1
|
Sharpe MJ. The cognitive (lateral) hypothalamus. Trends Cogn Sci 2024; 28:18-29. [PMID: 37758590 PMCID: PMC10841673 DOI: 10.1016/j.tics.2023.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite the physiological complexity of the hypothalamus, its role is typically restricted to initiation or cessation of innate behaviors. For example, theories of lateral hypothalamus argue that it is a switch to turn feeding 'on' and 'off' as dictated by higher-order structures that render when feeding is appropriate. However, recent data demonstrate that the lateral hypothalamus is critical for learning about food-related cues. Furthermore, the lateral hypothalamus opposes learning about information that is neutral or distal to food. This reveals the lateral hypothalamus as a unique arbitrator of learning capable of shifting behavior toward or away from important events. This has relevance for disorders characterized by changes in this balance, including addiction and schizophrenia. Generally, this suggests that hypothalamic function is more complex than increasing or decreasing innate behaviors.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Department of Psychology, University of Sydney, Camperdown, NSW 2006, Australia; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
3
|
Kato M, Iwakoshi-Ukena E, Furumitsu M, Ukena K. A Novel Hypothalamic Factor, Neurosecretory Protein GM, Causes Fat Deposition in Chicks. Front Physiol 2021; 12:747473. [PMID: 34759838 PMCID: PMC8573243 DOI: 10.3389/fphys.2021.747473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
We recently discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GM (NPGM), in the mediobasal hypothalamus of chickens. Although our previous study showed that subcutaneous infusion of NPGM for 6 days increased body mass in chicks, the chronic effect of intracerebroventricular (i.c.v.) infusion of NPGM remains unknown. In this study, we performed i.c.v. administration of NPGM in eight-day-old layer chicks using osmotic pumps for 2 weeks. In the results, chronic i.c.v. infusion of NPGM significantly increased body mass, water intake, and the mass of abdominal and gizzard fat in chicks, whereas NPGM did not affect food intake, liver and muscle masses, or blood glucose concentration. Morphological analyses using Oil Red O and hematoxylin-eosin stainings revealed that fat accumulation occurred in both the liver and gizzard fat after NPGM infusion. The real-time PCR analysis showed that NPGM decreased the mRNA expression of peroxisome proliferator-activated receptor α, a lipolytic factor in the liver. These results indicate that NPGM may participate in fat storage in chicks.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Megumi Furumitsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Pradeep S, Mehanna R. Gastrointestinal disorders in hyperkinetic movement disorders and ataxia. Parkinsonism Relat Disord 2021; 90:125-133. [PMID: 34544654 DOI: 10.1016/j.parkreldis.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastrointestinal (GI) disorders have been thoroughly investigated in hypokinetic disorders such as Parkinson's disease, but much less is known about GI disorders in hyperkinetic movement disorders and ataxia. The aim of this review is to draw attention to the GI disorders that are associated with these movement disorders. METHODS References for this systematic review were identified by searches of PubMed through May 2020. Only publications in English were reviewed. RESULTS Data from 249 articles were critically reviewed, compared, and integrated. The most frequently reported GI symptoms overall in hyperkinetic movement disorders and ataxia are dysphagia, sialorrhea, weight changes, esophago-gastritis, gastroparesis, constipation, diarrhea, and malabsorption. We report in detail on the frequency, characteristics, pathophysiology, and management of GI symptoms in essential tremor, restless legs syndrome, chorea, and spinocerebellar ataxias. The limited available data on GI disorders in dystonias, paroxysmal movement disorders, tardive dyskinesias, myoclonus, and non-SCA ataxias are also summarized. CONCLUSION The purpose of our systematic review is to draw attention that, although primarily motor disorders, hyperkinetic movement disorders and ataxia can involve the GI system. Raising awareness about the GI symptom burden in hyperkinetic movement disorders and ataxia could contribute to a new research interest in that field, as well as improved patient care.
Collapse
Affiliation(s)
- Swati Pradeep
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Raja Mehanna
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Shikano K, Iwakoshi-Ukena E, Kato M, Furumitsu M, Bentley GE, Kriegsfeld LJ, Ukena K. Neurosecretory Protein GL Induces Fat Accumulation in Chicks. Front Endocrinol (Lausanne) 2019; 10:392. [PMID: 31275247 PMCID: PMC6593053 DOI: 10.3389/fendo.2019.00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/31/2019] [Indexed: 01/27/2023] Open
Abstract
We recently found a previously unidentified cDNA in chicken hypothalamus which encodes the precursor for neurosecretory protein GL (NPGL). A previous study showed that intracerebroventricular (i.c.v.) infusion of NPGL caused body mass gain in chicks. However, it was not clear which part(s) of the body gained mass. In the present study, we investigated which tissues increased in mass after chronic i.c.v. infusion of NPGL in chicks. We found that NPGL increased the masses of the liver, abdominal fat, and subcutaneous fat, while NPGL did not affect the masses of muscles, including pectoralis major, pectoralis minor, and biceps femoris. Oil Red O staining revealed that fat deposition had occurred in the liver. In addition, the size of the lipid droplets in the abdominal fat increased. Furthermore, we found an upregulation of lipogenesis and downregulation of lipolysis in the abdominal fat, but not in the liver. These results indicate that NPGL is involved in fat storage in chicks.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masaki Kato
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Megumi Furumitsu
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Kazuyoshi Ukena
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- *Correspondence: Kazuyoshi Ukena
| |
Collapse
|
7
|
Shikano K, Kato M, Iwakoshi-Ukena E, Furumitsu M, Matsuura D, Masuda K, Tachibana T, Bentley GE, Kriegsfeld LJ, Ukena K. Effects of chronic intracerebroventricular infusion of neurosecretory protein GL on body mass and food and water intake in chicks. Gen Comp Endocrinol 2018; 256:37-42. [PMID: 28554734 DOI: 10.1016/j.ygcen.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the chicken mediobasal hypothalamus. In this study, immunohistochemical analysis revealed that NPGL was produced in the infundibular and medial mammillary nuclei of the mediobasal hypothalamus, with immunoreactive fibers also detected in the hypothalamus and the median eminence. As it is known that these regions are involved in feeding behavior in chicks, we surveyed the effects of chronic intracerebroventricular infusion of NPGL on feeding behavior and body mass for a period of two weeks. NPGL stimulated food and water intake, with a concomitant increase in body mass. However, NPGL did not influence mRNA expression of several hypothalamic ingestion-related neuropeptides. Our data suggest that NPGL may be a novel neuronal regulator involved in growth processes in chicks.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Masaki Kato
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Daichi Matsuura
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Keiko Masuda
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - George E Bentley
- Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Lance J Kriegsfeld
- Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| |
Collapse
|
8
|
Miranda S, Lévesque H. [Acrocyanosis: A common but poorly understood condition]. Rev Med Interne 2017; 38:225-227. [PMID: 28242038 DOI: 10.1016/j.revmed.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Affiliation(s)
- S Miranda
- Normandie université, UNIROUEN, U1096, service de médecine interne, 76000 Rouen, France
| | - H Lévesque
- Normandie université, UNIROUEN, U1096, service de médecine interne, 76000 Rouen, France.
| |
Collapse
|
9
|
Fride E, Bregman T, Kirkham TC. Endocannabinoids and Food Intake: Newborn Suckling and Appetite Regulation in Adulthood. Exp Biol Med (Maywood) 2016; 230:225-34. [PMID: 15792943 DOI: 10.1177/153537020523000401] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The appetite-stimulating effects of the cannabis plant (Cannabis sativa) have been known since ancient times, and appear to be effected through the incentive and rewarding properties of foods. Investigations into the biological basis of the multiple effects of cannabis have yielded important breakthroughs in recent years: the discovery of two cannabinoid receptors in brain and peripheral organ systems, and endogenous ligands (endocannabinoids) for these receptors. These advances have greatly increased our understanding of how appetite is regulated through these endocannabinoid receptor systems. The presence of endocannabinoids in the developing brain and in maternal milk have led to evidence for a critical role for CB, receptors in oral motor control of suckling during neonatal development. The endocannabinoids appear to regulate energy balance and food intake at four functional levels within the brain and periphery: (i) limbic system (for hedonic evaluation of foods), (ii) hypothalamus and hindbrain (integrative functions), (iii) intestinal system, and (iv) adipose tissue. At each of these levels, the endocannabinoid system interacts with a number of better known molecules involved in appetite and weight regulation, including leptin, ghrelin, and the melanocortins. Therapeutically, appetite stimulation by cannabinoids has been studied for several decades, particularly in relation to cachexia and malnutrition associated with cancer, acquired immunodeficiency syndrome, or anorexia nervosa. The recent advances in cannabinoid pharmacology may lead to improved treatments for these conditions or, conversely, for combating excessive appetite and body weight, such as CB, receptor antagonists as antiobesity medications. In conclusion, the exciting progress in the understanding of how the endocannabinoid CB receptor systems influence appetite and body weight is stimulating the development of therapeutic orexigenic and anorectic agents. Furthermore, the role of cannabinoid CB, receptor activation for milk suckling in newborns may open new doors toward understanding nonorganic failure-to-thrive in infants, who display growth failure without known organic cause.
Collapse
Affiliation(s)
- Ester Fride
- Department of Behavioral Sciences, College of Judea and Samaria, Ariel, Israel.
| | | | | |
Collapse
|
10
|
Sadeghzadeh F, Babapour V, Haghparast A. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats. Behav Brain Res 2015; 287:172-81. [DOI: 10.1016/j.bbr.2015.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022]
|
11
|
Vecsey CG, Pírez N, Griffith LC. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. J Neurophysiol 2014; 111:1033-45. [PMID: 24353297 PMCID: PMC3949227 DOI: 10.1152/jn.00712.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/12/2013] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides have widespread effects on behavior, but how these molecules alter the activity of their target cells is poorly understood. We employed a new model system in Drosophila melanogaster to assess the electrophysiological and molecular effects of neuropeptides, recording in situ from larval motor neurons, which transgenically express a receptor of choice. We focused on two neuropeptides, pigment-dispersing factor (PDF) and small neuropeptide F (sNPF), which play important roles in sleep/rhythms and feeding/metabolism. PDF treatment depolarized motor neurons expressing the PDF receptor (PDFR), increasing excitability. sNPF treatment had the opposite effect, hyperpolarizing neurons expressing the sNPF receptor (sNPFR). Live optical imaging using a genetically encoded fluorescence resonance energy transfer (FRET)-based sensor for cyclic AMP (cAMP) showed that PDF induced a large increase in cAMP, whereas sNPF caused a small but significant decrease in cAMP. Coexpression of pertussis toxin or RNAi interference to disrupt the G-protein Gαo blocked the electrophysiological responses to sNPF, showing that sNPFR acts via Gαo signaling. Using a fluorescent sensor for intracellular calcium, we observed that sNPF-induced hyperpolarization blocked spontaneous waves of activity propagating along the ventral nerve cord, demonstrating that the electrical effects of sNPF can cause profound changes in natural network activity in the brain. This new model system provides a platform for mechanistic analysis of how neuropeptides can affect target cells at the electrical and molecular level, allowing for predictions of how they regulate brain circuits that control behaviors such as sleep and feeding.
Collapse
Affiliation(s)
- Christopher G Vecsey
- National Center for Behavioral Genomics, Volen National Center for Complex Systems and Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | | |
Collapse
|
12
|
Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment--a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring) 2013; 21:8-24. [PMID: 23401272 DOI: 10.1002/oby.20181] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 01/11/2023]
Abstract
In light of the worldwide epidemic of obesity, and in recognition of hypertension as a major factor in the cardiovascular morbidity and mortality associated with obesity, The Obesity Society and The American Society of Hypertension agreed to jointly sponsor a position paper on obesity-related hypertension to be published jointly in the journals of each society. The purpose is to inform the members of both societies, as well as practicing clinicians, with a timely review of the association between obesity and high blood pressure, the risk that this association entails, and the options for rational, evidenced-based treatment. The position paper is divided into six sections plus a summary as follows: pathophysiology, epidemiology and cardiovascular risk, the metabolic syndrome, lifestyle management in prevention and treatment, pharmacologic treatment of hypertension in the obese, and the medical and surgical treatment of obesity in obese hypertensive patients.
Collapse
Affiliation(s)
- Lewis Landsberg
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich) 2013; 15:14-33. [PMID: 23282121 PMCID: PMC8108268 DOI: 10.1111/jch.12049] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022]
Abstract
In light of the worldwide epidemic of obesity, and in recognition of hypertension as a major factor in the cardiovascular morbidity and mortality associated with obesity, The Obesity Society and the American Society of Hypertension agreed to jointly sponsor a position paper on obesity-related hypertension to be published jointly in the journals of each society. The purpose is to inform the members of both societies, as well as practicing clinicians, with a timely review of the association between obesity and high blood pressure, the risk that this association entails, and the options for rational, evidenced-based treatment. The position paper is divided into six sections plus a summary as follows: pathophysiology, epidemiology and cardiovascular risk, the metabolic syndrome, lifestyle management in prevention and treatment, pharmacologic treatment of hypertension in the obese, and the medical and surgical treatment of obesity in obese hypertensive patients.
Collapse
Affiliation(s)
- Lewis Landsberg
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011; 32:1335-55. [PMID: 21440021 DOI: 10.1016/j.peptides.2011.03.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Barb CR, Hausman GJ, Lents CA. Energy metabolism and leptin: effects on neuroendocrine regulation of reproduction in the gilt and sow. Reprod Domest Anim 2008; 43 Suppl 2:324-30. [PMID: 18638142 DOI: 10.1111/j.1439-0531.2008.01173.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is well established that reproductive function is metabolically gated. However, the mechanisms whereby energy stores and metabolic cues influence appetite, energy homeostasis and fertility are yet to be completely understood. Adipose tissue is no longer considered as only a depot to store excess energy. Recent findings have identified numerous genes, several neurotrophic factors, interleukins, insulin-like growth factor binding protein-5, ciliary neurotrophic factor and neuropeptide Y (NPY) as being expressed by adipose tissue during pubertal development. These studies demonstrated for the first time the expression of several major adipokines or cytokines in pig adipose tissue which may influence local and central metabolism and growth. Leptin appears to be the primary metabolic signal and is part of the adipose tissue-hypothalamic regulatory loop in the control of appetite, energy homeostasis and luteinizing hormone (LH) secretion. Leptin's actions on appetite regulation are mediated by inhibition of hypothalamic NPY and stimulation of proopiomelanocortin. Its effects on gonadotropin-releasing hormone (GnRH)/LH secretion are mediated by NPY and kisspeptin. Thus, leptin appears to be an important link between metabolic status, the neuroendocrine axis and subsequent fertility in the gilt and sow.
Collapse
Affiliation(s)
- C R Barb
- USDA/ARS, Richard B. Russell Agriculture Research Center, University of Georgia, Athens, GA 30604, USA.
| | | | | |
Collapse
|
17
|
Nilsson I, Lindfors C, Fetissov SO, Hökfelt T, Johansen JE. Aberrant agouti-related protein system in the hypothalamus of the anx/anx mouse is associated with activation of microglia. J Comp Neurol 2008; 507:1128-40. [PMID: 18098136 DOI: 10.1002/cne.21599] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Agouti-related protein (AgRP) is a key orexigenic neuropeptide expressed in the hypothalamic arcuate nucleus and a marker for neurons conveying hormonal signals of hunger to the brain. Mice homozygous for the anorexia (anx) mutation are characterized by decreased food intake, starvation, and death by 3-5 weeks of age. At this stage immunoreactivity for AgRP is increased in cell bodies but decreased in the nerve terminals. We studied when during early postnatal development the aberrant phenotype of the AgRP system becomes apparent in anx/anx mice and possible underlying mechanisms. AgRP and ionized calcium binding adapter molecule (Iba1), a marker for activated microglia, as well as Toll-like receptor 2 (TLR-2), were studied by immunohistochemistry at postnatal days P1, P5, P10, P12, P15 and P21 in anx/anx and wild-type mice. We found that the AgRP system in the anx/anx mouse develops similarly to the wild type until P12, when AgRP fibers in anx/anx mice cease to increase in density in the main projection areas. At P21, AgRP fiber density in anx/anx mice was significantly reduced vs. P15, in certain regions. At P21, many strongly AgRP-positive cell bodies were observed in the anx/anx arcuate nucleus vs. only few and weakly fluorescent ones in the wild type. The decrease in AgRP fiber density in anx/anx mice overlapped with an increase in Iba1 and TLR-2 immunoreactivities. Thus, the aberrant appearance of the AgRP system in the anx/anx mouse in the early postnatal development could involve a microglia-associated process and the innate immune system.
Collapse
Affiliation(s)
- Ida Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Goodman AOG, Murgatroyd PR, Medina-Gomez G, Wood NI, Finer N, Vidal-Puig AJ, Morton AJ, Barker RA. The metabolic profile of early Huntington's disease--a combined human and transgenic mouse study. Exp Neurol 2008; 210:691-8. [PMID: 18284928 DOI: 10.1016/j.expneurol.2007.12.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/03/2007] [Accepted: 12/28/2007] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is a debilitating autosomal dominant, neurodegenerative disease with a fatal prognosis. Classical symptoms include motor disturbances, subcortical dementia and psychiatric symptoms but are not restricted to this triad. Patients often experience other problems such as weight loss, although why and when this occurs in the disease course is not known. We studied metabolism using whole body indirect calorimetry in both early stage HD patients and in the R6/2 transgenic mouse model of HD, at times before and after they displayed signs of disease. Using this combined approach we found that patients with early HD tended to be in negative energy balance for reasons not related to their movement disorder, which was paralleled in the transgenic R6/2 mice. These mice had significantly elevated total energy expenditure as they developed overt disease with weight loss due primarily to a loss of muscle bulk. This study has shown for the first time that in HD there is the development of early negative energy balance, which in turn may cause weight loss with loss of muscle bulk in particular. The reason for this is not known but may reflect a catabolic state secondary to hypothalamic pathology, as abnormalities have been reported in the hypothalamus early in the disease course.
Collapse
Affiliation(s)
- Anna O G Goodman
- Cambridge Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bracci F, Badiali D, Pezzotti P, Scivoletto G, Fuoco U, Di Lucente L, Petrelli A, Corazziari E. Chronic constipation in hemiplegic patients. World J Gastroenterol 2007; 13:3967-72. [PMID: 17663511 PMCID: PMC4171169 DOI: 10.3748/wjg.v13.i29.3967] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the prevalence of bowel dysfunction in hemiplegic patients, and its relationship with the site of neurological lesion, physical immobilization and pharmacotherapy.
METHODS: Ninety consecutive hemiplegic patients and 81 consecutive orthopedic patients were investigated during physical motor rehabilitation in the same period, in the same center and on the same diet. All subjects were interviewed ≥ 3 mo after injury using a questionnaire inquiring about bowel habits before injury and at the time of the interview. Patients’ mobility was evaluated by the Adapted Patient Evaluation Conference System. Drugs considered for the analysis were nitrates, angiogenic converting enzyme (ACE) inhibitors, calcium antagonists, anticoagulants, antithrombotics, antidepressants, anti-epileptics.
RESULTS: Mobility scores were similar in the two groups. De novo constipation (OR = 5.36) was a frequent outcome of the neurological accident. Hemiplegics showed an increased risk of straining at stool (OR: 4.33), reduced call to evacuate (OR: 4.13), sensation of incomplete evacuation (OR: 3.69), use of laxatives (OR: 3.75). Logistic regression model showed that constipation was significantly and independently associated with hemiplegia. A positive association was found between constipation and use of nitrates and antithrombotics in both groups. Constipation was not related to the site of brain injury.
CONCLUSION: Chronic constipation is a possible outcome of cerebrovascular accidents occurring in 30% of neurologically stabilized hemiplegic patients. Its onset after a cerebrovascular accident appears to be independent from the injured brain hemisphere, and unrelated to physical inactivity. Pharmacological treatment with nitrates and antithrombotics may represent an independent risk factor for developing chronic constipation.
Collapse
Affiliation(s)
- F Bracci
- Dipartimento Scienze Cliniche (2(0) Cl. Medica), Policlinico "Umberto I" V.le del Policlinico 155, Rome 00161, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kramer PR, Kramer SF, Marr K, Guan G, Wellman PJ, Bellinger LL. Nicotine administration effects on feeding and cocaine–amphetamine-regulated transcript (CART) expression in the hypothalamus. ACTA ACUST UNITED AC 2007; 138:66-73. [PMID: 16979766 DOI: 10.1016/j.regpep.2006.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 07/27/2006] [Accepted: 08/04/2006] [Indexed: 11/25/2022]
Abstract
In previous studies food intake and meal size significantly decreased in rats two days after injecting 4 mg/kg/day nicotine tartrate. Food intake returned to normal after nine days of continued nicotine treatment, when reduced meal size is countered by an increase in meal number. Nicotine also reduced body weight after nicotine injection and body weight remained low after nine days. To begin characterizing the mechanism that modulates these changes in feeding behavior and/or body weight during nicotine exposure the transcript levels for agouti related protein (AGRP), cocaine-amphetamine-regulated transcript (CART), corticotropin releasing hormone receptor one (CRH-R1), melanocortin receptors three and four (MC3R/4R), neuropeptide Y (NPY), NPY Y1 and Y5 receptors and/or pro-opiomelanocortin (POMC) were analyzed in the arcuate (ARC), dorsomedial (DMN) and paraventricular (PVN)/periventricular (PE) hypothalamic nuclei on the second and ninth day of saline or nicotine treatment. Results show that the transcript levels of the anorexigenic molecule CART increased in the PVN and/or PE two days after nicotine treatment but after nine days CART levels equalize. In contrast, nine days of nicotine treatment reduced CART levels in the DMN as compared to saline controls. To investigate CART's role in regulating feeding, infusion of CART (55-102) into the third ventricle reduced food intake and meal size. These results are consistent with nicotine modulating feeding behavior and body weight, in part, by affecting CART transcript levels in the DMN, PVN and/or PE.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave., Dallas, TX 75246, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Shalev U, Finnie PS, Quinn T, Tobin S, Wahi P. A role for corticotropin-releasing factor, but not corticosterone, in acute food-deprivation-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl) 2006; 187:376-84. [PMID: 16850287 DOI: 10.1007/s00213-006-0427-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/05/2006] [Indexed: 12/24/2022]
Abstract
RATIONALE Acute 1-day food deprivation reinstates heroin seeking in rats via a leptin-dependent mechanism. However, leptin has no effect on footshock- or heroin-priming-induced reinstatement of drug seeking. These data may indicate that the neuronal systems underlying food-deprivation-induced reinstatement are dissociable from those involved in reinstatement induced by footshock stress. OBJECTIVES We used the reinstatement procedure to examine the roles of the adrenal stress hormone, corticosterone, and brain corticotropin-releasing factor (CRF) in acute food-deprivation-induced reinstatement of extinguished heroin seeking in rats. MATERIALS AND METHODS The rats were trained to press a lever for heroin (0.05-0.1 mg/kg/infusion, i.v.) for 10 days. Experiment 1: After heroin self-administration training, the rats were divided into two groups, which received either bilateral adrenalectomy surgery or sham surgery. Next, the rats were given 7-10 days of extinction training (during which lever presses were not reinforced with heroin). The rats were subsequently tested for reinstatement after acute (21 h) food deprivation. Experiment 2: After heroin self-administration and extinction training, the rats were tested for reinstatement induced by acute food deprivation. Before the test session, the rats were given intracerebroventricular injections of the CRF receptor antagonist alpha-helical CRF (0, 3, or 10 microg/rat). RESULTS Adrenalectomy had no effect on the extinction behavior or acute food-deprivation-induced reinstatement of heroin seeking. The CRF receptor antagonist, alpha-helical CRF, dose-dependently blocked food-deprivation-induced reinstatement. CONCLUSIONS The present data suggest that, as demonstrated for footshock-induced reinstatement of drug seeking, brain CRF, but not corticosterone, plays a critical role in acute food-deprivation-induced reinstatement of heroin seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
22
|
Jo YH, Chen YJJ, Chua SC, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 2005; 48:1055-66. [PMID: 16364907 PMCID: PMC2280039 DOI: 10.1016/j.neuron.2005.10.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/22/2005] [Accepted: 10/05/2005] [Indexed: 12/18/2022]
Abstract
Recently developed therapeutics for obesity, targeted against cannabinoid receptors, result in decreased appetite and sustained weight loss. Prior studies have demonstrated CB1 receptors (CB1Rs) and leptin modulation of cannabinoid synthesis in hypothalamic neurons. Here, we show that depolarization of perifornical lateral hypothalamus (LH) neurons elicits a CB1R-mediated suppression of inhibition in local circuits thought to be involved in appetite and "natural reward." The depolarization-induced decrease in inhibitory tone to LH neurons is blocked by leptin. Leptin inhibits voltage-gated calcium channels in LH neurons via the activation of janus kinase 2 (JAK2) and of mitogen-activated protein kinase (MAPK). Leptin-deficient mice are characterized by both an increase in steady-state voltage-gated calcium currents in LH neurons and a CB1R-mediated depolarization-induced suppression of inhibition that is 6-fold longer than that in littermate controls. Our data provide direct electrophysiological support for the involvement of endocannabinoids and leptin as modulators of hypothalamic circuits underlying motivational aspects of feeding behavior.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Pathology and Cell Biology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
23
|
Kuz’mina VV. Regulation of the Fish Alimentary Behavior: Role of Humoral Component. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Dragatsis I, Zeitlin S, Dietrich P. Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum Mol Genet 2004; 13:3115-25. [PMID: 15496430 DOI: 10.1093/hmg/ddh328] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntingtin-associated protein 1 (Hap1) is the first huntingtin interacting protein identified in a yeast two-hybrid screen. Although Hap1 expression has been demonstrated in neuronal and non-neuronal tissues, its molecular role is poorly understood. Recently, it has been shown that targeted disruption of Hap1 in mice results in early postnatal death as a result of depressed feeding behavior. Although this result clearly demonstrates an essential role of Hap1 in postnatal feeding, the mechanisms leading to this deficiency, as well as the role of Hap1 in adults, remain unclear. Here we show that Hap1 null mutants display suckling defects and die within the first days after birth due to starvation. Upon reduction of the litter size, some mutants survive into adulthood and display growth retardation with no apparent brain or behavioral abnormalities, suggesting that Hap1 function is essential only for early postnatal feeding behavior. Using a conditional gene repair strategy, we also show that the early lethality can be rescued if Hap1 expression is restored in neuronal cells before birth. Furthermore, no synergism was observed between Hap1 and huntingtin mutation during mouse development. Our results demonstrate that Hap1 has a fundamental role in regulating postnatal feeding in the first 2 weeks after birth and a non-essential role in the adult mouse.
Collapse
Affiliation(s)
- Ioannis Dragatsis
- Department of Physiology, College of Medicine, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
25
|
Marsilje TH, Roses JB, Calderwood EF, Stroud SG, Forsyth NE, Blackburn C, Yowe DL, Miao W, Drabic SV, Bohane MD, Daniels JS, Li P, Wu L, Patane MA, Claiborne CF. Synthesis and biological evaluation of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R). Bioorg Med Chem Lett 2004; 14:3721-5. [PMID: 15203150 DOI: 10.1016/j.bmcl.2004.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 11/28/2022]
Abstract
A novel series of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R) is reported. Members of this series have been identified, which exhibit sub-micromolar binding affinity for the MC4-R, functional potency <100nM, and good oral exposure in rat. Antagonists of the MC4-R are potentially useful in the therapeutic treatment of involuntary weight loss due to advanced age or disease (e.g. cancer or AIDS), an area of large, unmet medical need.
Collapse
Affiliation(s)
- Thomas H Marsilje
- Department of Medicinal Chemistry, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pizzo DP, Thal LJ. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 2004; 124:743-55. [PMID: 15026115 DOI: 10.1016/j.neuroscience.2003.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF) delivered via intracerebroventricular (ICV) infusion restores behavioral and biochemical deficits in animal models of cholinergic hypofunction. However, ICV infusion of NGF induces an array of adverse events including weight loss, thermal hyperalgesia, and Schwann cell hyperplasia. We compared ICV administration with three different doses of intraparenchymally delivered NGF with cytochrome C infusion serving as a control. The goal of the study was to determine whether direct infusion of NGF would result in a more restricted topographical distribution of NGF leading to a reduction or elimination of the adverse events while still augmenting cholinergic functioning sufficiently to restore spatial mnemonic processing. Subsequent to bilateral ibotenic acid lesions of the nucleus basalis magnocellularis (NBM), NGF was delivered into the lateral ventricle or adjacent to the NBM for 11 weeks. Ibotenic acid lesions resulted in reductions in choline acetyltransferase (ChAT) activity in the cortex. The highest and medium dose of NGF led to significant restoration in ChAT activity on par with ICV infusion. The lowest dose was ineffective in altering ChAT activity in any region assayed. Similarly, the two highest doses did not alter weight gain, but ICV-NGF led to a significant weight loss. Intraparenchymal infusion resulted in a dose-dependent attenuation of the development of thermal hyperalgesia. However, the highest dose of intraparenchymal NGF induced Schwann cell hyperplasia at the level of the medulla and upper cervical spinal cord. ICV-NGF was able to completely restore spatial learning and memory as predicted while only the highest intraparenchymal dose was able to able to restore the mnemonic deficits. These data suggest that intraparenchymal infusion of growth factors may provide a viable delivery method in clinical trials using this mode of drug delivery once an optimal dose has been established.
Collapse
Affiliation(s)
- D P Pizzo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
27
|
Martins ACP, Souza KLA, Shio MT, Mathias PCF, Lelkes PI, Garcia RMG. Adrenal medullary function and expression of catecholamine-synthesizing enzymes in mice with hypothalamic obesity. Life Sci 2004; 74:3211-22. [PMID: 15094322 DOI: 10.1016/j.lfs.2003.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 10/14/2003] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying the onset of obesity are complex and not completely understood. An imbalance of autonomic nervous system has been proposed to be a major cause of great fat deposits accumulation in hypothalamic obesity models. In this work we therefore investigated the adrenal chromaffin cells in monosodium glutamate (MSG)-treated obese female mice. Newborn mice were injected daily with MSG (4 mg/g body weight) or saline (controls) during the first five days of life and studied at 90 days of age. The adrenal catecholamine content was 56.0% lower in the obese group when compared to lean controls (P < 0.0001). Using isolated adrenal medulla we observed no difference in basal catecholamine secretion percentile between obese and lean animals. However, the percentile of catecholamine secretion stimulated by high K+ concentration was lower in the obese group. There was a decrease in the tyrosine hydroxylase enzyme expression (57.3%, P < 0.004) in adrenal glands of obese mice. Interestingly, the expression of dopamine beta-hydroxylase was also reduced (47.0%, P < 0.005). Phenylethanolamine N-methyltransferase expression was not affected. Our results show that in the MSG model, obesity status is associated with a defective adrenal chromaffin cell function. We conclude that in MSG obesity the low total catecholamine content is directly related to a decrease of key catecholamine-synthesizing enzymes, which by its turn may lead to a defective catecholamine secretion.
Collapse
Affiliation(s)
- Andréia C P Martins
- Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
29
|
Abstract
The role of peptides as signalling molecules in the nervous system has been studied for more than 30 years. Neuropeptides and their G-protein-coupled receptors are widely distributed throughout the body and they commonly occur with, and are complementary to, classic neurotransmitters. The functions of neuropeptides range from neurotransmitter to growth factor. They are present in glial cells, are hormones in the endocrine system, and are messengers in the immune system. Much evidence indicates that neuropeptides are of particular importance when the nervous system is challenged (eg, by stress, injury, or drug abuse). These features and the large number of neuropeptides and neuropeptide receptors provide many opportunities for the discovery of new drug targets for the treatment of nervous-system disorders. In fact, receptor-subtype-selective antagonists and agonists have been developed, and recently a substance P receptor (neurokinin 1) antagonist has been shown to have clinical efficacy in the treatment of major depression and chemotherapy-induced emesis. Several other neuropeptide receptor ligands are in clinical trials for various indications.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Jo YH, Talmage DA, Role LW. Nicotinic receptor-mediated effects on appetite and food intake. JOURNAL OF NEUROBIOLOGY 2002; 53:618-32. [PMID: 12436425 PMCID: PMC2367209 DOI: 10.1002/neu.10147] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Anatomy and Cell Biology, in the Center for Neurobiology and Behavior, Columbia, University, New York, NY 10032, USA
| | | | | |
Collapse
|
31
|
Davidowa H, Li Y, Plagemann A. Hypothalamic ventromedial and arcuate neurons of normal and postnatally overnourished rats differ in their responses to melanin-concentrating hormone. REGULATORY PEPTIDES 2002; 108:103-11. [PMID: 12220733 DOI: 10.1016/s0167-0115(02)00153-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide involved in regulation of food intake and body weight. The study aimed to detect possible differences in responses of hypothalamic ventromedial and arcuate neurons to MCH, depending on the short-term nutritional state (fed versus food-deprived) and on the long-term state in overweight rats due to early postnatal overnutrition. The effect of MCH on a single-unit activity was studied in brain slices of normal and overweight rats. The latter (n=16) were raised till weaning in small litters (SL) of 3 pups compared to 10 pups in control litters (CL) and gained significantly greater body mass. Whereas MCH in effective concentrations in the pico- to nanomolar range could increase or suppress the activity of ventromedial or arcuate neurons studied in male normal fed or food-deprived (24 h) rats, its action became shaped in an unidirectional way in overweight, hyperphagic rats. Medial arcuate neurons (n=25) from hyperphagic rats were predominantly activated by MCH (p<0.05, paired t-test). This effect differed significantly from that induced on neurons (n=27) of control rats. Ventromedial neurons (n=34) of overweight rats were predominantly inhibited. Activation of arcuate neurons may induce feeding in particular through release of neuropeptide Y (NPY). Inhibition of ventromedial neurons may contribute to reduced energy expenditure. The increased expression of one response type to MCH by a neuronal population in overweight, hyperphagic rats might reflect a general mechanism of neurochemical plasticity and also suggest a participation of the peptide in long-term regulation of food intake and body weight in this model of obesity.
Collapse
Affiliation(s)
- Helga Davidowa
- Johannes-Mueller-Institute of Physiology, Faculty of Medicine (Charité), Humboldt University Berlin, Tucholskystr 2, D-10117, Berlin, Germany.
| | | | | |
Collapse
|
32
|
Abstract
Initial research on the functional significance of two novel hypothalamic neuropeptides, orexin-A and orexin-B, suggested an important role in appetite regulation. Since then, however, these peptides have also been shown to influence a wide range of other physiological and behavioural processes. In this paper, we review the now quite extensive literature on orexins and appetite control, and consider their additional effects within this context. Although the evidence for orexin (particularly orexin-A and the orexin-1 receptor) involvement in many aspects of ingestive physiology and behaviour is incontrovertible, central administration of orexins is also associated with increased EEG arousal and wakefulness, locomotor activity and grooming, sympathetic and HPA activity, and pain thresholds. Since the orexin system is selectively activated by signals indicating severe nutritional depletion, it would be highly adaptive for a hungry animal not only to seek sustenance but also to remain fully alert to dangers in the environment. Crucial evidence indicates that orexin-A increases food intake by delaying the onset of a behaviourally normal satiety sequence. In contrast, a selective orexin-1 receptor antagonist (SB-334867) suppresses food intake and advances the onset of a normal satiety sequence. These data suggest that orexin-1 receptors mediate the episodic signalling of satiety and appear to bridge the transition from eating to resting in the rats' feeding-sleep cycle. The argument is developed that the diverse physiological and behavioural effects of orexins can best be understood in terms of an integrated set of reactions which function to rectify nutritional status without compromising personal survival. Indeed, many of the non-ingestive effects of orexin administration are identical to the cluster of active defences mediated via the lateral and dorsolateral columns of the midbrain periaqueductal gray matter, i.e., somatomotor activation, vigilance, tachycardia, hypertension and non-opioid analgesia. In our view, therefore, the LH orexin system is very well placed to orchestrate the diverse subsystems involved in foraging under potentially dangerous circumstances, i.e., finding and ingesting food without oneself becoming a meal for someone else.
Collapse
Affiliation(s)
- R J Rodgers
- School of Psychology, University of Leeds, Leeds, UK.
| | | | | | | |
Collapse
|
33
|
Griffond B, Baker BI. Cell and molecular cell biology of melanin-concentrating hormone. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:233-77. [PMID: 11837894 DOI: 10.1016/s0074-7696(02)13016-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent advances in the study of melanin-concentrating hormone (MCH) have depended largely on molecular biological techniques. In mammals, which have attracted the most attention, novel findings concern (i) the MCH gene, which can yield several peptides by either posttranslational cleavage or alternative splicing, as well as bidirectional transcription; (ii) the identification of two G protein-coupled MCH receptors in the brain and peripheral tissues; and (iii) the evidence for subpopulations of MCH neurons in the central nervous system, characterized by their chemical phenotypes, connections, and individual physiological responses to different physiological paradigms. The involvement of central MCH in various functions, including feeding, reproduction, stress, and behavior patterns, is reviewed. The stage during evolution at which MCH may have acquired hypophysiotrophic and hormonal functions in lower vertebrates is considered in light of morphological data. Evidence that MCH also has peripheral paracrine/autocrine effects in mammals is provided.
Collapse
Affiliation(s)
- Bernadette Griffond
- Laboratoire d'Histologie, Faculté de Médecine, Place St-Jacques, Besançon, France
| | | |
Collapse
|
34
|
Abstract
Discovery of the leptin receptor and its downstream peptidergic pathways has reconfirmed the crucial role of the hypothalamus in the regulation of food intake and energy balance. Strategically located in the midst of the mammalian neuraxis, the hypothalamus receives at least three distinct types of relevant information via direct or indirect neural connections as well as hormone receptors and substrate sensors bestowed on hypothalamic neurons. First, the medial and to a lesser extent the lateral hypothalamus receive a rich mix of information pertaining to the internal state of relative energy repletion/depletion. Second, specific hypothalamic nuclei receive information about the behavioral state, such as diurnal clock, physical activity-level, reproductive cycle, developmental stage, as well as imminent (e.g. fight and flight) and chronic (e.g. infection) stressors, that can potentially impact on short-term availability of fuels and long-term energy balance. Third, the hypothalamus, particularly its lateral aspects, receives information from areas in the forebrain involved in the acquisition, storage, and retrieval of sensory representations of the external food space and internal food experience, as well as from the executive forebrain involved in behavior selection and initiation. In addition, rich intrahypothalamic connections facilitate further distribution of incoming information to various hypothalamic nuclei. On the other hand, the hypothalamus has widespread neural projections to the same cortical areas it receives inputs, and many hypothalamic neurons are one synapse away from most endocrine systems and from both sympathetic and parasympathetic effector organs involved in the flux, storage, mobilization, and utilization of fuels. It is argued that processing within cortico-limbic areas and communication with hypothalamic areas are particularly important in human food intake control that is more and more guided by cognitive rather than metabolic aspects in the obesigenic environment of affluent societies. A distributed neural network for the control of food intake and energy balance consisting of a central processor and several parallel processing loops is hypothesized. Detailed neurochemical, anatomical, and functional analysis of reciprocal connections of the numerous peptidergic neuron populations in the hypothalamus with extrahypothalamic brain areas will be necessary to better understand what hypothalamus, forebrain, and brainstem tell each other and who is in charge under specific conditions of internal and external nutrient availability.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
35
|
Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO. Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun 2002; 293:560-5. [PMID: 12054638 DOI: 10.1016/s0006-291x(02)00230-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently we found that interleukin-6 (IL-6) knockout mice develop mature-onset obesity and that a single intracerebroventricular (ICV) injection of IL-6 increases energy expenditure. In the present study we investigated if chronic ICV treatment with IL-6 can suppress body fat mass. IL-6 was injected ICV daily for two weeks to rats fed a high-fat diet. IL-6 treatment but not saline treatment decreased body weight by 8.4% and decreased the relative weights of mesenteric and retroperitoneal fat pads. Consistent with this, circulating leptin levels were decreased by 40% after IL-6 treatment but not after saline treatment. Average food intake per day was decreased in the IL-6 treated group compared to the saline treated rats. IL-6 treatment did not change hepatic expression of the acute-phase protein haptoglobin, serum levels of insulin or insulin-like growth factor-I, or the weights of the heart, liver, kidneys, adrenals, and spleen. We conclude that centrally administered IL-6 can decrease body fat in rats without causing acute-phase reaction.
Collapse
Affiliation(s)
- Kristina Wallenius
- Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M J Kuhar
- Division of Neuroscience, Yerkes Regional Primate Research Center of Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|
37
|
Mungarndee SS, Baldwin BA, Chindadoungratana C, Kotchabhakdi N. Hypothalamic and zona incerta neurons in sheep, initially only responding to the sight of food, also respond to the sight of water after intracerebroventricular injection of hypertonic saline or angiotensin II. Brain Res 2002; 925:204-12. [PMID: 11792369 DOI: 10.1016/s0006-8993(01)03283-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular single-unit recordings were made from neurons in the lateral hypothalamus (LH) or zona incerta (ZI) of conscious sheep. A small population of neurons (12/83) were found which responded with increased firing rate when the animal looked at food but did not respond when the sheep looked at water. The effects of rapidly inducing intense thirst by the intracerebroventricular (i.c.v.) injection of hypertonic (0.85 M) saline or 200 ng of angiotensin II, or a mixture of the two dipsogenic stimuli, on the response of neurons initially responding only to the sight of food were investigated. Following i.c.v. injection of the dipsogenic stimuli the neurons began to respond strongly to the sight of water. The results demonstrated that changing the animal's motivational state alters the response of some neurons in the LH and ZI and suggests that the neuronal response is influenced by the animal's dominant need at the time of testing.
Collapse
Affiliation(s)
- Suriyaphun S Mungarndee
- Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University at Salaya, Nakorn Pathom 73170, Thailand.
| | | | | | | |
Collapse
|
38
|
Abstract
The hypothalamic feeding-center model, articulated in the 1950s, held that the hypothalamus contains the interoceptors sensitive to blood-borne correlates of available or stored fuels as well as the integrative substrates that process metabolic and visceral afferent signals and issue commands to brainstem mechanisms for the production of ingestive behavior. A number of findings reviewed here, however, indicate that sensory and integrative functions are distributed across a central control axis that includes critical substrates in the basal forebrain as well as in the caudal brainstem. First, the interoceptors relevant to energy balance are distributed more widely than had been previously thought, with a prominent brainstem complement of leptin and insulin receptors, glucose-sensing mechanisms, and neuropeptide mediators. The physiological relevance of this multiple representation is suggested by the demonstration that similar behavioral effects can be obtained independently by stimulation of respective forebrain and brainstem subpopulations of the same receptor types (e.g., leptin, CRH, and melanocortin). The classical hypothalamic model is also challenged by the integrative achievements of the chronically maintained, supracollicular decerebrate rat. Decerebrate and neurologically intact rats show similar discriminative responses to taste stimuli and are similarly sensitive to intake-inhibitory feedback from the gut. Thus, the caudal brainstem, in neural isolation from forebrain influence, is sufficient to mediate ingestive responses to a range of visceral afferent signals. The decerebrate rat, however, does not show a hyperphagic response to food deprivation, suggesting that interactions between forebrain and brainstem are necessary for the behavioral response to systemic/ metabolic correlates of deprivation in the neurologically intact rat. At the same time, however, there is evidence suggesting that hypothalamic-neuroendocrine responses to fasting depend on pathways ascending from brainstem. Results reviewed are consistent with a distributionist (as opposed to hierarchical) model for the control of energy balance that emphasizes: (i) control mechanisms endemic to hypothalamus and brainstem that drive their unique effector systems on the basis of local interoceptive, and in the brainstem case, visceral, afferent inputs and (ii) a set of uni- and bidirectional interactions that coordinate adaptive neuroendocrine, autonomic, and behavioral responses to changes in metabolic status.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Group of Psychology, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
39
|
Lapseritis JM, Hayssen V. Thyroxine levels in agouti and non-agouti deer mice (Peromyscus maniculatus). Comp Biochem Physiol A Mol Integr Physiol 2001; 130:295-9. [PMID: 11544074 DOI: 10.1016/s1095-6433(01)00388-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Total thyroxine was assessed by radioimmunoassay for 58 female deer mice of two subspecies (Peromyscus maniculatus bairdii and P. m. gracilis) and two color morphs (agouti and non-agouti). P. m. bairdii of both color-morphs had significantly higher mean thyroxine levels than P. m. gracilis. Non-agouti deer mice of both subspecies had significantly higher mean thyroxine levels than agouti deer mice. This is the first report of thyroid hormone differences associated with the non-agouti allele.
Collapse
Affiliation(s)
- J M Lapseritis
- Department of Biology, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
40
|
Lawrence CB, Rothwell NJ. Anorexic but not pyrogenic actions of interleukin-1 are modulated by central melanocortin-3/4 receptors in the rat. J Neuroendocrinol 2001; 13:490-5. [PMID: 11412335 DOI: 10.1046/j.1365-2826.2001.00660.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokine interleukin-1 (IL-1), which mediates many responses to infection and injury, induces anorexia and fever through direct actions in the central nervous system. The melanocortin neuropeptides, such as alpha melanocyte-stimulating hormone (alpha-MSH), reportedly antagonize many actions of IL-1, including fever and anorexia. However, it is unknown whether endogenous melanocortins modulate anorexia induced by IL-1. The objective of the present study was to establish the effect of endogenous melanocortins on IL-1-induced anorexia and fever in the rat. Intracerebroventricular (i.c.v.) injection of IL-1beta caused a significant reduction in food intake and body weight gain, and a rise in core body temperature in conscious rats. Coadministration of the melanocortin-3/4 receptor (MC3/4-R) antagonist, SHU9119, reversed IL-1beta-induced reductions in food intake and body weight, but did not affect the febrile response to IL-1beta. These data suggest IL-1beta may elicit its effects on food intake through the melanocortin system, predominantly via the MC3-R or MC4-R. In contrast, IL-1beta-induced fever does not appear to be mediated or modulated by MC3-R or MC4-R activity.
Collapse
Affiliation(s)
- C B Lawrence
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
41
|
Abstract
As in Lymnaea stagnalis NPY plays a key role in regulating energy flows but has no effect on food intake, two important questions arise: 1) How is the amount of food consumed related to energy storage? 2) Can we give a molecular explanation for this alteration in function of NPY during evolution? Recent data have shown that also in Lymnaea a leptin-like factor is produced by glycogen storing cells which inhibits food intake, a Lymnaea storage feedback factor (LySFF). So, food consumption seems in balance with the amount of energy stored in this animal. We suppose that NPY neurons in Lymnaea have receptors for LySFF so that their activity in regulating energy homeostasis reflects the amount of stored energy. By comparing the molecular structure of NPYs in invertebrates it became clear that only molluscan and arthropod NPY are synthesized from a prohormone similar to vertebrate NPYs and should be considered as real invertebrate homologs of NPY. Based on pharmacological data we suppose that the identified Lymnaea NPY receptor is a Y1 subtype. This might explain that LyNPY has no effect on food intake in Lymnaea as this function of NPY in mammals is regulated through the Y5 subtype receptor.
Collapse
Affiliation(s)
- M de Jong-Brink
- Vrije Universiteit, Faculty of Biology, Department of Developmental Neurobiology, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
42
|
Wikberg JE, Muceniece R, Mandrika I, Prusis P, Lindblom J, Post C, Skottner A. New aspects on the melanocortins and their receptors. Pharmacol Res 2000; 42:393-420. [PMID: 11023702 DOI: 10.1006/phrs.2000.0725] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of melanocortins and their receptors has increased tremendously over the last few years. The cloning of five melanocortin receptors, and the discovery of two endogenous antagonists for these receptors, agouti and agouti-related peptide, have sparked intense interest in the field. Here we give a comprehensive review of the pharmacology, physiology and molecular biology of the melanocortins and their receptors. In particular, we review the roles of the melanocortins in the immune system, behaviour, feeding, the cardiovascular system and melanoma. Moreover, evidence is discussed suggesting that while many of the actions of the melanocortins are mediated via melanocortin receptors, some appear to be mediated via mechanisms distinct from melanocortin receptors.
Collapse
Affiliation(s)
- J E Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Box 591 BMC, SE751 24, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
|