1
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
2
|
Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Jiang Z, Wu D. Valine supplementation during late pregnancy in gilts increases colostral protein synthesis through stimulating mTOR signaling pathway in mammary cells. Amino Acids 2019; 51:1547-1559. [PMID: 31720834 DOI: 10.1007/s00726-019-02790-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/28/2019] [Indexed: 12/15/2022]
Abstract
Mammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts. The results showed that supplementation of valine during late pregnancy significantly increased content of protein (P < 0.01), fat (P = 0.02) and solids-non-fat (P = 0.04) in colostrum. Our in vitro study also confirmed that valine supplementation increased protein synthesis and cell proliferation in porcine mammary epithelial cells (PMEC). Furthermore, these changes were associated with elevated phosphorylation levels of mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (S6) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) in valine-supplemented cells, which could be effectively blocked by the antagonists of mTOR. These findings indicated that valine enhanced mammary gland development and protein synthesis in colostrum via the mTOR signaling pathway. These results, using an in vivo and in vitro model, helped to understand the beneficial effects of dietary valine supplementation on gilts.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Mengmeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street, Wushan Rd, Tianhe District, Guangzhou, 510640, China.
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Chengdu, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Abstract
Long thought to be too big and too ubiquitous to fail, we now know that human cells can fail to make sufficient amounts of ribosomes, causing a number of diseases collectively known as ribosomopathies. The best characterized ribosomopathies, with the exception of Treacher Collins syndrome, are inherited bone marrow failure syndromes, each of which has a marked increase in cancer predisposition relative to the general population. Although rare, emerging data reveal that the inherited bone marrow failure syndromes may be underdiagnosed on the basis of classical symptomology, leaving undiagnosed patients with these syndromes at an elevated risk of cancer without adequate counselling and surveillance. The link between the inherited ribosomopathies and cancer has led to greater awareness that somatic mutations in factors involved in ribosome biogenesis may also be drivers in sporadic cancers. Our goal here is to compare and contrast the pathophysiological mechanisms underpinning ribosomopathies to gain a better understanding of the mechanisms that predispose these disorders to cancer.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Steven R Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Dhar R, Missarova AM, Lehner B, Carey LB. Single cell functional genomics reveals the importance of mitochondria in cell-to-cell phenotypic variation. eLife 2019; 8:38904. [PMID: 30638445 PMCID: PMC6366901 DOI: 10.7554/elife.38904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations frequently have outcomes that differ across individuals, even when these individuals are genetically identical and share a common environment. Moreover, individual microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug resistance, with important implications for the treatment of infections and cancer. To investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput automated microscopy assay to quantify the impact of deleting >1500 genes in yeast. Mutations affecting mitochondria were particularly variable in their outcome. In both mutant and wild-type cells mitochondrial membrane potential - but not amount - varied substantially across individual cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-to-cell variation in the state of an organelle in single cell phenotypic variation.
Collapse
Affiliation(s)
- Riddhiman Dhar
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Alsu M Missarova
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Sriskanthadevan-Pirahas S, Lee J, Grewal SS. The EGF/Ras pathway controls growth in Drosophila via ribosomal RNA synthesis. Dev Biol 2018; 439:19-29. [DOI: 10.1016/j.ydbio.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023]
|
6
|
Li XG, Sui WG, Gao CQ, Yan HC, Yin YL, Li HC, Wang XQ. L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells1. J Anim Sci 2016; 94:1541-9. [DOI: 10.2527/jas.2015-9432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- X.-G. Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - W.-G. Sui
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - C.-Q. Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - H.-C. Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - Y.-L. Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, China
| | - H.-C. Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus
| | - X.-Q. Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| |
Collapse
|
7
|
Polymenis M, Aramayo R. Translate to divide: сontrol of the cell cycle by protein synthesis. MICROBIAL CELL 2015; 2:94-104. [PMID: 28357283 PMCID: PMC5348972 DOI: 10.15698/mic2015.04.198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Li CM, Yan HC, Fu HL, Xu GF, Wang XQ. Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells1. J Anim Sci 2014; 92:85-94. [DOI: 10.2527/jas.2013-7048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- C.-M. Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-C. Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-L. Fu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - G.-F. Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - X.-Q. Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Bedolla DE, Kenig S, Mitri E, Ferraris P, Marcello A, Grenci G, Vaccari L. Determination of cell cycle phases in live B16 melanoma cells using IRMS. Analyst 2013; 138:4015-21. [PMID: 23662303 DOI: 10.1039/c3an00318c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.
Collapse
Affiliation(s)
- Diana E Bedolla
- Elettra Sincrotrone Trieste, SISSI beamline, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Dai N, Wang W, Patterson SE, Bleecker AB. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 2013; 8:e60990. [PMID: 23613767 PMCID: PMC3628703 DOI: 10.1371/journal.pone.0060990] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/06/2013] [Indexed: 12/25/2022] Open
Abstract
Mechanisms that govern the size of plant organs are not well understood but believed to involve both sensing and signaling at the cellular level. We have isolated loss-of-function mutations in the four genes comprising the transmembrane kinase TMK subfamily of receptor-like kinases (RLKs) in Arabidopsis. These TMKs have an extracellular leucine-rich-repeat motif, a single transmembrane region, and a cytoplasmic kinase domain. While single mutants do not display discernable phenotypes, unique double and triple mutant combinations result in a severe reduction in organ size and a substantial retardation in growth. The quadruple mutant displays even greater severity of all phenotypes and is infertile. The kinematic studies of root, hypocotyl, and stamen filament growth reveal that the TMKs specifically control cell expansion. In leaves, TMKs control both cell expansion and cell proliferation. In addition, in the tmk double mutants, roots and hypocotyls show reduced sensitivity to applied auxin, lateral root induction and activation of the auxin response reporter DR5: GUS. Thus, taken together with the structural and biochemical evidence, TMKs appear to orchestrate plant growth by regulation of both cell expansion and cell proliferation, and as a component of auxin signaling.
Collapse
Affiliation(s)
- Ning Dai
- Department of Botany and Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | |
Collapse
|
11
|
Baker NE. Developmental regulation of nucleolus size during Drosophila eye differentiation. PLoS One 2013; 8:e58266. [PMID: 23472166 PMCID: PMC3589261 DOI: 10.1371/journal.pone.0058266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/05/2013] [Indexed: 11/29/2022] Open
Abstract
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
Collapse
Affiliation(s)
- Nicholas E Baker
- Departments of Genetics, Ophthalmology and Visual Sciences, and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
12
|
Wollenhaupt K, Brüssow KP, Albrecht D, Tomek W. The eIF4E repressor protein 4E-BP2 is merely truncated, despite 4E-BP1 degradation in the porcine uterine tissue during implantation. Mol Reprod Dev 2012; 79:767-76. [DOI: 10.1002/mrd.22108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/27/2012] [Indexed: 11/08/2022]
|
13
|
Wang XQ, Yang WJ, Yang Z, Shu G, Wang SB, Jiang QY, Yuan L, Wu TS. The differential proliferative ability of satellite cells in Lantang and Landrace pigs. PLoS One 2012; 7:e32537. [PMID: 22427853 PMCID: PMC3302802 DOI: 10.1371/journal.pone.0032537] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 01/30/2012] [Indexed: 12/15/2022] Open
Abstract
Here, for the first time, we evaluate the hypothesis that the proliferative abilities of satellite cells (SCs) isolated from Lantang (indigenous Chinese pigs) and Landrace pigs, which differ in muscle characteristics, are different. SCs were isolated from the longissimus dorsi muscle of neonatal Lantang and Landrace pigs. Proliferative ability was estimated by the count and proliferative activity of viable cells using a hemocytometer and MTT assay at different time points after seeding, respectively. Cell cycle information was detected by flow cytometry. Results showed that there was a greater (P<0.05) number of SCs in Lantang pigs compared with Landrace pigs after 72 h of culture. The percentage of cell population in S phase and G2/M phases in Lantang pigs were higher (P<0.05), while in G0/G1 phase was lower (P<0.05) in comparison with the Landrace pigs. The mRNA abundances of MyoD, Myf5, myogenin and Pax7 in SCs from Lantang pigs were higher (P<0.05), while those of myostatin, Smad3 and genes in the mammalian target of rapamycin (mTOR) pathway (with the exception of 4EBP1) were lower (P<0.05) than the Landrace pigs. Protein levels of MyoD, myogenin, myostatin, S6K, phosphorylated mTOR and phosphorylated eIF4E were consistent with the corresponding mRNA abundance. Collectively, these findings suggested that SCs in the two breeds present different proliferative abilities, and the proliferative potential of SCs in Lantang pigs is higher than in Landrace pigs.
Collapse
Affiliation(s)
- Xiu-qi Wang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hamasaki H, Yoshizumi T, Takahashi N, Higuchi M, Kuromori T, Imura Y, Shimada H, Matsui M. SD3, an Arabidopsis thaliana homolog of TIM21, affects intracellular ATP levels and seedling development. MOLECULAR PLANT 2012; 5:461-71. [PMID: 22131050 DOI: 10.1093/mp/ssr088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is poorly understood how plants control their growth by cell division, elongation, and differentiation. We have characterized a seedling-lethal mutant segregation distortion 3 (sd3) that showed a very dwarf phenotype when grown in the light and, in the dark, had short hypocotyls with reduced ploidy levels. The corresponding gene of SD3 encodes a protein with high similarity to yeast translocase on the inner mitochondrial membrane 21 (TIM21), which is a component of the TIM23 complex. Indeed, SD3 protein fused to GFP localized in the mitochondria. SD3 overexpression increased cotyledon size in the light and hypocotyl thickness in the dark. The expression of genes for several subunits of the respiratory-chain complexes III and IV was up-regulated in SD3-overexpressing plants. Furthermore, these plants showed high levels of ATP whereas those of sd3 were low. These results suggested that SD3 induced an increase in cell size by raising the expression of the respiratory-chain subunit genes and hence increased the intracellular ATP levels. We propose that intracellular ATP levels regulated by mitochondria control plant organ size.
Collapse
Affiliation(s)
- Hidefumi Hamasaki
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
SHESTOPALOFF YURIK. A MATHEMATICAL MODEL OF THE PHYSICAL GROWTH MECHANISM AND GEOMETRICAL CHARACTERIZATION OF GROWING FORMS. INT J BIOMATH 2011. [DOI: 10.1142/s1793524511001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article introduces a mathematical model of the physical growth mechanism which is based on the relationships of the physical and geometrical parameters of the growing object, in particular its surface and volume. This growth mechanism works in cooperation with the biochemical and other growth factors. We use the growth equation, which mathematically describes this mechanism, and study its adequacy to real growth phenomena. The growth model very accurately fits experimental data on growth of Amoeba, Schizosaccharomyces pombe, E.coli. Study discovered a new growth suppression mechanism created by certain geometry of the growing object. This result was proved by experimental data. The existence of the growth suppression phenomenon confirms the real workings and universality of the growth mechanism and the adequacy of its mathematical description. The introduced equation is also applicable to the growth of multicellular organisms and tumors. Another important result is that the growth equation introduces mathematical characterization of geometrical forms that can biologically grow. The material is supported by software application, which is released to public domain.
Collapse
|
16
|
Wollenhaupt K, Reinke K, Brüssow KP, Kanitz W, Tomek W. 4E-BP1 degradation and eIF4E truncation occur spatially distinctly in the porcine uterine epithelia and are features of noninvasive implantation in the pig. Mol Reprod Dev 2011; 78:895-905. [DOI: 10.1002/mrd.21376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/24/2011] [Indexed: 11/11/2022]
|
17
|
Kwon HK, Wang MH. The D-type cyclin gene (Nicta;CycD3;4) controls cell cycle progression in response to sugar availability in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:133-9. [PMID: 20655622 DOI: 10.1016/j.jplph.2010.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
D-type cyclins play key roles in the G1-to-S phase transition that occurs in response to nutrient and hormonal signals. In higher plants, sucrose is the major transported carbon source, and is likely to be a major determinant of cell division. To elucidate how sugar affects on the regulation of cell cycle machinery and plant development, we examined the role of carbon sources on the expression of cell-cycle-related genes in transgenic tobacco plants overexpressing Nicta;CycD3;4. The Nicta;CycD3;4 overexpressed transgenic plants showed accelerated growth and remarkable increase in the number of cells in the S and G2 phases in response to sucrose concentrations. Increased expressions level of Nicta;CycD3;4 gene was observed in transgenic tobacco plants grown on 1/2 strength MS medium supplemented with a high concentration of sugar. Moreover, the expression of sugar-sensing-related gene, invertase, was also maintained at a high level in transgenic tobacco plants with elevated sugar availability. These findings indicate that sugar availability plays a role during the G1 phase and the transition of the G1-to-S phase of cell cycle by controlling the expression of Nicta;CycD3;4.
Collapse
Affiliation(s)
- Hye-Kyoung Kwon
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Hyoja-2-dong, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
18
|
|
19
|
Guo J, Wang MH. Transgenic tobacco plants overexpressing the Nicta; CycD3; 4 gene demonstrate accelerated growth rates. BMB Rep 2008; 41:542-7. [PMID: 18682039 DOI: 10.5483/bmbrep.2008.41.7.542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-type cyclins control the onset of cell division and the response to extracellular signals during the G1 phase. In this study, we transformed a D-type cyclin gene, Nicta;CycD3;4, from Nicotiana tabacum using an Agrobacterium-mediated method. A predicted 1.1 kb cyclin gene was present in all of the transgenic plants, but not in wild-type. Northern analyses showed that the expression level of the Nicta;CycD3;4 gene in all of the transgenic plants was strong when compared to the wild-type plants, suggesting that Nicta;CycD3;4 gene driven by the CaMV 35S promoter was being overexpressed. Our results revealed that transgenic plants overexpressing Nicta;CycD3;4 had an accelerated growth rate when compared to wild-type plants, and that the transgenic plants exhibited a smaller cell size and a decreased cell population in young leaves when compared to wild-type plants.
Collapse
Affiliation(s)
- Jia Guo
- School of Biotechnology, Kangwon National University, Chuncheon, Korea
| | | |
Collapse
|
20
|
Ghavidel A, Kislinger T, Pogoutse O, Sopko R, Jurisica I, Emili A. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint. Cell 2008; 131:915-26. [PMID: 18045534 DOI: 10.1016/j.cell.2007.09.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 07/31/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.
Collapse
Affiliation(s)
- Ata Ghavidel
- Ontario Cancer Institute, Division of Signaling Biology, Toronto, Ontario M5G-1L7, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Ravitz MJ, Chen L, Lynch M, Schmidt EV. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res 2008; 67:11209-17. [PMID: 18056446 DOI: 10.1158/0008-5472.can-06-4351] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-myc oncogene plays a key role in cellular growth control, and translation initiation factors are among the transcriptional targets of Myc. Here, we describe a defect in translation initiation control in myc-null cells due to alterations in the mammalian target of rapamycin (mTOR) pathway. Myc loss increased sensitivity to dominant inhibition of eukaryotic translation initiation factor 4E function. Polysomal profiles of myc(-/-) cells revealed decreased translation initiation rates, which were accompanied by decreased 40S/60S ribosomal subunit ratios. Because the 40S small ribosomal subunit contains the key regulatory ribosomal protein S6 (rpS6), we considered that myc loss might affect expression of components of the mTOR signaling pathway that regulate rpS6 function. Among mTOR signaling components, Myc directly affected transcription of tuberous sclerosis 2 (TSC2), as shown by quantitative mRNA analysis and by Myc binding to its promoter in chromatin immunoprecipitation assays. Importantly, Myc acted as a strong and direct repressor for TSC2 expression because its loss increased TSC2 mRNA in myc-null and in HL60 shRNA experiments, activation of a mycER construct in myc(-/-) cells suppressed TSC2 induction in a myc box II-dependent manner, and mycER activation recruited Myc to the TSC2 promoter. The biological significance of the effect of Myc on TSC2 expression was shown by markedly reduced TSC2 mRNA levels in myc-transformed cells, stimulation of S6 kinase activity in myc-null cells by TSC2 siRNA, and decreased Myc-induced soft agar colony formation following retroviral transduction of TSC2. Together, these findings show that regulation of TSC2 can contribute to the effects of Myc on cell proliferation and neoplastic growth.
Collapse
Affiliation(s)
- Michael J Ravitz
- Cancer Research Center at Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
22
|
Cipollina C, van den Brink J, Daran-Lapujade P, Pronk JT, Vai M, de Winde JH. Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology (Reading) 2008; 154:337-346. [PMID: 18174152 DOI: 10.1099/mic.0.2007/011767-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chiara Cipollina
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P.za della Scienza 2, 20126 Milano, Italy
| | - Joost van den Brink
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P.za della Scienza 2, 20126 Milano, Italy
| | - Johannes H. de Winde
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
23
|
Wollenhaupt K, Brüssow KP, Tiemann U, Tomek W. The embryonic pregnancy signal oestradiol influences gene expression at the level of translational initiation in porcine endometrial cells. Reprod Domest Anim 2007; 42:167-75. [PMID: 17348974 DOI: 10.1111/j.1439-0531.2006.00747.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the pig, conceptus-derived oestrogens (days 11 and 12 of pregnancy) seem to be a critical component of the signalling mechanism for maternal recognition of pregnancy. Embryonic oestrogens can mediate effects on endometrial function by interactions with epithelial and stromal oestrogen receptors (ER). Recent data demonstrate that cell membrane ER interacts with the phosphatidylinositol 3-kinase/Akt pathway in several types of cells. The protein kinase Akt is involved in the control of cell growth, survival and proliferation. One distinct function of the Akt signalling cascade is its ability to phosphorylate the eukaryotic initiation factor-4E (eIF-4E)-binding protein 1 (4E-BP1). This phosphorylation suppresses the inhibitory effect of 4E-BP1 on the translation initiation factor eIF4E and in such a way potentially stimulates gene expression at the level of translational initiation. The aim of the present study was to examine if embryonic oestradiol (E(2)) transmits its effect by such a mechanism. Endometrial cells of cyclic gilts (day 13 of the oestrous cycle, n = 4) were cultured and supplemented with vehicle (control), E(2) (50 and 100 pm/l) or with the selective ER modulator raloxifen (10 and 1000 nm/l), and incubated for 24 h. The cell viability was detected by MTT assay, the abundance and phosphorylation of Akt, 4E-BP1 and ERalpha was analysed by Western blotting. Incubation with E(2) or raloxifen did not alter endometrial cell viability. The phosphorylation of Akt at Ser(473) seems to be increased by E(2) (p < 0.05) and decreased by raloxifen (p > 0.05). Raloxifen (1000 nm/l) induced a band shift in 4E-BP1 to the highest electrophoretic mobility which reflects a decrease in phosphorylation (p < 0.05), whereas an influence of E(2) on 4E-BP1 phosphorylation could not be detected. The decrease (p < 0.05) of the abundance of the 80 kDa ERalpha form both by E(2) and raloxifen indicates that the E(2)-stimulated Akt phosphorylation and the inhibition of 4E-BP1 phosphorylation by raloxifen is an E(2) ER-transmitted process. Therefore, embryonic oestrogens can potentially transmit their effect by influencing signalling cascades which modulate gene expression at the level of translational initiation.
Collapse
Affiliation(s)
- K Wollenhaupt
- Unit of Reproductive Biology, FBN Research Institute for the Biology of Farm Animals, Dummerstorf, Germany.
| | | | | | | |
Collapse
|
24
|
Sugiyama S, Moritoh S, Furukawa Y, Mizuno T, Lim YM, Tsuda L, Nishida Y. Involvement of the mitochondrial protein translocator component tim50 in growth, cell proliferation and the modulation of respiration in Drosophila. Genetics 2007; 176:927-36. [PMID: 17435247 PMCID: PMC1894619 DOI: 10.1534/genetics.107.072074] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Allelic mutants exhibiting growth defects in Drosophila were isolated. Molecular cloning identified the responsible gene as a budding yeast Tim50 ortholog, and thus it was named tiny tim 50 (ttm50). The weak allele (ttm50(Gp99)) produced small flies due to reduced cell size and number, and growth terminated at the larval stage in the strong alleles (ttm50(IE1) and ttm50(IE2)). Twin-spot analysis showed fewer cells in ttm50(Gp99) clones, whereas ttm50(IE1) clones did not proliferate, suggesting that the gene has an essential cellular function. Tim50 is known to maintain mitochondrial membrane potential (MMP) while facilitating inner-membrane protein transport. We found that tagged Ttm50 also localized to mitochondria and that mitochondrial morphology and MMP were affected in mutants, indicating that mitochondrial dysfunction causes the developmental phenotype. Conversely, ttm50 overexpression increased MMP and apoptosis. Co-expression of p35 suppressed this apoptosis, resulting in cell overproliferation. Interestingly, ttm50 transcription was tissue specific, corresponding to elevated MMP in the larval midgut, which was decreased in the mutant. The correlation of ttm50 expression levels with differences in MMP match its proposed role in mitochondrial permeability barrier maintenance. Thus a mitochondrial protein translocase component can play active roles in regulating metabolic levels, possibly for modulation of physiological function or growth in development.
Collapse
Affiliation(s)
- Shin Sugiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Satoru Moritoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Yoshimi Furukawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Tomohiko Mizuno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Young-Mi Lim
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Leo Tsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Yasuyoshi Nishida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
- Corresponding author: Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. E-mail:
| |
Collapse
|
25
|
GREGORY TRYAN. Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2000.tb00059.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Surovstev IV, Morgan JJ, Lindahl PA. Whole-cell modeling framework in which biochemical dynamics impact aspects of cellular geometry. J Theor Biol 2007; 244:154-66. [PMID: 16962141 DOI: 10.1016/j.jtbi.2006.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
A mathematical framework for modeling biological cells from a physicochemical perspective is described. Cells modeled within this framework consist of at least two regions, including a cytosolic volume encapsulated by a membrane surface. The cytosol is viewed as a well-stirred chemical reactor capable of changing volume while the membrane is assumed to be an oriented 2-D surface capable of changing surface area. Two physical properties of the cell, namely volume and surface area, are determined by (and determine) the reaction dynamics generated from a set of chemical reactions designed to be occurring in the cell. This framework allows the modeling of complex cellular behaviors, including self-replication. This capability is illustrated by constructing two self-replicating prototypical whole-cell models. One protocell was designed to be of minimal complexity; the other to incorporate a previously reported well-known mechanism of the eukaryotic cell cycle. In both cases, self-replicative behavior was achieved by seeking stable physically possible oscillations in concentrations and surface-to-volume ratio, and by synchronizing the period of such oscillations to the doubling of cytosolic volume and membrane surface area. Rather than being enforced externally or artificially, growth and division occur naturally as a consequence of the assumed chemical mechanism operating within the framework.
Collapse
Affiliation(s)
- Ivan V Surovstev
- Department of Chemistry, Texas A&M University, Spence and Ross Streets, P.O. Box 300012, College Station, TX 77843-3255, USA
| | | | | |
Collapse
|
27
|
Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol 2006; 205:129-37. [PMID: 16362501 DOI: 10.1007/s00232-005-0778-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 01/06/2023]
Abstract
Mitogens control progression through the cell cycle in non-transformed cells by complex cascades of intracellular messengers, such as Ca2+ and protons, and by cell volume changes. Intracellular Ca2+ and proton concentrations are critical for linking external stimuli to proliferation, motility, apoptosis and differentiation. This review summarizes the role in cell proliferation of calcium release from intracellular stores and the Ca2+ entry through plasma membrane Ca2+ channels. In addition, the impact of intracellular pH and cell volume on cell proliferation is discussed.
Collapse
Affiliation(s)
- R Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstr. 31, Regensburg, D-93053, Germany.
| |
Collapse
|
28
|
Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K. Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. PLANT PHYSIOLOGY 2006; 140:91-101. [PMID: 16361516 PMCID: PMC1326034 DOI: 10.1104/pp.105.071670] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 05/05/2023]
Abstract
Ran is an evolutionarily conserved eukaryotic GTPase. We previously identified a cDNA of TaRAN1, a novel Ran GTPase homologous gene in wheat (Triticum aestivum) and demonstrated that TaRAN1 is associated with regulation of genome integrity and cell division in yeast (Saccharomyces cerevisiae) systems. However, much less is known about the function of RAN in plant development. To analyze the possible biological roles of Ran GTPase, we overexpressed TaRAN1 in transgenic Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). TaRAN1 overexpression increased the proportion of cells in the G2 phase of the cell cycle, which resulted in an elevated mitotic index and prolonged life cycle. Furthermore, it led to increased primordial tissue, reduced number of lateral roots, and stimulated hypersensitivity to exogenous auxin. The results suggest that Ran protein was involved in the regulation of mitotic progress, either in the shoot apical meristem or the root meristem zone in plants, where auxin signaling is involved. This article determines the function of RAN in plant development mediated by the cell cycle and its novel role in meristem initiation mediated by auxin signaling.
Collapse
Affiliation(s)
- Xin Wang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The ultimate stem cell, the oocyte, is frequently very large. For example, Drosophila and Xenopus oocytes are approximately 10(5) times larger than normal somatic cells. Importantly, once the large oocytes are fertilized, the resulting embryonic cells proliferate rapidly. Moreover, these divisions occur in the absence of cell growth and are not governed by normal cell cycle controls. Observations suggest that mitogens and cell growth signals modulate proliferation by upregulating G1-phase cyclins, which in turn promote cell division. Like embryonic cells, the proliferation of cancer cells is largely independent of mitogens and growth factors. This occurs, in part, because many proteins that are known to modulate G1-phase cyclin activity are frequently mutated in cancer cells. Interestingly, we have found that both the expression and the activity of G1-phase cyclins is modulated by growth rate and cell size in yeast. These and other data suggest that proliferative capacity correlates with cell size. Thus, a major goal of our laboratory is to use yeast to investigate the relationship between proliferation rate, G1-phase cyclins, growth rate, and cell size. The elucidation of this relationship will help clarify the role of cell size in promoting proliferation in both normal and cancer cells.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
30
|
Hölzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. ACTA ACUST UNITED AC 2005; 170:367-78. [PMID: 16043514 PMCID: PMC2171466 DOI: 10.1083/jcb.200501141] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1–Bop1–WDR12 in yeast (Nop7p–Erb1p–Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.
Collapse
Affiliation(s)
- Michael Hölzel
- Institute of Clinical Molecular Biology and Tumour Genetics, National Research Center for Environment and Health (GSF), 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pathak R, Bogomolnaya LM, Guo J, Polymenis M. Gid8p (Dcr1p) and Dcr2p function in a common pathway to promote START completion in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 3:1627-38. [PMID: 15590836 PMCID: PMC539013 DOI: 10.1128/ec.3.6.1627-1638.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How cells determine when to initiate DNA replication is poorly understood. Here we report that in Saccharomyces cerevisiae overexpression of the dosage-dependent cell cycle regulator genes DCR2 (YLR361C) and GID8 (DCR1/YMR135C) accelerates initiation of DNA replication. Cells lacking both GID8 and DCR2 delay initiation of DNA replication. Genetic analysis suggests that Gid8p functions upstream of Dcr2p to promote cell cycle progression. DCR2 is predicted to encode a gene product with phosphoesterase activity. Consistent with these predictions, a DCR2 allele carrying a His338 point mutation, which in known protein phosphatases prevents catalysis but allows substrate binding, antagonized the function of the wild-type DCR2 allele. Finally, we report genetic interactions involving GID8, DCR2, and CLN3 (which encodes a G(1) cyclin) or SWI4 (which encodes a transcription factor of the G(1)/S transcription program). Our findings identify two gene products with a probable regulatory role in the timing of initiation of cell division.
Collapse
Affiliation(s)
- Ritu Pathak
- Department of Biochemistry and Biophysics, Texas A and M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
32
|
Sandhu C, Connor M, Kislinger T, Slingerland J, Emili A. Global Protein Shotgun Expression Profiling of Proliferating MCF-7 Breast Cancer Cells. J Proteome Res 2005; 4:674-89. [PMID: 15952714 DOI: 10.1021/pr0498842] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein expression becomes altered in breast epithelium during malignant transformation. Knowledge of these perturbations should provide insight into the molecular basis of breast cancer, as well as reveal possible new therapeutic targets. To this end, we have performed an extensive comparative proteomic survey of global protein expression patterns in proliferating MCF-7 breast cancer cells and normal human mammary epithelial cells using gel-free shotgun tandem mass spectrometry. Pathophysiological alterations associated with the malignant breast cancer phenotype were detected, including differences in the apparent levels of key regulators of the cell cycle, signal transduction, apoptosis, transcriptional regulation, and cell metabolism.
Collapse
Affiliation(s)
- Charanjit Sandhu
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Cipollina C, Alberghina L, Porro D, Vai M. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast 2005; 22:385-99. [PMID: 15806610 DOI: 10.1002/yea.1218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Saccharomyces cerevisiae grows fast on glucose, while growth slows down on ethanol as cells move from glucose fermentation to oxidative metabolism. The type of carbon source influences both the specific growth rate and cell cycle progression, as well as cell size. Yeast cells grown on glucose have a larger size than cells grown on ethanol. Here, we analysed the behaviour of a sfp1 null mutant during balanced and transitory states of growth in batch in response to changes in the growth medium carbon sources. In a screening for mutants affected in cell size at Start, SFP1 has been identified as a gene whose deletion caused one of the smallest whi phenotype. Findings presented in this work indicate that in the sfp1 null mutant the reduction in cell size is not only a consequence of the reduced growth rate but it is tightly linked to the cellular metabolism. The SFP1 gene product is required to sustain the increase of both rRNA and protein content that in wild-type cells takes place in respiro-fermentative growth conditions, while it seems dispensable for growth on non-fermentable carbon sources. It follows that sfp1 cells growing on ethanol have a larger size than cells growing on glucose and, noticeably, the former enter the S phase with a critical cell size higher than the latter. These features, combined with the role of Sfp1p as a transcriptional factor, suggest that Sfp1p could be an important element in the control of the cell size modulated by nutrients.
Collapse
Affiliation(s)
- Chiara Cipollina
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | | | | | | |
Collapse
|
34
|
Valenti LM, Mathieu J, Chancerelle Y, De Sousa M, Levacher M, Dinh-Xuan AT, Florentin I. High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis. Exp Cell Res 2005; 306:150-67. [PMID: 15878341 DOI: 10.1016/j.yexcr.2005.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/19/2004] [Accepted: 02/01/2005] [Indexed: 11/27/2022]
Abstract
Major physical traumas provoke a systemic inflammatory response and immune dysfunction. In a model of thermal injury in rats, we previously showed that an overproduction of nitric oxide (NO) was responsible for the collapse of lymphoproliferative responses. In the present work, we performed a time-course analysis of cell proliferation and cell death parameters in order to establish the sequence of events triggered by the high NO output in Wistar/Han rat splenocytes activated with Con A, 10 days after burn injury. We demonstrate that activated T cells from burned rats never divided whereas normal T cells underwent four division cycles. However, T cells from both burned and normal rat entered the G1 phase as shown by increase of cell size, mitochondria hyperpolarization, and expression of cyclin D1. Burned rat T cells progressed to the late G1 phase as shown by expression of the nuclear Ki-67 antigen, but they never entered the S phase. They underwent apoptosis as shown by morphological parameters, disruption of transmembrane mitochondrial potential, and DNA fragmentation. Persistent accumulation of the p53 protein accompanied these phenomena. NO synthase inhibitors antagonize alterations of cell proliferation and cell death parameters in burned rat T cells and accelerated p53 turnover.
Collapse
Affiliation(s)
- Lionel M Valenti
- Laboratoire de Physiologie Respiratoire, Faculté de Médecine Cochin/Port-Royal, Université Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B. Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 2004; 24:10802-13. [PMID: 15572683 PMCID: PMC533974 DOI: 10.1128/mcb.24.24.10802-10813.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G(1)-phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.
Collapse
Affiliation(s)
- Brandt L Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wollenhaupt K, Jonas L, Tiemann U, Tomek W. Influence of the mycotoxins α- and β-zearalenol (ZOL) on regulators of cap-dependent translation control in pig endometrial cells. Reprod Toxicol 2004; 19:189-99. [PMID: 15501384 DOI: 10.1016/j.reprotox.2004.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 08/10/2004] [Accepted: 08/17/2004] [Indexed: 11/29/2022]
Abstract
The molecular mechanisms that control the mycotoxin-mediated effects in porcine endometrial cells are far from being completely understood. Recent results show that they could inhibit cell proliferation. Therefore, the present study investigated the effects of the mycotoxins alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL) on a cellular level. Mainly, the abundance and phosphorylation state (activity) of the cell cycle-dependent kinases MAPK and Akt (PKB) and their potential targets eIF4E (eukaryotic initiation factor 4E) and 4E-BP1 (4E binding protein, eIF4E repressor protein) were investigated. The results show that alpha-ZOL has apparently only a slight influence on the phosphorylation state of MAP kinases, Akt and on eIF4E and 4E-BP1. In contrast, their phosphorylation was strongly reduced in beta-ZOL-treated cells in a concentration-dependent manner. Therefore, our results indicate that beta-ZOL potentially not only influences transcription but also effects gene expression on translational level. The effect of alpha- and beta-ZOL on endometrial cell proliferation and their toxicology are discussed.
Collapse
Affiliation(s)
- K Wollenhaupt
- Unit of Reproductive Biology, Research Institute for the Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | |
Collapse
|
37
|
Oldenhof H, Zachleder V, van den Ende H. Blue light delays commitment to cell division in Chlamydomonas reinhardtii. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:689-695. [PMID: 15570473 DOI: 10.1055/s-2004-821341] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we describe the effect of red and blue light on the timing of commitment to cell division in Chlamydomonas reinhardtii. The time point and cell size after which cells can complete their cell cycle with one division round were determined for cultures that were exposed to various red and blue light periods. We show that the commitment point of cells grown in blue light is shifted to a later time point and a larger cell size, when compared with cells grown in red light. This shift was reduced when cultures were exposed to shorter blue light periods. Furthermore, this shift occurred only when exposure to blue light started before the cells attained a particular size. We conclude that the critical cell size for cell division, which is the cell size at which commitment to cell division is attained, is dependent on spectral composition.
Collapse
Affiliation(s)
- H Oldenhof
- Laboratory of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
38
|
Conlon I, Raff M. Control and maintenance of mammalian cell size: response. BMC Cell Biol 2004; 5:36. [PMID: 15458578 PMCID: PMC524482 DOI: 10.1186/1471-2121-5-36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 09/30/2004] [Indexed: 11/10/2022] Open
Abstract
A response to Cooper S: Control and maintenance of mammalian cell size. BMC Cell Biol 2004, 5:35.
Collapse
Affiliation(s)
- Ian Conlon
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London WC1E 6BT, UK
- Great Minster House, 77 Marsham Street, London SW1P 4DR, UK
| | - Martin Raff
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London WC1E 6BT, UK
- Great Minster House, 77 Marsham Street, London SW1P 4DR, UK
| |
Collapse
|
39
|
Guo J, Bryan BA, Polymenis M. Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae. Arch Microbiol 2004; 182:326-30. [PMID: 15349714 DOI: 10.1007/s00203-004-0704-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/25/2004] [Accepted: 06/30/2004] [Indexed: 11/27/2022]
Abstract
Cell cycle progression of Saccharomyces cerevisiae cells was monitored in continuous cultures limited for glucose or nitrogen. The G1 cell cycle phase, before initiation of DNA replication, did not exclusively expand when growth rate decreased. Especially during nitrogen limitation, non-G1 phases expanded almost as much as G1. In addition, cell size remained constant as a function of growth rate. These results contrast with current views that growth requirements are met before initiation of DNA replication, and suggest that distinct nutrient limitations differentially impinge on cell cycle progression.
Collapse
Affiliation(s)
- Jinbai Guo
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | |
Collapse
|
40
|
Sastre-Garau X, Genin P, Rousseau A, Al Ghuzlan A, Nicolas A, Fréneaux P, Rosty C, Sigal-Zafrani B, Couturier J, Thiery JP, Magdelénat H, Vincent-Salomon A. Increased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast. Histopathology 2004; 45:142-7. [PMID: 15279632 DOI: 10.1111/j.1365-2559.2004.01899.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS To determine whether cell size is related to HER-2/neu status and/or to Akt activation in breast carcinomas. HER-2/neu overexpression is observed in 20-30% of invasive breast carcinomas with poor pronostic features, but little is known about the cell phenotype associated with HER-2/neu activation. Akt has been found to be involved in the HER-2/neu signal transduction pathway and Akt activation has been associated with increased cell size in various models. METHODS AND RESULTS A case-control study of invasive ductal carcinoma of the breast was carried out, including 21 cases displaying HER-2/neu overexpression and 20 HER-2/neu negative controls. Cytoplasmic and nuclear sizes were measured on digitized histological pictures using cell image analysis software. Akt expression analysis was performed by immunohistochemistry on formalin-fixed histological sections using an anti-phosphorylated-Akt (Ser473) antibody. RESULTS HER-2/neu-overexpressing carcinomas had a mean nuclear size of 75 +/- 22.2 micro m(2) and a mean cytoplasmic size of 187 +/- 52.3 micro m(2). Both values were higher than the nuclear and cytoplasmic size of HER-2/neu-negative cases (nucleus = 58 +/- 24.5 micro m(2), cytoplasm = 133 +/- 56.6 micro m(2); P = 0.02 and P =0.003, respectively). Up to 75% of the tumours with a cell size over 140 micro m(2) were HER-2/neu-positive. Immunohistochemical Akt expression was observed in 19/40 (47.5%) cases. The immunoreactivity was localized in the cytoplasm in eight cases, on the cell membrane in four cases and at both sites in seven cases. One case was not interpretable. Comparison between HER-2/neu and Akt status showed that Akt was detectable at the cell membrane in 43% (9/21) of HER-2/neu-positive and in 10% (2/19) of HER-2/neu-negative cases (P = 0.02). CONCLUSIONS HER-2/neu overexpression was consistently associated with increased cell size in invasive ductal carcinoma of the breast. This increase may be related to concomitant Akt activation. The assessment of activated pathways in HER-2/neu-overexpressing breast carcinomas may provide useful information for optimized individual HER-2/neu-targeted therapy.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Case-Control Studies
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cell Nucleus
- Cell Size
- DNA, Neoplasm/analysis
- Female
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptor, ErbB-2/metabolism
Collapse
Affiliation(s)
- X Sastre-Garau
- Department of Pathology, CNRS UMR144, Institut Curie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Translation initiation is important for the regulation of both cell growth and cell division. It is uniquely poised to coordinate overall cell proliferation by its effects on both growth and division. A number of translation initiation factors are transcriptional targets of c-myc in a variety of assays. In particular, the mRNA cap-binding protein eIF4E has a myc-binding sequence in its promoter that is myc responsive in reporter assays and contains a high-affinity myc-binding site in chromosome immunoprecipitation experiments. Several differential expression screens have demonstrated altered levels of eIF4E, along with several other translation initiation factors, in response to alterations of c-myc levels. The potential for eIF4E and other translational control elements to mediate myc's transforming functions is particularly important because eIF4E is itself a known oncogenic factor. The ability of translation initiation factors to affect both cell division control and cell growth control coincides with myc's remarkable effects on both cell growth and cell division.
Collapse
Affiliation(s)
- Emmett V Schmidt
- Cancer Research Center at Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Rouzaire-Dubois B, Malo M, Milandri JB, Dubois JM. Cell size-proliferation relationship in rat glioma cells. Glia 2004; 45:249-57. [PMID: 14730698 DOI: 10.1002/glia.10320] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The homeostasis of the central nervous system is highly controlled by glial cells and is dramatically altered in the case of glioma. In this respect, the complex connection between cell size and division is of particular importance and needs clarifying. In order to investigate this connection, cell number and volume were measured in C6 rat glioma cells under different experimental conditions, including continuous cell culture, Cl- channel blockade, and anisotonicity, and in the presence of an inhibitory conditioned medium collected from cell cultures or in a medium containing a low level of fetal calf serum. The rate of cell proliferation changed with cell volume in a bell-shaped manner, so that it is optimal within a cell volume window and appears to be controlled by low and high cell size checkpoints. The cell size-proliferation relationship can be defined by Boltzmann-like equations, which may reflect the effects of macromolecular crowding on proteins controlling the cell cycle progression. Altogether, these observations indicate that glioma cell proliferation is controlled predominantly but not exclusively by cell size-dependent mechanisms.
Collapse
|
43
|
Bogomolnaya LM, Pathak R, Cham R, Guo J, Surovtseva YV, Jaeckel L, Polymenis M. A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae. Curr Genet 2004; 45:350-9. [PMID: 15022016 DOI: 10.1007/s00294-004-0497-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 02/14/2004] [Accepted: 02/22/2004] [Indexed: 10/26/2022]
Abstract
Mechanisms that coordinate cell growth with division are thought to determine the timing of initiation of cell division and to limit overall cell proliferation. To identify genes involved in this process in Saccharomyces cerevisiae, we describe a method that does not rely on cell size alterations or resistance to pheromone. Instead, our approach was based on the cell surface deposition of the Flo1p protein in cells having passed START. We found that over-expression of HXT11 (which encodes a plasma membrane transporter), PPE1 (coding for a protein methyl esterase), or SIK1 (which encodes a protein involved in rRNA processing) shortened the duration of the G1 phase of the cell cycle, prior to the initiation of DNA replication. In addition, we found that, although SIK1 was not part of a mitotic checkpoint, SIK1 over-expression caused spindle orientation defects and sensitized G2/M checkpoint mutant cells. Thus, unlike HXT11 and PPE1, SIK1 over-expression is also associated with mitotic functions. Overall, we used a novel enrichment approach and identified genes that were not previously associated with cell cycle progression. This approach can be extended to other organisms.
Collapse
Affiliation(s)
- Lydia M Bogomolnaya
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol 2004; 24:2181-9. [PMID: 14966295 PMCID: PMC350549 DOI: 10.1128/mcb.24.5.2181-2189.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 08/29/2003] [Accepted: 12/04/2003] [Indexed: 11/20/2022] Open
Abstract
Cyclin G2 is an unconventional cyclin highly expressed in postmitotic cells. Unlike classical cyclins that promote cell cycle progression, cyclin G2 blocks cell cycle entry. Here we studied the mechanisms that regulate cyclin G2 mRNA expression during the cell cycle. Analysis of synchronized NIH 3T3 cell cultures showed elevated cyclin G2 mRNA expression levels at G(0), with a considerable reduction as cells enter cell cycle. Downregulation of cyclin G2 mRNA levels requires activation of phosphoinositide 3-kinase, suggesting that this enzyme controls cyclin G2 mRNA expression. Because the phosphoinositide 3-kinase pathway inhibits the FoxO family of forkhead transcription factors, we examined the involvement of these factors in the regulation of cyclin G2 expression. We show that active forms of the forkhead transcription factor FoxO3a (FKHRL1) increase cyclin G2 mRNA levels. Cyclin G2 has forkhead consensus motifs in its promoter, which are transactivated by constitutive active FoxO3a forms. Finally, interference with forkhead-mediated transcription by overexpression of an inactive form decreases cyclin G2 mRNA expression levels. These results show that FoxO genes regulate cyclin G2 expression, illustrating a new role for phosphoinositide 3-kinase and FoxO transcription factors in the control of cell cycle entry.
Collapse
Affiliation(s)
- Lorena Martínez-Gac
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | |
Collapse
|
45
|
Roy G, Miron M, Khaleghpour K, Lasko P, Sonenberg N. The Drosophila poly(A) binding protein-interacting protein, dPaip2, is a novel effector of cell growth. Mol Cell Biol 2004; 24:1143-54. [PMID: 14729960 PMCID: PMC321445 DOI: 10.1128/mcb.24.3.1143-1154.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 3' poly(A) tail of eukaryotic mRNAs and the poly(A) binding protein (PABP) play important roles in the regulation of translation. Recently, a human PABP-interacting protein, Paip2, which disrupts the PABP-poly(A) interaction and consequently inhibits translation, was described. To gain insight into the biological role of Paip2, we studied the Drosophila melanogaster Paip2 (dPaip2). dPaip2 is the bona fide human Paip2 homologue, as it interacts with dPABP, inhibits binding of dPABP to the mRNA poly(A) tail, and reduces translation of a reporter mRNA by approximately 80% in an S2 cell-free translation extract. Ectopic overexpression of dPaip2 in Drosophila wings and wing discs results in a size reduction phenotype, which is due to a decrease in cell number. Clones of cells overexpressing dPaip2 in wing discs also contain fewer cells than controls. This phenotype can be explained by a primary effect on cell growth. Indeed, overexpression of dPaip2 in postreplicative tissues inhibits growth, inasmuch as it reduces ommatidia size in eyes and cell size in the larval fat body. We conclude that dPaip2 inhibits cell growth primarily by inhibiting protein synthesis.
Collapse
Affiliation(s)
- Guylaine Roy
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
46
|
Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E. Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 2004; 22:5459-70. [PMID: 14532118 PMCID: PMC213787 DOI: 10.1093/emboj/cdg533] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bcl-x(L) and Bcl-2 inhibit both apoptosis and proliferation. In investigating the relationship between these two functions of Bcl-x(L) and Bcl-2, an analysis of 24 Bcl-x(L) and Bcl-2 mutant alleles, including substitutions at residue Y28 previously reported to selectively abolish the cell cycle activity, showed that cell cycle delay and anti-apoptosis co-segregated in all cases. In determining whether Bcl-2 and Bcl-x(L) act in G(0) or G(1), forward scatter and pyronin Y fluorescence measurements indicated that Bcl-2 and Bcl-x(L) cells arrested more effectively in G(0) than controls, and were delayed in G(0)-G(1) transition. The cell cycle effects of Bcl-2 and Bcl-x(L) were reversed by Bad, a molecule that counters the survival function of Bcl-2 and Bcl-x(L). When control and Bcl-x(L) cells of equivalent size and pyronin Y fluorescence were compared, the kinetics of cell cycle entry were similar, demonstrating that the ability of Bcl-x(L) and Bcl-2 cells to enhance G(0) arrest contributes significantly to cell cycle delay. Our data suggest that cell cycle effects and increased survival both result from intrinsic functions of Bcl-2 and Bcl-x(L).
Collapse
Affiliation(s)
- Yelena M Janumyan
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 2004; 3:939-51. [PMID: 14647476 DOI: 10.1038/nri1248] [Citation(s) in RCA: 527] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Oreste Acuto
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 25 Rue du Dr Roux, Cedex 15, 75724 Paris, France.
| | | |
Collapse
|
48
|
Willis IM, Desai N, Upadhya R. Signaling repression of transcription by RNA polymerase III in yeast. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:323-53. [PMID: 15196897 DOI: 10.1016/s0079-6603(04)77009-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | | | | |
Collapse
|
49
|
Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV. Activated eIF4E-binding Protein Slows G1 Progression and Blocks Transformation by c-myc without Inhibiting Cell Growth. J Biol Chem 2004; 279:3327-39. [PMID: 14607835 DOI: 10.1074/jbc.m310872200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation initiation is poised between global regulation of cell growth and specific regulation of cell division. The mRNA cap-binding protein (eIF4E) is a critical integrator of cell growth and division because it is rate-limiting for translation initiation and is also rate-limiting for G(1) progression. Translation initiation factor eIF4E is also oncogenic and a candidate target of c-myc. Recently, an activated inhibitory 4E-binding protein (4EBP) that blocks eIF4E was used to study its regulation of Drosophila growth. We adopted this approach in mammalian cells after identifying an autosensing mechanism that protects against increased levels of 4EBP1. Increased 4EBP1 induced a quantitative increase in the inactivated phosphorylated form of 4EBP1 in vitro and in vivo. To overcome this protective mechanism, we introduced alanine substitutions at four phosphorylation/inactivation sites in 4EBP1 to constitutively activate a 4EBP mu to block eIF4E. Overexpression of activated 4EBP mu inhibited cell proliferation and completely blocked transformation by both eIF4E and c-myc, although it did not block all tested oncogenes. Surprisingly, expression of the activated 4EBP mu increased cell size and protein content. Activated 4EBP mu blocked both cell proliferation and c-myc transformation by inhibiting G(1) progression and increasing apoptosis, without decreasing protein synthesis. Our results identify mammalian eIF4E as rate-limiting for cell cycle progression before it regulates cell growth. It further identifies G(1) control by translation initiation factors as an essential genetic target of c-myc that is necessary for its ability to transform cells.
Collapse
Affiliation(s)
- Mary Lynch
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
50
|
Bryan BA, McGrew E, Lu Y, Polymenis M. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 271:72-81. [PMID: 14648201 DOI: 10.1007/s00438-003-0957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.
Collapse
Affiliation(s)
- B A Bryan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|