1
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Bandla AC, Sheth AS, Zarate SM, Uskamalla S, Hager EC, Villarreal VA, González-García M, Ballestero RP. Enhancing structural plasticity of PC12 neurons during differentiation and neurite regeneration with a catalytically inactive mutant version of the zRICH protein. BMC Neurosci 2023; 24:43. [PMID: 37612637 PMCID: PMC10463786 DOI: 10.1186/s12868-023-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain. They interact with the tubulin cytoskeleton and are able to enhance neuronal structural plasticity by promoting the formation of neurite branches. RESULTS PC12 stable transfectant cells expressing a fusion protein combining a red fluorescent protein with a catalytically inactive mutant version of zebrafish RICH protein were generated. These cells were used as a model to analyze effects of the protein on neuritogenesis. Differentiation experiments showed a 2.9 fold increase in formation of secondary neurites and a 2.4 fold increase in branching points. A 2.2 fold increase in formation of secondary neurites was observed in neurite regeneration assays. CONCLUSIONS The use of a fluorescent fusion protein facilitated detection of expression levels. Two computer-assisted morphometric analysis methods indicated that the catalytically inactive RICH protein induced the formation of branching points and secondary neurites both during differentiation and neurite regeneration. A procedure based on analysis of random field images provided comparable results to classic neurite tracing methods.
Collapse
Affiliation(s)
- Ashoka C Bandla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Aditya S Sheth
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Sara M Zarate
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Suraj Uskamalla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Elizabeth C Hager
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Victor A Villarreal
- Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | | | - Rafael P Ballestero
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA.
| |
Collapse
|
3
|
Wu S, Romero-Ramírez L, Mey J. Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress. J Cell Physiol 2021; 237:1455-1470. [PMID: 34705285 PMCID: PMC9297999 DOI: 10.1002/jcp.30619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) causes cell death and consequently the breakdown of axons and myelin. The accumulation of myelin debris at the lesion site induces inflammation and blocks axonal regeneration. Hematogenous macrophages contribute to the removal of myelin debris. In this study, we asked how the inflammatory state of macrophages affects their ability to phagocytose myelin. Bone marrow‐derived macrophages (BMDM) and Raw264.7 cells were stimulated with lipopolysaccharides (LPS) or interferon gamma (IFNγ), which induce inflammatory stress, and the endocytosis of myelin was examined. We found that activation of the TLR4‐NFκB pathway reduced myelin uptake by BMDM, while IFNγ‐Jak/STAT1 signaling did not. Since bile acids regulate lipid metabolism and in some cases reduce inflammation, our second objective was to investigate whether myelin clearance could be improved with taurolithocholic acid (TLCA), tauroursodeoxycholic acid or hyodeoxycholic acid. In BMDM only TLCA rescued myelin phagocytosis, when this activity was suppressed by LPS. Inhibition of protein kinase A blocked the effect of TLCA, while an agonist of the farnesoid X receptor did not rescue phagocytosis, implicating TGR5‐PKA signaling in the effect of TLCA. To shed light on the mechanism, we measured whether TLCA affected the expression of CD36, triggering receptor on myeloid cells‐2 (TREM2), and Gas6, which are known to be involved in phagocytosis and affected by inflammatory stimuli. Concomitant with an increase in expression of tumour necrosis factor alpha, LPS reduced expression of TREM2 and Gas6 in BMDM, and TLCA significantly diminished this downregulation. These findings suggest that activation of bile acid receptors may be used to improve myelin clearance in neuropathologies.
Collapse
Affiliation(s)
- Siyu Wu
- Unidad de Investigación, Laboratorio LRNI, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Romero-Ramírez
- Unidad de Investigación, Laboratorio LRNI, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Jörg Mey
- Unidad de Investigación, Laboratorio LRNI, Hospital Nacional de Parapléjicos, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Minta K, Portelius E, Janelidze S, Hansson O, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal Fluid Concentrations of Extracellular Matrix Proteins in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1213-1220. [PMID: 31156172 DOI: 10.3233/jad-190187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brevican, neurocan, tenascin-C, and tenascin-R are extracellular matrix (ECM) proteins that are mainly expressed in the brain. They play important roles in proliferation and migration of neurons and other cell types in the brain. These ECM proteins may also be involved in various pathologies, including reactive gliosis. OBJECTIVE The aim of the study was to investigate if ECM protein concentrations in cerebrospinal fluid (CSF) are linked to the neurodegenerative process in Alzheimer's disease (AD). METHODS Lumbar CSF samples from a non-AD control group (n = 50) and a clinically diagnosed AD group (n = 42), matched for age and gender, were analyzed using commercially available ELISAs detecting ECM proteins. Mann-Whitney U test was used to examine group differences, while Spearman's rho test was used for correlations. RESULTS Brevican, neurocan, tenascin-R, and tenascin-C concentrations in AD patients did not differ compared to healthy controls or when the groups were dichotomized based on the Aβ42/40 cut-off. CSF tenascin-C and tenascin-R concentrations were significantly higher in women than in men in the AD group (p = 0.02). CONCLUSION ECM proteins do not reflect AD-pathology in CSF. CSF tenascin-C and tenascin-R upregulation in women possibly reveal sexual dimorphism in the central nervous system immunity during AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
5
|
Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:567537. [PMID: 33015061 PMCID: PMC7494789 DOI: 10.3389/fcell.2020.567537] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daayun Chung
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Shum
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Minta K, Cullen NC, Nimer FA, Thelin EP, Piehl F, Clarin M, Tullberg M, Jeppsson A, Portelius E, Zetterberg H, Blennow K, Andreasson U. Dynamics of extracellular matrix proteins in cerebrospinal fluid and serum and their relation to clinical outcome in human traumatic brain injury. Clin Chem Lab Med 2020; 57:1565-1573. [PMID: 30980710 DOI: 10.1515/cclm-2019-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/24/2019] [Indexed: 12/20/2022]
Abstract
Background Brevican, neurocan, tenascin-C and tenascin-R are extracellular matrix proteins present in brain that show increased expression in experimental animal models of brain injury. However, little is known about the dynamics of these proteins in human body fluids, such as cerebrospinal fluid (CSF) and serum, after traumatic brain injury (TBI). The aims of this study were to investigate if matrix proteins in CSF and serum are associated with functional outcome following traumatic brain injury, if their concentrations change over time and to compare their levels between brain injured patients to controls. Methods In total, 42 traumatic brain injury patients, nine healthy controls and a contrast group consisting of 38 idiopathic normal pressure hydrocephalus patients were included. Enzyme-linked immunosorbent assays (ELISAs) were used to measure the concentrations of proteins. Results Increased concentrations of brevican, tenascin-C and tenascin-R in CSF correlated with unfavourable outcome, with stronger outcome prediction ability compared to other biomarkers of brain tissue injury. CSF brevican, tenascin-R and serum neurocan gradually decreased with time (p = 0.04, p = 0.008, p = 0.005, respectively), while serum tenascin-C (p = 0.01) increased. CSF concentrations of brevican, neurocan and tenascin-R (only in time point 3) after TBI were lower than in the idiopathic normal pressure hydrocephalus group (p < 0.0001, p < 0.0001, and p = 0.0008, respectively). In serum, tenascin-C concentration was higher and neurocan lower compared to healthy controls (p = 0.02 and p = 0.0009). Conclusions These findings indicate that levels of extracellular matrix proteins are associated with clinical outcome following TBI and may act as markers for different pathophysiology than currently used protein biomarkers.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Nicholas C Cullen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Clarin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mats Tullberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Jeppsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
8
|
The Cofilin/Limk1 Pathway Controls the Growth Rate of Both Developing and Regenerating Motor Axons. J Neurosci 2019; 39:9316-9327. [PMID: 31578231 DOI: 10.1523/jneurosci.0648-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerating axons often have to grow considerable distances to reestablish circuits, making functional recovery a lengthy process. One solution to this problem would be to co-opt the "temporal" guidance mechanisms that control the rate of axon growth during development to accelerate the rate at which nerves regenerate in adults. We have previously found that the loss of Limk1, a negative regulator of cofilin, accelerates the rate of spinal commissural axon growth. Here, we use mouse models to show that spinal motor axon outgrowth is similarly promoted by the loss of Limk1, suggesting that temporal guidance mechanisms are widely used during development. Furthermore, we find that the regulation of cofilin activity is an acute response to nerve injury in the peripheral nervous system. Within hours of a sciatic nerve injury, the level of phosphorylated cofilin dramatically increases at the lesion site, in a Limk1-dependent manner. This response may be a major constraint on the rate of peripheral nerve regeneration. Proof-of-principle experiments show that elevating cofilin activity, through the loss of Limk1, results in faster sciatic nerve growth, and improved recovery of some sensory and motor function.SIGNIFICANCE STATEMENT The studies shed light on an endogenous, shared mechanism that controls the rate at which developing and regenerating axons grow. An understanding of these mechanisms is key for developing therapies to reduce painful recovery times for nerve-injury patients, by accelerating the rate at which damaged nerves reconnect with their synaptic targets.
Collapse
|
9
|
Karamzadeh T, Alipour H, Shahriari-Namadi M, Raz A, Azizi K, Bagheri M, Moemenbellah-Fard MD. Molecular characterization of the netrin-1 UNC-5 receptor in Lucilia sericata larvae. AIMS GENETICS 2019; 6:46-54. [PMID: 31663032 PMCID: PMC6803787 DOI: 10.3934/genet.2019.3.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022]
Abstract
Larval therapy with Lucilia sericata is a promising strategy in wound healing. Axon guidance molecules play vital roles during the development of the nervous system and also regulate the capacity of neuronal restoration in wound healing. Netrin-1, one of the proteins that larvae secrete, plays a useful role in cell migration and nerve tissue regeneration. The UNC-5 receptor combines with a netrin-1 signal and transmits the signal from one side of the membrane to the other side, initiating a change in cell activity. In the current study, we identified the full length of the UNC-5 receptor mRNA in L. sericata using different sets of primers, including exon junction and specific region primers. The coding sequence (CDS) of the UNC-5 receptor was sequenced and identified to include 633 base-pair nucleic acids, and BLAST analysis on its nucleotide sequence revealed 96% identity with the Lucilia cuprina netrin-1 UNC-5 receptor. The protein residue included 210 amino acids (aa) and coded for a protein with 24 kD weight. This gene lacked the signal peptide. Furthermore, the UPA domain is conserved in UNC-5. It lied at the interval of 26–131 aa. We identified the CDS of netrin-1UNC-5 receptor in L. sericata. It could be applied to research activities implementing a new essential component design in wound healing.
Collapse
Affiliation(s)
- Tahereh Karamzadeh
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziae Shahriari-Namadi
- Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad D Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Methods of olfactory ensheathing cell harvesting from the olfactory mucosa in dogs. PLoS One 2019; 14:e0213252. [PMID: 30840687 PMCID: PMC6402693 DOI: 10.1371/journal.pone.0213252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Olfactory ensheathing cells are thought to support regeneration and remyelination of damaged axons when transplanted into spinal cord injuries. Following transplantation, improved locomotion has been detected in many laboratory models and in dogs with naturally-occurring spinal cord injury; safety trials in humans have also been completed. For widespread clinical implementation, it will be necessary to derive large numbers of these cells from an accessible and, preferably, autologous, source making olfactory mucosa a good candidate. Here, we compared the yield of olfactory ensheathing cells from the olfactory mucosa using 3 different techniques: rhinotomy, frontal sinus keyhole approach and rhinoscopy. From canine clinical cases with spinal cord injury, 27 biopsies were obtained by rhinotomy, 7 by a keyhole approach and 1 with rhinoscopy. Biopsy via rhinoscopy was also tested in 13 cadavers and 7 living normal dogs. After 21 days of cell culture, the proportions and populations of p75-positive (presumed to be olfactory ensheathing) cells obtained by the keyhole approach and rhinoscopy were similar (~4.5 x 106 p75-positive cells; ~70% of the total cell population), but fewer were obtained by frontal sinus rhinotomy. Cerebrospinal fluid rhinorrhea was observed in one dog and emphysema in 3 dogs following rhinotomy. Blepharitis occurred in one dog after the keyhole approach. All three biopsy methods appear to be safe for harvesting a suitable number of olfactory ensheathing cells from the olfactory mucosa for transplantation within the spinal cord but each technique has specific advantages and drawbacks.
Collapse
|
11
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
12
|
Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A, Armstrong IIT, Taqi MA, Mortazavi MM. Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev 2018; 43:425-441. [PMID: 29998371 DOI: 10.1007/s10143-018-1008-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a life-shattering neurological condition that affects between 250,000 and 500,000 individuals each year with an estimated two to three million people worldwide living with an SCI-related disability. The incidence in the USA and Canada is more than that in other countries with motor vehicle accidents being the most common cause, while violence being most common in the developing nations. Its incidence is two- to fivefold higher in males, with a peak in younger adults. Apart from the economic burden associated with medical care costs, SCI predominantly affects a younger adult population. Therefore, the psychological impact of adaptation of an average healthy individual as a paraplegic or quadriplegic with bladder, bowel, or sexual dysfunction in their early life can be devastating. People with SCI are two to five times more likely to die prematurely, with worse survival rates in low- and middle-income countries. This devastating disorder has a complex and multifaceted mechanism. Recently, a lot of research has been published on the restoration of locomotor activity and the therapeutic strategies. Therefore, it is imperative for the treating physicians to understand the complex underlying pathophysiological mechanisms of SCI.
Collapse
Affiliation(s)
- Syed A Quadri
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA. .,National Skull Base Center, Thousand Oaks, CA, USA.
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Asad Ikram
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Muhammad Adnan Khan
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Sajid S Suriya
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Chad F Claus
- Department of Neurosurgery, St. John Providence Hospital and Medical Centers, Michigan State University, Southfield, MI, USA
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Mohammed Rahman
- Department of Neurology, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Anirudh Ramachandran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Ian I T Armstrong
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Muhammad A Taqi
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Martin M Mortazavi
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| |
Collapse
|
13
|
Willson CA, Irizarry-Ramírez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR, Miranda JD. Upregulation of EphA Receptor Expression in the Injured Adult Rat Spinal Cord. Cell Transplant 2017. [DOI: 10.3727/096020198389997] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins, act via repulsive mechanisms to guide growing axons towards their appropriate targets and allow for the correct developmental connections to be made. In the present study, we investigated whether EphA receptor expression changed after a thoracic contusion SCI. Our results indicate that several EphA molecules are upregulated after SCI. Using semiquantitative RT-PCR to investigate mRNA expression after SCI, we found that EphA3, A4, and A7 mRNAs were upregulated. EphA3, A4, A6, and A8 receptor immunoreactivity increased in the ventrolateral white matter (VWM) at the injury epicenter. EphA7 had the highest level of immunoreactivity in both control and injured rat spinal cord. EphA receptor expression in the white matter originated from glial cells as coexpression in both astrocytes and oligodendrocytes was observed. In contrast, gray matter expression was localized to neurons of the ventral gray matter (motor neurons) and dorsal horn. After SCI, specific EphA receptor subtypes are upregulated and these increases may create an environment that is unfavorable for neurite outgrowth and functional regeneration.
Collapse
Affiliation(s)
- Christopher A. Willson
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | | | - Hope E. Gaskins
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Lillian Cruz-Orengo
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Johnny D. Figueroa
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Jorge D. Miranda
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| |
Collapse
|
14
|
Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU. Stem Cell-Based Cell Therapy for Spinal Cord Injury. Cell Transplant 2017; 16:355-64. [PMID: 17658126 DOI: 10.3727/000000007783464885] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI. There is no consensus yet on what kind of stem/progenitor cells is an ideal source for cellular grafts. Three kinds of stem/progenitor cells have been utilized in cell therapy in animal models of SCI: embryonic stem cells, bone marrow mesenchymal stem cells, and neural stem cells. Neural stem cells or fate-restricted neuronal or glial progenitor cells were preferably used because they have clear capacity to become neurons or glial cells after transplantation into the injured spinal cord. At least a part of functional deficits after SCI is attributable to chronic progressive demyelination. Therefore, several studies transplanted glial-restricted progenitors or oligodendrocyte precursors to target the demyelination process. Directed differentiation of stem/progenitor cells to oligodendrocyte lineage prior to transplantation or modulation of microenvironment in the injured spinal cord to promote oligodendroglial differentiation seems to be an effective strategy to increase the extent of remyelination. Transplanted stem/progenitor cells can also contribute to promoting axonal regeneration by functioning as cellular scaffolds for growing axons. Combinatorial approaches using polymer scaffolds to fill the lesion cavity or introducing regeneration-promoting genes will greatly increase the efficacy of cellular transplantation strategies for SCI.
Collapse
Affiliation(s)
- Byung Gon Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Dun XP, Parkinson DB. Role of Netrin-1 Signaling in Nerve Regeneration. Int J Mol Sci 2017; 18:ijms18030491. [PMID: 28245592 PMCID: PMC5372507 DOI: 10.3390/ijms18030491] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK.
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - David B Parkinson
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK.
| |
Collapse
|
16
|
Combined application of Rho-ROCKII and GSK-3β inhibitors exerts an improved protective effect on axonal regeneration in rats with spinal cord injury. Mol Med Rep 2016; 14:5180-5188. [PMID: 27840930 PMCID: PMC5355718 DOI: 10.3892/mmr.2016.5918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/17/2016] [Indexed: 12/03/2022] Open
Abstract
Previous studies have reported that the Rho-associated coiled-coil containing protein kinase 2 (ROCKII) and glycogen synthase kinase-3β (GSK)-3β signaling pathways are involved in axonal regeneration. The present study investigated the effects of the combined application of Y27632 (a ROCKII inhibitor) and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8; a GSK-3β inhibitor) on neurite outgrowth and functional recovery in rats with spinal cord injury (SCI). A total of 90 female Sprague-Dawley rats were randomly allocated into six groups, and the SCI rats received daily administration of 1.6 mg/kg Y27632 for 2 weeks and/or 1 mg/kg TDZD-8 for 3 weeks via a catheter. Cellular apoptosis in the injured spinal cords was measured at each time point using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression levels of growth-associated protein-43 (GAP-43) were determined by immunohistochemical staining. In addition, an anterograde tracer was used to analyze axonal regeneration, the Basso Beattie Bresnahan locomotor rating scale (BBB) was analyzed, and the somatosensory evoked potential (SEP) test was conducted. The results demonstrated that SCI upregulated the number of apoptotic cells, increased GAP-43 expression and enhanced the latent periods of SEP, as compared with in mice that underwent a sham operation. Furthermore, SCI decreased the BBB scores and the SEP amplitudes. These injuries in the spinal cord were reduced following treatment with Y27632, TDZD-8, or their combined application, as detected by decreased apoptosis, the induction of axonal regeneration, and the promotion of functional recovery of the lower limbs. Although the BBB scores, and SEP amplitudes and latent periods were not significantly different among the three drug treatment groups, the combined application of Y27632 and TDZD-8 resulted in stronger axonal regenerative potency and a greater protective effect on secondary SCI. These results indicated that the combined application of Y27632 and TDZD-8 may more effectively protect against secondary SCI by inhibiting cellular apoptosis, enhancing GAP-43 expression and promoting neurite outgrowth in SCI rats, compared with Y27632 or TDZD-8 alone.
Collapse
|
17
|
Carwardine D, Wong LF, Fawcett JW, Muir EM, Granger N. Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC. J Neurol Sci 2016; 367:311-8. [PMID: 27423610 DOI: 10.1016/j.jns.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 11/26/2022]
Abstract
A multitude of factors must be overcome following spinal cord injury (SCI) in order to achieve clinical improvement in patients. It is thought that by combining promising therapies these diverse factors could be combatted with the aim of producing an overall improvement in function. Chondroitin sulphate proteoglycans (CSPGs) present in the glial scar that forms following SCI present a significant block to axon regeneration. Digestion of CSPGs by chondroitinase ABC (ChABC) leads to axon regeneration, neuronal plasticity and functional improvement in preclinical models of SCI. However, the enzyme activity decays at body temperature within 24-72h, limiting the translational potential of ChABC as a therapy. Olfactory ensheathing cells (OECs) have shown huge promise as a cell transplant therapy in SCI. Their beneficial effects have been demonstrated in multiple small animal SCI models as well as in naturally occurring SCI in canine patients. In the present study, we have genetically modified canine OECs from the mucosa to constitutively produce enzymatically active ChABC. We have developed a lentiviral vector that can deliver a mammalian modified version of the ChABC gene to mammalian cells, including OECs. Enzyme production was quantified using the Morgan-Elson assay that detects the breakdown products of CSPG digestion in cell supernatants. We confirmed our findings by immunolabelling cell supernatant samples using Western blotting. OECs normal cell function was unaffected by genetic modification as demonstrated by normal microscopic morphology and the presence of the low affinity neurotrophin receptor (p75(NGF)) following viral transduction. We have developed the means to allow production of active ChABC in combination with a promising cell transplant therapy for SCI repair.
Collapse
Affiliation(s)
- Darren Carwardine
- University of Bristol, School of Veterinary Sciences, Regenerative Medicine Laboratory, Biomedical Science Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Liang-Fong Wong
- University of Bristol, School of Clinical Sciences, Regenerative Medicine Laboratory, Biomedical Science Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | - James W Fawcett
- University of Cambridge, Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom.
| | - Elizabeth M Muir
- University of Cambridge, Department of Physiology Development and Neuroscience, Anatomy Building, Downing St, Cambridge CB2 3DY, United Kingdom.
| | - Nicolas Granger
- University of Bristol, School of Veterinary Sciences, Langford House, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
18
|
Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World J Stem Cells 2016; 8:32-46. [PMID: 26981169 PMCID: PMC4766249 DOI: 10.4252/wjsc.v8.i2.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications.
Collapse
|
19
|
Dai X, Sun Z, Liang R, Li Y, Luo H, Huang Y, Chen M, Su Z, Xiao F. Recombinant Nogo-66 via soluble expression with SUMO fusion in Escherichia coli inhibits neurite outgrowth in vitro. Appl Microbiol Biotechnol 2015; 99:5997-6007. [PMID: 25758955 DOI: 10.1007/s00253-015-6477-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/28/2022]
Abstract
Nogo-66, a hydrophilic loop of 66 amino acids flank two hydrophobic domains of the Nogo-A C terminus, interacts with the Nogo-66 receptor (NgR) to exert numerous functions in the central nervous system (CNS). Nogo-66 has important roles in aspects of neuronal development, including cell migration, axon guidance, fasciculation, and dendritic branching, and in aspects of CNS plasticity, including oligodendrocyte differentiation and myelination. Here, the small ubiquitin-related modifier (SUMO) was fused to the target gene, Nogo-66, and the construct was expressed in Escherichia coli (E. coli). Under the optimal fermentation conditions, the soluble expression level of the fusion protein was 33 % of the total supernatant protein. After cleaving the fusion proteins with SUMO protease and purifying them by Ni-NTA affinity chromatography, the yield and purity of recombinant Nogo-66 obtained by 10-L scale fermentation were 23 ± 1.5 mg/L and greater than 93 %, respectively. The authenticity of the recombinant Nogo-66 was confirmed by an electrospray ionization-mass spectrometry analysis. The functional analyses indicated that the recombinant Nogo-66 was capable of binding the NgR specifically. The immunofluorescence results showed that the recombinant Nogo-66 could significantly inhibit neurite outgrowth of rat pheochromocytoma (PC12) cells stimulated by nerve growth factor and cerebellar granule cells (CGCs). Furthermore, Nogo-66 inhibited neurite outgrowth by increasing the level of phosphorylated Rho-associated coiled-coil-containing protein kinase 2 (ROCK2), collapsin response mediator protein 2 (CRMP2), and myosin light chain (MLC). This study provided a feasible and convenient production method for generating sufficient recombinant Nogo-66 for experimental and clinical applications.
Collapse
Affiliation(s)
- Xiaoyong Dai
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ramasamy S, Yu F, Hong Yu Y, Srivats H, Dawe GS, Ahmed S. NogoR1 and PirB signaling stimulates neural stem cell survival and proliferation. Stem Cells 2015; 32:1636-48. [PMID: 24449409 DOI: 10.1002/stem.1645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Institute of Medical Biology, 8A Biomedical Grove, #05-37 Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
21
|
Zhou H, Li X, Wu Q, Li F, Fu Z, Liu C, Liang Z, Chu T, Wang T, Lu L, Ning G, Kong X, Feng S. shRNA against PTEN promotes neurite outgrowth of cortical neurons and functional recovery in spinal cord contusion rats. Regen Med 2014; 10:411-29. [PMID: 25495396 DOI: 10.2217/rme.14.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore neurite growth/regeneration and spinal cord injury repair after PTEN silencing via lentivirus-mediated RNAi. MATERIALS & METHODS Cortical neurons were seeded on or adjacent to chondroitin sulfate proteoglycans. The length, number and crossing behavior of neurites were calculated. Lentivirus was locally injected into spinal cord contusion rats. The functional recovery and immunohistochemical staining were analyzed. RESULTS Neurites with PTEN silencing exhibited significant enhancements in elongation, initiation and crossing ability when they encountered chondroitin sulfate proteoglycans in vitro. In vivo PTEN silencing improved functional recovery significantly, and promoted axon and synapse formation, but not scar formation. CONCLUSIONS PTEN silencing may be promising for spinal cord injury repair.
Collapse
Affiliation(s)
- Hengxing Zhou
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | - Qiang Wu
- 3Department of Orthopaedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314 Anshanxi Road, Nankai District, Tianjin 300193, PR China
| | - Fuyuan Li
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | - Chang Liu
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Zhipin Liang
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Tianci Chu
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Tianyi Wang
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Lu Lu
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Guangzhi Ning
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Xiaohong Kong
- 4School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Shiqing Feng
- 1Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, PR China
| |
Collapse
|
22
|
Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs. Pharmacol Rep 2014; 67:317-25. [PMID: 25712657 DOI: 10.1016/j.pharep.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/14/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite that gentamicin is a very effective aminoglycoside, its potential ototoxicity which is of irreversible nature makes a challenge and limitation for its use. This study was designed to investigate possible neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity. METHODS AND RESULTS Twenty pigmented guinea pigs were divided into four equal groups, where group I served as normal control group. The other groups received gentamicin (120 mg/kg/day, ip) for 19 days where group II given vehicle of 1% CMC, group III and group IV were pre-treated 2h before gentamicin by 4-methylcatechol (10 μg/kg, ip) and silymarin (100mg/kg, oral gavage), respectively. The main findings indicated that silymarin exhibited restoration of nerve growth factor (NGF) levels and increased tropomyosin-related kinase receptors-A (Trk-A) m-RNA expression in cochlear tissue and preservation of hair cells of organ of Corti by scanning electron microscopy (SEM) with significant decrease in auditory brainstem response (ABR) threshold compared to 4-methylcatechol. Only silymarin caused significant amelioration in oxidative stress state by reducing malondialdehyde (MDA) levels and increasing catalase activity. CONCLUSIONS Silymarin exerts superiority over 4-methylcatechol when recommended as protective agent against gentamicin ototoxicity based on its efficient neurotrophic and antioxidant activities.
Collapse
|
23
|
Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Brain Res 2014; 1586:46-63. [PMID: 25152470 DOI: 10.1016/j.brainres.2014.08.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/09/2014] [Accepted: 08/16/2014] [Indexed: 01/01/2023]
Abstract
After spinal cord injury (SCI), the rapidly upregulated chondroitin sulfate proteoglycans (CSPGs), the prominent chemical constituents and main repulsive factors of the glial scar, play an important role in the extremely limited ability to regenerate in adult mammals. Although many methods to overcome the inhibition have been tested, no successful method with clinical feasibility has been devised to date. It was recently discovered that receptor protein tyrosine phosphatase sigma (RPTPσ) is a functional receptor for CSPGs-mediated inhibition. In view of the potential clinical application of RNA interference (RNAi), here we investigated whether silencing RPTPσ via lentivirus-mediated RNA interference can promote axon regeneration and functional recovery after SCI. Neurites of primary rat cerebral cortical neurons with depleted RPTPσ exhibited a significant enhancement in elongation and crossing ability when they encountered CSPGs in vitro. A contusion model of spinal cord injury in Wistar rats (the New York University (NYU) impactor) was used for in vivo experiments. Local injection of lentivirus encoding RPTPσ shRNA at the lesion site promoted axon regeneration and synapse formation, but did not affect the scar formation. Meanwhile, in vivo functional recovery (motor and sensory) was also enhanced after RPTPσ depletion. Therefore, strategies directed at silencing RPTPσ by RNAi may prove to be a beneficial, efficient and valuable approach for the treatment of SCI.
Collapse
|
24
|
Vilar M, Sung TC, Chen Z, García-Carpio I, Fernandez EM, Xu J, Riek R, Lee KF. Heterodimerization of p45-p75 modulates p75 signaling: structural basis and mechanism of action. PLoS Biol 2014; 12:e1001918. [PMID: 25093680 PMCID: PMC4122344 DOI: 10.1371/journal.pbio.1001918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/25/2014] [Indexed: 12/26/2022] Open
Abstract
The formation of a p45-p75 heterodimer overrides p75’s inhibition of nerve regeneration by stopping p75 homodimers from forming and creating a complex with the Nogo receptor. The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45–p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling. Injuries to the brain and spinal cord often result in paralysis due to the fact that the injured nerves cannot regrow to reach their normal targets and carry out their functions. At the injury sites, there are proteins released from the damaged myelin that bind the Nogo receptor (NgR) on the nerve and inhibit its regeneration. The NgR needs to form a complex with the p75 neurotrophin receptor in order to mediate this inhibitory signal. Here we found that p45, a homologue of p75, can also bind to p75 and block its inhibitory activity when overexpressed. To perform its function, p75 needs to dimerize through both its transmembrane and intracellular domains, facilitating the recruitment of several proteins. Our structural and functional studies show that p45 binds specifically to conserved regions in the p75 transmembrane and the intracellular domain and that this blocks p75 dimerization along with its downstream signaling. Thus, this study demonstrates that altering the oligomerization of p75 is a good strategy to override p75's inhibitory effects on nerve regeneration, and it opens the door for the design of specific p75 inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Marçal Vilar
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| | - Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Zhijiang Chen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Irmina García-Carpio
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
| | - Eva M. Fernandez
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
| | - Jiqing Xu
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Roland Riek
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Laboratory for Physical Chemistry, ETH Zürich, Zürich, Switzerland
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| |
Collapse
|
25
|
Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014; 30:967-984. [PMID: 24957881 DOI: 10.1007/s12264-013-1456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.
Collapse
|
26
|
Myckatyn TM, Hunter DA, Mackinnon SE. The effects of cold preservation and subimmunosuppressive doses of FK506 on axonal regeneration in murine peripheral nerve isografts. THE CANADIAN JOURNAL OF PLASTIC SURGERY = JOURNAL CANADIEN DE CHIRURGIE PLASTIQUE 2013; 11:15-22. [PMID: 24115844 DOI: 10.1177/229255030301100110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND FK506 is a frequently used immunosuppressant with neuroregenerative effects. The neuroregenerative and immunosuppressive mechanisms of FK506, however, are distinct, suggesting that FK506 may stimulate nerve regeneration at lower doses than are needed to induce immunosuppression. The effects of cold preservation, a technique known to improve axonal regeneration through nerve allografts, are not well studied in nerve isografts and are also reported here. OBJECTIVES To determine the effects of subimmunosuppressive doses of FK506 and cold preservation on nerve regeneration in isografts. METHODS The neuroregenerative properties of immunosuppressive and subimmunosuppressive doses of FK506 were compared in a murine model receiving either fresh or cold preserved nerve isografts. Sixty female BALB/cJ mice were randomized into six groups. Animals in groups I, III and V received fresh nerve isografts. Animals in groups II, IV and VI received cold-preserved nerve isografts. Mice in groups I and II received no medical therapy, while those in groups III and IV received subimmunosuppressive doses of FK506, and those in groups V and VI received immunosuppressive doses as confirmed by mixed lymphocyte reactivity assays. Nerve regeneration was evaluated with histomorphometry and functional recovery was evaluated with walking track analysis. RESULTS Pretreatment with cold preservation did not significantly affect neural regeneration. The potent neuroregenerative effect of immunosuppressive doses of FK506 was confirmed, and the ability of subimmunosuppressive doses of FK506 to stimulate axonal regeneration in murine nerve isografts is reported. CONCLUSIONS Less toxic subimmunosuppressive doses of FK506 retaining some neuroregenerative properties may have a clinical role in treating extensive nerve injuries.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
27
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|
28
|
Receptor tyrosine kinases: molecular switches regulating CNS axon regeneration. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:361721. [PMID: 22848811 PMCID: PMC3405719 DOI: 10.1155/2012/361721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 06/04/2012] [Indexed: 01/04/2023]
Abstract
The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.
Collapse
|
29
|
HSV-mediated gene transfer of C3 transferase inhibits Rho to promote axonal regeneration. Exp Neurol 2012; 237:126-33. [PMID: 22749877 DOI: 10.1016/j.expneurol.2012.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/08/2012] [Accepted: 06/16/2012] [Indexed: 11/20/2022]
Abstract
Although surgical re-implantation of spinal roots may improve recovery of proximal motor function after cervical root avulsion, recovery of sensory function necessary for fine motor coordination of the hand has been difficult to achieve, in large part because of failure of regeneration of axons into the spinal cord. In order to enhance regeneration, we constructed a non-replicating herpes simplex virus (HSV)-vector carrying the gene coding for bacterial C3 transferase (C3t). Subcutaneous inoculation of the vector into the skin of the forepaw 1 week after a dorsal C5-T1 rhizotomy resulted in expression of C3t in dorsal root ganglion (DRG) neurons and inhibition of Rho GTPase activity, resulting in extensive axonal regeneration into the spinal cord that correlated with improved sensory-motor coordination of the forepaw.
Collapse
|
30
|
More SV, Koppula S, Kim BW, Choi DK. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 2012; 17:6728-53. [PMID: 22664464 PMCID: PMC6268652 DOI: 10.3390/molecules17066728] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/01/2012] [Accepted: 05/28/2012] [Indexed: 12/18/2022] Open
Abstract
Neurite loss is one of the cardinal features of neuronal injury. Apart from neuroprotection, reorganization of the lost neuronal network in the injured brain is necessary for the restoration of normal physiological functions. Neuritogenic activity of endogenous molecules in the brain such as nerve growth factor is well documented and supported by scientific studies which show innumerable compounds having neurite outgrowth activity from natural sources. Since the damaged brain lacks the reconstructive capacity, more efforts in research are focused on the identification of compounds that promote the reformation of neuronal networks. An abundancy of natural resources along with the corresponding activity profiles have shown promising results in the field of neuroscience. Recently, importance has also been placed on understanding neurite formation by natural products in relation to neuronal injury. Arrays of natural herbal products having plentiful active constituents have been found to enhance neurite outgrowth. They act synergistically with neurotrophic factors to promote neuritogenesis in the diseased brain. Therefore use of natural products for neuroregeneration provides new insights in drug development for treating neuronal injury. In this study, various compounds from natural sources with potential neurite outgrowth activity are reviewed in experimental models.
Collapse
Affiliation(s)
| | | | | | - Dong-Kug Choi
- Department of Biotechnology, Research Institute for Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
31
|
The pig model of chronic paraplegia: A challenge for experimental studies in spinal cord injury. Prog Neurobiol 2012; 97:288-303. [DOI: 10.1016/j.pneurobio.2012.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/22/2012] [Accepted: 04/17/2012] [Indexed: 12/27/2022]
|
32
|
Yu SH, Cho DC, Kim KT, Nam KH, Cho HJ, Sung JK. The neuroprotective effect of treatment of valproic Acid in acute spinal cord injury. J Korean Neurosurg Soc 2012; 51:191-8. [PMID: 22737297 PMCID: PMC3377874 DOI: 10.3340/jkns.2012.51.4.191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Valproic acid (VPA), as known as histone deacetylase inhibitor, has neuroprotective effects. This study investigated the histological changes and functional recovery from spinal cord injury (SCI) associated with VPA treatment in a rat model. METHODS Locomotor function was assessed according to the Basso-Beattie-Bresnahan scale for 2 weeks in rats after receiving twice daily intraperitoneal injections of 200 mg/kg VPA or the equivalent volume of normal saline for 7 days following SCI. The injured spinal cord was then examined histologically, including quantification of cavitation. RESULTS Basso-Beattie-Bresnahan scale scores in rats receiving VPA were significantly higher than in the saline group (p<0.05). The cavity volume in the VPA group was significantly reduced compared with the control (saline-injected) group (p<0.05). The level of histone acetylation recovered in the VPA group, while it was significantly decreased in the control rats (p<0.05). The macrophage level was significantly decreased in the VPA group (p<0.05). CONCLUSION VPA influences the restoration of hyperacetylation and reduction of the inflammatory reaction resulting from SCI, and is effective for histology and motor function recovery.
Collapse
Affiliation(s)
- Song-Hee Yu
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dae-chul Cho
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyung-Hun Nam
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Jung Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
33
|
Spinal cord injury and its treatment: current management and experimental perspectives. Adv Tech Stand Neurosurg 2012; 38:29-56. [PMID: 22592410 DOI: 10.1007/978-3-7091-0676-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical management of spinal cord injury (SCI) has significantly improved its general prognosis. However, to date, traumatic paraplegia and tetraplegia remain incurable, despite massive research efforts. Current management focuses on surgical stabilisation of the spine, intensive neurological rehabilitation, and the prevention and treatment of acute and chronic complications. Prevention remains the most efficient strategy and should be the main focus of public health efforts. Nevertheless, major advances in the understanding of the pathophysiological mechanisms of SCI open promising new therapeutic perspectives. Even if complete recovery remains elusive due to the complexity of spinal cord repair, a strategy combining different approaches may result in some degree of neurological improvement after SCI. Even slight neurological recovery can have high impact on the daily functioning of severely handicapped patients and, thus, result in significant improvements in quality of life.The main investigated strategies are: [1] initial neuroprotection, in order to decrease secondary injury to the spinal cord parenchyma after the initial insult; [2] spinal cord repair, in order to bridge the lesion site and reestablish the connection between the supraspinal centres and the deafferented cord segment below the lesion; and [3] re-training and enhancing plasticity of the central nervous system circuitry that was preserved or rebuilt after the injury.Now and in the future, treatment strategies that have both a convincing rationale and seen their efficacy confirmed reproducibly in the experimental setting must carefully be brought from bench to bedside. In order to obtain clinically significant results, their introduction into clinical research must be guided by scientific rigour, and their coordination must be rationally structured in a long-term perspective.
Collapse
|
34
|
Skaper SD. Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. Methods Mol Biol 2012; 846:13-22. [PMID: 22367797 DOI: 10.1007/978-1-61779-536-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance. The directed growth of axons is partly governed by cell adhesion molecules (CAMs) on the neuronal growth cone that bind to CAMs on the surface of other axons or nonneuronal cells. In vitro assays have established the importance of the CAMs ((neural cell adhesion molecule NCAM), N-cadherin, and L1) in promoting axonal growth over cells. Compelling evidence implicates the fibroblast growth factor receptor tyrosine kinase as the primary signal transduction molecule in the CAM pathway. CAMs are important constituents of synapses, and they appear to play important and diverse roles in regulating synaptic plasticity associated with learning and memory. Synthetic NCAM peptide mimetics corresponding to the binding site of NCAM for the fibroblast growth factor receptor promote synaptogenesis, enhance presynaptic function, and facilitate memory consolidation. Dimeric versions of functional binding motifs of N-cadherin behave as N-cadherin agonists, promoting both neuritogenesis and neuronal cell survival. Negative extracellular signals that physically direct neurite growth have also been described. The latter include the myelin inhibitory proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. Potentiation of outgrowth-promoting signals, together with antagonism of myelin proteins or their convergent receptor, NgR, and its second messenger pathways, may provide new opportunities in the rational design of treatments for acute brain injury and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| |
Collapse
|
35
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Blockade of P2 nucleotide receptors after spinal cord injury reduced the gliotic response and spared tissue. J Mol Neurosci 2011; 46:167-76. [PMID: 21647706 DOI: 10.1007/s12031-011-9567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors antagonists, PPADS and suramin, in the establishment of the reactive gliosis and the formation of the glial scar. Molecular biology, immunohistochemistry, spared tissue, and locomotor behavioral studies were used to evaluate astrogliosis, in adult female Sprague-Dawley rats treated with P2 antagonists after moderate injury with the NYU impactor device. Semi-quantitative RT-PCR confirmed the presence of P2Y(1,) P2Y(2,) P2Y(4,) P2Y(6,) P2Y(12), and P2X(2) receptors in the adult spinal cord. Immunohistochemistry studies confirmed a significant decrease in GFAP-labeled cells at the injury epicenter as well as a decrease in spared tissue after treatment with the antagonists. Functional open field testing revealed no significant locomotor score differences between treated and control animals. Our work is consistent with studies suggesting that astrogliosis is an important event after SCI that limits tissue damage and lesion spreading.
Collapse
|
37
|
Rodríguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 2010; 28:413-21. [PMID: 20619335 PMCID: PMC3225399 DOI: 10.1016/j.ijdevneu.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury increases inhibitory factors that may restrict neurite outgrowth after trauma. The expression of repulsive molecules in reactive astrocytes and the formation of the glial scar at the injury site produce the non-permissive environment for axonal regeneration. However, the mechanism that triggers this astrogliotic response is unknown. The release of nucleotides has been linked to this hypertrophic state. Our goal is to investigate the temporal profile of P2Y(2) nucleotide receptor after spinal cord injury in adult female Sprague-Dawley rats. Molecular biology, immunofluorescence studies, and Western Blots were used to evaluate the temporal profile (2, 4, 7, 14, and 28 days post-injury) of this receptor in rats injured at the T-10 level using the NYU impactor device. Real time RT-PCR showed a significant increase of P2Y(2) mRNA after 2 days post-injury that continues throughout 28 days post-injury. Double labeling studies localized P2Y(2) immunoreactivity in neuronal cell bodies, axons, macrophages, oligodendrocytes and reactive astrocytes. Immunofluorescence studies also demonstrated a low level of P2Y(2) receptor in sham samples, which increased after injury in glial fibrillary acidic protein positive cells. Western Blot performed with contused spinal cord protein samples revealed an upregulation in the P2Y(2) 42 kDa protein band expression after 4 days post-injury that continues until 28 days post-injury. However, a downregulation of the 62 kDa receptor protein band after 2 days post-injury that continues up to 28 days post-injury was observed. Therefore, the spatio-temporal pattern of P2Y(2) gene expression after spinal cord injury suggests a role in the pathophysiology response generated after trauma.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Zayas
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Aranza I. Torrado
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| |
Collapse
|
38
|
Mathis C, Schröter A, Thallmair M, Schwab ME. Nogo-a regulates neural precursor migration in the embryonic mouse cortex. ACTA ACUST UNITED AC 2010; 20:2380-90. [PMID: 20093372 PMCID: PMC2936797 DOI: 10.1093/cercor/bhp307] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain–derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical development.
Collapse
Affiliation(s)
- Carole Mathis
- Brain Research Institute, University of Zurich and Department of Biology, ETH Zurich, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Pearson RA, Barber AC, West EL, MacLaren RE, Duran Y, Bainbridge JW, Sowden JC, Ali RR. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 2010; 19:487-503. [PMID: 20089206 DOI: 10.3727/096368909x486057] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diseases culminating in photoreceptor loss are a major cause of untreatable blindness. Transplantation of rod photoreceptors is feasible, provided donor cells are at an appropriate stage of development when transplanted. Nevertheless, the proportion of cells that integrate into the recipient outer nuclear layer (ONL) is low. The outer limiting membrane (OLM), formed by adherens junctions between Müller glia and photoreceptors, may impede transplanted cells from migrating into the recipient ONL. Adaptor proteins such as Crumbs homologue 1 (Crb1) and zona occludins (ZO-1) are essential for localization of the OLM adherens junctions. We investigated whether targeted disruption of these proteins enhances donor cell integration. Transplantation of rod precursors in wild-type mice achieved 949 +/- 141 integrated cells. By contrast, integration is significantly higher when rod precursors are transplanted into Crb1(rd8/rd8) mice, a model of retinitis pigmentosa and Lebers congenital amaurosis that lacks functional CRB1 protein and displays disruption of the OLM (7,819 +/- 1,297; maximum 15,721 cells). We next used small interfering (si)RNA to transiently reduce the expression of ZO-1 and generate a reversible disruption of the OLM. ZO-1 knockdown resulted in similar, significantly improved, integration of transplanted cells in wild-type mice (7,037 +/- 1,293; maximum 11,965 cells). Finally, as the OLM remains largely intact in many retinal disorders, we tested whether transient ZO-1 knockdown increased integration in a model of retinitis pigmentosa, the rho(-/-) mouse; donor cell integration was significantly increased from 313 +/- 58 cells without treatment to 919 +/- 198 cells after ZO-1 knockdown. This study shows that targeted disruption of OLM junctional proteins enhances integration in the wild-type and degenerating retina and may be a useful approach for developing photoreceptor transplantation strategies.
Collapse
Affiliation(s)
- R A Pearson
- Department of Genetics, University College London Institute of Ophthalmology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Peng X, Zhou Z, Hu J, Fink DJ, Mata M. Soluble Nogo receptor down-regulates expression of neuronal Nogo-A to enhance axonal regeneration. J Biol Chem 2009; 285:2783-95. [PMID: 19901030 DOI: 10.1074/jbc.m109.046425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nogo-A, a member of the reticulon family, is present in neurons and oligodendrocytes. Nogo-A in central nervous system (CNS) myelin prevents axonal regeneration through interaction with Nogo receptor 1, but the function of Nogo-A in neurons is less known. We found that after axonal injury, Nogo-A is increased in dorsal root ganglion (DRG) neurons unable to regenerate following a dorsal root injury or a sciatic nerve ligation-cut injury and that exposure in vitro to CNS myelin dramatically enhanced neuronal Nogo-A mRNA and protein through activation of RhoA while inhibiting neurite growth. Knocking down neuronal Nogo-A by small interfering RNA results in a marked increase of neurite outgrowth. We constructed a nonreplicating herpes simplex virus vector (QHNgSR) to express a truncated soluble fragment of Nogo receptor 1 (NgSR). NgSR released from QHNgSR prevented myelin inhibition of neurite extension by hippocampal and DRG neurons in vitro. NgSR prevents RhoA activation by myelin and decreases neuronal Nogo-A. Subcutaneous inoculation of QHNgSR to transduce DRG neurons resulted in improved regeneration of myelinated fibers in both the dorsal root and the spinal dorsal root entry zone, with concomitant improvement in sensory behavior. The results indicate that neuronal Nogo-A is an important intermediate in neurite growth dynamics and its expression is regulated by signals related to axonal injury and regeneration, that CNS myelin appears to activate signaling events that mimic axonal injury, and that NgSR released from QHNgSR may be used to improve recovery after injury.
Collapse
Affiliation(s)
- Xiangmin Peng
- Department of Neurology, University of Michigan, and Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
41
|
Besser M, Horvat-Bröcker A, Eysel UT, Faissner A. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion. Exp Brain Res 2009; 198:37-47. [PMID: 19639307 DOI: 10.1007/s00221-009-1932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 06/29/2009] [Indexed: 12/14/2022]
Abstract
The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.
Collapse
Affiliation(s)
- Manuela Besser
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
42
|
Ma Z, Cao Q, Zhang L, Hu J, Howard RM, Lu P, Whittemore SR, Xu XM. Oligodendrocyte precursor cells differentially expressing Nogo-A but not MAG are more permissive to neurite outgrowth than mature oligodendrocytes. Exp Neurol 2009; 217:184-96. [PMID: 19236864 PMCID: PMC2843101 DOI: 10.1016/j.expneurol.2009.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 12/16/2022]
Abstract
Grafting oligodendrocyte precursor cells (OPCs) has been used as a strategy to repair demyelination of the central nervous system (CNS). Whether OPCs can promote CNS axonal regeneration remains to be tested. If so, they should be permissive to axonal growth and may express less inhibitory molecules on their surface. Here we examined the expression of two oligodendrocyte-associated myelin inhibitors Nogo-A and myelin-associated glycoprotein (MAG) during oligodendrogliogenesis and tested their abilities to promote neurite outgrowth in vitro. Whereas the intracellular domain of Nogo-A was consistently expressed throughout oligodendrocyte differentiation, MAG was expressed only at later stages. Furthermore, the membrane-associated extracellular domain of Nogo-A was not expressed in OPCs but expressed in mature oligodendrocytes. In a dorsal root ganglion (DRG) and OPC/oligodendrocyte co-culture model, significantly greater DRG neurite outgrowth onto OPC monolayer than mature oligodendrocyte was found (1042+/-123 vs. 717+/-342 micrometer; p=0.011). Moreover, DRG neurites elongated as fasciculated fiber tracts and contacted directly on OPCs (133+/-37 cells/fascicle). In contrast, few, if any, direct contacts were found between DRG neurites and mature oligodendrocytes (5+/-3 cells/fascicle, p<0.001). In fact, acellular spaces were found between neurites and surrounding mature oligodendrocytes in contrast to the lack of such spaces in OPC/DRG coculture (51.1+/-16.5 vs. 2.4+/-3.9 micrometer; p<0.001). Thus, OPCs expressing neither extracellular domain of Nogo-A nor MAG are significantly more permissive than mature oligodendrocytes expressing both. Grafting OPCs may thus represent a feasible strategy to foster CNS axonal regeneration.
Collapse
Affiliation(s)
- Zhengwen Ma
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Qilin Cao
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Liqun Zhang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jianguo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Russell M. Howard
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Peihua Lu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Xiao-Ming Xu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
43
|
Hall ED, Traystman RJ. Role of animal studies in the design of clinical trials. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2009; 25:10-33. [PMID: 19478492 PMCID: PMC2811045 DOI: 10.1159/000209470] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Edward D. Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Ky
| | | |
Collapse
|
44
|
Ibrahim AG, Kirkwood PA, Raisman G, Li Y. Restoration of hand function in a rat model of repair of brachial plexus injury. Brain 2009; 132:1268-76. [DOI: 10.1093/brain/awp030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Lee JY, You JW, Sohn HM, Lee SJ, Kwon BK. The Neuroprotective Effect of Combination Therapy of Polyethylene Glycol and Magnesium Sulfate in Acute Spinal Cord Injury. ACTA ACUST UNITED AC 2009. [DOI: 10.4055/jkoa.2009.44.4.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun-Young Lee
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae-Won You
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju, Korea
| | - Hong-Moon Sohn
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju, Korea
| | - Sang-Jun Lee
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju, Korea
| | - Brian K Kwon
- Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Abstract
Oligodendrocytes are a type of glial cells that play a critical role in supporting the central nervous system (CNS), in particular insulating axons within the CNS by wrapping them with a myelin sheath, thereby enabling saltatory conduction. They are lost, and myelin damaged - demyelination - in a wide variety of neurological disorders. Replacing depleted cell types within demyelinated areas, however, has been shown experimentally to achieve remyelination and so help restore function. One method to produce oligodendrocytes for cellular replacement therapies is through the use of progenitor or stem cells. The ability to differentiate progenitor or stem cells into high-purity fates not only permits the generation of specific cells for transplantation therapies, but also provides powerful tools for studying cellular mechanisms of development. This chapter outlines methods of generating high-purity OPCs from multipotent neonatal progenitor or human embryonic stem cells.
Collapse
Affiliation(s)
- Maya N Hatch
- Department of Anatomy and Neurobiology, Reeve-Irvine Research Center, University of California at Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
47
|
Binder MD, Hirokawa N, Windhorst U. R. ENCYCLOPEDIA OF NEUROSCIENCE 2009. [PMCID: PMC7163931 DOI: 10.1007/978-3-540-29678-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
48
|
Obermair FJ, Schröter A, Thallmair M. Endogenous neural progenitor cells as therapeutic target after spinal cord injury. Physiology (Bethesda) 2008; 23:296-304. [PMID: 18927205 DOI: 10.1152/physiol.00017.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growing knowledge about the role of neural progenitor cells supports the hope that stem cell-based therapeutic approaches aimed at restoring function in the lesioned central nervous system can be established. Possible therapies for promoting recovery after spinal cord injury include stimulating the formation of neurons and glial cells by endogenous progenitor cells. This article reviews the current knowledge about the nature of adult progenitor cells in the intact and injured spinal cord and summarizes possibilities and limitations of cellular replacement strategies based on manipulations of endogenous spinal cord progenitor cells and their environment.
Collapse
Affiliation(s)
- Franz-Josef Obermair
- Brain Research Institute, University of Zurich, and Department of Neuromorphology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Abstract
OBJECTIVE To increase awareness of the advancements in nerve regeneration. METHODS Review of the literature regarding inhibitors of nerve outgrowth and presentation of potential agents that reverse the inhibition, thereby promoting nerve regeneration. RESULTS The injured adult central nervous system (CNS) inhibits axon outgrowth, thereby limiting recovery from traumatic injury. Axon regeneration inhibitors (ARIs) that contribute to inhibition of recovery include myelin-associated glycoprotein, Nogo, oligodendrocyte-myelin glycoprotein and chondroitin sulfate proteoglycans. The ARIs bind to specific receptors on the axon growth cone to halt outgrowth; consequently, reversing or blocking the actions of ARIs may promote recovery after CNS injury. Sialidase, an enzyme that cleaves one class of axonal receptors for myelin-associated glycoprotein, enhances spinal axon outgrowth into implanted peripheral nerve grafts in a rat model of brachial plexus avulsion, a traumatic injury in which nerve roots are torn from the spinal cord. CONCLUSION Repair using peripheral nerve grafts is a promising restorative surgical treatment in humans, although functional improvement remains limited. Molecular therapies targeting ARIs may aid functional recovery after brachial plexus avulsion or other nervous system injuries and diseases.
Collapse
Affiliation(s)
- Lynda J-S Yang
- Department of Neurosurgery, University of Michigan Health System, Ann Arbor, MI 48109-5338, USA.
| | | |
Collapse
|
50
|
Opatz J, Küry P, Schiwy N, Järve A, Estrada V, Brazda N, Bosse F, Müller HW. SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci 2008; 40:293-300. [PMID: 19084600 DOI: 10.1016/j.mcn.2008.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022] Open
Abstract
Impaired axonal regeneration is a common observation after central nervous system (CNS) injury. The stromal cell-derived factor-1, SDF-1/CXCL12, has previously been shown to promote axonal growth in the presence of potent chemorepellent molecules known to be important in nervous system development. Here, we report that treatment with SDF-1alpha is sufficient to overcome neurite outgrowth inhibition mediated by CNS myelin towards cultured postnatal dorsal root ganglion neurons. While we found both cognate SDF-1 receptors, CXCR4 and CXCR7/RDC1, to be coexpressed on myelin-sensitive dorsal root ganglion neurons, the distinct expression pattern of CXCR4 on growth cones and branching points of neurites suggests a function of this receptor in chemokine-mediated growth promotion and/or arborization. These in vitro findings were further corroborated as local intrathecal infusion of SDF-1 into spinal cord injury following thoracic dorsal hemisection resulted in enhanced sprouting of corticospinal tract axons into white and grey matter. Our findings indicate that SDF-1 receptor activation might constitute a novel therapeutic approach to promote axonal growth in the injured CNS.
Collapse
Affiliation(s)
- Jessica Opatz
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|