1
|
Guo S, Cao J, Hong G, Song Y, Xia M, Li P, Yuan W, Xiao Y, Sun G, Liu S, Cao S, Qi J, Bi X, Liu Z, Wu Y, Li W, Zhao X, Gao J, Chai R, Fu X. mRNA metabolism regulator human antigen R (HuR) regulates age-related hearing loss in aged mice. NATURE AGING 2025; 5:848-867. [PMID: 40394214 DOI: 10.1038/s43587-025-00860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025]
Abstract
Age-related hearing loss (ARHL) is among the most prevalent and complex disorders in older adults. However, the pathogenesis of ARHL remains poorly understood. Using a single-cell transcriptomic landscape of mouse cochlea at five time points (1, 2, 5, 12 and 15 months), we found that the levels of human antigen R (HuR)-a classical RNA-binding protein-increase with age. Here we show that HuR is specifically transported from the nucleus to the cytoplasm in hair cells in both aging mice and nonhuman primates. HuR overexpression in cochlea could successfully alleviate ARHL in aged mice. Meanwhile, HuR deficiency led to premature hearing dysfunction characterized by degeneration of stereocilia and the subsequent loss of hair cells. RNA immunoprecipitation sequencing analysis revealed that HuR can bind to messenger RNAs that enable stereocilia maintenance, including Gnai3. Adeno-associated virus-mediated Gnai3 overexpression partially rescues the hearing defects in HuR-deficient mice. Taken together, these findings indicate that HuR is a potential therapeutic target for ARHL.
Collapse
Affiliation(s)
- Siwei Guo
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jieying Cao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guodong Hong
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuning Song
- School of Life Science, Shandong University, Qingdao, China
| | - Ming Xia
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Wei Yuan
- Chongqing General Hospital, Chongqing, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- The Key Laboratory of Animal Resistant Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiuli Bi
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ziyi Liu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunhao Wu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Li
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxu Zhao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, China.
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Southeast University Shenzhen Research Institute, Shenzhen, China.
| | - Xiaolong Fu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Stam S, Gardel ML, Weirich KL. Direct detection of deformation modes on varying length scales in active biopolymer networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.15.540780. [PMID: 37292666 PMCID: PMC10245561 DOI: 10.1101/2023.05.15.540780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Correlated flows and forces that emerge from active matter orchestrate complex processes such as shape regulation and deformations in biological cells and tissues. The active materials central to cellular mechanics are cytoskeletal networks, where molecular motor activity drives deformations and remodeling. Here, we investigate deformation modes in contractile actin networks driven by the molecular motor myosin II through quantitative fluorescence microscopy. We examine the deformation anisotropy at different length scales in networks of sparsely cross-linked and bundled actin. In sparsely cross-linked networks, we find myosin-dependent biaxial buckling modes across length scales. Interestingly, both long and short-wavelength buckling may contribute to network contractility. In cross-linked bundled networks, uniaxial contraction predominates on long length scales, while the uniaxial or biaxial nature of the deformation depends on bundle microstructure at shorter length scales. The anisotropy of deformations may provide insight to the mechanical origins of contractility in actin networks and regulation of collective behavior in a variety of active materials.
Collapse
Affiliation(s)
- Samantha Stam
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
| | - Kimberly L Weirich
- Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634
| |
Collapse
|
3
|
Underhill A, Webb S, Grandi FC, Jeng JY, de Monvel JB, Plion B, Carlton AJ, Amariutei AE, Voulgari N, De Faveri F, Ceriani F, Mustapha M, Johnson SL, Safieddine S, Kros CJ, Marcotti W. MYO7A is required for the functional integrity of the mechanoelectrical transduction complex in hair cells of the adult cochlea. Proc Natl Acad Sci U S A 2025; 122:e2414707122. [PMID: 39746042 PMCID: PMC11725811 DOI: 10.1073/pnas.2414707122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (Po). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking. Here, we show that MYO7A has a distinct role in hair cells, being crucial for the structural integrity of hair bundles. Postnatal deletion of Myo7a leads to 87 to 96% reduction in MYO7A from hair cells by postnatal day 20 (P20), without affecting hearing function. During the following week, mice showed progressive decline in both hearing function and MET current amplitude in hair cells without affecting the resting Po and calcium sensitivity of the MET channel. Hair-bundle stiffness was normal at P20 but halved at P30, despite it having a normal staircase morphology and tip links. The reduction of MYO7A in the stereocilia (>87%) increased their vulnerability to sound-induced damage, with significantly more hearing loss and hair bundle deterioration than in control mice. RNA-sequencing identified a downregulation of several stereociliary genes in the Myo7a-deficient cochlea, indicating the presence of indirect compensatory mechanisms. This study reveals that mature hair cells seem to use a MYO7A-independent mechanism to maintain the resting Po of the MET channels. Instead, MYO7A is essential for maintaining the structural and functional integrity of the hair bundles.
Collapse
Affiliation(s)
- Anna Underhill
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Samuel Webb
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Fiorella C. Grandi
- Sorbonne Université, INSERM, Institute de Myologie, Centre de Researche en Myologie, ParisF-75013, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Jacques B. de Monvel
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Baptiste Plion
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Niovi Voulgari
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Francesca De Faveri
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Saaid Safieddine
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Corné J. Kros
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| |
Collapse
|
4
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
5
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-on protein switches for controlling actin binding in cells. Nat Commun 2024; 15:5840. [PMID: 38992021 PMCID: PMC11239668 DOI: 10.1038/s41467-024-49934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Ivanova J, Benk AS, Schaefer JV, Dreier B, Hermann LO, Plückthun A, Missirlis D, Spatz JP. Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells. ACS NANO 2024; 18:8919-8933. [PMID: 38489155 PMCID: PMC10976963 DOI: 10.1021/acsnano.3c12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The orchestrated assembly of actin and actin-binding proteins into cytoskeletal structures coordinates cell morphology changes during migration, cytokinesis, and adaptation to external stimuli. The accurate and unbiased visualization of the diverse actin assemblies within cells is an ongoing challenge. We describe here the identification and use of designed ankyrin repeat proteins (DARPins) as synthetic actin binders. Actin-binding DARPins were identified through ribosome display and validated biochemically. When introduced or expressed inside living cells, fluorescently labeled DARPins accumulated at actin filaments, validated through phalloidin colocalization on fixed cells. Nevertheless, different DARPins displayed different actin labeling patterns: some DARPins labeled efficiently dynamic structures, such as filopodia, lamellipodia, and blebs, while others accumulated primarily in stress fibers. This differential intracellular distribution correlated with DARPin-actin binding kinetics, as measured by fluorescence recovery after photobleaching experiments. Moreover, the rapid arrest of actin dynamics induced by pharmacological treatment led to the fast relocalization of DARPins. Our data support the hypothesis that the localization of actin probes depends on the inherent dynamic movement of the actin cytoskeleton. Compared to the widely used LifeAct probe, one DARPin exhibited enhanced signal-to-background ratio while retaining a similar ability to label stress fibers. In summary, we propose DARPins as promising actin-binding proteins for labeling or manipulation in living cells.
Collapse
Affiliation(s)
- Julia
R. Ivanova
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Heidelberg
University, Faculty of Biosciences, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Amelie S. Benk
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Jonas V. Schaefer
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- CSL
Behring
AG, 3014 Bern, Switzerland
| | - Birgit Dreier
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Leon O. Hermann
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dimitris Missirlis
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, D-69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Sherer LA, Mahanta B, Courtemanche N. Computational tools for quantifying actin filament numbers, lengths, and bundling. Biol Open 2024; 13:bio060267. [PMID: 38372564 PMCID: PMC10924227 DOI: 10.1242/bio.060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
The actin cytoskeleton is a dynamic filamentous network that assembles into specialized structures to enable cells to perform essential processes. Direct visualization of fluorescently-labeled cytoskeletal proteins has provided numerous insights into the dynamic processes that govern the assembly of actin-based structures. However, accurate analysis of these experiments is often complicated by the interdependent and kinetic natures of the reactions involved. It is often challenging to disentangle these processes to accurately track their evolution over time. Here, we describe two programs written in the MATLAB programming language that facilitate counting, length measurements, and quantification of bundling of actin filaments visualized in fluorescence micrographs. To demonstrate the usefulness of our programs, we describe their application to the analysis of two representative reactions: (1) a solution of pre-assembled filaments under equilibrium conditions, and (2) a reaction in which actin filaments are crosslinked together over time. We anticipate that these programs can be applied to extract equilibrium and kinetic information from a broad range of actin-based reactions, and that their usefulness can be expanded further to investigate the assembly of other biopolymers.
Collapse
Affiliation(s)
- Laura A. Sherer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Qi J, Tan F, Zhang L, Zhou Y, Zhang Z, Sun Q, Li N, Fang Y, Chen X, Wu Y, Zhong G, Chai R. Critical role of TPRN rings in the stereocilia for hearing. Mol Ther 2024; 32:204-217. [PMID: 37952086 PMCID: PMC10787140 DOI: 10.1016/j.ymthe.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yunhao Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Southeast University Shenzhen Research Institute, Shenzhen 518063, China.
| |
Collapse
|
10
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-On Protein Switches for Controlling Actin Binding in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.561921. [PMID: 37961502 PMCID: PMC10634840 DOI: 10.1101/2023.10.26.561921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M. Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
11
|
Rajan S, Yoon J, Wu H, Srapyan S, Baskar R, Ahmed G, Yang T, Grintsevich EE, Reisler E, Terman JR. Disassembly of bundled F-actin and cellular remodeling via an interplay of Mical, cofilin, and F-actin crosslinkers. Proc Natl Acad Sci U S A 2023; 120:e2309955120. [PMID: 37725655 PMCID: PMC10523612 DOI: 10.1073/pnas.2309955120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Cellular form and function are controlled by the assembly and stability of actin cytoskeletal structures-but disassembling/pruning these structures is equally essential for the plasticity and remodeling that underlie behavioral adaptations. Importantly, the mechanisms of actin assembly have been well-defined-including that it is driven by actin's polymerization into filaments (F-actin) and then often bundling by crosslinking proteins into stable higher-order structures. In contrast, it remains less clear how these stable bundled F-actin structures are rapidly disassembled. We now uncover mechanisms that rapidly and extensively disassemble bundled F-actin. Using biochemical, structural, and imaging assays with purified proteins, we show that F-actin bundled with one of the most prominent crosslinkers, fascin, is extensively disassembled by Mical, the F-actin disassembly enzyme. Furthermore, the product of this Mical effect, Mical-oxidized actin, is poorly bundled by fascin, thereby further amplifying Mical's disassembly effects on bundled F-actin. Moreover, another critical F-actin regulator, cofilin, also affects fascin-bundled filaments, but we find herein that it synergizes with Mical to dramatically amplify its disassembly of bundled F-actin compared to the sum of their individual effects. Genetic and high-resolution cellular assays reveal that Mical also counteracts crosslinking proteins/bundled F-actin in vivo to control cellular extension, axon guidance, and Semaphorin/Plexin cell-cell repulsion. Yet, our results also support the idea that fascin-bundling serves to dampen Mical's F-actin disassembly in vitro and in vivo-and that physiologically relevant cellular remodeling requires a fine-tuned interplay between the factors that build bundled F-actin networks and those that disassemble them.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jimok Yoon
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Heng Wu
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Raju Baskar
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Taehong Yang
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Jonathan R. Terman
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
12
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Dwyer ME, Robertson-Anderson RM, Gurmessa BJ. Nonlinear Microscale Mechanics of Actin Networks Governed by Coupling of Filament Crosslinking and Stabilization. Polymers (Basel) 2022; 14:polym14224980. [PMID: 36433106 PMCID: PMC9696012 DOI: 10.3390/polym14224980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Actin plays a vital role in maintaining the stability and rigidity of biological cells while allowing for cell motility and shape change. The semiflexible nature of actin filaments-along with the myriad actin-binding proteins (ABPs) that serve to crosslink, bundle, and stabilize filaments-are central to this multifunctionality. The effect of ABPs on the structural and mechanical properties of actin networks has been the topic of fervent investigation over the past few decades. Yet, the combined impact of filament stabilization, stiffening and crosslinking via ABPs on the mechanical response of actin networks has yet to be explored. Here, we perform optical tweezers microrheology measurements to characterize the nonlinear force response and relaxation dynamics of actin networks in the presence of varying concentrations of α-actinin, which transiently crosslinks actin filaments, and phalloidin, which stabilizes filamentous actin and increases its persistence length. We show that crosslinking and stabilization can act both synergistically and antagonistically to tune the network resistance to nonlinear straining. For example, phalloidin stabilization leads to enhanced elastic response and reduced dissipation at large strains and timescales, while the initial microscale force response is reduced compared to networks without phalloidin. Moreover, we find that stabilization switches this initial response from that of stress stiffening to softening despite the increased filament stiffness that phalloidin confers. Finally, we show that both crosslinking and stabilization are necessary to elicit these emergent features, while the effect of stabilization on networks without crosslinkers is much more subdued. We suggest that these intriguing mechanical properties arise from the competition and cooperation between filament connectivity, bundling, and rigidification, shedding light on how ABPs with distinct roles can act in concert to mediate diverse mechanical properties of the cytoskeleton and bio-inspired polymeric materials.
Collapse
Affiliation(s)
- Mike E. Dwyer
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA
| | | | - Bekele J. Gurmessa
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA
- Correspondence:
| |
Collapse
|
14
|
Yang JB, Kim KS, Heo J, Chung JM, Jung HS. Studies of functional properties of espin 1: Its interaction to actin filaments. Front Cell Dev Biol 2022; 10:1022096. [DOI: 10.3389/fcell.2022.1022096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Actin is a multifunctional biomolecule that forms not only basic structural bodies such as filopodia and lamellipodia, but also large microvilli-like organelles like stereocilia. Actin consists of four sub-domains (S1, S2, S3, and S4), and the “target-binding groove” formed between S1 and S3 is the major binding site for various actin binding proteins. Actin filament dynamics are regulated by numerous actin binding proteins with different mechanisms of actin binding, assembly, and disassembly such as actin severing, branching, and bundling. Ectoplasmic specialization protein 1 (espin 1) is an actin binding and bundling protein that is specifically implicated in the elongation and stabilization of stereocilia as a binding partner with myosin III. However, little is known about the molecular structure, actin bundling, and stabilizing mechanism of espin 1; hence, we investigated the interaction between actin and espin 1 through structural data. In this study, we first purified human espin 1 in an E. coli system following a new detergent-free approach and then demonstrated the 2D structure of full-length espin 1 using transmission electron microscopy along with Nickel nitrilotriacetic acid nanogold labeling and 2D averaging using SPIDER. Furthermore, we also determined the espin 1 binding domain of actin using a co-sedimentation assay along with gelsolin and myosin S1. These findings are not only beneficial for understanding the actin binding and bundling mechanism of espin 1, but also shed light on its elongation, stabilization, and tip-localization mechanisms with myosin III. This study thus provides a basis for understanding the molecular structure of espin 1 and can contribute to various hearing-related diseases, such as hearing loss and vestibular dysfunction.
Collapse
|
15
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Nast-Kolb T, Bleicher P, Payr M, Bausch AR. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol Biol Cell 2022; 33:ar91. [PMID: 35830600 PMCID: PMC9582628 DOI: 10.1091/mbc.e21-11-0577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Actin bundles constitute important cytoskeleton structures and enable a scaffold for force transmission inside cells. Actin bundles are formed by proteins, with multiple F-actin binding domains cross-linking actin filaments to each other. Vasodilator-stimulated phosphoprotein (VASP) has mostly been reported as an actin elongator, but it has been shown to be a bundling protein as well and is found in bundled actin structures at filopodia and adhesion sites. Based on in vitro experiments, it remains unclear when and how VASP can act as an actin bundler or elongator. Here we demonstrate that VASP bound to membranes facilitates the formation of large actin bundles during polymerization. The alignment by polymerization requires the fluidity of the lipid bilayers. The mobility within the bilayer enables VASP to bind to filaments and capture and track growing barbed ends. VASP itself phase separates into a protein-enriched phase on the bilayer. This VASP-rich phase nucleates and accumulates at bundles during polymerization, which in turn leads to a reorganization of the underlying lipid bilayer. Our findings demonstrate that the nature of VASP localization is decisive for its function. The up-concentration based on VASP’s affinity to actin during polymerization enables it to simultaneously fulfill the function of an elongator and a bundler.
Collapse
Affiliation(s)
- T Nast-Kolb
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and
| | - P Bleicher
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - M Payr
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany and.,Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhoferstr. 1, 69117 Heidelberg, Germany
| | - A R Bausch
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| |
Collapse
|
17
|
Hernández-Del-Valle M, Valencia-Expósito A, López-Izquierdo A, Casanova-Ferrer P, Tarazona P, Martín-Bermudo MD, Míguez DG. A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biol 2022; 20:90. [PMID: 35459165 PMCID: PMC9034637 DOI: 10.1186/s12915-022-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. Results Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. Conclusions We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-022-01279-2).
Collapse
Affiliation(s)
- Miguel Hernández-Del-Valle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - Antonio López-Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pau Casanova-Ferrer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pedro Tarazona
- IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica Teórica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
18
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
19
|
Deng X, Hu Z. Hearing Recovery Induced by DNA Demethylation in a Chemically Deafened Adult Mouse Model. Front Cell Neurosci 2022; 16:792089. [PMID: 35250483 PMCID: PMC8891629 DOI: 10.3389/fncel.2022.792089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Functional hair cell regeneration in the adult mammalian inner ear remains challenging. This study aimed to study the function of new hair cells induced by a DNA demethylating agent 5-azacytidine. Adult mice were deafened chemically, followed by injection of 5-azacytidine or vehicle into the inner ear. Functionality of regenerated hair cells was evaluated by expression of hair cell proteins, auditory brainstem response (ABR), and distortion-product otoacoustic emission (DPOAE) tests for 6 weeks. In the vehicle-treated group, no cells expressed the hair cell-specific protein myosin VIIa in the cochlea, whereas numerous myosin VIIa-expressing cells were found in the 5-azacytidine-treated cochlea, suggesting the regeneration of auditory hair cells. Moreover, regenerated hair cells were co-labeled with functional proteins espin and prestin. Expression of ribbon synapse proteins suggested synapse formation between new hair cells and neurons. In hearing tests, progressive improvements in ABR [5-30 dB sound pressure level (SPL)] and DPOAE (5-20 dB) thresholds were observed in 5-azacytidine-treated mice. In vehicle-treated mice, there were <5 dB threshold changes in hearing tests. This study demonstrated the ability of 5-azacytidine to promote the functional regeneration of auditory hair cells in a mature mouse model via DNA demethylation, which may provide insights into hearing regeneration using an epigenetic approach.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
20
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Zheng L, Adam SA, García‐Anoveros J, Mitchell BJ, Bartles JR. Espin overexpression causes stereocilia defects and provides an anti-capping effect on actin polymerization. Cytoskeleton (Hoboken) 2022; 79:64-74. [PMID: 35844198 PMCID: PMC9796729 DOI: 10.1002/cm.21719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/30/2023]
Abstract
Stereocilia are actin-based projections of hair cells that are arranged in a step like array, in rows of increasing height, and that constitute the mechanosensory organelle used for the senses of hearing and balance. In order to function properly, stereocilia must attain precise sizes in different hair cell types and must coordinately form distinct rows with varying lengths. Espins are actin-bundling proteins that have a well-characterized role in stereocilia formation; loss of function mutations in Espin result in shorter stereocilia and deafness in the jerker mouse. Here we describe the generation of an Espin overexpressing transgenic mouse line that results in longer first row stereocilia and discoordination of second-row stereocilia length. Furthermore, Espin overexpression results in the misregulation of other stereocilia factors including GNAI3, GPSM2, EPS8, WHRN, and MYO15A, revealing that GNAI3 and GPSM2 are dispensable for stereocilia overgrowth. Finally, using an in vitro actin polymerization assay we show that espin provides an anti-capping function that requires both the G-actin binding WH2 domain as well as either the C-terminal F-actin binding domain or the internal xAB actin-binding domain. Our results provide a novel function for Espins at the barbed ends of actin filaments distinct from its previous known function of actin bundling that may account for their effects on stereocilia growth.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Stephen A. Adam
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jaime García‐Anoveros
- Department of Anesthesiology Neurology and NeuroscienceNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Brian J. Mitchell
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - James R. Bartles
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
22
|
Sherer LA, Courtemanche N. Cooperative bundling by fascin generates actin structures with architectures that depend on filament length. Front Cell Dev Biol 2022; 10:974047. [PMID: 36120572 PMCID: PMC9479110 DOI: 10.3389/fcell.2022.974047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
The assembly of actin-based structures with precisely defined architectures supports essential cellular functions, including motility, intracellular transport, and division. The geometric arrangements of the filaments within actin structures are stabilized via the association of crosslinking proteins, which bind two filaments simultaneously. Because actin polymerization and crosslinking occur concurrently within the dynamic environment of the cell, these processes likely play interdependent roles in shaping the architectures of actin-based structures. To dissect the contribution of polymerization to the construction of higher-order actin structures, we investigated how filament elongation affects the formation of simple, polarized actin bundles by the crosslinking protein fascin. Using populations of actin filaments to represent distinct stages of elongation, we found that the rate of bundle assembly increases with filament length. Fascin assembles short filaments into discrete bundles, whereas bundles of long filaments merge with one another to form interconnected networks. Although filament elongation promotes bundle coalescence, many connections formed between elongating bundles are short-lived and are followed by filament breakage. Our data suggest that initiation of crosslinking early in elongation aligns growing filaments, creating a template for continued bundle assembly as elongation proceeds. This initial alignment promotes the assembly of bundles that are resistant to large changes in curvature that are required for coalescence into interconnected networks. As a result, bundles of short filaments remain straighter and more topologically discrete as elongation proceeds than bundles assembled from long filaments. Thus, uncoordinated filament elongation and crosslinking can alter the architecture of bundled actin networks, highlighting the importance of maintaining precise control over filament length during the assembly of specialized actin structures.
Collapse
|
23
|
Hu LL, Pan MH, Yang FL, Zong ZA, Tang F, Pan ZN, Lu X, Ren YP, Wang JL, Sun SC. FASCIN regulates actin assembly for spindle movement and polar body extrusion in mouse oocyte meiosis. J Cell Physiol 2021; 236:7725-7733. [PMID: 34018605 DOI: 10.1002/jcp.30443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
During mouse oocyte meiotic maturation, actin filaments play multiple roles in meiosis such as spindle migration and cytokinesis. FASCIN is shown to be an actin-binding and bundling protein, making actin filaments tightly packed and parallel-aligned, and FASCIN is involved in several cellular processes like adhesion and migration. FASCIN is also a potential prognostic biomarker and therapeutic target for the treatment of metastatic disease. However, little is known about the functions of FASCIN in oocyte meiosis. In the present study, we knocked down the expression of FASCIN, and our results showed that FASCIN was essential for oocyte maturation. FASCIN was all expressed in the different stages of oocyte meiosis, and it mainly localized at the cortex of oocytes from the GV stage to the MII stage and showed a similar localization pattern with actin and DAAM1. Depletion of FASCIN affected the extrusion of the first polar body, and we also observed that some oocytes extruded from the large polar bodies. This might have resulted from the defects of actin assembly, which further affected the meiotic spindle positioning. In addition, we showed that inhibition of PKC activity decreased FASCIN expression, indicating that FASCIN might be regulated by PKC. Taken together, our results provided evidence for the important role of FASCIN on actin filaments for spindle migration and polar body extrusion in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Reproductive Medicine Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng-Lian Yang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Zi-Ao Zong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Lu
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yan-Ping Ren
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jun-Li Wang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Ketebo AA, Park C, Kim J, Jun M, Park S. Probing mechanobiological role of filamin A in migration and invasion of human U87 glioblastoma cells using submicron soft pillars. NANO CONVERGENCE 2021; 8:19. [PMID: 34213679 PMCID: PMC8253861 DOI: 10.1186/s40580-021-00267-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 05/21/2023]
Abstract
Filamin A (FLNa) belongs to an actin-binding protein family in binding and cross-linking actin filaments into a three-dimensional structure. However, little attention has been given to its mechanobiological role in cancer cells. Here, we quantitatively investigated the role of FLNa by analyzing the following parameters in negative control (NC) and FLNa-knockdown (KD) U87 glioma cells using submicron pillars (900 nm diameter and 2 μm height): traction force (TF), rigidity sensing ability, cell aspect ratio, migration speed, and invasiveness. During the initial phase of cell adhesion (< 1 h), FLNa-KD cells polarized more slowly than did NC cells, which can be explained by the loss of rigidity sensing in FLNa-KD cells. The higher motility of FLNa-KD cells relative to NC cells can be explained by the high TF exerted by FLNa-KD cells when compared to NC cells, while the higher invasiveness of FLNa-KD cells relative to NC cells can be explained by a greater number of filopodia in FLNa-KD cells than in NC cells. Our results suggest that FLNa plays important roles in suppressing motility and invasiveness of U87 cells.
Collapse
Affiliation(s)
- Abdurazak Aman Ketebo
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Chanyong Park
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Jaewon Kim
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Myeongjun Jun
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Sungsu Park
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, 16419, Suwon, Korea.
| |
Collapse
|
25
|
Belkourchia F, Desrosiers RR. The enzyme L-isoaspartyl (D-aspartyl) methyltransferase promotes migration and invasion in human U-87 MG and U-251 MG glioblastoma cell lines. Biomed Pharmacother 2021; 140:111766. [PMID: 34082401 DOI: 10.1016/j.biopha.2021.111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.
Collapse
Affiliation(s)
- Fatima Belkourchia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Richard R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
26
|
Krishnan RK, Baskar R, Anna B, Elia N, Boermel M, Bausch AR, Abdu U. Recapitulating Actin Module Organization in the Drosophila Oocyte Reveals New Roles for Bristle-Actin-Modulating Proteins. Int J Mol Sci 2021; 22:ijms22084006. [PMID: 33924532 PMCID: PMC8070096 DOI: 10.3390/ijms22084006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.
Collapse
Affiliation(s)
- Ramesh Kumar Krishnan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Bakhrat Anna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mandy Boermel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany;
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- Correspondence:
| |
Collapse
|
27
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
28
|
Weirich KL, Stam S, Munro E, Gardel ML. Actin bundle architecture and mechanics regulate myosin II force generation. Biophys J 2021; 120:1957-1970. [PMID: 33798565 DOI: 10.1016/j.bpj.2021.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.
Collapse
Affiliation(s)
- Kimberly L Weirich
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina
| | - Samantha Stam
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular and Cellular Biology, University of California, Davis, Davis, California
| | - Edwin Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Physics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
29
|
Carlton AJ, Halford J, Underhill A, Jeng J, Avenarius MR, Gilbert ML, Ceriani F, Ebisine K, Brown SDM, Bowl MR, Barr‐Gillespie PG, Marcotti W. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol 2021; 599:1173-1198. [PMID: 33151556 PMCID: PMC7898316 DOI: 10.1113/jp280670] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.
Collapse
Affiliation(s)
- Adam J. Carlton
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Julia Halford
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
| | - Anna Underhill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: Department of Pathology Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Merle L. Gilbert
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: US Army Medical Department Activity‐KoreaCamp HumphreysRepublic of Korea
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Steve D. M. Brown
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
| | - Michael R. Bowl
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
- Present address: UCL Ear InstituteUniversity College LondonLondonUK
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandORUSA
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
30
|
Kwon O, Han TS, Son MY. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. Front Cell Dev Biol 2020; 8:593969. [PMID: 33195268 PMCID: PMC7644937 DOI: 10.3389/fcell.2020.593969] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
The morphology and structure of the intestinal epithelium are rearranged dynamically during development, tissue regeneration, and disease progression. The most important characteristic of intestinal epithelial morphogenesis is the repetitive compartmentalized structures of crypt-villus units, which are crucial for maintaining intestinal homeostasis and functions. Abnormal structures are known to be closely associated with disease development and progression. Therefore, understanding how intestinal crypt-villus structures are formed and grown is essential for elucidating the physiological and pathophysiological roles of the intestinal epithelium. However, a critical knowledge gap in understanding the compartmentalization of the crypt-villus axis remains when using animal models, due to obvious inter-species differences and difficulty in real-time monitoring. Recently, emerging technologies such as organoid culture, lineage tracing, and single cell sequencing have enabled the assessment of the intrinsic mechanisms of intestinal epithelial morphogenesis. In this review, we discuss the latest research on the regulatory factors and signaling pathways that play a central role in the formation, maintenance, and regeneration of crypt-villus structures in the intestinal epithelium. Furthermore, we discuss how these factors and pathways play a role in development, tissue regeneration, and disease. We further explore how the current technology of three-dimensional intestinal organoids has contributed to the understanding of crypt-villus compartmentalization, highlighting new findings related to the self-organizing-process-driven initiation and propagation of crypt-villus structures. We also discuss intestinal diseases featuring abnormalities of the crypt-villus structure to provide insights for the development of novel therapeutic strategies targeting intestinal morphogenesis and crypt-villus formation.
Collapse
Affiliation(s)
- Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
31
|
Park J, Lee M, Lee B, Castaneda N, Tetard L, Kang EH. Crowding tunes the organization and mechanics of actin bundles formed by crosslinking proteins. FEBS Lett 2020; 595:26-40. [PMID: 33020904 DOI: 10.1002/1873-3468.13949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Fascin and α-actinin form higher-ordered actin bundles that mediate numerous cellular processes including cell morphogenesis and movement. While it is understood crosslinked bundle formation occurs in crowded cytoplasm, how crowding affects the bundling activities of the two crosslinking proteins is not known. Here, we demonstrate how solution crowding modulates the organization and mechanical properties of fascin- and α-actinin-induced bundles, utilizing total internal reflection fluorescence and atomic force microscopy imaging. Molecular dynamics simulations support the inference that crowding reduces binding interaction between actin filaments and fascin or the calponin homology 1 domain of α-actinin evidenced by interaction energy and hydrogen bonding analysis. Based on our findings, we suggest a mechanism of crosslinked actin bundle assembly and mechanics in crowded intracellular environments.
Collapse
Affiliation(s)
- Jinho Park
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Myeongsang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Nicholas Castaneda
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Ellen Hyeran Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.,Department of Physics, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
32
|
Nakamura DS, Lin YH, Khan D, Gothié JDM, de Faria O, Dixon JA, McBride HM, Antel JP, Kennedy TE. Mitochondrial dynamics and bioenergetics regulated by netrin-1 in oligodendrocytes. Glia 2020; 69:392-412. [PMID: 32910475 DOI: 10.1002/glia.23905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.
Collapse
Affiliation(s)
- Diane S Nakamura
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James A Dixon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin. Proc Natl Acad Sci U S A 2020; 117:22101-22112. [PMID: 32848067 DOI: 10.1073/pnas.1917269117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.
Collapse
|
34
|
RSU-1 Maintains Integrity of Caenorhabditis elegans Vulval Muscles by Regulating α-Actinin. G3-GENES GENOMES GENETICS 2020; 10:2507-2517. [PMID: 32461202 PMCID: PMC7341117 DOI: 10.1534/g3.120.401185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Egg-laying behavior in Caenorhabditis elegans is a well-known model for investigating fundamental cellular processes. In egg-laying, muscle contraction is the relaxation of the vulval muscle to extrude eggs from the vulva. Unlike skeletal muscle, vulval muscle lacks visible striations of the sarcomere. Therefore, vulval muscle must counteract the mechanical stress, caused by egg extrusion and body movement, from inducing cell-shape distortion by maintaining its cytoskeletal integrity. However, the underlying mechanisms that regulate the cellular integrity in vulval muscles remain unclear. Here, we demonstrate that C. elegans egg-laying requires proper vulval muscle 1 (vm1), in which the actin bundle organization of vm1 muscles is regulated by Ras suppressor protein 1 (RSU-1). In the loss of RSU-1, as well as RasLET-60 overactivation, blister-like membrane protrusions and disorganized actin bundles were observed in the vm1 muscles. Moreover, RasLET-60 depletion diminished the defected actin-bundles in rsu-1 mutant. These results reveal the genetic interaction of RSU-1 and RasLET-60 in vivo In addition, our results further demonstrated that the fifth to seventh leucine-rich region of RSU-1 is required to promote actin-bundling protein, α-actinin, for actin bundle stabilization in the vm1 muscles. This expands our understanding of the molecular mechanisms of actin bundle organization in a specialized smooth muscle.
Collapse
|
35
|
Haimov E, Windoffer R, Leube RE, Urbakh M, Kozlov MM. Model for Bundling of Keratin Intermediate Filaments. Biophys J 2020; 119:65-74. [PMID: 32533940 PMCID: PMC7335914 DOI: 10.1016/j.bpj.2020.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
Keratin intermediate filaments form dynamic intracellular networks, which span the entire cytoplasm and provide mechanical strength to the cell. The mechanical resilience of the keratin intermediate filament network itself is determined by filament bundling. The bundling process can be reproduced in artificial conditions in the absence of any specific cross-linking proteins, which suggests that it is driven by generic physical forces acting between filaments. Here, we suggest a detailed model for bundling of keratin intermediate filaments based on interfilament electrostatic and hydrophobic interactions. It predicts that the process is limited by an optimal bundle thickness, which is determined by the electric charge of the filaments, the number of hydrophobic residues in the constituent keratin polypeptides, and the extent to which the electrolyte ions are excluded from the bundle interior. We evaluate the kinetics of the bundling process by considering the energy barrier a filament has to overcome for joining a bundle.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
36
|
J J, Vanisree AJ. Naringenin Sensitizes Resistant C6 Glioma Cells with a Repressive Impact on the Migrating Ability. Ann Neurosci 2020; 27:114-123. [PMID: 34556949 PMCID: PMC8455008 DOI: 10.1177/0972753120950057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Glioma, the most common form of a malignant brain tumour is characterised by a poor prognosis, which is attributable to its resistance against current therapeutic approaches. Temozolomide (TMZ), a DNA alkylating agent, is the first-line drug for glioma treatment. Long-term treatment using TMZ was reported to culminate in the development of resistance with overexpression of multidrug resistance 1 gene coded protein P-glycoprotein, which in turn releases the drugs from the tumour cells. Purpose: Thus, to circumvent such resistance issues, the current study attempted to explore the effect of naringenin (a flavanone) with proven antiglial tumour potential, in mitigating the features of TMZ resistance. Methods: Colony-forming assay, invasion assay and scratch wound assay were performed among the groups, namely tumour control (C6), vehicle control (V), naringenin (NGEN)-treated, drug-resistant tumour cells (C6R), and drug resistance cells added with NGEN (C6R+NGEN), to examine the impact of NGEN on migration and invasion. The effect of NGEN on filopodia length and density during cell migration was also studied in addition to the matrix metalloproteinases (MMP-2 and MMP-9) and p-ERK levels. Results and Conclusion: NGEN and C6R+NGEN groups had shown significant reduction (P < .01) in length and density of filopodia, colony formation, invasion and wound healing. Further, NGEN could also modify the assessed protein levels (P < .001), which were involved in migration and invasion in sensitive and resistant cells. Our study had provided the first evidence on NGEN-induced enhanced sensitivity against TMZ resistance with profound influence as an antimigratory and anti-invasive agent.
Collapse
Affiliation(s)
- Jayalakshmi J
- Department of Biochemistry, University of Madras, Chennai, Tamil Nadu, India
| | | |
Collapse
|
37
|
González-Gutiérrez AG, Verdín J, Rodríguez-Garay B. Simple Whole-Mount Staining Protocol of F-Actin for Studies of the Female Gametophyte in Agavoideae and Other Crassinucellate Ovules. FRONTIERS IN PLANT SCIENCE 2020; 11:384. [PMID: 32328076 PMCID: PMC7161591 DOI: 10.3389/fpls.2020.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 05/28/2023]
Abstract
During plant sexual reproduction, F-actin takes part in the elongation of the pollen tube and the movement of sperm cells along with it. Moreover, F-actin is involved in the transport of sperm cells throughout the embryo sac when double fertilization occurs. Different techniques for analysis of F-actin in plant cells have been developed: from classical actin-immunolocalization in fixed tissues to genetically tagged actin with fluorescent proteins for live imaging of cells. Despite the implementation of live cell imaging tools, fixed plant tissue methods for cytoskeletal studies remain an essential tool for genetically intractable systems. Also, most of the work on live imaging of the cytoskeleton has been conducted on cells located on the plant's surface, such as epidermal cells, trichomes, and root hairs. In cells situated in the plant's interior, especially those from plant species with thicker organ systems, it is necessary to utilize conventional sectioning and permeabilization methods to allow the label access to the cytoskeleton. Studies about the role of F-actin cytoskeleton during double fertilization in plants with crassinucellate ovules (e.g., Agave, Yucca, Polianthes, Prochnyantes, and Manfreda) remain scarce due to the difficulties to access the female gametophyte. Here, we have developed a straightforward method for analysis of F-actin in the female gametophyte of different Agavoideae sub-family species. The procedure includes the fixation of whole ovules with formaldehyde, followed by membrane permeabilization with cold acetone, a prolonged staining step with rhodamine-phalloidin, and Hoechst 33342 as a counterstain and two final steps of dehydration of samples in increasing-concentration series of cold isopropanol and clarification of tissues with methyl salicylate. This technique allows the analysis of a large number of samples in a short period, cell positioning relative to neighbor cells is maintained, and, with the help of a confocal microscope, reconstruction of a single 3D image of F-actin structures into the embryo sac can be obtained.
Collapse
Affiliation(s)
- Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| |
Collapse
|
38
|
Scholz M, Weirich KL, Gardel ML, Dinner AR. Tuning molecular motor transport through cytoskeletal filament network organization. SOFT MATTER 2020; 16:2135-2140. [PMID: 32016200 DOI: 10.1039/c9sm01904a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within cells, crosslinking proteins organize cytoskeletal filaments both temporally and spatially to create dynamic and structurally diverse networks. Molecular motors move on these networks for both force generation and transport processes. How the transport statistics depend on the network architecture remains poorly characterized. Using cross-linking proteins (α-actinin, fimbrin, fascin, or filamin) and purified actin, we create cytoskeletal networks with diverse microscopic architectures. We track the motion of myosin II motor proteins moving on these networks and calculate transport statistics. We observe that motor dynamics change predictably based on the bundling of filaments within the underlying networks and discuss implications for network function.
Collapse
Affiliation(s)
- Monika Scholz
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA. and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Kimberly L Weirich
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA. and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA. and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Aaron R Dinner
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA. and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA and Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Qi J, Zhang L, Tan F, Liu Y, Chu C, Zhu W, Wang Y, Qi Z, Chai R. Espin distribution as revealed by super-resolution microscopy of stereocilia. Am J Transl Res 2020; 12:130-141. [PMID: 32051742 PMCID: PMC7013225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Auditory hair cells are the mechanical sensors of sound waves in the inner ear, and the stereocilia, which are actin-rich protrusions of different heights on the apical surfaces of hair cells, are responsible for the transduction of sound waves into electrical signals. As a crucial actin-binding and bundling protein, espin is able to cross-link actin filaments and is therefore necessary for stereocilia morphogenesis. Using advanced super-resolution stimulated emission depletion microscopy, we imaged espin expression at the sub-diffraction limit along the whole length of the stereocilia in outer hair cells and inner hair cells in order to better understand espin's function in the development of stereocilia.
Collapse
Affiliation(s)
- Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- iHuman Institute, ShanghaiTech UniversityShanghai, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong UniversityNantong, China
| | - Liyan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- iHuman Institute, ShanghaiTech UniversityShanghai, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech UniversityShanghai, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech UniversityShanghai, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech UniversityShanghai, China
- School of Life Science and Technology, ShanghaiTech UniversityShanghai, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong UniversityNantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of ScienceBeijing, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 211189, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical UniversityBeijing 100069, China
| |
Collapse
|
40
|
How Actin Tracks Affect Myosin Motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:183-197. [DOI: 10.1007/978-3-030-38062-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
41
|
Adamatzky A, Schnauß J, Huber F. Actin droplet machine. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191135. [PMID: 31903204 PMCID: PMC6936293 DOI: 10.1098/rsos.191135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
The actin droplet machine is a computer model of a three-dimensional network of actin bundles developed in a droplet of a physiological solution, which implements mappings of sets of binary strings. The actin bundle network is conductive to travelling excitations, i.e. impulses. The machine is interfaced with an arbitrary selected set of k electrodes through which stimuli, binary strings of length k represented by impulses generated on the electrodes, are applied and responses are recorded. The responses are recorded in a form of impulses and then converted to binary strings. The machine's state is a binary string of length k: if there is an impulse recorded on the ith electrode, there is a '1' in the ith position of the string, and '0' otherwise. We present a design of the machine and analyse its state transition graphs. We envisage that actin droplet machines could form an elementary processor of future massive parallel computers made from biopolymers.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, Department of Computer Science, University of the West of England, Bristol, UK
| | - Jörg Schnauß
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany & Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Unit, Leipzig, Germany
| | - Florian Huber
- Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
42
|
Song WM, Lin X, Liao X, Hu D, Lin J, Sarpel U, Ye Y, Feferman Y, Labow DM, Walsh MJ, Zheng X, Zhang B. Multiscale network analysis reveals molecular mechanisms and key regulators of the tumor microenvironment in gastric cancer. Int J Cancer 2019; 146:1268-1280. [PMID: 31463974 PMCID: PMC7004118 DOI: 10.1002/ijc.32643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/18/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer deaths and the fourth most prevalent malignancy worldwide. The high incidence and mortality rates of gastric cancer result from multiple factors such as ineffective screening, diagnosis, and limited treatment options. In our study, we sought to systematically identify predictive molecular networks and key regulators to elucidate complex interacting signaling pathways in GC. We performed an integrative network analysis of the transcriptomic data in The Cancer Genome Atlas (TCGA) gastric cancer cohort and then comprehensively characterized the predictive subnetworks and key regulators by the matched genetic and epigenetic data. We identified 221 gene subnetworks (modules) in GC. The most prognostic subnetworks captured multiple aspects of the tumor microenvironment in GC involving interactions among stromal, epithelial and immune cells. We revealed the genetic and epigenetic underpinnings of those subnetworks and their key transcriptional regulators. We computationally predicted and experimentally validated specific mechanisms of anticancer effects of GKN2 in gastric cancer proliferation and invasion in vitro. The network models and the key regulators of the tumor microenvironment in GC identified here pave a way for developing novel therapeutic strategies for GC. What's new? Gene signatures have been identified for diagnosis and classification of gastric cancer (GC) as well as prediction of therapeutic response. However, key molecular mechanisms underlying prognosis remain to be revealed. Our study systematically identifies and characterizes predictive molecular networks and key regulators. The most prognostic subnetworks capture multiple aspects of the tumor microenvironment in GC involving interactions among stromal, epithelial, and immune cells. The authors computationally predicted and experimentally validated specific mechanisms of anti‐cancer effects of GKN2 in GC proliferation and invasion in vitro. These network models and key regulators pave the way for developing novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiolog, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xuehong Liao
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Jieqiong Lin
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Umut Sarpel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yunbin Ye
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China.,Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yael Feferman
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel M Labow
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martin J Walsh
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China.,Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
43
|
Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells 2019; 8:cells8060639. [PMID: 31242692 PMCID: PMC6627151 DOI: 10.3390/cells8060639] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Microglia are the tissue-resident immune cells of the central nervous system, where they constitute the first line of defense against any pathogens or injury. Microglia are highly motile cells and in order to carry out their function, they constantly undergo changes in their morphology to adapt to their environment. The microglial motility and morphological versatility are the result of a complex molecular machinery, mainly composed of mechanisms of organization of the actin cytoskeleton, coupled with a “sensory” system of membrane receptors that allow the cells to perceive changes in their microenvironment and modulate their responses. Evidence points to microglia as accountable for some of the changes observed in the brain during ageing, and microglia have a role in the development of neurodegenerative diseases, such as Alzheimer’s disease. The present review describes in detail the main mechanisms driving microglial motility in physiological conditions, namely, the cytoskeletal actin dynamics, with emphasis in proteins highly expressed in microglia, and the role of chemotactic membrane proteins, such as the fractalkine and purinergic receptors. The review further delves into the changes occurring to the involved proteins and pathways specifically during ageing and in Alzheimer’s disease, analyzing how these changes might participate in the development of this disease.
Collapse
Affiliation(s)
- Diana K Franco-Bocanegra
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Ciaran McAuley
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
44
|
Kang B, Jo S, Baek J, Nakamura F, Hwang W, Lee H. Role of mechanical flow for actin network organization. Acta Biomater 2019; 90:217-224. [PMID: 30928733 DOI: 10.1016/j.actbio.2019.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
The major cytoskeletal protein actin forms complex networks to provide structural support and perform vital functions in cells. In vitro studies have revealed that the structure of the higher-order actin network is determined primarily by the type of actin binding protein (ABP). By comparison, there are far fewer studies about the role of the mechanical environment for the organization of the actin network. In particular, the duration over which cells reorganize their shape in response to functional demands is relatively short compared to the in vitro protein polymerization time, suggesting that such changes can influence the actin network formation. We hypothesize that mechanical flows in the cytoplasm generated by exogenous and endogenous stimulation play a key role in the spatiotemporal regulation of the actin architecture. To mimic cytoplasmic streaming, we generated a circulating flow using surface acoustic wave in a microfluidic channel and investigated its effect on the formation of networks by actin and ABPs. We found that the mechanical flow affected the orientation and thickness of actin bundles, depending on the type and concentration of ABPs. Our computational model shows that the extent of alignment and thickness of actin bundle are determined by the balance between flow-induced drag forces and the tendency of ABPs to crosslink actin filaments at given angles. These results suggest that local intracellular flows can affect the assembly dynamics and morphology of the actin cytoskeleton. STATEMENT OF SIGNIFICANCE: Spatiotemporal regulation of actin cytoskeleton structure is essential in many cellular functions. It has been shown that mechanical cues including an applied force and geometric boundary can alter the structural characteristics of actin network. However, even though the cytoplasm accounts for a large portion of the cell volume, the effect of the cytoplasmic streaming flow produced during cell dynamics on actin network organization has not been reported. In this study, we demonstrated that the mechanical flow exerted during actin network organization play an important role in determining the orientation and dimension of actin bundle network. Our result will be beneficial in understanding the mechanism of the actin network reorganization occurred during physiological and pathological processes.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghan Jo
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghyeok Baek
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Wonmuk Hwang
- Departments of Biomedical Engineering, Materials Science & Engineering, and Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
45
|
Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol 2019; 17:e3000235. [PMID: 31002663 PMCID: PMC6493769 DOI: 10.1371/journal.pbio.3000235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/01/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple types of microvilliated sensory cells exhibit an apical extension thought to be instrumental in the detection of sensory cues. The investigation of the mechanisms underlying morphogenesis of sensory apparatus is critical to understand the biology of sensation. Most of what we currently know comes from the study of the hair bundle of the inner ear sensory cells, but morphogenesis and function of other sensory microvilliated apical extensions remain poorly understood. We focused on spinal sensory neurons that contact the cerebrospinal fluid (CSF) through the projection of a microvilliated apical process in the central canal, referred to as cerebrospinal fluid-contacting neurons (CSF-cNs). CSF-cNs respond to pH and osmolarity changes as well as mechanical stimuli associated with changes of flow and tail bending. In vivo time-lapse imaging in zebrafish embryos revealed that CSF-cNs are atypical neurons that do not lose their apical attachment and form a ring of actin at the apical junctional complexes (AJCs) that they retain during differentiation. We show that the actin-based protrusions constituting the microvilliated apical extension arise and elongate from this ring of actin, and we identify candidate molecular factors underlying every step of CSF-cN morphogenesis. We demonstrate that Crumbs 1 (Crb1), Myosin 3b (Myo3b), and Espin orchestrate the morphogenesis of CSF-cN apical extension. Using calcium imaging in crb1 and espin mutants, we further show that the size of the apical extension modulates the amplitude of CSF-cN sensory response to bending of the spinal cord. Based on our results, we propose that the apical actin ring could be a common site of initiation of actin-based protrusions in microvilliated sensory cells. Furthermore, our work provides a set of actors underlying actin-based protrusion elongation shared by different sensory cell types and highlights the critical role of the apical extension shape in sensory detection. A study of differentiating spinal sensory neurons in vivo uncovers critical factors required for the morphogenesis of sensory microvilli and reveals fine modulation of mechanosensory responses by microvillus length.
Collapse
|
46
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
47
|
Abstract
To date, there is no clear evidence for memory formation. In this article, we provide a framework to understand how memory is formed. The information collected by sensory organs is converted to a digital current that enters the presynaptic neuron through axonal conductance. Digital waves are converted to analog waves in the synapses. The analog current of information flows into the postsynapse. The degree of Ca2+ influx in the postsynapse is proportional to the voltage of each wave of analog current. The activation (via dephosphorylation) of the phosphorylated phosphatase, Slingshot, is regulated by Ca2+ concentration in the spine. After dephosphorylation by Slingshot, activated cofilin binds the parallel actin bundle. The wide helical twist angle of an actin filament that has been decorated with cofilin confers high electric potential to the filament. Phosphorylation results in the deactivation of the actin filament bound to cofilin, which in turn results in the cleavage of cofilin and actin filament, followed by a decrease in the twist angle of the actin filament. Next, the electric potential energy is discharged by the actin filament as it returns to its non-cofilin bound state, resulting in the formation of additional analog waves in the postsynapse.
Collapse
Affiliation(s)
- Bompei Yasui
- Nara-ken, Ikoma-shi, Tsuji-machi 882-16, 6300212, Japan.
| |
Collapse
|
48
|
Li Z, Liu H, Li J, Yang Q, Feng Z, Li Y, Yang H, Yu C, Wan J, Liu W, Zhang M. Homer Tetramer Promotes Actin Bundling Activity of Drebrin. Structure 2019; 27:27-38.e4. [DOI: 10.1016/j.str.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022]
|
49
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
50
|
Sakamoto S, Thumkeo D, Ohta H, Zhang Z, Huang S, Kanchanawong P, Fuu T, Watanabe S, Shimada K, Fujihara Y, Yoshida S, Ikawa M, Watanabe N, Saitou M, Narumiya S. mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility. PLoS Biol 2018; 16:e2004874. [PMID: 30256801 PMCID: PMC6175529 DOI: 10.1371/journal.pbio.2004874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.
Collapse
Affiliation(s)
- Satoko Sakamoto
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dean Thumkeo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Shuangru Huang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Takayoshi Fuu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sadanori Watanabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Shimada
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | | | - Masahito Ikawa
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| |
Collapse
|