1
|
Moldayazova L, Shagatayeva B, Zhapalakov B, Utegenova E, Amrin M. Sanitary-Hygienic Research to Ensure State Sanitary-Epidemiological Surveillance in the Republic of Kazakhstan. Disaster Med Public Health Prep 2024; 18:e249. [PMID: 39494982 DOI: 10.1017/dmp.2024.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
OBJECTIVE There are numerous factors that impact human health. Sanitary and hygienic conditions in the workplace and living environments, the state of the environment, and nutrition levels play a significant role in determining environmental quality. An integral part is also the organization of effective treatment and preventive health care services for the population. The purpose of this study is to analyze the sanitary and hygienic situation in the Republic of Kazakhstan. METHODS The methodological framework employed general theoretical methods, statistical analysis, and techniques for systematizing information. RESULTS During the study, it was determined that in several cities, high levels of respiratory and skin morbidity are recorded, linked to elevated concentrations of dust, ammonia, hydrogen fluoride, and nitrogen dioxide. As a consequence of chemical contamination of drinking water sources, there is an escalation in the incidence of nephritis and hepatitis, an upsurge in the number of toxicosis cases among pregnant women, and congenital anomalies. The sanitary condition of settlements greatly impacts the development of satisfactory living conditions. CONCLUSIONS Therefore, this research holds significant practical relevance, and the findings can be utilized by specialists in relevant fields to analyze and address the identified problems, as safeguarding public health, development, and improvement of its protection system is currently becoming one of the paramount tasks.
Collapse
Affiliation(s)
- Lyazzat Moldayazova
- "Scientific and Practical Center for Sanitary and Epidemiological Expertise and Monitoring", Branch of the Republican State Enterprise on the Right of Economic Use "National Center for Public Health" of the Ministry of Health of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - Bibigul Shagatayeva
- Department of Otorhinolaryngology and Ophthalmology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan
| | - Baser Zhapalakov
- Department of Otorhinolaryngology and Ophthalmology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan
| | - Elmira Utegenova
- "Scientific and Practical Center for Sanitary and Epidemiological Expertise and Monitoring", Branch of the Republican State Enterprise on the Right of Economic Use "National Center for Public Health" of the Ministry of Health of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - Meiram Amrin
- Department of International Cooperation, Management of Educational and Scientific Programs, "Scientific and Practical Center for Sanitary and Epidemiological Expertise and Monitoring", Branch of the Republican State Enterprise on the Right of Economic Use "National Center for Public Health" of the Ministry of Health of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| |
Collapse
|
2
|
Zhou Q, Li S, Zhao M, Liu Y, He N, Zhou X, Zhou D, Qian Z. A 90-day feeding study of genetically modified maize LP007-1 in wistar han RCC rats. Food Chem Toxicol 2023; 180:114026. [PMID: 37709249 DOI: 10.1016/j.fct.2023.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
LP007-1 is a variety of insect-resistant and herbicide-tolerant maize containing the modified cry1Ab, cry2Ab, vip3Aa and cp4-epsps genes. The food safety assessment of the maize LP007-1 was conducted in Wistar Han RCC rats by a 90-days feeding study. Maize grains from both LP007-1 or its corresponding non-genetically modified control maize AX808 were incorporated into rodent diets at 25% and 50% concentrations by mass and administered to rats (n = 10/sex/group) for 90 days. A commercialized rodent diet was fed to an additional group as the basal-diet group. The diets of all groups were nutritionally balanced. No biologically relevant differences were observed in rats fed with maize LP007-1 compared to rats fed with AX808 and the basal-diet with respect to body weight/gain, food consumption/utilization, clinical signs, mortality, ophthalmology, clinical pathology (hematology, prothrombin time, activation of partial thrombin time, serum chemistry, urinalysis), organ weights, and gross and microscopic pathology. Considering the circumstances of this study, the results provided evidence that LP007-1 maize did not exhibit toxicity in the 90-day feeding study.
Collapse
Affiliation(s)
- Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Miao Zhao
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yinghua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Ning He
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
3
|
Zhang X, Hou C, Liu S, Liu R, Yin X, Liu X, Ma H, Wen J, Zhou R, Yin N, Jian Y, Liu S, Wang J. Effects of transgenic Bacillus Thuringiensis maize (2A-7) on the growth and development in rats. Food Chem Toxicol 2021; 158:112694. [PMID: 34813927 DOI: 10.1016/j.fct.2021.112694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the effects of genetically modified insect-resistant maize (2A-7) on the growth and development in developing rats. Rats were fed a diet formulated with 2A-7 maize and were compared with rats fed a diet formulated with non-transgenic maize (CK group) and rats fed AIN-93G diet (BC group). 2A-7 maize was formulated into diets at ratios of 82.4% (H group) and 20.6% (L group); non-transgenic maize was formulated into diets at a ratio of 82.4%. From the first day of pregnancy, adult rats were divided into four groups and fed with the above four diets, respectively. Weaning on postnatal day 21, the diets of offspring were consistent with their parents. The results showed that body weight, hematology, serum biochemistry, organ weight, organ coefficients and allergenicity of offspring fed with 2A-7 maize were comparable with those in the CK and BC groups. In physiological and behavioral development experiments, there was no statistically significant difference among groups. Although mCry1Ab proteins were detected in organs and serum, no histopathological changes were observed among groups. In conclusion, A-7 maize cause no treatment-related adverse effects on offspring, indicating that 2A-7 maize is safe for developing rats.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Chao Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Siqi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xueqian Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Huijuan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Jing Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ruoyu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Ning Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Yuanzhi Jian
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China.
| | - Shan Liu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, 100021, Beijing, China.
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 100191, Beijing, China; Beijing Key Laboratory of Food Safety Toxicology Research and Evaluation, 100191, Beijing, China.
| |
Collapse
|
4
|
Raja IS, Vedhanayagam M, Preeth DR, Kim C, Lee JH, Han DW. Development of Two-Dimensional Nanomaterials Based Electrochemical Biosensors on Enhancing the Analysis of Food Toxicants. Int J Mol Sci 2021; 22:3277. [PMID: 33806998 PMCID: PMC8005143 DOI: 10.3390/ijms22063277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/25/2022] Open
Abstract
In recent times, food safety has become a topic of debate as the foodborne diseases triggered by chemical and biological contaminants affect human health and the food industry's profits. Though conventional analytical instrumentation-based food sensors are available, the consumers did not appreciate them because of the drawbacks of complexity, greater number of analysis steps, expensive enzymes, and lack of portability. Hence, designing easy-to-use tests for the rapid analysis of food contaminants has become essential in the food industry. Under this context, electrochemical biosensors have received attention among researchers as they bear the advantages of operational simplicity, portability, stability, easy miniaturization, and low cost. Two-dimensional (2D) nanomaterials have a larger surface area to volume compared to other dimensional nanomaterials. Hence, researchers nowadays are inclined to develop 2D nanomaterials-based electrochemical biosensors to significantly improve the sensor's sensitivity, selectivity, and reproducibility while measuring the food toxicants. In the present review, we compile the contribution of 2D nanomaterials in electrochemical biosensors to test the food toxicants and discuss the future directions in the field. Further, we describe the types of food toxicity, methodologies quantifying food analytes, how the electrochemical food sensor works, and the general biomedical properties of 2D nanomaterials.
Collapse
Affiliation(s)
| | | | - Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai 600 044, India;
| | - Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea
| | - Dong Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Oh SW, Kim EH, Lee SY, Baek DY, Lee SG, Kang HJ, Chung YS, Park SK, Ryu TH. Compositional equivalence assessment of insect-resistant genetically modified rice using multiple statistical analyses. GM CROPS & FOOD 2021; 12:303-314. [PMID: 33648419 PMCID: PMC7928020 DOI: 10.1080/21645698.2021.1893624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The safety of transgenic Bt rice containing bacteria-derived mCry1Ac gene from Bacillus thuringiensis (Bt) was assessed by conducting field trials at two locations for two consecutive years in South Korea, using the near-isogenic line comparator rice cultivar ('Ilmi', non-Bt rice) and four commercial cultivars as references. Compositional analyses included measurement of proximates, minerals, amino acids, fatty acids, vitamins, and antinutrients. Significant differences between Bt rice and non-Bt rice were detected; however, all differences were within the reference range. The statistical analyses, including analysis of % variability, analysis of similarities (ANOISM), similarity percentage (SIMPER) analysis, and permutational multivariate analysis of variance (PERMANOVA) were performed to study factors contributing to compositional variability. The multivariate analyses revealed that environmental factors more influenced rice components' variability than by genetic factors. This approach was shown to be a powerful method to provide meaningful evaluations between Bt rice and its comparators. In this study, Bt rice was proved to be compositionally equivalent to conventional rice varieties through multiple statistical methods.
Collapse
Affiliation(s)
- Seon-Woo Oh
- R&D Coordination Division, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Eun-Ha Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - So-Young Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Da-Young Baek
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Sang-Gu Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hyeon-Jung Kang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Hun Ryu
- National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Raybould A. Problem formulation and phenotypic characterisation for the development of novel crops. Transgenic Res 2020; 28:135-145. [PMID: 31321696 DOI: 10.1007/s11248-019-00147-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product-the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002, Basel, Switzerland.
| |
Collapse
|
7
|
Liu W, Zhang Z, Liu X, Jin W. iTRAQ-based quantitative proteomic analysis of two transgenic soybean lines and the corresponding non-genetically modified isogenic variety. J Biochem 2020; 167:67-78. [PMID: 31596463 DOI: 10.1093/jb/mvz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
To investigate the unintended effects of genetically modified (GM) crops, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed with seed cotyledons of two GM soybean lines, MON87705 and MON87701×MON89788, and the corresponding non-transgenic isogenic variety A3525. Thirty-five differentially abundant proteins (DAPs) were identified in MON87705/A3525, 27 of which were upregulated and 8 downregulated. Thirty-eight DAPs were identified from the MON87701×MON89788/A3525 sample, including 29 upregulated proteins and 9 downregulated proteins. Pathway analysis showed that most of these DAPs participate in protein processing in endoplasmic reticulum and in metabolic pathways. Protein-protein interaction analysis of these DAPs demonstrated that the main interacting proteins are associated with post-translational modification, protein turnover, chaperones and signal transduction mechanisms. Nevertheless, these DAPs were not identified as new unintended toxins or allergens and only showed changes in abundance. All these results suggest that the seed cotyledon proteomic profiles of the two GM soybean lines studied were not dramatically altered compared with that of their natural isogenic control.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Zhe Zhang
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Xuri Liu
- Department of Food and Biological Engineering, Handan Polytechnic College, No.141 Zhuhe Road, Hanshan District, Handan, P.R. China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| |
Collapse
|
8
|
Liu W, Xu W, Li L, Dong M, Wan Y, He X, Huang K, Jin W. iTRAQ-based quantitative tissue proteomic analysis of differentially expressed proteins (DEPs) in non-transgenic and transgenic soybean seeds. Sci Rep 2018; 8:17681. [PMID: 30518773 PMCID: PMC6281665 DOI: 10.1038/s41598-018-35996-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The unintended effects of transgenesis have increased food safety concerns, meriting comprehensive evaluation. Proteomic profiling provides an approach to directly assess the unintended effects. Herein, the isobaric tags for relative and absolute quantitation (iTRAQ) comparative proteomic approach was employed to evaluate proteomic profile differences in seed cotyledons from 4 genetically modified (GM) and 3 natural genotypic soybean lines. Compared with their non-GM parents, there were 67, 61, 13 and 22 differentially expressed proteins (DEPs) in MON87705, MON87701 × MON89788, MON87708, and FG72. Overall, 170 DEPs were identified in the 3 GM soybean lines with the same parents, but 232 DEPs were identified in the 3 natural soybean lines. Thus, the differences in protein expression among the genotypic varieties were greater than those caused by GM. When considering ≥2 replicates, 4 common DEPs (cDEPs) were identified in the 3 different GM soybean lines with the same parents and 6 cDEPs were identified in the 3 natural varieties. However, when considering 3 replicates, no cDEPs were identified. Regardless of whether ≥2 or 3 replicates were considered, no cDEPs were identified among the 4 GM soybean lines. Therefore, no feedback due to GM was observed at the common protein level in this study.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Yusong Wan
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Christ B, Pluskal T, Aubry S, Weng JK. Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops. TRENDS IN PLANT SCIENCE 2018; 23:1047-1056. [PMID: 30361071 DOI: 10.1016/j.tplants.2018.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
The nutritional value and safety of food crops are ultimately determined by their chemical composition. Recent developments in the field of metabolomics have made it possible to characterize the metabolic profile of crops in a comprehensive and high-throughput manner. Here, we propose that state-of-the-art untargeted metabolomics technology should be leveraged for safety assessment of new crop products. We suggest generally applicable experimental design principles that facilitate the efficient and rigorous identification of both intended and unintended metabolic alterations associated with a newly engineered trait. Our proposition could contribute to increased transparency of the safety assessment process for new biotech crops.
Collapse
Affiliation(s)
- Bastien Christ
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sylvain Aubry
- Federal Office for Agriculture, 3003 Bern, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Raybould A, Macdonald P. Policy-Led Comparative Environmental Risk Assessment of Genetically Modified Crops: Testing for Increased Risk Rather Than Profiling Phenotypes Leads to Predictable and Transparent Decision-Making. Front Bioeng Biotechnol 2018; 6:43. [PMID: 29755975 PMCID: PMC5932390 DOI: 10.3389/fbioe.2018.00043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
We describe two contrasting methods of comparative environmental risk assessment for genetically modified (GM) crops. Both are science-based, in the sense that they use science to help make decisions, but they differ in the relationship between science and policy. Policy-led comparative risk assessment begins by defining what would be regarded as unacceptable changes when the use a particular GM crop replaces an accepted use of another crop. Hypotheses that these changes will not occur are tested using existing or new data, and corroboration or falsification of the hypotheses is used to inform decision-making. Science-led comparative risk assessment, on the other hand, tends to test null hypotheses of no difference between a GM crop and a comparator. The variables that are compared may have little or no relevance to any previously stated policy objective and hence decision-making tends to be ad hoc in response to possibly spurious statistical significance. We argue that policy-led comparative risk assessment is the far more effective method. With this in mind, we caution that phenotypic profiling of GM crops, particularly with omics methods, is potentially detrimental to risk assessment.
Collapse
Affiliation(s)
| | - Phil Macdonald
- Plant Health Science Services, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
11
|
Balsamo GM, Valentim-Neto PA, Mello CS, Arisi ACM. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10569-10577. [PMID: 26575080 DOI: 10.1021/acs.jafc.5b04659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.
Collapse
Affiliation(s)
- Geisi M Balsamo
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Pedro A Valentim-Neto
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Carla S Mello
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Ana C M Arisi
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
12
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
13
|
Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol 2015; 15:89. [PMID: 26427366 PMCID: PMC4591623 DOI: 10.1186/s12896-015-0207-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds. We used RNA-Seq to survey gene expression in three transgenic soybean lines expressing recombinant protein at levels representing up to 1.61 % of total protein in seed tissues. The three lines included: ST77, expressing human thyroglobulin protein (hTG), ST111, expressing human myelin basic protein (hMBP), and 764, expressing a mutant, nontoxic form of a staphylococcal subunit vaccine protein (mSEB). All lines selected for analysis were homozygous and contained a single copy of the transgene. METHODS Each transgenic soybean seed was screened for transgene presence and recombinant protein expression via PCR and western blotting. Whole seed mRNA was extracted and cDNA libraries constructed for Illumina sequencing. Following alignment to the soybean reference genome, differential gene expression analysis was conducted using edgeR and cufflinks. Functional analysis of differentially expressed genes was carried out using the gene ontology analysis tool AgriGO. RESULTS The transcriptomes of nine seeds from each transgenic line were sequenced and compared with wild type seeds. Native soybean gene expression was significantly altered in line 764 (mSEB) with more than 3000 genes being upregulated or downregulated. ST77 (hTG) and ST111 (hMBP) had significantly less differences with 52 and 307 differentially expressed genes respectively. Gene ontology enrichment analysis found that the upregulated genes in the 764 line were annotated with functions related to endopeptidase inhibitors and protein synthesis, but suppressed expression of genes annotated to the nuclear pore and to protein transport. No significant gene ontology terms were detected in ST77, and only a few genes involved in photosynthesis and thylakoid functions were downregulated in ST111. Despite these differences, transgenic plants and seeds appeared phenotypically similar to non-transgenic controls. There was no correlation between recombinant protein expression level and the quantity of differentially expressed genes detected. CONCLUSIONS Measurable unscripted gene expression changes were detected in the seed transcriptomes of all three transgenic soybean lines analyzed, with line 764 being substantially altered. Differences detected at the transcript level may be due to T-DNA insert locations, random mutations following transformation or direct effects of the recombinant protein itself, or a combination of these. The physiological consequences of such changes remain unknown.
Collapse
Affiliation(s)
- Kevin C Lambirth
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adam M Whaley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ivory C Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Jessica A Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
14
|
Wang L, Wang X, Jin X, Jia R, Huang Q, Tan Y, Guo A. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci 2015; 13:15. [PMID: 25949214 PMCID: PMC4422549 DOI: 10.1186/s12953-015-0071-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Background As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops’ biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. Results Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. Conclusions Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0071-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Limin Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China ; Chinese Academy of Agricultural Sciences, The Oilcrops Research Institute, Wuhan, 430062 China
| | - Xuchu Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Xiang Jin
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Ruizong Jia
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Qixing Huang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Yanhua Tan
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Anping Guo
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| |
Collapse
|
15
|
Characterization and study of transgenic cultivars by capillary and microchip electrophoresis. Int J Mol Sci 2014; 15:23851-77. [PMID: 25535077 PMCID: PMC4284794 DOI: 10.3390/ijms151223851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023] Open
Abstract
Advances in biotechnology have increased the demand for suitable analytical techniques for the analysis of genetically modified organisms. Study of the substantial equivalence, discrimination between transgenic and non-transgenic cultivars, study of the unintended effects caused by a genetic modification or their response to diverse situations or stress conditions (e.g., environmental, climatic, infections) are some of the concerns that need to be addressed. Capillary electrophoresis (CE) is emerging as an alternative to conventional techniques for the study and characterization of genetically modified organisms. This article reviews the most recent applications of CE for the analysis and characterization of transgenic cultivars in the last five years. Different strategies have been described depending on the level analyzed (DNA, proteins or metabolites). Capillary gel electrophoresis (CGE) has shown to be particularly useful for the analysis of DNA fragments amplified by PCR. Metabolites and proteins have been mainly separated using capillary zone electrophoresis (CZE) using UV and MS detection. Electrophoretic chips have also proven their ability in the analysis of transgenic cultivars and a section describing the new applications is also included.
Collapse
|
16
|
Liu MS, Ko MH, Li HC, Tsai SJ, Lai YM, Chang YM, Wu MT, Chen LFO. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene. Int J Mol Sci 2014; 15:15188-209. [PMID: 25170807 PMCID: PMC4200750 DOI: 10.3390/ijms150915188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - Miau-Hwa Ko
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hui-Chun Li
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - Shwu-Jene Tsai
- Unit, Taiwan Agricultural Research Institute, Wufeng, Taichung 41362, Taiwan.
| | - Ying-Mi Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - You-Ming Chang
- Department of Bioindustry Technology, Dayeh University No. 168, University Rd., Dacun, Changhua 51591, Taiwan.
| | - Min-Tze Wu
- Unit, Taiwan Agricultural Research Institute, Wufeng, Taichung 41362, Taiwan.
| | - Long-Fang O Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
17
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan,
| | | |
Collapse
|
18
|
Natarajan S, Luthria D, Bae H, Lakshman D, Mitra A. Transgenic soybeans and soybean protein analysis: an overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11736-43. [PMID: 24099420 DOI: 10.1021/jf402148e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.
Collapse
Affiliation(s)
- Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | | | | | | | | |
Collapse
|
19
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res 2013; 22:1073-88. [PMID: 23857556 DOI: 10.1007/s11248-013-9728-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/18/2013] [Indexed: 01/06/2023]
Abstract
A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.
Collapse
|
21
|
Wang Y, Gao D, Chen Z, Li S, Gao C, Cao D, Liu F, Liu H, Jiang Y. Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents. PLoS One 2013; 8:e63572. [PMID: 23667640 PMCID: PMC3646819 DOI: 10.1371/journal.pone.0063572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/03/2013] [Indexed: 01/13/2023] Open
Abstract
A new acridone derivative, 2-aminoacetamido-10-(3, 5-dimethoxy)-benzyl-9(10H)-acridone hydrochloride (named 8a) synthesized in our lab shows potent antitumor activity, but the mechanism of action remains unclear. Herein, we report the use of an UPLC/Q-TOF MS metabolomic approach to study the effects of three compounds with structures optimized step-by-step, 9(10H)-acridone (A), 10-(3,5-dimethoxy)benzyl-9(10H)-acridone (I), and 8a, on CCRF-CEM leukemia cells and to shed new light on the probable antitumor mechanism of 8a. Acquired data were processed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to identify potential biomarkers. Comparing 8a-treated CCRF-CEM leukemia cells with vehicle control (DMSO), 23 distinct metabolites involved in five metabolic pathways were identified. Metabolites from glutathione (GSH) and glycerophospholipid metabolism were investigated in detail, and results showed that GSH level and the reduced/oxidized glutathione (GSH/GSSG) ratio were significantly decreased in 8a-treated cells, while L-cysteinyl-glycine (L-Cys-Gly) and glutamate were greatly increased. In glycerophospholipid metabolism, cell membrane components phosphatidylcholines (PCs) were decreased in 8a-treated cells, while the oxidative products lysophosphatidylcholines (LPCs) were significantly increased. We further found that in 8a-treated cells, the reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) were notably increased, accompanied with decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-3. Taken together our results suggest that the acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells. The UPLC/Q-TOF MS based metabolomic approach provides novel insights into the mechanistic studies of antitumor drugs from a point distinct from traditional biological investigations.
Collapse
Affiliation(s)
- Yini Wang
- Department of Chemistry, Tsinghua University, Beijing, China
- The Key Laboratory of Tumor Metabolomics at Shenzhen, Shenzhen, China
| | - Dan Gao
- The Key Laboratory of Tumor Metabolomics at Shenzhen, Shenzhen, China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhe Chen
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shangfu Li
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Chunmei Gao
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Deliang Cao
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Feng Liu
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hongxia Liu
- The Key Laboratory of Tumor Metabolomics at Shenzhen, Shenzhen, China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- * E-mail: (HXL); (YYJ)
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- School of Medicine, Tsinghua University, Beijing, China
- * E-mail: (HXL); (YYJ)
| |
Collapse
|
22
|
Iwaki T, Guo L, Ryals JA, Yasuda S, Shimazaki T, Kikuchi A, Watanabe KN, Kasuga M, Yamaguchi-Shinozaki K, Ogawa T, Ohta D. Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:893-900. [PMID: 23286584 DOI: 10.1021/jf304071n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Untargeted metabolome analyses play a critical role in understanding possible metabolic fluctuations of crops under varying environmental conditions. This study reports metabolic profiles of transgenic potato tubers expressing the Arabidopsis DREB1A transcription factor gene, which induces expression of genes involved in environmental stress tolerance. A combination of targeted and untargeted metabolomics demonstrated considerable metabolome differences between the transgenic lines and nontransgenic parent cultivars. In the transgenic lines, stimulation of stress responses was suggested by elevated levels of the glutathione metabolite, γ-aminobutyric acid (GABA), and by the accumulation of β-cyanoalanine, a byproduct of ethylene biosynthesis. These results suggest that the Arabidopsis DREB1A expression might directly or indirectly enhance endogenous potato stress tolerance systems. The results indicate that transgenesis events could alter the metabolic compositions in food crops, and therefore metabolomics analysis could be a most valuable tool to monitor such changes.
Collapse
Affiliation(s)
- Toshio Iwaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Grünwald S, Adam IV, Gurmai AM, Bauer L, Boll M, Wenzel U. The Red Flour Beetle Tribolium castaneum as a Model to Monitor Food Safety and Functionality. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:111-22. [PMID: 23748350 DOI: 10.1007/10_2013_212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
: Food quality is a fundamental issue all over the world. There are two major requirements to provide the highest quality of food: having the lowest reachable concentrations of health-threatening ingredients or contaminants and having the optimal concentrations of health-improving functional ingredients. Often, the boundaries of both requirements are blurred, as might be best exemplified by nutraceuticals (enriched food products invented to prevent or even treat diseases), for which undesirable side effects have been reported sometimes. Accordingly, there is an increasing need for reliable methods to screen for health effects of wanted or unwanted ingredients in a complex food matrix before more complex model organisms or human probands become involved. In this chapter, we present the red flour beetle Tribolium castaneum as a model organism to screen for effects of complex foods on healthspan or lifespan by assessing the survival of the beetles under heat stress at 42 °C after feeding different diets. There is a higher genetic homology between T. castaneum and humans when compared to other invertebrate models, such as Drosophila melanogaster or Caenorhabditis elegans. Therefore, the red flour beetle appears as an interesting model to study interactions between genes and food ingredients, with relevance for stress resistance and lifespan. In that context, we provide data showing reduced lifespans of the beetles when the food-relevant contaminant benz(a)pyrene is added to the flour they were fed on, whereas a lifespan extension was observed in beetles fed on flour enriched with an extract of red wine.
Collapse
Affiliation(s)
- Stefanie Grünwald
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
25
|
Safety assessment of dehydration-responsive element-binding (DREB) 4 protein expressed in E. coli. Food Chem Toxicol 2012; 50:4077-84. [DOI: 10.1016/j.fct.2012.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
|
26
|
Qi X, He X, Luo Y, Li S, Zou S, Cao S, Tang M, Delaney B, Xu W, Huang K. Subchronic feeding study of stacked trait genetically-modified soybean (3Ø5423 × 40-3-2) in Sprague-Dawley rats. Food Chem Toxicol 2012; 50:3256-63. [PMID: 22771368 DOI: 10.1016/j.fct.2012.06.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022]
Abstract
The genetically-modified (GM) soybean 3Ø5423 × 40-3-2 expresses siRNA for the fatty acid desaturase-2 enzyme which results in higher concentrations of oleic acid (18:1) relative to linoleic acid (18:2) compared with non-GM soybeans. It also expresses the CP4 EPSPS protein for tolerance to glyphosate. In this study, three different dietary concentrations (7.5%, 15% and 30% wt/wt) of 3Ø5423 × 40-3-2 or non-GM soybeans were fed to Sprague-Dawley rats for 90 days during which in-life nutritional and growth performance variables were evaluated followed by analysis of standard clinical chemistry, hematology and organ variables. Compared with rats fed the non-GM control diet, some statistically significant differences were observed in rats fed the 3Ø5423 × 40-3-2 diet. However the differences were not considered treatment-related and commonly fell within the normal ranges of the control group consuming the commercial diet. These results demonstrated that the GM soybean 3Ø5423 × 40-3-2 is as safe as non-GM soybeans.
Collapse
Affiliation(s)
- Xiaozhe Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Z, Li Y, Zhao J, Chen X, Jian G, Peng Y, Qi F. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao. Int J Biol Sci 2012; 8:953-63. [PMID: 22811617 PMCID: PMC3399318 DOI: 10.7150/ijbs.4527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 01/17/2023] Open
Abstract
Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| |
Collapse
|
28
|
Liu Z, Zhao J, Li Y, Zhang W, Jian G, Peng Y, Qi F. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments. PLoS One 2012; 7:e37078. [PMID: 22606331 PMCID: PMC3350509 DOI: 10.1371/journal.pone.0037078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG) in safety assessment of genetically modified (GM) crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1) and its non-transgenic parent Minghui 63 (MH63) at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenwei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Guiliang Jian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| |
Collapse
|
29
|
Gong CY, Li Q, Yu HT, Wang Z, Wang T. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res 2012; 11:3019-29. [PMID: 22509807 DOI: 10.1021/pr300148w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.
Collapse
Affiliation(s)
- Chun Yan Gong
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
30
|
Frank T, Röhlig RM, Davies HV, Barros E, Engel KH. Metabolite profiling of maize kernels--genetic modification versus environmental influence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3005-12. [PMID: 22375597 DOI: 10.1021/jf204167t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A metabolite profiling approach based on gas chromatography-mass spectrometry (GC-MS) was applied to investigate the metabolite profiles of genetically modified (GM) Bt-maize (DKC78-15B, TXP 138F) and Roundup Ready-maize (DKC78-35R). For the comparative investigation of the impact of genetic modification versus environmental influence on the metabolite profiles, GM maize was grown together with the non-GM near-isogenic comparators under different environmental conditions, including several growing locations and seasons in Germany and South Africa. Analyses of variance (ANOVA) revealed significant differences between GM and non-GM maize grown in Germany and South Africa. For the factor genotype, 4 and 3%, respectively, of the total number of peaks detected by GC-MS showed statistically significant differences (p < 0.01) in peak heights as compared to the respective isogenic lines. However, ANOVA for the factor environment (growing location, season) revealed higher numbers of significant differences (p < 0.01) between the GM and the non-GM maize grown in Germany (42%) and South Africa (10%), respectively. This indicates that the majority of differences observed are related to natural variability rather than to the genetic modifications. In addition, multivariate data assessment by means of principal component analysis revealed that environmental factors, that is, growing locations and seasons, were dominant parameters driving the variability of the maize metabolite profiles.
Collapse
Affiliation(s)
- Thomas Frank
- Technische Universität München, Lehrstuhl für Allgemeine Lebensmitteltechnologie, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
31
|
Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res 2012; 21:1255-64. [PMID: 22430369 DOI: 10.1007/s11248-012-9597-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/03/2012] [Indexed: 11/27/2022]
Abstract
The Arabidopsis CSR1 gene codes for the enzyme acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also known as acetolactate synthase, which catalyzes the first step in branched-chain amino acid biosynthesis. It is inhibited by several classes of herbicides, including the imidazolinone herbicides, such as imazapyr; however, a substitution mutation in csr1-2 (Ser-653-Asn) confers selective resistance to the imidazolinones. The transcriptome of csr1-2 seedlings grown in the presence of imazapyr has been shown in a previous study (Manabe in Plant Cell Physiol 48:1340-1358, 2007) to be identical to that of wild-type seedlings indicating that AHAS is the sole target of imazapyr and that the mutation is not associated with pleiotropic effects detectable by transcriptome analysis. In this study, a lethal null mutant, csr1-7, created by a T-DNA insertion into the CSR1 gene was complemented with a randomly-inserted 35S/CSR1-2/NOS transgene in a subsequent genetic transformation event. A comparison of the csr1-2 substitution mutant with the transgenic lines revealed that all were resistant to imazapyr; however, the transgenic lines yielded significantly higher levels of resistance and greater biomass accumulation in the presence of imazapyr. Microarray analysis revealed few differences in their transcriptomes. The most notable was a sevenfold to tenfold elevation in the CSR1-2 transcript level. The data indicate that transgenesis did not create significant unintended pleiotropic effects on gene expression and that the mutant and transgenic lines were highly similar, except for the level of herbicide resistance.
Collapse
Affiliation(s)
- Jaimie Schnell
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | | | | | | | | |
Collapse
|
32
|
Szwacka M, Burza W, Zawirska-Wojtasiak R, Gośliński M, Twardowska A, Gajc-Wolska J, Kosieradzka I, Kiełkiewicz M. Genetically Modified Crops Expressing 35S-Thaumatin II Transgene: Sensory Properties and Food Safety Aspects. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2011.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Balsamo GM, Cangahuala-Inocente GC, Bertoldo JB, Terenzi H, Arisi ACM. Proteomic analysis of four Brazilian MON810 maize varieties and their four non-genetically-modified isogenic varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11553-9. [PMID: 21958074 DOI: 10.1021/jf202635r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Profiling techniques have been suggested as a nontargeted approach to detect unintended effects in genetically modified (GM) plants. Seedlings from eight Brazilian maize varieties, four MON810 GM varieties and four non-GM isogenic varieties, were grown under controlled environmental conditions. Physiological parameters (aerial part weight, main leaf length, and chlorophyll and total protein contents) were compared, and some differences were observed. Nevertheless, these differences were not constant among all GM and non-GM counterparts. Leaf proteomic profiles were analyzed using two-dimensional gel electrophoresis (2DE) coupled to mass spectrometry, using six 2DE gels per variety. The comparison between MON810 and its counterpart was limited to qualitative differences of fully reproducible protein spot patterns. Twelve exclusive proteins were observed in two of four maize variety pairs; all of these leaf proteins were variety specific. In this study, MON810 leaf proteomes of four varieties were similar to non-GM counterpart leaf proteomes.
Collapse
Affiliation(s)
- Geisi M Balsamo
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
| | | | | | | | | |
Collapse
|
34
|
Sorochinskii BV, Burlaka OM, Naumenko VD, Sekan AS. Unintended effects of genetic modifications and methods of their analysis in plants. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711050124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Heinemann JA, Kurenbach B, Quist D. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs. ENVIRONMENT INTERNATIONAL 2011; 37:1285-93. [PMID: 21624662 DOI: 10.1016/j.envint.2011.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/15/2011] [Accepted: 05/05/2011] [Indexed: 05/20/2023]
Abstract
Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
36
|
Picone G, Mezzetti B, Babini E, Capocasa F, Placucci G, Capozzi F. Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9271-9279. [PMID: 21806070 DOI: 10.1021/jf2020717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Substantial equivalence is a key concept in the evaluation of unintended and potentially harmful metabolic impact consequent to a genetic modification of food. The application of unsupervised multivariate data analysis to the metabolic profiles is expected to improve the effectiveness of such evaluation. The present study uses NMR spectra of hydroalcoholic extracts, as holistic representations of the metabolic profiles of grapes, to evaluate the effect of the insertion of one or three copies of the DefH9-iaaM construct in plants of Silcora and Thompson Seedless cultivars. The comparison of the metabolic profiles of transgenic derivatives with respect to their corresponding natural lines pointed out that the overall metabolic changes occur in the same direction, independent of the host genotype, although the two cultivars are modified to different extents. A higher number of copies not only produces a larger effect but also modifies the whole pattern of perturbed metabolites.
Collapse
Affiliation(s)
- Gianfranco Picone
- Department of Food Science, University of Bologna at Cesena, Piazza Goidanich 60, 47520 Cesena (FC), Italy
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar, caused by confounding factors? Br J Nutr 2011; 106:42-56. [PMID: 21418706 DOI: 10.1017/s0007114510005726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.
Collapse
|
39
|
Llorente B, Alonso GD, Bravo-Almonacid F, Rodríguez V, López MG, Carrari F, Torres HN, Flawiá MM. Safety assessment of nonbrowning potatoes: opening the discussion about the relevance of substantial equivalence on next generation biotech crops. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:136-50. [PMID: 20497372 DOI: 10.1111/j.1467-7652.2010.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is expected that the next generation of biotech crops displaying enhanced quality traits with benefits to both farmers and consumers will have a better acceptance than first generation biotech crops and will improve public perception of genetic engineering. This will only be true if they are proven to be as safe as traditionally bred crops. In contrast with the first generation of biotech crops where only a single trait is modified, the next generation of biotech crops will add a new level of complexity inherent to the mechanisms underlying their output traits. In this study, a comprehensive evaluation of the comparative safety approach on a quality-improved biotech crop with metabolic modifications is presented. Three genetically engineered potato lines with silenced polyphenol oxidase (Ppo) transcripts and reduced tuber browning were characterized at both physiological and molecular levels and showed to be equivalent to wild-type (WT) plants when yield-associated traits and photosynthesis were evaluated. Analysis of the primary metabolism revealed several unintended metabolic modifications in the engineered tubers, providing evidence for potential compositional inequivalence between transgenic lines and WT controls. The silencing construct sequence was in silico analysed for potential allergenic cross-reactivity, and no similarities to known allergenic proteins were identified. Moreover, in vivo intake safety evaluation showed no adverse effects in physiological parameters. Taken together, these results provide the first evidence supporting that the safety of next generation biotech crops can be properly assessed following the current evaluation criterion, even if the transgenic and WT crops are not substantially equivalent.
Collapse
Affiliation(s)
- Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET and FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sicherheitsbewertung von Lebensmitteln aus gentechnisch veränderten Pflanzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 53:583-8. [DOI: 10.1007/s00103-010-1062-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. PLANT MOLECULAR BIOLOGY 2010; 73:349-62. [PMID: 20349115 DOI: 10.1007/s11103-010-9624-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/07/2010] [Indexed: 05/12/2023]
Abstract
The introduction of genetically modified organisms (GMO) in many countries follows strict regulations to ensure that only safety-tested products are marketed. Over the last few years, targeted approaches have been complemented by profiling methods to assess possible unintended effects of transformation. Here we used a commercial (Affymertix) microarray platform (i.e. allowing assessing the expression of approximately 1/3 of the genes of maize) to evaluate transcriptional differences between commercial MON810 GM maize and non-transgenic crops in real agricultural conditions, in a region where about 70% of the maize grown was MON810. To consider natural variation in gene expression in relation to biotech plants we took two common MON810/non-GM variety pairs as examples, and two farming practices (conventional and low-nitrogen fertilization). MON810 and comparable non-GM varieties grown in the field have very low numbers of sequences with differential expression, and their identity differs among varieties. Furthermore, we show that the differences between a given MON810 variety and the non-GM counterpart do not appear to depend to any major extent on the assayed cultural conditions, even though these differences may slightly vary between the conditions. In our study, natural variation explained most of the variability in gene expression among the samples. Up to 37.4% was dependent upon the variety (obtained by conventional breeding) and 31.9% a result of the fertilization treatment. In contrast, the MON810 GM character had a very minor effect (9.7%) on gene expression in the analyzed varieties and conditions, even though similar cryIA(b) expression levels were detected in the two MON810 varieties and nitrogen treatments. This indicates that transcriptional differences of conventionally-bred varieties and under different environmental conditions should be taken into account in safety assessment studies of GM plants.
Collapse
Affiliation(s)
- Anna Coll
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, Campus Montilivi, EPS-I, Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Khalf M, Goulet C, Vorster J, Brunelle F, Anguenot R, Fliss I, Michaud D. Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:155-69. [PMID: 20051032 DOI: 10.1111/j.1467-7652.2009.00471.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recombinant protease inhibitors represent useful tools for the development of insect-resistant transgenic crops, but questions have been raised in recent years about the impact of these proteins on endogenous proteases and chemical composition of derived food products. In this study, we performed a detailed compositional analysis of tubers from potato lines expressing the broad-spectrum inhibitor of Ser and Asp proteases, tomato cathepsin D inhibitor (SlCDI), to detect possible unintended effects on tuber composition. A compositional analysis of key nutrients and toxic chemicals was carried out with tubers of SlCDI-expressing and control (comparator) lines, followed by a two-dimensional gel electrophoresis (2-DE) proteomic profiling of total and allergenic proteins to detect eventual effects at the proteome level. No significant differences were observed among control and SlCDI-expressing lines for most chemicals assayed, in line with the very low abundance of SlCDI in tubers. Likewise, proteins detected after 2-DE showed no quantitative variation among the lines, except for a few proteins in some control and test lines, independent of slcdi transgene expression. Components of the patatin storage protein complex and Kunitz protease inhibitors immunodetected after 2-DE showed unaltered deposition patterns in SlCDI-expressing lines, clearly suggesting a null impact of slcdi on the intrinsic allergenic potential of potato tubers. These data suggest, overall, a null impact of slcdi expression on tuber composition and substantial equivalence between comparator and SlCDI-expressing tubers despite reported effects on leaf protein catabolism. They also illustrate the usefulness of proteomics as a tool to assess the authenticity of foods derived from novel-generation transgenic plants.
Collapse
Affiliation(s)
- Moustafa Khalf
- CRH/INAF, Pavillon des Services (INAF), Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Thomas K, MacIntosh S, Bannon G, Herouet-Guicheney C, Holsapple M, Ladics G, McClain S, Vieths S, Woolhiser M, Privalle L. Scientific advancement of novel protein allergenicity evaluation: an overview of work from the HESI Protein Allergenicity Technical Committee (2000-2008). Food Chem Toxicol 2009; 47:1041-50. [PMID: 19425225 DOI: 10.1016/j.fct.2009.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The safety assessment of genetically modified crops includes the evaluation for potential allergenicity. The current 'state-of-the-science' utilizes a weight of evidence approach, as outlined by the Codex Alimentarius commission (Alinorm 03/34 A), recognizing no single endpoint is predictive of the allergenic potential of a novel protein. This approach evaluates: whether the gene source is allergenic, sequence similarity to known allergens, and protein resistance to pepsin in vitro. If concerns are identified, serological studies may be necessary to determine if a protein has IgE binding similar to known allergens. Since there was a lack of standardized/validated methods to conduct the allergenicity assessment, a committee was assembled under the International Life Sciences Institute Health and Environmental Sciences Institute to address this issue. Over the last eight years, the Protein Allergenicity Technical Committee has convened workshops and symposia with allergy experts and government authorities to refine methods that underpin the assessment for potential protein allergenicity. This publication outlines this ongoing effort, summarizing workshops and formal meetings, referencing publications, and highlighting outreach activities. The purpose is to (1) outline 'the state-of-the-science' in predicting protein allergenicity in the context of current international recommendations for novel protein safety assessment, and (2) identify approaches that can be improved and future research needs.
Collapse
Affiliation(s)
- Karluss Thomas
- International Life Sciences Institute, Health and Environmental Sciences Institute, 1156 Fifteenth Street, NW, Second Floor, Washington, DC 20005, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Batista R, Oliveira MM. Facts and fiction of genetically engineered food. Trends Biotechnol 2009; 27:277-86. [PMID: 19324440 DOI: 10.1016/j.tibtech.2009.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
The generation of genetically engineered (GE) foods has been raising several concerns and controversies that divide not only the general public but also the scientific community. The fear and importance of the new technology, as well as commercial interests, have supported many of the ongoing discussions. The recent increase in the number of GE foods approved for import into the European Union and the increasingly global commercial food trades justify revisiting the facts and fiction surrounding this technology with the aim of increasing public awareness for well-informed decisions. Techniques that have recently become available for assessing food quality and its impact on human health, as well as the wealth of scientific data previously generated, clearly support the safety of commercialized GE products.
Collapse
Affiliation(s)
- Rita Batista
- National Institute of Health, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | | |
Collapse
|
45
|
Zhu J, Patzoldt WL, Shealy RT, Vodkin LO, Clough SJ, Tranel PJ. Transcriptome response to glyphosate in sensitive and resistant soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6355-63. [PMID: 18636734 DOI: 10.1021/jf801254e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The majority of soybeans planted in the United States are resistant to glyphosate due to introduction of a gene encoding for a glyphosate-insensitive 5-enolypyruvylshikimate-3-phosphate synthase. Gene expression profiling was conducted using cDNA microarrays to address questions related to potential secondary effects of glyphosate. When glyphosate-sensitive plants were treated with glyphosate, 3, 170, and 311 genes were identified as having different transcript levels at 1, 4, and 24 h post-treatment (hpt), respectively. Differentially expressed genes were classified into functional categories, and their possible roles in response to glyphosate are briefly discussed. Gene expression profiling of glyphosate-resistant plants treated with glyphosate indicated that the plants were marginally affected at 1 hpt and then quickly adjusted to glyphosate treatment. Ten, four, and four genes were identified as differentially expressed at 1, 4, and 24 hpt. When gene expression profiles of cotyledons from developing seed were compared between the near-isogenic resistant and sensitive lines, two genes were identified as significantly differentially expressed out of 27000, which was less than the empirical false-discovery rate determined from a control experiment. Quantitative real-time reverse-transcribed Polymerase Chain Reaction was conducted on selected genes and yielded results consistent with those from the microarrays. Collectively, these data indicate that there are no major transcriptomic changes associated with currently used glyphosate-resistant soybean.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Standardizing GC–MS metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:191-201. [DOI: 10.1016/j.jchromb.2008.04.049] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 11/24/2022]
|
47
|
Thomas K, Herouet-Guicheney C, Ladics G, McClain S, MacIntosh S, Privalle L, Woolhiser M. Current and future methods for evaluating the allergenic potential of proteins: international workshop report 23-25 October 2007. Food Chem Toxicol 2008; 46:3219-25. [PMID: 18656521 DOI: 10.1016/j.fct.2008.06.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/25/2008] [Indexed: 11/15/2022]
Abstract
The International Life Science Institute's Health and Environmental Sciences Institute's Protein Allergenicity Technical Committee hosted an international workshop October 23-25, 2007, in Nice, France, to review and discuss existing and emerging methods and techniques for improving the current weight-of-evidence approach for evaluating the potential allergenicity of novel proteins. The workshop included over 40 international experts from government, industry, and academia. Their expertise represented a range of disciplines including immunology, chemistry, molecular biology, bioinformatics, and toxicology. Among participants, there was consensus that (1) current bioinformatic approaches are highly conservative; (2) advances in bioinformatics using structural comparisons of proteins may be helpful as the availability of structural data increases; (3) proteomics may prove useful for monitoring the natural variability in a plant's proteome and assessing the impact of biotechnology transformations on endogenous levels of allergens, but only when analytical techniques have been standardized and additional data are available on the natural variation of protein expression in non-transgenic bred plants; (4) basophil response assays are promising techniques, but need additional evaluation around specificity, sensitivity, and reproducibility; (5) additional research is required to develop and validate an animal model for the purpose of predicting protein allergenicity.
Collapse
Affiliation(s)
- Karluss Thomas
- International Life Sciences Institute Health and Environmental Sciences Institute, Washington, DC 20005, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Batista R, Saibo N, Lourenço T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A 2008; 105:3640-5. [PMID: 18303117 PMCID: PMC2265136 DOI: 10.1073/pnas.0707881105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Indexed: 12/27/2022] Open
Abstract
Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering.
Collapse
Affiliation(s)
- Rita Batista
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | | | |
Collapse
|
49
|
Safety and Nutritional Assessment of GM Plants and derived food and feed: The role of animal feeding trials. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.1057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 2008; 46 Suppl 1:S2-70. [PMID: 18328408 DOI: 10.1016/j.fct.2008.02.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this report the various elements of the safety and nutritional assessment procedure for genetically modified (GM) plant derived food and feed are discussed, in particular the potential and limitations of animal feeding trials for the safety and nutritional testing of whole GM food and feed. The general principles for the risk assessment of GM plants and derived food and feed are followed, as described in the EFSA guidance document of the EFSA Scientific Panel on Genetically Modified Organisms. In Section 1 the mandate, scope and general principles for risk assessment of GM plant derived food and feed are discussed. Products under consideration are food and feed derived from GM plants, such as maize, soybeans, oilseed rape and cotton, modified through the introduction of one or more genes coding for agronomic input traits like herbicide tolerance and/or insect resistance. Furthermore GM plant derived food and feed, which have been obtained through extensive genetic modifications targeted at specific alterations of metabolic pathways leading to improved nutritional and/or health characteristics, such as rice containing beta-carotene, soybeans with enhanced oleic acid content, or tomato with increased concentration of flavonoids, are considered. The safety assessment of GM plants and derived food and feed follows a comparative approach, i.e. the food and feed are compared with their non-GM counterparts in order to identify intended and unintended (unexpected) differences which subsequently are assessed with respect to their potential impact on the environment, safety for humans and animals, and nutritional quality. Key elements of the assessment procedure are the molecular, compositional, phenotypic and agronomic analysis in order to identify similarities and differences between the GM plant and its near isogenic counterpart. The safety assessment is focussed on (i) the presence and characteristics of newly expressed proteins and other new constituents and possible changes in the level of natural constituents beyond normal variation, and on the characteristics of the GM food and feed, and (ii) the possible occurrence of unintended (unexpected) effects in GM plants due to genetic modification. In order to identify these effects a comparative phenotypic and molecular analysis of the GM plant and its near isogenic counterpart is carried out, in parallel with a targeted analysis of single specific compounds, which represent important metabolic pathways in the plant like macro and micro nutrients, known anti-nutrients and toxins. Significant differences may be indicative of the occurrence of unintended effects, which require further investigation. Section 2 provides an overview of studies performed for the safety and nutritional assessment of whole food and feed. Extensive experience has been built up in recent decades from the safety and nutritional testing in animals of irradiated foods, novel foods and fruit and vegetables. These approaches are also relevant for the safety and nutritional testing of whole GM food and feed. Many feeding trials have been reported in which GM foods like maize, potatoes, rice, soybeans and tomatoes have been fed to rats or mice for prolonged periods, and parameters such as body weight, feed consumption, blood chemistry, organ weights, histopathology etc have been measured. The food and feed under investigation were derived from GM plants with improved agronomic characteristics like herbicide tolerance and/or insect resistance. The majority of these experiments did not indicate clinical effects or histopathological abnormalities in organs or tissues of exposed animals. In some cases adverse effects were noted, which were difficult to interpret due to shortcomings in the studies. Many studies have also been carried out with feed derived from GM plants with agronomic input traits in target animal species to assess the nutritive value of the feed and their performance potential. Studies in sheep, pigs, broilers, lactating dairy cows, and fish, comparing the in vivo bioavailability of nutrients from a range of GM plants with their near isogenic counterpart and commercial varieties, showed that they were comparable with those for near isogenic non-GM lines and commercial varieties. In Section 3 toxicological in vivo, in silico, and in vitro test methods are discussed which may be applied for the safety and nutritional assessment of specific compounds present in food and feed or of whole food and feed derived from GM plants. Moreover the purpose, potential and limitations of the 90-day rodent feeding trial for the safety and nutritional testing of whole food and feed have been examined. Methods for single and repeated dose toxicity testing, reproductive and developmental toxicity testing and immunotoxicity testing, as described in OECD guideline tests for single well-defined chemicals are discussed and considered to be adequate for the safety testing of single substances including new products in GM food and feed. Various in silico and in vitro methods may contribute to the safety assessment of GM plant derived food and feed and components thereof, like (i) in silico searches for sequence homology and/or structural similarity of novel proteins or their degradation products to known toxic or allergenic proteins, (ii) simulated gastric and intestinal fluids in order to study the digestive stability of newly expressed proteins and in vitro systems for analysis of the stability of the novel protein under heat or other processing conditions, and (iii) in vitro genotoxicity test methods that screen for point mutations, chromosomal aberrations and DNA damage/repair. The current performance of the safety assessment of whole foods is mainly based on the protocols for low-molecular-weight chemicals such as pharmaceuticals, industrial chemicals, pesticides, food additives and contaminants. However without adaptation, these protocols have limitations for testing of whole food and feed. This primarily results from the fact that defined single substances can be dosed to laboratory animals at very large multiples of the expected human exposure, thus giving a large margin of safety. In contrast foodstuffs are bulky, lead to satiation and can only be included in the diet at much lower multiples of expected human intakes. When testing whole foods, the possible highest concentration of the GM food and feed in the laboratory animal diet may be limited because of nutritional imbalance of the diet, or by the presence of compounds with a known toxicological profile. The aim of the 90-days rodent feeding study with the whole GM food and feed is to assess potential unintended effects of toxicological and/or nutritional relevance and to establish whether the GM food and feed is as safe and nutritious as its traditional comparator rather than determining qualitative and quantitative intrinsic toxicity of defined food constituents. The design of the study should be adapted from the OECD 90-day rodent toxicity study. The precise study design has to take into account the nature of the food and feed and the characteristics of the new trait(s) and their intended role in the GM food and feed. A 90-day animal feeding trial has a large capacity (sensitivity and specificity) to detect potential toxicological effects of single well defined compounds. This can be concluded from data reported on the toxicology of a wide range of industrial chemicals, pharmaceuticals, food substances, environmental, and agricultural chemicals. It is possible to model the sensitivity of the rat subchronic feeding study for the detection of hypothetically increased amount of compounds such as anti-nutrients, toxicants or secondary metabolites. With respect to the detection of potential unintended effects in whole GM food and feed, it is unlikely that substances present in small amounts and with a low toxic potential will result in any observable (unintended) effects in a 90-day rodent feeding study, as they would be below the no-observed-effect-level and thus of unlikely impact to human health at normal intake levels. Laboratory animal feeding studies of 90-days duration appear to be sufficient to pick up adverse effects of diverse compounds that would also give adverse effects after chronic exposure. This conclusion is based on literature data from studies investigating whether toxicological effects are adequately identified in 3-month subchronic studies in rodents, by comparing findings at 3 and 24 months for a range of different chemicals. The 90-day rodent feeding study is not designed to detect effects on reproduction or development other than effects on adult reproductive organ weights and histopathology. Analyses of available data indicate that, for a wide range of substances, reproductive and developmental effects are not potentially more sensitive endpoints than those examined in subchronic toxicity tests. Should there be structural alerts for reproductive/developmental effects or other indications from data available on a GM food and feed, then these tests should be considered. By relating the estimated daily intake, or theoretical maximum daily intake per capita for a given whole food (or the sum of its individual commercial constituents) to that consumed on average per rat per day in the subchronic 90-day feeding study, it is possible to establish the margin of exposure (safety margin) for consumers. Results obtained from testing GM food and feed in rodents indicate that large (at least 100-fold) 'safety' margins exist between animal exposure levels without observed adverse effects and estimated human daily intake. Results of feeding studies with feed derived from GM plants with improved agronomic properties, carried out in a wide range of livestock species, are discussed. The studies did not show any biologically relevant differences in the parameters tested between control and test animals. (ABSTRACT TRUNCATED)
Collapse
|