rather by homotypically and heterotypically fusing endosomes. These are generated from cytokinetic cortical sites defined by preprophase microtubules and contractile actomyosin ring, which induce local endocytosis of both the plasma membrane and cell wall material. Finally, plant and animal cytokinesis meet together at the physical separation of daughter cells despite obvious differences in their preparatory events.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | | | | |
Collapse
|
22
|
Johnson BF, Yoo BY, Calleja GB, Kozela CP. Second thoughts on septation by the fission yeast, Schizosaccharomyces pombe: pull vs. push mechanisms with an appendix--dimensional modelling of the flat and variable septa. Antonie van Leeuwenhoek 2005; 88:1-12. [PMID: 15928972 DOI: 10.1007/s10482-004-7074-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The correlation of contraction by an actomyosin band with the closing of the septum of dividing cells of the fission yeast, Schizosaccharomyces pombe, cannot suggest cause-and-effect because contraction would be apparent whether the membrane enveloping the centripetally closing septum were pulled or were pushed. Thus the common observation of contraction is not critical. Diagrams of published electron micrographs of dividing wild-type fission yeasts illustrate variable (tilted) septal images that are counterintuitive to a pull model. Circumference calculations based on those images suggest that some variable forms might be only 6% closed even though their two-dimensional profiles would be 50% closed, if they were not tilted. Development of multiseptate forms of cdc4-8 and cdc4-377 temperature sensitive mutants incubated at their restrictive temperature was followed. These multiseptate forms are shown to have functional (functional in terms of generating divided uninucleate cytoplasts) but grotesque septa which are formed in the absence of actomyosin bands. By contrast, the myosin of the plant phragmoplast is not properly oriented for contractility, and Dictyostelium (attached cells) and Saccharomyces (mutants) have been shown to divide in the absence of myosin II, just as S. pombe does (above). Hence contractility, the essence of a pull model for septum closure, would seem to be non-essential. Other, non-contractile mechanisms of myosin are emphasized, and a push model becomes a rational default hypothesis. The essence of push models is that their synthesis/assembly mechanisms are driving force sufficient for septum closure.
Collapse
Affiliation(s)
- Byron F Johnson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
23
|
Ranganath RM. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:425-48. [PMID: 16163608 DOI: 10.1055/s-2005-865899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, India.
| |
Collapse
|
24
|
Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I. Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:4595-608. [PMID: 16030260 PMCID: PMC1237067 DOI: 10.1091/mbc.e05-02-0108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spa2p is a nonessential protein that regulates yeast cell polarity. It localizes early to the presumptive bud site and remains at sites of growth throughout the cell cycle. To understand how Spa2p localization is regulated and to gain insight into its molecular function in cell polarity, we used a coimmunoprecipitation strategy followed by tandem mass spectrometry analysis to identify proteins that associate with Spa2p in vivo. We identified Myo1p, Myo2p, Pan1p, and the protein encoded by YFR016c as proteins that interact with Spa2p. Strikingly, all of these proteins are involved in cell polarity and/or actin function. Here we focus on the functional significance of the interactions of Spa2p with Myo2p and Myo1p. We find that localization of Spa2GFP to sites of polarized growth depends on functional Myo2p but not on Myo1p. We also find that Spa2p, like Myo2p, cosediments with F-actin in an ATP-sensitive manner. We hypothesize that Spa2p associates with actin via a direct or indirect interaction with Myo2p and that Spa2p may be involved in mediating polarized localization of polarity proteins via Myo2p. In addition, we observe an enhanced cell-separation defect in a myo1spa2 strain at 37 degrees C. This provides further evidence that Spa2p is involved in cytokinesis and cell wall morphogenesis.
Collapse
Affiliation(s)
- Judy L Shih
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94143-2140, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Alonso-Nuñez ML, An H, Martín-Cuadrado AB, Mehta S, Petit C, Sipiczki M, del Rey F, Gould KL, de Aldana CRV. Ace2p controls the expression of genes required for cell separation in Schizosaccharomyces pombe. Mol Biol Cell 2005; 16:2003-17. [PMID: 15689498 PMCID: PMC1073678 DOI: 10.1091/mbc.e04-06-0442] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission through contraction of an actomyosin ring and deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Here we describe the identification of seven genes (adg1(+), adg2(+), adg3(+), cfh4(+), agn1(+), eng1(+), and mid2(+)) whose expression is induced by the transcription factor Ace2p. The expression of all of these genes varied during the cell cycle, maximum transcription being observed during septation. At least three of these proteins (Eng1p, Agn1p, and Cfh4p) localize to a ring-like structure that surrounds the septum region during cell separation. Deletion of the previously uncharacterized genes was not lethal to the cells, but produced defects or delays in cell separation to different extents. Electron microscopic observation of mutant cells indicated that the most severe defect is found in eng1Delta agn1Delta cells, lacking the Eng1p endo-beta-1,3-glucanase and the Agn1p endo-alpha-glucanase. The phenotype of this mutant closely resembled that of ace2Delta mutants, forming branched chains of cells. This suggests that these two proteins are the main activities required for cell separation to be completed.
Collapse
Affiliation(s)
- Maria Luisa Alonso-Nuñez
- Departamento de Microbiología y Genética, Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:386-98. [PMID: 15469496 DOI: 10.1111/j.1365-313x.2004.02222.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify molecular players implicated in cytokinesis and division plane determination, the Arabidopsis thaliana genome was explored for potential cytokinesis genes. More than 100 open reading frames were selected based on similarity to yeast and animal cytokinesis genes, cytoskeleton and polarity genes, and Nicotiana tabacum genes showing cell cycle-controlled expression. The subcellular localization of these proteins was determined by means of GFP tagging in tobacco Bright Yellow-2 cells and Arabidopsis plants. Detailed confocal microscopy identified 15 proteins targeted to distinct regions of the phragmoplast and the cell plate. EB1- and MAP65-like proteins were associated with the plus-end, the minus-end, or along the entire length of microtubules. The actin-binding protein myosin, the kinase Aurora, and a novel cell cycle protein designated T22, accumulated preferentially at the midline. EB1 and Aurora, in addition to other regulatory proteins (homologs of Mob1, Sid1, and Sid2), were targeted to the nucleus, suggesting that this organelle operates as a coordinating hub for cytokinesis.
Collapse
Affiliation(s)
- Daniël Van Damme
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
27
|
Luo J, Vallen EA, Dravis C, Tcheperegine SE, Drees B, Bi E. Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 165:843-55. [PMID: 15210731 PMCID: PMC2172396 DOI: 10.1083/jcb.200401040] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p–Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p–Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.
Collapse
Affiliation(s)
- Jianying Luo
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
28
|
Saul D, Fabian L, Forer A, Brill JA. Continuous phosphatidylinositol metabolism is required for cleavage of crane fly spermatocytes. J Cell Sci 2004; 117:3887-96. [PMID: 15265984 DOI: 10.1242/jcs.01236] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful cleavage of animal cells requires co-ordinated regulation of the actomyosin contractile ring and cleavage furrow ingression. Data from a variety of systems implicate phosphoinositol lipids and calcium release as potential regulators of this fundamental process. Here we examine the requirement for various steps of the phosphatidylinositol (PtdIns) cycle in dividing crane fly (Nephrotoma suturalis) spermatocytes. PtdIns cycle inhibitors were added to living cells after cleavage furrows formed and began to ingress. Inhibitors known to block PtdIns recycling (lithium), PtdIns phosphorylation (wortmannin, LY294002) or phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] hydrolysis [U73122 (U7)] all stopped or slowed furrowing. The effect of these drugs on cytokinesis was quite rapid (within 0-4 minutes), so continuous metabolism of PtdIns appears to be required for continued cleavage furrow ingression. U7 caused cleavage furrow regression concomitant with depletion of F-actin from the contractile ring, whereas the other inhibitors caused neither regression nor depletion of F-actin. That U7 depletes furrow-associated actin seems counterintuitive, as inhibition of phospholipase C would be expected to increase cellular levels of PtdIns(4,5)P2 and hence increase actin polymerization. Our confocal images suggest, however, that F-actin might accumulate at the poles of U7-treated cells, consistent with the idea that PtdIns(4,5)P2 hydrolysis may be required for actin filaments formed at the poles to participate in contractile ring assembly at the furrow.
Collapse
Affiliation(s)
- Daniel Saul
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Cytokinesis is the ultimate step of a cell cycle resulting in the generation of two progeny. Failure of correct cell division may be lethal for both, mother and daughter cells, and thus such a process must be tightly regulated with other events of the cell cycle. Differing solutions to the same problem have been developed in bacteria and plants while cytokinesis in animal and fungal cells is highly similar and requires a contractile ring containing actomyosin. Cytokinesis in fungi can be viewed as a three-stage process: (i) selection of a division site, (ii) orderly assembly of protein complexes, and finally (iii) dynamic events that lead to a constriction of the contractile ring and septum construction. Elaborate mechanisms known as the Mitotic Exit Network (MEN) and the Septation Initiation Network (SIN) have evolved to link these events, particularly the final steps of cytokinesis, with nuclear division. The purpose of this review was to discuss the latest developments in the fungal field and to describe the central known players required for key steps on the road to cell division. Differences in the cytokinesis of yeast-like fungi that result in complete cell separation in contrast to septation which leads to the compartmentalization of fungal hyphae are highlighted.
Collapse
Affiliation(s)
- Andrea Walther
- Department of Microbiology, Hans-Knöll Institute, Friedrich-Schiller University Jena, Winzerlaer, Germany
| | | |
Collapse
|
30
|
Abstract
Septins are a conserved eukaryotic family of GTP-binding filament-forming proteins with functions in cytokinesis and other processes. In the budding yeast Saccharomyces cerevisiae, septins initially localize to the presumptive bud site and then to the cortex of the mother-bud neck as an hourglass structure. During cytokinesis, the septin hourglass splits and single septin rings partition with each of the resulting cells. Septins are thought to function in diverse processes in S. cerevisiae, mainly by acting as a scaffold to direct the neck localization of septin-associated proteins.
Collapse
Affiliation(s)
- Mark S Longtine
- Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74075-3035, USA
| | | |
Collapse
|
31
|
Wilkes DE, Otto JJ. Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena thermophila. J Eukaryot Microbiol 2003; 50:252-62. [PMID: 15132168 DOI: 10.1111/j.1550-7408.2003.tb00130.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Expression of the actin-binding protein profilin was disrupted in the ciliate Tetrahymena thermophila by an antisense ribosome method. In cells with the antisense disruption no profilin protein was detected. Cultures of cells with the antisense disruption could be maintained, indicating that profilin was not essential for cytokinesis or vegetative growth. Disruption of the expression of profilin resulted in many cells that were large and abnormally shaped. Formation of multiple micronuclei, which divide mitotically, was observed in cells with a single macronucleus, indicating a defect in early cytokinesis. Some cells with the antisense disruption contained multiple macronuclei, which in Tetrahymena may indicate a function late in cytokinesis. The lack of profilin also affected cytokinesis in the cells that could divide. Normal-sized and normal-shaped cells with the antisense disruption took significantly longer to divide than control cell types. The profilin disruption revealed two new processes in which profilin functions. In cells lacking profilin, micronuclei were not positioned at their normal site on the surface of the macronucleus and phagocytosis was defective. The defect in phagocytosis appeared to be due to disruption of the formation of oral apparatuses (stomatogenesis) and a possible failure in the internalization of phagocytic vacuoles.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
32
|
Martín-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 2003; 116:1689-98. [PMID: 12665550 DOI: 10.1242/jcs.00377] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission throughout contraction of an actomyosin ring and deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomoysin ring and septum assembly, little information is available concerning the mechanism of cell separation. Here we describe the characterization of eng1+, a new gene that encodes a protein with detectable endo-beta-1,3-glucanase activity and whose deletion is not lethal to the cells but does interfere in their separation. Electron microscopic observation of mutant cells indicated that this defect is mainly due to the failure of the cells to degrade the primary septum, a structure rich in beta-1,3-glucans, that separates the two sisters cells. Expression of eng1+ varies during the cell cycle, maximum expression being observed before septation, and the protein localizes to a ring-like structure that surrounds the septum region during cell separation. This suggests that it could also be involved in the cleavage of the cylinder of the cell wall that covers the division septum. The expression of eng1+ during vegetative growth is regulated by a C2H2 zinc-finger protein (encoded by the SPAC6G10.12c ORF), which shows significant sequence similarity to the Saccharomyces cerevisiae ScAce2p, especially in the zinc-finger region. Mutants lacking this transcriptional regulator (which we have named ace2+) show a severe cell separation defect, hyphal growth being observed. Thus, ace2p may regulate the expression of the eng1+ gene together with that of other genes whose products are also involved in cell separation.
Collapse
Affiliation(s)
- Ana Belén Martín-Cuadrado
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/ Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
33
|
Douglas RM, Haddad GG. Genetic models in applied physiology: invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest. J Appl Physiol (1985) 2003; 94:2068-83; discussion 2084. [PMID: 12679355 DOI: 10.1152/japplphysiol.01029.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most fascinating fields that have emanated in the past few decades is developmental biology. This is not only the case from a research point of view but also from the angle of clinical care and treatment strategies. It is now well demonstrated that there are many diseases (some believe all diseases) that have their roots in embryogenesis or in early life, where nature and environment often team up to facilitate the genesis of disease. There is probably no better example to illustrate the interactions between nature and environment than in early life, as early as in the first several cell cycles. As will be apparent in this review, the cell cycle is a very regulated activity and this regulation is genetic in nature, with checkpoint proteins playing an important role in controlling the timing, the size, and the growth of daughter cells. However, it is also very clear, as will be discussed in this work, that the microenvironment of the first dividing cells is so important for the outcome of the organism. In this review, we will focus on the effect of one stress, that of hypoxia, on the young embryo and its cell division and growth. We will first review some of the cell cycle definitions and stages and then review briefly our current knowledge and its gaps in this area.
Collapse
Affiliation(s)
- R M Douglas
- Division of Respiratory Medicine, Department of Pediatrics and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
34
|
Strzyzewska-Jówko I, Jerka-Dziadosz M, Frankel J. Effect of alteration in the global body plan on the deployment of morphogenesis-related protein epitopes labeled by the monoclonal antibody 12G9 in Tetrahymena thermophila. Protist 2003; 154:71-90. [PMID: 12812371 DOI: 10.1078/143446103764928503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have employed monoclonal antibodies to reinvestigate the janus mutants of the ciliate Tetrahymena thermophila, which cause reversal of circumferential polarity on the dorsal surface of the cell. This reversal brings about frequent ectopic expression of ventral cortical landmarks, such as a "secondary" oral apparatus, on the dorsal surface. The principal antibody employed, FXXXIX-12G9, immunolabels both transient cortical structures not directly associated with basal bodies (the fission line and the postoral meridional filament) and more permanent structures (apical band and oral crescent) that are associated with basal bodies. 12G9-immunolabeling of janus cells has revealed additional phenotypes, including disorder of ciliary rows. Further, this labeling has shown that the postoral meridional filament is often expressed and the apical band is frequently interrupted on the mid-dorsal surface of janus cells irrespective of whether or not these cells express a "secondary" oral apparatus. Of the permanent structures revealed by 12G9 immunofluorescence, modifications of the oral crescent (OC) are associated with prior modifications in the development of basal body-containing structures in the secondary oral apparatus. The formation of the apical band (AB) is also commonly abnormal in janus cells; analysis of specific abnormalities shows that the AB depends both on its initiation at a specific site near the anterior basal body of apical basal body couplets and on the normal location of these couplets just posterior to the fission line. We also have uncovered an intriguing difference in the reactivity of apical-band filaments to the 12G9 antibody in the two non-allelic janus mutants (janA1 and janC2) that we have investigated. Taken together, our observations indicate that the formation of new cellular structures at division depends both upon pre-existing cytoskeletal structures and upon the positional information provided by large-scale cellular polarities.
Collapse
Affiliation(s)
- Izabela Strzyzewska-Jówko
- Polish Academy of Sciences, M. Nencki Institute of Experimental Biology, Department of Cell Biology, 3 Pasteur Str., 02093 Warsaw, Poland
| | | | | |
Collapse
|
35
|
Tolliday N, Pitcher M, Li R. Direct evidence for a critical role of myosin II in budding yeast cytokinesis and the evolvability of new cytokinetic mechanisms in the absence of myosin II. Mol Biol Cell 2003; 14:798-809. [PMID: 12589071 PMCID: PMC150009 DOI: 10.1091/mbc.e02-09-0558] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.
Collapse
Affiliation(s)
- Nicola Tolliday
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
36
|
Tang Z, Mandel LL, Yean SL, Lin CX, Chen T, Yanagida M, Lin RJ. The kic1 kinase of schizosaccharomyces pombe is a CLK/STY orthologue that regulates cell-cell separation. Exp Cell Res 2003; 283:101-15. [PMID: 12565823 DOI: 10.1016/s0014-4827(02)00022-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The CLK/STY kinases are a family of dual-specificity protein kinases implicated in the regulation of cellular growth and differentiation. Some of the kinases in the family are shown to phosphorylate serine-arginine-rich splicing factors and to regulate pre-mRNA splicing. However, the actual cellular mechanism that regulates cell growth, differentiation, and development by CLK/STY remains unclear. Here we show that a functionally conserved CLK/STY kinase exists in Schizosaccharomyces pombe, and this orthologue, called Kic1, regulates the cell surface and septum formation as well as a late step in cytokinesis. The Kic1 protein is modified in vivo, likely by phosphorylation, suggesting that it can be involved in a control cascade. In addition, kic1(+) together with dsk1(+), which encodes a related SR-specific protein kinase, constitutes a critical in vivo function for cell growth. The results provide the first in vivo evidence for the functional conservation of the CLK/STY family through evolution from fission yeast to mammals. Furthermore, since cell division and cell-cell interaction are fundamental for the differentiation and development of an organism, the novel cellular role of kic1(+) revealed from this study offers a clue to the understanding of its counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Zhaohua Tang
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wendland J. Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep 2003; 4:200-4. [PMID: 12612612 PMCID: PMC1315825 DOI: 10.1038/sj.embor.embor727] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 11/08/2002] [Accepted: 11/15/2002] [Indexed: 11/09/2022] Open
Abstract
Cell division in fungal cells requires the coordination of three different processes: determination of the site of division, actomyosin ring formation, and the concomitant contraction of this ring together with chitin deposition at septal sites. This report describes the isolation of the AgBUD3 homologue and the characterization of Bud3 protein function in Ashbya gossypii. Bud3 fused to green fluorescent protein was shown to localize transiently either as a single ring to multiple sites of future septation or as a double ring to newly established septa. Deletion of AgBUD3 leads to a striking change in actin ring localization involving the mislocalization of AgCyk1, which is required for actin ring assembly. Aberrant chitin accumulation occurs subsequently, generating delocalized septa. Thus, in A. gossypii, Bud3 acts as a landmark, tagging future septal sites, and is involved in the positioning of the contractile ring, whereas it does not direct lateral branching.
Collapse
Affiliation(s)
- Jürgen Wendland
- Department of Microbiology, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
38
|
Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 2002; 12:2111-7. [PMID: 12498685 PMCID: PMC3690653 DOI: 10.1016/s0960-9822(02)01390-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells.
Collapse
Affiliation(s)
- Heather M. Thompson
- GI Basic Research and Department of Biochemistry and Molecular Biology, Mayo Clinic and Mayo Graduate School Rochester, Minnesota 55905
| | - Ahna R. Skop
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720
- Howard, Hughes Medical Institute, University of California, Berkeley Berkeley, California 94720
| | | | - Barbara J. Meyer
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720
- Howard, Hughes Medical Institute, University of California, Berkeley Berkeley, California 94720
| | - Mark A. McNiven
- GI Basic Research and Department of Biochemistry and Molecular Biology, Mayo Clinic and Mayo Graduate School Rochester, Minnesota 55905
| |
Collapse
|
39
|
Cunto FD, Imarisio S, Camera P, Boitani C, Altruda F, Silengo L. Essential role of citron kinase in cytokinesis of spermatogenic precursors. J Cell Sci 2002; 115:4819-26. [PMID: 12432070 DOI: 10.1242/jcs.00163] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During spermatogenesis, the first morphological indication of spermatogonia differentiation is incomplete cytokinesis, followed by the assembly of stable intercellular cytoplasmic communications. This distinctive feature of differentiating male germ cells has been highly conserved during evolution, suggesting that regulation of the cytokinesis endgame is a crucial aspect of spermatogenesis. However, the molecular mechanisms underlying testis-specific regulation of cytokinesis are still largely unknown. Citron kinase is a myotonin-related protein acting downstream of the GTPase Rho in cytokinesis control. We previously reported that Citron kinase knockout mice are affected by a complex neurological syndrome caused by cytokinesis block and apoptosis of specific neuronal precursors. In this report we show that, in addition, these mice display a dramatic testicular impairment, with embryonic and postnatal loss of undifferentiated germ cells and complete absence of mature spermatocytes. By contrast, the ovaries of mutant females appear essentially normal. Developmental analysis revealed that the cellular depletion observed in mutant testes is caused by increased apoptosis of undifferentiated and differentiating precursors. The same cells display a severe cytokinesis defect, resulting in the production of multinucleated cells and apoptosis. Our data indicate that Citron kinase is specifically required for cytokinesis of the male germ line.
Collapse
Affiliation(s)
- Ferdinando Di Cunto
- Department of Genetics, Biology and Biochemistry, Via Santena 5 bis, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Wagner W, Bielli P, Wacha S, Ragnini-Wilson A. Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J 2002; 21:6397-408. [PMID: 12456647 PMCID: PMC136954 DOI: 10.1093/emboj/cdf650] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Little is known about the molecular machinery that directs secretory vesicles to the site of cell separation during cytokinesis. We show that in Saccharomyces cerevisiae, the class V myosin Myo2p and the Rab/Ypt Sec4p, that are required for vesicle polarization processes at all stages of the cell cycle, form a complex with each other and with a myosin light chain, Mlc1p, that is required for actomyosin ring assembly and cytokinesis. Mlc1p travels on secretory vesicles and forms a complex(es) with Myo2p and/or Sec4p. Its functional interaction with Myo2p is essential during cytokinesis to target secretory vesicles to fill the mother bud neck. The role of Mlc1p in actomyosin ring assembly instead is dispensable for this process. Therefore, in yeast, as recently shown in mammals, class V myosins associate with vesicles via the formation of a complex with Rab/Ypt proteins. Further more, myosin light chains, via their ability to be transported by secretory vesicles and to interact with class V myosin IQ motifs, can regulate vesicle polarization processes at a specific location and stage of the cell cycle.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Pamela Bielli
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Stefan Wacha
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| | - Antonella Ragnini-Wilson
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria and Department of Biology, University of ‘Tor Vergata’ Rome, Viale Della Ricerca Scientifica, I-00133 Roma, Italy Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstraße 66, CH-4058 Basel, Switzerland Corresponding author e-mail:
| |
Collapse
|
41
|
Levi S, Polyakov MV, Egelhoff TT. Myosin II dynamics in Dictyostelium: determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:177-88. [PMID: 12211100 DOI: 10.1002/cm.10068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the simple amoeba Dictyostelium discoideum, myosin II filament assembly is regulated primarily by the action of a set of myosin heavy chain (MHC) kinases and by MHC phosphatase activity. Chemoattractant signals acting via G-protein coupled receptors lead to rapid recruitment of myosin II to the cell cortex, but the structural determinants on myosin necessary for translocation and the second messengers upstream of MHC kinases and phosphatases are not well understood. We report here the use of GFP-myosin II fusions to characterize the domains necessary for myosin II filament assembly and cytoskeletal recruitment during responses to global stimulation with the developmental chemoattractant cAMP. Analysis performed with GFP-myosin fusions, and with latrunculin A-treated cells, demonstrated that F-actin binding via the myosin motor domain together with concomitant filament assembly mediates the rapid cortical translocation observed in response to chemoattractant stimulation. A "headless" GFP-myosin construct lacking the motor domain was unable to translocate to the cell cortex in response to chemoattractant stimulation, suggesting that myosin motor-based motility may drive translocation. This lack of localization contrasts with previous work demonstrating accumulation of the same construct in the cleavage furrow of dividing cells, suggesting that recruitment signals and interactions during cytokinesis differ from those during chemoattractant responses. Evaluating upstream signaling, we find that iplA null mutants, devoid of regulated calcium fluxes during chemoattractant stimulation, display full normal chemoattractant-stimulated myosin assembly and translocation. These results indicate that calcium transients are not necessary for chemoattractant-regulated myosin II filament assembly and translocation.
Collapse
Affiliation(s)
- Stephanie Levi
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
42
|
Wendland J, Philippsen P. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet Biol 2002; 37:81-8. [PMID: 12223192 DOI: 10.1016/s1087-1845(02)00034-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In filamentous ascomycetes hyphae are compartmentalized by septation in which the cytoplasm of the compartments are interconnected via septal pores. Thus, septation in filamentous fungi is different from cytokinesis in yeast like fungi. We have identified an Ashbya gossypii orthologue of the Saccharomyces cerevisiae CYK1 gene which belongs to the IQGAP-protein family. In contrast to S. cerevisiae disruption of AgCYK1 yields viable mutant strains that exhibit wildtype-like polarized hyphal growth rates. In the Agcyk1 mutant cortical actin patches localize to growing hyphal tips like wildtype, however, mutant hyphae are totally devoid of actin rings at presumptive septal sites. Septation in wildtype results in the formation of chitin rings. Agcyk1 mutant hyphae are aseptate and do not accumulate chitin in their cell walls. Agcyk1 mutant strains are completely asporogenous indicating that septation is essential for the formation of sporangia in A. gossypii. AgCyk1p-GFP localizes to sites of future septation as a ring prior to chitin depositioning. Furthermore, decrease in Cyk1p-ring diameter was found to be a prerequisite for the accumulation of chitin and septum formation.
Collapse
Affiliation(s)
- Jürgen Wendland
- Department of Microbiology, Friedrich-Schiller University, Winzerlaer Str. 10, Jena, Germany.
| | | |
Collapse
|
43
|
Cullen PJ, Sprague GF. The roles of bud-site-selection proteins during haploid invasive growth in yeast. Mol Biol Cell 2002; 13:2990-3004. [PMID: 12221111 PMCID: PMC124138 DOI: 10.1091/mbc.e02-03-0151] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.
Collapse
Affiliation(s)
- Paul J Cullen
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
44
|
Roh DH, Bowers B, Schmidt M, Cabib E. The septation apparatus, an autonomous system in budding yeast. Mol Biol Cell 2002; 13:2747-59. [PMID: 12181343 PMCID: PMC117939 DOI: 10.1091/mbc.e02-03-0158] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actomyosin ring contraction and chitin primary septum deposition are interdependent processes in cell division of budding yeast. By fusing Myo1p, as representative of the contractile ring, and Chs2p for the primary septum, to different fluorescent proteins we show herein that the two processes proceed essentially at the same location and simultaneously. Chs2p differs from Myo1p in that it reflects the changes in shape of the plasma membrane to which it is attached and in that it is packed after its action into visible endocytic vesicles for its disposal. To ascertain whether this highly coordinated system could function independently of other cell cycle events, we reexamined the septum-like structures made by the septin mutant cdc3 at various sites on the cell cortex at the nonpermissive temperature. With the fluorescent fusion proteins mentioned above, we observed that in cdc3 at 37 degrees C both Myo1p and Chs2p colocalize at different spots of the cell cortex. A contraction of the Myo1p patch could also be detected, as well as that of a Chs2p patch, with subsequent appearance of vesicles. Furthermore, the septin Cdc12p, fused with yellow or cyan fluorescent protein, also colocalized with Myo1p and Chs2p at the aberrant locations. The formation of delocalized septa did not require nuclear division. We conclude that the septation apparatus, composed of septins, contractile ring, and the chitin synthase II system, can function at ectopic locations autonomously and independently of cell division, and that it can recruit the other elements necessary for the formation of secondary septa.
Collapse
Affiliation(s)
- Dong-Hyun Roh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Kusch J, Meyer A, Snyder MP, Barral Y. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev 2002; 16:1627-39. [PMID: 12101122 PMCID: PMC186372 DOI: 10.1101/gad.222602] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell division is the result of two major cytoskeletal events: partition of the chromatids by the mitotic spindle and cleavage of the cell by the cytokinetic apparatus. Spatial coordination of these events ensures that each daughter cell inherits a nucleus. Here we show that, in budding yeast, capture and shrinkage of astral microtubules at the bud neck is required to position the spindle relative to the cleavage apparatus. Capture required the septins and the microtubule-associated protein Kar9. Like Kar9-defective cells, cells lacking the septin ring failed to position their spindle correctly and showed an increased frequency of nuclear missegregation. Microtubule attachment at the bud neck was followed by shrinkage and a pulling action on the spindle. Enhancement of microtubule shrinkage at the bud neck required the Par-1-related, septin-dependent kinases (SDK) Hsl1 and Gin4. Neither the formin Bnr1 nor the actomyosin contractile ring was required for either microtubule capture or microtubule shrinkage. Together, our results indicate that septins and septin-dependent kinases may coordinate microtubule and actin functions in cell division.
Collapse
Affiliation(s)
- Justine Kusch
- Institute of Biochemistry, Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
46
|
Soyano T, Ishikawa M, Nishihama R, Araki S, Ito M, Ito M, Machida Y. Control of plant cytokinesis by an NPK1-mediated mitogen-activated protein kinase cascade. Philos Trans R Soc Lond B Biol Sci 2002; 357:767-75. [PMID: 12079672 PMCID: PMC1692986 DOI: 10.1098/rstb.2002.1094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokinesis is the last essential step in the distribution of genetic information to daughter cells and partition of the cytoplasm. In plant cells, various proteins have been found in the phragmoplast, which corresponds to the cytokinetic apparatus, and in the cell plate, which corresponds to a new cross wall, but our understanding of the functions of these proteins in cytokinesis remains incomplete. Reverse genetic analysis of NPK1 MAPKKK (nucleus- and phragmoplast-localized protein kinase 1 mitogen-activated protein kinase kinase kinase) and investigations of factors that might be functionally related to NPK1 have helped to clarify new aspects of the mechanisms of cytokinesis in plant cells. In this review, we summarize the evidence for the involvement of NPK1 in cytokinesis. We also describe the characteristics of a kinesin-like protein and the homologue of a mitogen-activated protein kinase that we identified recently, and we discuss possible relationships among these proteins in cytokinesis.
Collapse
Affiliation(s)
- Takashi Soyano
- Laboratory of Developmental Biology, Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Stevenson V, Hudson A, Cooley L, Theurkauf WE. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos. Curr Biol 2002; 12:705-11. [PMID: 12007413 DOI: 10.1016/s0960-9822(02)00807-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In syncytial blastoderm Drosophila embryos, actin caps assemble during telophase. As the cell cycle progresses through interphase, these small caps expand and fuse to form pseudocleavage furrows that are structurally related to the cleavage furrows that assemble during somatic cell division. The molecular mechanism driving cell cycle coordinated actin reorganization from the caps to the furrows is not understood. RESULTS We show that Drosophila embryos contain a typical Arp2/3 complex and that components of this complex localize to the margins of the expanding caps, to mature pseudocleavage furrows, and to somatic cell cleavage furrows during the postcellularization embryonic divisions. A mutation that disrupts the arpc1 subunit of Arp2/3 leads to spindle fusions that are characteristic of pseudocleavage furrow disruption. By contrast, this mutation does not significantly affect nuclear positioning during interphase, which is dependent on actin cap function. In vivo analysis of actin reorganization demonstrates that the arpc1 mutation does not prevent assembly of small actin caps but blocks cap expansion and furrow assembly as the cell cycle progresses through interphase. The scrambled gene is also required for cap expansion and furrow assembly, and Scrambled is required for Arp2/3 localization to the cap margins. CONCLUSIONS The Drosophila Arp2/3 complex and Scrambled protein are required for actin cap expansion and pseudocleavage furrow formation during the syncytial blastoderm divisions. We propose that Scrambled-dependent localization of Arp2/3 to the margins of the expanding caps triggers local actin polymerization that drives cap expansion and pseudocleavage furrow assembly.
Collapse
Affiliation(s)
- Victoria Stevenson
- Program in Molecular Medicine, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Cellularization of the early Drosophila embryo is a modified form of cytokinesis that gives rise to the blastoderm epithelium through polarized membrane growth. The gene slow-as-molasses encodes a novel protein essential for the formation of a plasma membrane domain that initiates membrane growth during cellularization.
Collapse
Affiliation(s)
- Slobodan Beronja
- Department of Zoology, University of Toronto, M5S 3G5, Toronto, Ontario, Canada
| | | |
Collapse
|
49
|
Andela VB, Rosenblatt JD, Schwarz EM, Puzas EJ, O'Keefe RJ, Rosier RN. Synergism of aminobisphosphonates and farnesyl transferase inhibitors on tumor metastasis. Clin Orthop Relat Res 2002:228-39. [PMID: 11953614 DOI: 10.1097/00003086-200204000-00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aminobisphosphonates have shown significant antitumor activity in vitro and in vivo with selective pharmacodistribution to bone, and an established role in the treatment of malignant bone disease. Given that the mode of action of aminobisphosphonates involves decreasing the prenylation of the Rho family of proteins, through decreasing the availability of prenyl groups (farnesyl and geranylgeranyl isoprenoids), the authors sought the inhibition of Rho protein prenylation at two points, by using an aminobiphosphonate (alendronate) in conjunction with a prenyl transferase inhibitor (R115777, a specific farnesyl transferase inhibitor with limited effects in geranylgeranyl transferase). The authors show synergistic inhibition of the prenylation dependent membrane association and migratory function of Rho proteins, translating into a suppressive effect on in vitro tumor cell invasiveness and in vivo metastasis. The findings support the use of aminobisphosphonates in conjunction with farnesyl transferase inhibitors in the prevention of metastatic progression and suggest that metastatic progression is a valid end point in assessing the antitumor activity of farnesyl transferase inhibitors.
Collapse
Affiliation(s)
- Valentine B Andela
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Until recently, two distinct types of cytokinesis were thought to be responsible for the division of plant and animal cells. Plant cells divide through the formation of a membrane plate between the daughter cells, while animal cells divide by the constriction of a cortical actin-based ring around the cell. However, accumulating evidence suggests that the two mechanisms may have more in common than previously thought. In this review we will focus on recent developments that raise the possibility of unexpected similarities between the final steps in cytokinesis in animal and plant cells.
Collapse
Affiliation(s)
- Hao Xu
- Programmes in Cell Biology, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ont., M5G 1X8 Canada
| | | | | |
Collapse
|