1
|
Gao S, Liang J, Tan C, Ma J. An oxygen-scavenging system without impact on DNA mechanical properties in single-molecule fluorescence experiments. NANOSCALE 2025; 17:3236-3242. [PMID: 39633609 DOI: 10.1039/d4nr04287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oxygen scavenging systems (OSSs) are critical for dye stability in single-molecule fluorescence (SMF) experiments. However, the commonly used protocatechuic acid (PCA)/protocatechuate-3,4-dioxygenase (PCD) OSS alters DNA mechanical properties, limiting its applicability. To address this limitation, we examine the bilirubin oxidase (BOD) OSS, which had not been previously used in single-molecule experiments, alongside the pyranose oxidase and catalase (POC) OSS. Our results revealed that POC OSS affected DNA mechanics in a buffer-dependent manner, while BOD OSS had no discernible effect across all tested buffer conditions. Furthermore, BOD OSS significantly extended the photobleaching lifetimes of Cy3 and Cy5 dyes and caused minimal pH changes compared to PCD OSS. Collectively, these findings highlight the superior performance of BOD OSS, suggesting its potential for widespread application, particularly in experiments combining SMF with single-molecule force spectroscopy (SMFS) measurements.
Collapse
Affiliation(s)
- Shang Gao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Pritzl SD, Ulugöl A, Körösy C, Filion L, Lipfert J. Accurate drift-invariant single-molecule force calibration using the Hadamard variance. Biophys J 2024; 123:3964-3976. [PMID: 39473184 PMCID: PMC11617635 DOI: 10.1016/j.bpj.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic tweezers (MT) are particularly well suited to probe very small forces, ≤1 pN, critical for studying noncovalent interactions and regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our experimental system and compare the performance of the HV method against two established techniques: power spectral density (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method's ability to mitigate common sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum. We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension to the Tweezepy package.
Collapse
Affiliation(s)
- Stefanie D Pritzl
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| | - Alptuğ Ulugöl
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Caroline Körösy
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Laura Filion
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| | - Jan Lipfert
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands; Institute for Physics, Augsburg University, Universitätsstrasse 1, Augsburg, Germany.
| |
Collapse
|
3
|
Kabtiyal P, Robbins A, Jergens E, Castro CE, Winter JO, Poirier MG, Johnston-Halperin E. Localized Plasmonic Heating for Single-Molecule DNA Rupture Measurements in Optical Tweezers. NANO LETTERS 2024; 24:3097-3103. [PMID: 38417053 DOI: 10.1021/acs.nanolett.3c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
To date, studies on the thermodynamic and kinetic processes that underlie biological function and nanomachine actuation in biological- and biology-inspired molecular constructs have primarily focused on photothermal heating of ensemble systems, highlighting the need for probes that are localized within the molecular construct and capable of resolving single-molecule response. Here we present an experimental demonstration of wavelength-selective, localized heating at the single-molecule level using the surface plasmon resonance of a 15 nm gold nanoparticle (AuNP). Our approach is compatible with force-spectroscopy measurements and can be applied to studies of the single-molecule thermodynamic properties of DNA origami nanomachines as well as biomolecular complexes. We further demonstrate wavelength selectivity and establish the temperature dependence of the reaction coordinate for base-pair disruption in the shear-rupture geometry, demonstrating the utility and flexibility of this approach for both fundamental studies of local (nanometer-scale) temperature gradients and rapid and multiplexed nanomachine actuation.
Collapse
Affiliation(s)
- Prerna Kabtiyal
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariel Robbins
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elizabeth Jergens
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica O Winter
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
4
|
Zheng B, Xiao Y, Tong B, Mao Y, Ge R, Tian F, Dong X, Zheng P. S373P Mutation Stabilizes the Receptor-Binding Domain of the Spike Protein in Omicron and Promotes Binding. JACS AU 2023; 3:1902-1910. [PMID: 37502147 PMCID: PMC10369413 DOI: 10.1021/jacsau.3c00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023]
Abstract
A cluster of several newly occurring mutations on Omicron is found at the β-core region of the spike protein's receptor-binding domain (RBD), where mutation rarely happened before. Notably, the binding of SARS-CoV-2 to human receptor ACE2 via RBD happens in a dynamic airway environment, where mechanical force caused by coughing or sneezing occurs. Thus, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of RBDs and found that the mechanical stability of Omicron RBD increased by ∼20% compared with the wild type. Molecular dynamics (MD) simulations revealed that Omicron RBD showed more hydrogen bonds in the β-core region due to the closing of the α-helical motif caused primarily by the S373P mutation. In addition to a higher unfolding force, we showed a higher dissociation force between Omicron RBD and ACE2. This work reveals the mechanically stabilizing effect of the conserved mutation S373P for Omicron and the possible evolution trend of the β-core region of RBD.
Collapse
Affiliation(s)
- Bin Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelong Xiao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bei Tong
- Institute
of Botany, Jiangsu Province and Chinese
Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Yutong Mao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Rui Ge
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianchi Dong
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Engineering
Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu 210023, China
| | - Peng Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Li H. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1345-1353. [PMID: 36647634 DOI: 10.1021/acs.langmuir.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloproteins play important roles in a wide range of biological processes. Elucidating the mechanisms via which metalloproteins fold and constitute their metal centers is critical to the understanding of the functions and dynamics of metalloproteins. Owing to its superior force and length resolution, single-molecule force spectroscopy (SMFS) has evolved into a powerful tool to probe the unfolding and folding mechanisms of metalloproteins at the single level by forcing metalloproteins to unfold and then refold along a reaction coordinate defined by the applied stretching force. The folding of metalloproteins is complex and involves two interwound processes, the folding of the polypeptide chain and the constitution of the metal center. Experimental studies of the folding of metalloproteins are challenging. SMFS studies have allowed researchers to directly probe the folding and unfolding of metalloproteins at the single-molecule level and the effect of metal centers on the folding-unfolding energy landscape of metalloproteins. New mechanistic insights on the folding and unfolding of some metalloproteins have been obtained, demonstrating the power and unique advantages that SMFS techniques may offer. In this Perspective, using calcium-binding proteins and small iron-sulfur proteins as examples, I provide a concise overview of the information and insights that SMFS studies have provided to understand the folding and unfolding of metalloproteins. I also discuss the opportunities and challenges that are present in this fast-progressing area of research.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Rissone P, Bizarro CV, Ritort F. Stem-loop formation drives RNA folding in mechanical unzipping experiments. Proc Natl Acad Sci U S A 2022; 119:e2025575119. [PMID: 35022230 PMCID: PMC8784153 DOI: 10.1073/pnas.2025575119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Accurate knowledge of RNA hybridization is essential for understanding RNA structure and function. Here we mechanically unzip and rezip a 2-kbp RNA hairpin and derive the 10 nearest-neighbor base pair (NNBP) RNA free energies in sodium and magnesium with 0.1 kcal/mol precision using optical tweezers. Notably, force-distance curves (FDCs) exhibit strong irreversible effects with hysteresis and several intermediates, precluding the extraction of the NNBP energies with currently available methods. The combination of a suitable RNA synthesis with a tailored pulling protocol allowed us to obtain the fully reversible FDCs necessary to derive the NNBP energies. We demonstrate the equivalence of sodium and magnesium free-energy salt corrections at the level of individual NNBP. To characterize the irreversibility of the unzipping-rezipping process, we introduce a barrier energy landscape of the stem-loop structures forming along the complementary strands, which compete against the formation of the native hairpin. This landscape correlates with the hysteresis observed along the FDCs. RNA sequence analysis shows that base stacking and base pairing stabilize the stem-loops that kinetically trap the long-lived intermediates observed in the FDC. Stem-loops formation appears as a general mechanism to explain a wide range of behaviors observed in RNA folding.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Laboratory, Condensed Matter Physics Department, University of Barcelona, Barcelona 08028, Spain
| | - Cristiano V Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto Alegre, Brazil
| | - Felix Ritort
- Small Biosystems Laboratory, Condensed Matter Physics Department, University of Barcelona, Barcelona 08028, Spain;
| |
Collapse
|
7
|
Morgan IL, Saleh OA. Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments. PLoS One 2022; 16:e0262028. [PMID: 34972160 PMCID: PMC8719779 DOI: 10.1371/journal.pone.0262028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy's calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.
Collapse
Affiliation(s)
- Ian L. Morgan
- BMSE Program, University of California, Santa Barbara, California, United States of America
- * E-mail: (ILM); (OAS)
| | - Omar A. Saleh
- BMSE Program, University of California, Santa Barbara, California, United States of America
- Materials Department, University of California, Santa Barbara, California, United States of America
- * E-mail: (ILM); (OAS)
| |
Collapse
|
8
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
9
|
Zhuravlev PI, Hinczewski M, Thirumalai D. Low Force Unfolding of a Single-Domain Protein by Parallel Pathways. J Phys Chem B 2021; 125:1799-1805. [DOI: 10.1021/acs.jpcb.0c11308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology, Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Li J, Li H. Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin. NANOSCALE 2020; 12:22564-22573. [PMID: 33169779 DOI: 10.1039/d0nr06275h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metalloproteins play important roles in a wide range of biological processes. The folding process of metalloproteins is complex due to the synergistic effects of the folding of their polypeptide chains and the incorporation of metal cofactors. The folding mechanism of the simplest iron-sulfur protein rubredoxin, which contains one ferric ion coordinated by four cysteinyl sulfurs, is revealed using optical tweezers for the first time. The folding of the rubredoxin polypeptide chain is rapid and robust, while the reconstitution of the iron-sulfur center is greatly dependent upon the coordination state of the ferric ion on the unfolded polypeptide chain. If the ferric ion is coordinated by two neighboring cysteines, rubredoxin can readily fold with the iron-sulfur center fully reconstituted. However, if the ferric ion is only mono-coordinated, rubredoxin can fold but the iron-sulfur center is not reconstituted. Our results suggested that the folding of holo-rubredoxin follows a novel binding-folding-reconstitution mechanism, which is distinct from the folding mechanisms proposed for the folding of metalloproteins. Our study highlights the critical importance of the two-coordinate ferric site in the folding of holo-rubredoxin, which may have some important implications to our understanding of the folding mechanism of more complex metalloproteins in vivo.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | | |
Collapse
|
11
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
13
|
Cerminara M, Schöne A, Ritter I, Gabba M, Fitter J. Mapping Multiple Distances in a Multidomain Protein for the Identification of Folding Intermediates. Biophys J 2020; 118:688-697. [PMID: 31916943 PMCID: PMC7002912 DOI: 10.1016/j.bpj.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 10/27/2022] Open
Abstract
The investigation and understanding of the folding mechanism of multidomain proteins is still a challenge in structural biology. The use of single-molecule Förster resonance energy transfer offers a unique tool to map conformational changes within the protein structure. Here, we present a study following denaturant-induced unfolding transitions of yeast phosphoglycerate kinase by mapping several inter- and intradomain distances of this two-domain protein, exhibiting a quite heterogeneous behavior. On the one hand, the development of the interdomain distance during the unfolding transition suggests a classical two-state unfolding behavior. On the other hand, the behavior of some intradomain distances indicates the formation of a compact and transient molten globule intermediate state. Furthermore, different intradomain distances measured within the same domain show pronounced differences in their unfolding behavior, underlining the fact that the choice of dye attachment positions within the polypeptide chain has a substantial impact on which unfolding properties are observed by single-molecule Förster resonance energy transfer measurements. Our results suggest that, to fully characterize the complex folding and unfolding mechanism of multidomain proteins, it is necessary to monitor multiple intra- and interdomain distances because a single reporter can lead to a misleading, partial, or oversimplified interpretation.
Collapse
Affiliation(s)
- Michele Cerminara
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany.
| | - Antonie Schöne
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Ilona Ritter
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Matteo Gabba
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Jörg Fitter
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany; RWTH Aachen University, I. Physikalisches Institut (IA), Aachen, Germany.
| |
Collapse
|
14
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
15
|
Mescola A, Dauvin M, Amoroso A, Duwez AS, Joris B. Single-molecule force spectroscopy to decipher the early signalling step in membrane-bound penicillin receptors embedded into a lipid bilayer. NANOSCALE 2019; 11:12275-12284. [PMID: 31211302 DOI: 10.1039/c9nr02466b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the molecular mechanism by which the signal of the presence of an antibiotic is transduced from outside to inside the bacterial cell is of fundamental interest for the β-lactam antibiotic resistance problem, but remains difficult to accomplish. No approach has ever addressed entire penicillin receptors in a membrane environment. Here we describe a method to investigate the purified Bacillus licheniformis BlaR1 receptor -a membrane-bound penicillin receptor involved in β-lactam resistance- embedded into a lipid bilayer in absence or presence of penicillin. By selecting a mutated receptor blocked in its signal transduction pathway just after its activation by penicillin, we revealed the very first step of receptor signalling by unfolding the receptor from its C-terminal end by AFM-based single-molecule force spectroscopy. We showed that the presence of the antibiotic entails significant conformational changes within the receptor. Our approach opens an avenue to study signal-transduction pathways mediated by membrane-bound proteins in a membrane environment.
Collapse
Affiliation(s)
- Andrea Mescola
- Molecular Systems, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Marjorie Dauvin
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Ana Amoroso
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Anne-Sophie Duwez
- Molecular Systems, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Bernard Joris
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
16
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
17
|
Li H, Zheng P. Single molecule force spectroscopy: a new tool for bioinorganic chemistry. Curr Opin Chem Biol 2018; 43:58-67. [DOI: 10.1016/j.cbpa.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 01/14/2023]
|
18
|
Zhang Y, Jiao J, Rebane AA. Hidden Markov Modeling with Detailed Balance and Its Application to Single Protein Folding. Biophys J 2017; 111:2110-2124. [PMID: 27851936 DOI: 10.1016/j.bpj.2016.09.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/26/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022] Open
Abstract
Hidden Markov modeling (HMM) has revolutionized kinetic studies of macromolecules. However, results from HMM often violate detailed balance when applied to the transitions under thermodynamic equilibrium, and the consequence of such violation has not been well understood. Here, to our knowledge, we developed a new HMM method that satisfies detailed balance (HMM-DB) and optimizes model parameters by gradient search. We used free energy of stable and transition states as independent fitting parameters and considered both normal and skew normal distributions of the measurement noise. We validated our method by analyzing simulated extension trajectories that mimicked experimental data of single protein folding from optical tweezers. We then applied HMM-DB to elucidate kinetics of regulated SNARE zippering containing degenerate states. For both simulated and measured trajectories, we found that HMM-DB significantly reduced overfitting of short trajectories compared to the standard HMM based on an expectation-maximization algorithm, leading to more accurate and reliable model fitting by HMM-DB. We revealed how HMM-DB could be conveniently used to derive a simplified energy landscape of protein folding. Finally, we extended HMM-DB to correct the baseline drift in single-molecule trajectories. Together, we demonstrated an efficient, versatile, and reliable method of HMM for kinetics studies of macromolecules under thermodynamic equilibrium.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut.
| | - Junyi Jiao
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut
| | - Aleksander A Rebane
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| |
Collapse
|
19
|
Maki K, Nakao N, Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem Biophys Res Commun 2017; 484:372-377. [PMID: 28131835 DOI: 10.1016/j.bbrc.2017.01.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Abstract
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Nobuhiko Nakao
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Lei H, He C, Hu C, Li J, Hu X, Hu X, Li H. Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hai Lei
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chengzhi He
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Jinliang Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Hongbin Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
21
|
Hwang W, Lee IB, Hong SC, Hyeon C. Decoding Single Molecule Time Traces with Dynamic Disorder. PLoS Comput Biol 2016; 12:e1005286. [PMID: 28027304 PMCID: PMC5226833 DOI: 10.1371/journal.pcbi.1005286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/11/2017] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Single molecule time trajectories of biomolecules provide glimpses into complex folding landscapes that are difficult to visualize using conventional ensemble measurements. Recent experiments and theoretical analyses have highlighted dynamic disorder in certain classes of biomolecules, whose dynamic pattern of conformational transitions is affected by slower transition dynamics of internal state hidden in a low dimensional projection. A systematic means to analyze such data is, however, currently not well developed. Here we report a new algorithm—Variational Bayes-double chain Markov model (VB-DCMM)—to analyze single molecule time trajectories that display dynamic disorder. The proposed analysis employing VB-DCMM allows us to detect the presence of dynamic disorder, if any, in each trajectory, identify the number of internal states, and estimate transition rates between the internal states as well as the rates of conformational transition within each internal state. Applying VB-DCMM algorithm to single molecule FRET data of H-DNA in 100 mM-Na+ solution, followed by data clustering, we show that at least 6 kinetic paths linking 4 distinct internal states are required to correctly interpret the duplex-triplex transitions of H-DNA. We have developed a new algorithm to better decode single molecule data with dynamic disorder. Our new algorithm, which represents a substantial improvement over other methodologies, can detect the presence of dynamic disorder in each trajectory and quantify the kinetic characteristics of underlying energy landscape. As a model system, we applied our algorithm to the single molecule FRET time traces of H-DNA. While duplex-triplex transitions of H-DNA are conventionally interpreted in terms of two-state kinetics, slowly varying dynamic patterns corresponding to hidden internal states can also be identified from the individual time traces. Our algorithm reveals that at least 4 distinct internal states are required to correctly interpret the data.
Collapse
Affiliation(s)
- Wonseok Hwang
- Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Il-Buem Lee
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Seok-Cheol Hong
- Korea Institute for Advanced Study, Seoul, Republic of Korea
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
22
|
Lei H, He C, Hu C, Li J, Hu X, Hu X, Li H. Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2. Angew Chem Int Ed Engl 2016; 56:6117-6121. [DOI: 10.1002/anie.201610648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Hai Lei
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chengzhi He
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Jinliang Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Hongbin Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
23
|
Sasmal DK, Pulido LE, Kasal S, Huang J. Single-molecule fluorescence resonance energy transfer in molecular biology. NANOSCALE 2016; 8:19928-19944. [PMID: 27883140 PMCID: PMC5145784 DOI: 10.1039/c6nr06794h] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the conformation dynamics and interactions of individual biomolecules. In this review, we describe the concept and principle of smFRET, illustrate general instrumentation and microscopy settings for experiments, and discuss the methods and algorithms for data analysis. Subsequently, we review applications of smFRET in protein conformational changes, ion channel open-close properties, receptor-ligand interactions, nucleic acid structure regulation, vesicle fusion, and force induced conformational dynamics. Finally, we discuss the main limitations of smFRET in molecular biology.
Collapse
Affiliation(s)
- Dibyendu K Sasmal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura E Pulido
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Shan Kasal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Jun Huang
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Chen J, Pyle JR, Sy Piecco KW, Kolomeisky AB, Landes CF. A Two-Step Method for smFRET Data Analysis. J Phys Chem B 2016; 120:7128-32. [DOI: 10.1021/acs.jpcb.6b05697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jixin Chen
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Joseph R. Pyle
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Kurt Waldo Sy Piecco
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | | | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
| |
Collapse
|
26
|
Czajkowsky DM, Sun J, Shao Z. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation. eLife 2015; 4:e08421. [PMID: 26652734 PMCID: PMC4714976 DOI: 10.7554/elife.08421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming proteins that undergo a significant reduction in height during the transition from the membrane-assembled prepore to the membrane-inserted pore. Here, we show that targeted application of compressive forces can catalyze this conformational change in individual PFO complexes trapped at the prepore stage, recapitulating this critical step of the spontaneous process. The free energy landscape determined from these measurements is in good agreement with that obtained from molecular dynamics simulations showing that an equivalent internal force is generated by the interaction of the exposed hydrophobic residues with the membrane. This hydrophobic force is transmitted across the entire structure to produce a compressive stress across a distant, otherwise stable domain, catalyzing its transition from an extended to compact conformation. Single molecule compression is likely to become an important tool to investigate conformational transitions in membrane proteins. DOI:http://dx.doi.org/10.7554/eLife.08421.001 Proteins are made up of chains of amino acids that need to fold into intricate three-dimensional shapes to work correctly. But some proteins also have to change their shape drastically when they work. Mechanical forces that change the shape of a protein can therefore be used to determine how a protein folds and how it changes its structure when working. Although researchers have developed techniques to analyze the effect of force on single proteins, most studies carried out so far have investigated the effect of stretching (or tensile forces) to understand structural changes that naturally involve an extension within the protein. However, many proteins undergo structural changes that involve a compaction in their shape. How these changes occur remains poorly understood because, for these, methods to apply compressive forces to single proteins are required. Perfringolysin O (PFO for short) is a protein that is made by a bacterium that causes food poisoning in humans. PFO makes pores in the membrane that surrounds cells. This causes the cell’s contents to leak out, killing the cell. When inserting into the membrane, PFO changes from an elongated “prepore” state to a compact pore-forming state. Czajkowsky et al. now use a combination of single molecule techniques and computer simulations to investigate how PFO undergoes this compaction. Previous work had identified a mutant PFO protein that arrests at the prepore state. Applying a compressive force to the top of this prepore-trapped PFO as it sits on the membrane transmitted forces across the entire PFO protein. This ultimately produced a compressive force across a distant part of the protein that caused the protein to change from the elongated prepore state to the compact, pore-like shape. If a compressive force was not applied, the PFO protein remained in the prepore state. Czajkowsky et al. further found that this compressive force is naturally produced by distant water-repellent parts of the naturally occurring protein interacting with the cell membrane. Therefore, internal forces can transmit across proteins to drive shape changes in distant regions. In the future, the methods developed in this study could be applied to analyze other naturally occurring changes in proteins where shape compaction happens when working. DOI:http://dx.doi.org/10.7554/eLife.08421.002
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- State Key Laboratory of Oncogenes and Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Sun
- State Key Laboratory of Oncogenes and Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Shao
- State Key Laboratory of Oncogenes and Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Edwards DT, Faulk JK, Sanders AW, Bull MS, Walder R, LeBlanc MA, Sousa M, Perkins TT. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope. NANO LETTERS 2015; 15:7091-7098. [PMID: 26421945 PMCID: PMC4663051 DOI: 10.1021/acs.nanolett.5b03166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.
Collapse
Affiliation(s)
- Devin T. Edwards
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Jaevyn K. Faulk
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Aric W. Sanders
- Quantum
Electronics and Photonics Division, National
Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Matthew S. Bull
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Robert Walder
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Marc-Andre LeBlanc
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Marcelo
C. Sousa
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Thomas T. Perkins
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental
Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
28
|
Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
He C, Hu C, Hu X, Hu X, Xiao A, Perkins TT, Li H. Direct Observation of the Reversible Two‐State Unfolding and Refolding of an α/β Protein by Single‐Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015; 54:9921-5. [DOI: 10.1002/anie.201502938] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chengzhi He
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Thomas T. Perkins
- JILA, NIST and University of Colorado Boulder, Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, 440 UCB Boulder, CO 80309 (USA)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| |
Collapse
|
30
|
Lu M, Lu HP. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy. J Phys Chem B 2014; 118:11943-55. [PMID: 25222115 PMCID: PMC4199541 DOI: 10.1021/jp5081498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Conformational motions of proteins
are highly dynamic and intrinsically
complex. To capture the temporal and spatial complexity of conformational
motions and further to understand their roles in protein functions,
an attempt is made to probe multidimensional conformational dynamics
of proteins besides the typical one-dimensional FRET coordinate or
the projected conformational motions on the one-dimensional FRET coordinate.
T4 lysozyme hinge-bending motions between two domains along α-helix
have been probed by single-molecule FRET. Nevertheless, the domain
motions of T4 lysozyme are rather complex involving multiple coupled
nuclear coordinates and most likely contain motions besides hinge-bending.
It is highly likely that the multiple dimensional protein conformational
motions beyond the typical enzymatic hinged-bending motions have profound
impact on overall enzymatic functions. In this report, we have developed
a single-molecule multiparameter photon stamping spectroscopy integrating
fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic
approach enables simultaneous observations of both FRET-related site-to-site
conformational dynamics and molecular rotational (or orientational)
motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have
further observed wide-distributed rotational flexibility along orientation
coordinates by recording fluorescence anisotropy and simultaneously
identified multiple intermediate conformational states along FRET
coordinate by monitoring time-dependent donor lifetime, presenting
a whole picture of multidimensional conformational dynamics in the
process of T4 lysozyme open-close hinge-bending enzymatic turnover
motions under enzymatic reaction conditions. By analyzing the autocorrelation
functions of both lifetime and anisotropy trajectories, we have also
observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional
conformational fluctuation dynamics, providing a fundamental understanding
of the enzymatic reaction turnover dynamics associated with overall
enzyme as well as the specific active-site conformational fluctuations
that are not identifiable and resolvable in the conventional ensemble-averaged
experiment.
Collapse
Affiliation(s)
- Maolin Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | | |
Collapse
|
31
|
Liu N, Chen Y, Peng B, Lin Y, Wang Q, Su Z, Zhang W, Li H, Shen J. Single-molecule force spectroscopy study on the mechanism of RNA disassembly in tobacco mosaic virus. Biophys J 2014; 105:2790-800. [PMID: 24359751 DOI: 10.1016/j.bpj.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/22/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022] Open
Abstract
To explore the disassembly mechanism of tobacco mosaic virus (TMV), a model system for virus study, during infection, we have used single-molecule force spectroscopy to mimic and follow the process of RNA disassembly from the protein coat of TMV by the replisome (molecular motor) in vivo, under different pH and Ca(2+) concentrations. Dynamic force spectroscopy revealed the unbinding free-energy landscapes as that at pH 4.7 the disassembly process is dominated by one free-energy barrier, whereas at pH 7.0 the process is dominated by one barrier and that there exists a second barrier. The additional free-energy barrier at longer distance has been attributed to the hindrance of disordered loops within the inner channel of TMV, and the biological function of those protein loops was discussed. The combination of pH increase and Ca(2+) concentration drop could weaken RNA-protein interactions so much that the molecular motor replisome would be able to pull and disassemble the rest of the genetic RNA from the protein coat in vivo. All these facts provide supporting evidence at the single-molecule level, to our knowledge for the first time, for the cotranslational disassembly mechanism during TMV infection under physiological conditions.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; School of Chemistry and Material Science, Liaoning Shihua University, Fushun, P. R. China
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Bo Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina.
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| | - Hongbin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiacong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
32
|
Nostheide S, Holubec V, Chvosta P, Maass P. Unfolding kinetics of periodic DNA hairpins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:205102. [PMID: 24785383 DOI: 10.1088/0953-8984/26/20/205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DNA hairpin molecules with periodic base sequences can be expected to exhibit a regular coarse-grained free energy landscape (FEL) as a function of the number of open base pairs and applied mechanical force. Using a commonly employed model, we first analyze for which types of sequences a particularly simple landscape structure is predicted, where forward and backward energy barriers between partly unfolded states are decreasing linearly with force. Stochastic unfolding trajectories for such molecules with simple FEL are subsequently generated by kinetic Monte Carlo simulations. Introducing probabilities that can be sampled from these trajectories, it is shown how the parameters characterizing the FEL can be estimated. Already 300 trajectories, as typically generated in experiments, provide faithful results for the FEL parameters.
Collapse
Affiliation(s)
- Sandra Nostheide
- Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
33
|
Paudel B, Rueda D. RNA folding dynamics using laser-assisted single-molecule refolding. Methods Mol Biol 2014; 1086:289-307. [PMID: 24136611 DOI: 10.1007/978-1-62703-667-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
RNA folding pathways can be complex and even include kinetic traps or misfolded intermediates that can be slow to resolve. Characterizing these pathways is critical to understanding how RNA molecules acquire their biological function. We have previously developed a novel approach to help characterize such misfolded intermediates. Laser-assisted single-molecule refolding (LASR) is a powerful technique that combines temperature-jump (T-jump) kinetics with single-molecule detection. In a typical LASR experiment, the temperature is rapidly increased and conformational dynamics are characterized, in real-time, at the single-molecule level using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide detailed protocols for performing LASR experiments including sample preparation, temperature calibration, and data analysis.
Collapse
Affiliation(s)
- Bishnu Paudel
- Department of Medicine, Section of Virology, Imperial College, London, UK
| | | |
Collapse
|
34
|
Ultrastable atomic force microscopy: improved force and positional stability. FEBS Lett 2014; 588:3621-30. [PMID: 24801176 DOI: 10.1016/j.febslet.2014.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.
Collapse
|
35
|
Liu B, Chia D, Csizmok V, Farber P, Forman-Kay JD, Gradinaru CC. The effect of intrachain electrostatic repulsion on conformational disorder and dynamics of the Sic1 protein. J Phys Chem B 2014; 118:4088-97. [PMID: 24673507 DOI: 10.1021/jp500776v] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The yeast cyclin-dependent kinase inhibitor Sic1 is a disordered protein that, upon multisite phosphorylation, forms a dynamic complex with the Cdc4 subunit of an SCF ubiquitin ligase. To understand the multisite phosphorylation dependence of the Sic1:Cdc4 interaction, which ultimately leads to a sharp cell cycle transition, the conformational properties of the disordered Sic1 N-terminal targeting region were studied using single-molecule fluorescence spectroscopy. Multiple conformational populations with different sensitivities to charge screening were identified by performing experiments in nondenaturing salts and ionic denaturants. Both the end-to-end distance and the hydrodynamic radius decrease monotonically with increasing the salt concentration, and a rollover of the chain dimensions in high denaturant conditions is observed. The data were fit to the polyelectrolyte binding-screening model, yielding parameters such as the excluded volume of the uncharged chain and the binding constant to denaturant. An overall scaling factor of ∼1.2 was needed for fitting the data, which implies that Sic1 cannot be approximated by a random Gaussian chain. Fluorescence correlation spectroscopy reveals Sic1 structure fluctuations occurring on both fast (10-100 ns) and slow (∼10 ms) time scales, with the fast phase absent in low salt solutions. The results of this study provide direct evidence that long-range intrachain electrostatic repulsions are a significant factor for the conformational landscape of Sic1, and support the role of electrostatics in determining the overall shape and hydrodynamic properties of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Baoxu Liu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Wang C, Yadavalli VK. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron 2014; 60:5-17. [PMID: 24602267 DOI: 10.1016/j.micron.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
37
|
Bujalowski PJ, Oberhauser AF. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods. Methods 2013; 60:151-60. [PMID: 23523554 DOI: 10.1016/j.ymeth.2013.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp and discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | |
Collapse
|
38
|
Shen T, Cao Y, Zhuang S, Li H. Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1. Biophys J 2013; 103:807-16. [PMID: 22947942 DOI: 10.1016/j.bpj.2012.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/08/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The φ(M2+)(U)-value is defined as ΔΔG(‡-N)/ΔΔG(U-N), which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG(‡-N)) relative to its thermodynamic stability (ΔG(U-N)) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify φ(M2+)(U)-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1's mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins.
Collapse
Affiliation(s)
- Tao Shen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
39
|
Sapra KT. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 2013; 974:73-110. [PMID: 23404273 DOI: 10.1007/978-1-62703-275-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Reeves KJ, Hou J, Higham SE, Sun Z, Trzeciakowski JP, Meininger GA, Brown NJ. Selective measurement and manipulation of adhesion forces between cancer cells and bone marrow endothelial cells using atomic force microscopy. Nanomedicine (Lond) 2012. [PMID: 23199365 DOI: 10.2217/nnm.12.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS The lack of understanding of the biology of bone cancer metastasis has limited the development of effective treatment strategies. The aim of this study was to characterize tumor cell adhesion molecules and determine active tumor cell interactions with human bone marrow endothelial (BME) cells using atomic force microscopy. MATERIALS & METHODS A single prostate (PC3) cancer cell was coupled (concanavalin A) to the atomic force microscopy cantilever then placed in contact with BME cells for cell force spectroscopy measurements. RESULTS & DISCUSSION Strong adhesive interactions between PC3 and BME cells were significantly (p < 0.05) reduced by anti-ICAM-1, anti-β1 and anti-P-selectin, but not anti-VCAM-1. The combined blocking antibodies or the therapeutic agent zoledronic acid significantly (p < 0.005) reduced the adhesive interactions by 65 and 63%, respectively, which was confirmed using a functional in vitro assay. CONCLUSION Atomic force microscopy provides a highly sensitive screening assay to determine and quantify nanoscale adhesion events between different cell types important in the metastatic cascade.
Collapse
Affiliation(s)
- Kimberley J Reeves
- Microcirculation Research Group, Department of Oncology, School of Medicine, University of Sheffield, S10 2RX, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Choi H, Tzeranis DS, Cha JW, Clémenceau P, de Jong SJG, van Geest LK, Moon JH, Yannas IV, So PTC. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation. OPTICS EXPRESS 2012. [PMID: 23187477 PMCID: PMC3601594 DOI: 10.1364/oe.20.026219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude.
Collapse
Affiliation(s)
- Heejin Choi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Dimitrios S. Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Jae Won Cha
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | | | | | | | - Joong Ho Moon
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199,
USA
| | - Ioannis V. Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02193,
USA
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 20139,
USA
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602,
Singapore
| |
Collapse
|
42
|
Josephs EA, Ye T. Electric-field dependent conformations of single DNA molecules on a model biosensor surface. NANO LETTERS 2012; 12:5255-5261. [PMID: 22963660 DOI: 10.1021/nl3024356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Despite the variety of nucleic acid sensors developed, we still do not have definite answers to some questions that are important to the molecular binding and, ultimately, the sensitivity and reliability of the sensors. How do the DNA probes distribute on the surface at the nanoscale? As the functionalized surfaces are highly heterogeneous, how are the conformations affected when the probe molecules interact with defects? How do DNA molecules respond to electric fields on the surface, which are applied in a variety of detection methods? With in situ electrochemical atomic force microscopy and careful tailoring of nanoscale surface interactions, we are able to observe the nanoscale conformations of individual DNA molecules on a model biosensor surface: thiolated DNA on a gold surface passivated with a hydroxyl-terminated alkanethiol self-assembled monolayer. We find that under applied electric fields, the conformations are highly sensitive to the choice of the alkanethiol molecule. Depending on the monolayer and the nature of the defects, the DNA molecules may either adopt a highly linear or a highly curved conformation. These unusual structures are difficult to observe through existing "ensemble" characterizations of nucleic acid sensors. These findings provide a step toward correlating target-binding affinity, selectivity, and kinetics to the nanoscale chemical structure of and around the probe molecules in practical nucleic acid devices.
Collapse
Affiliation(s)
- Eric A Josephs
- School of Engineering, University of California, Merced, California 95343, USA
| | | |
Collapse
|
43
|
Harriman OLJ, Leake MC. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:503101. [PMID: 22067659 DOI: 10.1088/0953-8984/23/50/503101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule.
Collapse
Affiliation(s)
- O L J Harriman
- Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK
| | | |
Collapse
|
44
|
Zhang W, Lü X, Zhang W, Shen J. EMSA and single-molecule force spectroscopy study of interactions between Bacillus subtilis single-stranded DNA-binding protein and single-stranded DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15008-15015. [PMID: 22054219 DOI: 10.1021/la203752y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this article, interactions between Bacillus subtilis single-stranded DNA binding proteins (BsSSB) and single-stranded DNA (ssDNA) were systematically studied. The effect of different molar ratios between BsSSB and ssDNA on their binding modes was first investigated by electrophoretic mobility shift assays (EMSAs). It is found that a high molar ratio of BsSSB to ssDNA can produce BsSSB-ssDNA complexes formed in the mode of two proteins binding one 65-nt (nucleotide) ssDNA whereas a low molar ratio facilitates the formation of BsSSB-ssDNA complexes in the mode of one protein binding one 65-nt ssDNA. Furthermore, two binding modes are in dynamic equilibrium. The unbinding force of BsSSB-ssDNA complexes was measured quantitatively in solutions with different salt concentrations by using AFM-based single-molecule force spectroscopy (SMFS). Our results show that the unbinding force is about 10 pN higher at high salt concentration (0.5 M NaCl) than at low salt concentration (0.1 M NaCl) and the lifetime of BsSSB-ssDNA complexes at high salt concentration is twice as long as that at low salt concentration. These results indicate that more tightly packed BsSSB-ssDNA complexes can form at high salt (0.5 M NaCl) concentration. In addition, the results of EMSA show that ssDNA, which is bound to BsSSB, can dissociate from BsSSB in the presence of the cDNA strand, indicating the dynamic nature of BsSSB-ssDNA interactions.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | |
Collapse
|
45
|
Prinz JH, Chodera JD, Pande VS, Swope WC, Smith JC, Noé F. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J Chem Phys 2011; 134:244108. [PMID: 21721613 DOI: 10.1063/1.3592153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.
Collapse
Affiliation(s)
- Jan-Hendrik Prinz
- Institute for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Ferreon ACM, Deniz AA. Protein folding at single-molecule resolution. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1021-9. [PMID: 21303706 PMCID: PMC3114273 DOI: 10.1016/j.bbapap.2011.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Allan Chris M. Ferreon
- Author Affiliations: Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines MB-19, La Jolla, California 92037
| | - Ashok A. Deniz
- Author Affiliations: Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines MB-19, La Jolla, California 92037
| |
Collapse
|
47
|
Enzyme digestion of entrapped single-DNA molecules in nanopores. Talanta 2011; 85:2135-41. [PMID: 21872069 DOI: 10.1016/j.talanta.2011.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/21/2022]
Abstract
The real-time digestion of entrapped single-DNA molecules by λ-exonuclease in nanoporous alumina membranes was observed using an epifluorescence microscope. The alumina membrane provides pL (∼ 10(-12)L) containers for confining single-DNA molecules without immobilization. When one end of the DNA molecule was inserted into a nanopore, it was possible to monitor the digestion process outside, near and inside the pore, where the individual DNA molecules exhibited different characteristic digestion modes. The digestion rates calculated from the decrease in fluorescence intensity showed different values according to the location of the individual molecules. Entrapment rather than immobilization allows the DNA strand to be fully exposed to the enzyme and the reaction buffer. These results confirm that the enzymatic digestion of DNA molecules is affected by their three-dimensional (3D) environment.
Collapse
|
48
|
Martinez AV, DeSensi SC, Dominguez L, Rivera E, Straub JE. Protein folding in a reverse micelle environment: the role of confinement and dehydration. J Chem Phys 2011; 134:055107. [PMID: 21303167 DOI: 10.1063/1.3545982] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Characterization of the molecular interactions that stabilize the folded state of proteins including hydrogen bond formation, solvation, molecular crowding, and interaction with membrane environments is a fundamental goal of theoretical biophysics. Inspired by recent experimental studies by Gai and co-workers, we have used molecular dynamics simulations to explore the structure and dynamics of the alanine-rich AKA(2) peptide in bulk solution and in a reverse micelle environment. The simulated structure of the reverse micelle shows substantial deviations from a spherical geometry. The AKA(2) peptide is observed to (1) remain in a helical conformation within a spherically constrained reverse micelle and (2) partially unfold when simulated in an unconstrained reverse micelle environment, in agreement with experiment. While aqueous solvation is found to stabilize the N- and C-termini random coil portions of the peptide, the helical core region is stabilized by significant interaction between the nonpolar surface of the helix and the aliphatic chains of the AOT surfactant. The results suggest an important role for nonpolar peptide-surfactant and peptide-lipid interactions in stabilizing helical geometries of peptides in reverse micelle environments.
Collapse
|
49
|
Zheng P, Cao Y, Li H. Facile method of constructing polyproteins for single-molecule force spectroscopy studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5713-5718. [PMID: 21486060 DOI: 10.1021/la200915d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Constructing polyproteins consisting of identical tandem repeats of proteins provides an unambiguous method of investigating the mechanical properties of proteins at the single-molecule level using force spectroscopy techniques. Here we report a maleimide-thiol coupling-based facile method of constructing polyproteins for single-molecule force spectroscopy studies on the mechanical properties of proteins. This method allows for the construction of polyproteins in an efficient fashion under room temperature. The resultant thioether bonds are resistant to reduction and make it possible to carry out single-molecule force spectroscopy studies under various redox conditions. This novel method complements existing polyprotein engineering methods and can be easily applied to a wide variety of proteins.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | |
Collapse
|
50
|
Schlesier T, Metzroth T, Janshoff A, Gauss J, Diezemann G. Reversible Hydrogen Bond Network Dynamics: Molecular Dynamics Simulations of Calix[4]arene-Catenanes. J Phys Chem B 2011; 115:6445-54. [DOI: 10.1021/jp2025522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Schlesier
- Institut für Physikalische Chemie, Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Thorsten Metzroth
- Institut für Physikalische Chemie, Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Andreas Janshoff
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Gregor Diezemann
- Institut für Physikalische Chemie, Universität Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| |
Collapse
|