1
|
Abstract
The world is witnessing a global epidemic of lung cancer in women. Cigarette smoking remains the dominant risk factor in both sexes, but multiple observations suggest that important sex-related distinctions in lung cancer exist. These include differences in histologic distribution, prevalence in never-smokers, frequency of activating EGFR mutations, likelihood of DNA adduct accumulation, and survival outcomes. Important questions such as whether women are more susceptible to carcinogenic effects of smoking or derive more benefit from lung cancer screening merit more study. A deeper understanding of sex-related differences in lung cancer may lead to improved outcomes for both women and men.
Collapse
|
2
|
Association between the combined effects of GSTM1 present/null and CYP1A1 MspI polymorphisms with lung cancer risk: an updated meta-analysis. Biosci Rep 2021; 40:226457. [PMID: 32945337 PMCID: PMC7533282 DOI: 10.1042/bsr20202275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Many studies have been performed to explore the combined effects of glutathione-S-transferase M1 (GSTM1) present/null and cytochrome P4501A1 (CYP1A1) MspI polymorphisms with lung cancer (LC) risk, but the results are contradictory. Two previous meta-analyses have been reported on the issue in 2011 and 2014. However, several new articles since then have been published. In addition, their meta-analyses did not valuate the credibility of significantly positive results. Objectives: We performed an updated meta-analysis to solve the controversy following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Methods: False-positive report probability (FPRP), Bayesian false discovery probability (BFDP), and the Venice criteria were used to verify the credibility of meta-analyses. Results: Twenty-three publications including 5734 LC cases and 7066 controls met the inclusion criteria in the present study. A significantly increased risk of LC was found in overall analysis, Asians and Indians. However, all positive results were considered as ‘less-credible’ when we used the Venice criteria, FPRP, and BFDP test to assess the credibility of the positive results. Conclusion: These positive findings should be interpreted with caution and results indicate that significant associations may be less-credible, there are no significantly increased LC risk between the combined effects of GSTM1 present/null and CYP1A1 MspI polymorphisms.
Collapse
|
3
|
Rehman MYA, Taqi MM, Hussain I, Nasir J, Rizvi SHH, Syed JH. Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42405-42423. [PMID: 32875453 DOI: 10.1007/s11356-020-09088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/27/2020] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
| | | | - Imran Hussain
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
- Business Unit Environmental Resources and Technologies, Center for Energy, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
4
|
Wang G, Bai Y, Fu W, Feng Y, Chen W, Li G, Wu X, Meng H, Liu Y, Wei W, Wang S, Wei S, Zhang X, He M, Yang H, Guo H. Daily cooking duration and its joint effects with genetic polymorphisms on lung cancer incidence: Results from a Chinese prospective cohort study. ENVIRONMENTAL RESEARCH 2019; 179:108747. [PMID: 31557604 DOI: 10.1016/j.envres.2019.108747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES In this study, we conducted a prospective cohort study to investigate the joint effects of daily cooking duration with single nucleotide polymorphisms (SNPs) on lung cancer incidence. MATERIALS AND METHODS A total of 33,868 individuals recruited in 2013 from Dongfeng-Tongji cohort study were included in our research, in which 5178 participants were genotyped. Daily cooking duration was accessed by questionnaire, and the incident lung cancer cases were confirmed. Fifteen lung cancer related SNPs were selected according to the previous reports. We used the multiple Cox regression models to evaluate the separate and joint effects of daily cooking duration and SNPs on lung cancer incidence. RESULTS Each 1-h increase in daily cooking duration was associated with a 17% elevated risk of lung cancer incidence [hazard ratio (HR) (95%CI) = 1.17(1.03, 1.33)]. Specifically, subjects with daily cooking duration >2 h/day had a 2.05-fold increased incident risk of lung cancer than those without cooking [HR(95%CI) = 2.05(1.20, 3.53)] (Ptrend = 0.011). The rs2395185 and rs3817963, both located at 6p21.32, were significantly associated with lung cancer incidence. Compared with no cooking subjects with rs2395185GG or rs3817963TT genotype, subjects with daily cooking >2 h/day and carrying rs2395185GT + TT genotypes had a 2.48-fold increased risk of lung cancer [HR(95%CI) = 2.48(1.03, 5.97)], and there were significant joint effects of rs3817963TC + CC with daily cooking 1-2 and >2 h/day [HR(95%CI) = 2.23(1.07, 4.64) and 2.22(1.05, 4.68), respectively]. CONCLUSIONS Longer daily cooking duration, especially daily cooking >2 h/day, was associated with increased risk of lung cancer. There were significant joint effects of rs2395185 and rs3817963 with daily cooking duration on lung cancer incidence. This study offered a new indicator of cooking related pollution exposure and added new evidence for the joint effects of environment and genetic factors on lung cancer incidence.
Collapse
Affiliation(s)
- Gege Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenshan Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weilin Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhan Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Ledda C, Loreto C, Bracci M, Lombardo C, Romano G, Cinà D, Mucci N, Castorina S, Rapisarda V. Mutagenic and DNA repair activity in traffic policemen: a case-crossover study. J Occup Med Toxicol 2018; 13:24. [PMID: 30116289 PMCID: PMC6083631 DOI: 10.1186/s12995-018-0206-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background Emissions from vehicles are composed of heterogeneous mixtures of hazardous substances; several pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) are amongst the most dangerous substances detected in urban monitoring. A cohort of traffic policemen usually occupationally exposed to PAHs present in the urban environment were examined in order to assess the mutagenicity and DNA capacity repair. Methods Seventy-two urban traffic policemen working in Catania's metropolitan area were enrolled in the study. Two spot urine samples were collected from each subject during the whole working cycle as follows: sample 1 (S1), pre-shift on day 1; sample 2 (S2) post-shift on day 6. 1-hydroxypyrene (1-OHP) was measured to serve as an indirect exposure indicator. Urinary mutagenic activity was assessed through the plate incorporation pre-incubation technique with S9, using YG1024 Salmonella typhimurium strain over-sensitive to PAH metabolite. Concentrations of urinary 8-oxodG were measured using liquid chromatography tandem mass spectrometry. Results As regards the exposure to PAHs, results highlighted a statistically significant difference (p < 0.001) between pre-shift on day 1 and post-shift on day 6 levels. Mutagenic activity was detected in 38 (66%) workers on S1 and in 47 (81%) on S2. Also 8-oxodG analysis showed a statistically significant difference between S1 and S2 sampling. Conclusions This study demonstrated that occupational exposure to pollutants from traffic emission, assessed via 1-OHP measurements in urine, may lead to DNA repair and mutagenic activity, in line with other studies.
Collapse
Affiliation(s)
- Caterina Ledda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Carla Loreto
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Massimo Bracci
- 3Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Claudia Lombardo
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Gaetano Romano
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Diana Cinà
- Clinical Pathology Unit, "Garibaldi Centro" Hospital of Catania, 95100 Catania, Italy
| | - Nicola Mucci
- 5Occupational Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Sergio Castorina
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Venerando Rapisarda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| |
Collapse
|
6
|
Ceppi M, Munnia A, Cellai F, Bruzzone M, Peluso MEM. Linking the generation of DNA adducts to lung cancer. Toxicology 2017; 390:160-166. [PMID: 28928033 DOI: 10.1016/j.tox.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022]
Abstract
Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratiolung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MRlung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MRsmoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer.
Collapse
Affiliation(s)
- Marcello Ceppi
- Clinical Epidemiology Branch, IRCCS - Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPOCancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPOCancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Branch, IRCCS - Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Marco E M Peluso
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPOCancer Prevention and Research Institute, 50139 - Florence, Italy.
| |
Collapse
|
7
|
Munnia A, Giese RW, Polvani S, Galli A, Cellai F, Peluso MEM. Bulky DNA Adducts, Tobacco Smoking, Genetic Susceptibility, and Lung Cancer Risk. Adv Clin Chem 2017. [PMID: 28629590 DOI: 10.1016/bs.acc.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The generation of bulky DNA adducts consists of conjugates formed between large reactive electrophiles and DNA-binding sites. The term "bulky DNA adducts" comes from early experiments that employed a 32P-DNA postlabeling approach. This technique has long been used to elucidate the association between adducts and carcinogen exposure in tobacco smoke studies and assess the predictive value of adducts in cancer risk. Molecular data showed increased DNA adducts in respiratory tracts of smokers vs nonsmokers. Experimental studies and meta-analysis demonstrated that the relationship between adducts and carcinogens was linear at low doses, but reached steady state at high exposure, possibly due to metabolic and DNA repair pathway saturation and increased apoptosis. Polymorphisms of metabolic and DNA repair genes can increase the effects of environmental factors and confer greater likelihood of adduct formation. Nevertheless, the central question remains as to whether bulky adducts cause human cancer. If so, lowering them would reduce cancer incidence. Pooled and meta-analysis has shown that smokers with increased adducts have increased risk of lung cancer. Adduct excess in smokers, especially in prospective longitudinal studies, supports their use as biomarkers predictive of lung cancer.
Collapse
Affiliation(s)
- Armelle Munnia
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy
| | - Roger W Giese
- Bouve College of Health Sciences, Barnett Institute, Northeastern University, Boston, MA, United States
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy
| | - Marco E M Peluso
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Florence, Italy.
| |
Collapse
|
8
|
Abstract
The use of nanotechnology has increased over the past 10 years, and various nanomaterials with a wide range of applications have been developed. Carbon nanotubes (CNTs), which are cylindrical molecules consisting of hexagonally arranged carbon atoms, are nanomaterials with high utility. Recently, applications of single-walled CNT (SWCNT) in the medical field for drug-delivery and as gene-delivery agents have been proposed. Due to its structural characteristics and physicochemical properties, the inhalation of SWCNT could be considered as one route for targeted drug delivery into the lungs. Therefore, it is necessary to investigate the effects of SWCNT on the physiological state and response of the cells upon delivery into the lung. We clarified the different response of two carcinoma cell lines to SWCNT exposure, and determined these differences may be due to different cell functions. Furthermore, SWCNT exposure resulted in a global downregulation of stress-responsive genes in normal human bronchial epithelial cells, thereby indicating that the factors involved in the stress responses were not activated by SWCNT. We then tried to ascertain the possible effect of SWCNT on the fate of drugs delivered with SWCNT. Exposure to SWCNT down-regulated the mRNA expression and enzymatic activity of CYP1A1 and CYP1B1 by preventing the binding of activated aryl hydrocarbon receptors to the enhancer region of these genes. This review provides basic information for the prediction of human responses to SWCNT exposure by inhalation, and in its use as a drug delivery carrier.
Collapse
|
9
|
Yang H, Yang S, Liu J, Shao F, Wang H, Wang Y. The association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population: evidence from an updated meta-analysis. Sci Rep 2015; 5:9392. [PMID: 25797617 PMCID: PMC4369748 DOI: 10.1038/srep09392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/03/2015] [Indexed: 11/12/2022] Open
Abstract
Previous studies have reported the association of glutathione S-transferase M1 (GSTM1) deletion polymorphism with genetic susceptibility of lung cancer in Chinese population. However, the results remained controversial. The aim of this study was to clarify the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population. Systematic searches were performed through the search engines of Medline/Pubmed, Web of Science, EMBASE, CNKI and Wanfang Medical Online. The pooled effects were calculated by STATA 10.0 software package and Review Manager 5.0.24. Overall, we observed an association of GSTM1 deletion polymorphism with increased lung cancer risk in Chinese population (odds ratio (OR) = 1.46, 95% confidence interval (95%CI): 1.32-1.66 for null genotype vs. present genotype) based on 53 studies including 7,833 cases and 10,353 controls. We also observed an increased risk of GSTM1 null genotype for lung cancer in stratified analyses by source of control, smoking status and histological type. The findings suggest that GSTM1 deletion polymorphism may contribute to lung cancer risk in Chinese population. Further, well-designed studies with larger sample sizes are required to verify the results.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fuye Shao
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| |
Collapse
|
10
|
Liu K, Lin X, Zhou Q, Ma T, Han L, Mao G, Chen J, Yue X, Wang H, Zhang L, Jin G, Jiang J, Zhao J, Zou B. The associations between two vital GSTs genetic polymorphisms and lung cancer risk in the Chinese population: evidence from 71 studies. PLoS One 2014; 9:e102372. [PMID: 25036724 PMCID: PMC4103841 DOI: 10.1371/journal.pone.0102372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/17/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The genetic polymorphisms of glutathione S-transferase (GSTs) have been suspected to be related to the development of lung cancer while the current results are conflicting, especially in the Chinese population. METHODS Data on genetic polymorphisms of glutathione S-transferase Mu 1 (GSTM1) from 68 studies, glutathione S-transferase theta 1 (GSTT1) from 17 studies and GSTM1-GSTT1 from 8 studies in the Chinese population were reanalyzed on their association with lung cancer risk. Odds ratios (OR) were pooled using forest plots. 9 subgroups were all or partly performed in the subgroup analyses. The Galbraith plot was used to identify the heterogeneous records. Potential publication biases were detected by Begg's and Egger's tests. RESULTS 71 eligible studies were identified after screening of 1608 articles. The increased association between two vital GSTs genetic polymorphisms and lung cancer risk was detected by random-effects model based on a comparable heterogeneity. Subgroup analysis showed a significant relationship between squamous carcinoma (SC), adenocarcinoma (AC) or small cell lung carcinoma (SCLC) and GSTM1 null genotype, as well as SC or AC and GSTT1 null genotype. Additionally, smokers with GSTM1 null genotype had a higher lung cancer risk than non-smokers. Our cumulative meta-analysis demonstrated a stable and reliable result of the relationship between GSTM1 null genotype and lung cancer risk. After the possible heterogeneous articles were omitted, the adjusted risk of GSTs and lung cancer susceptibility increased (fixed-effects model: ORGSTM1 = 1.23, 95% CI: 1.19 to 1.27, P<0.001; ORGSTT1 = 1.18, 95% CI: 1.10 to 1.26, P<0.001; ORGSTM1-GSTT1 = 1.33, 95% CI: 1.10 to 1.61, P = 0.004). CONCLUSIONS An increased risk of lung cancer with GSTM1 and GSTT1 null genotype, especially with dual null genotype, was found in the Chinese population. In addition, special histopathological classification of lung cancers and a wide range of gene-environment and gene-gene interaction analysis should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Kui Liu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
- Department of Science Research and Information Management,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xialu Lin
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Ting Ma
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
- Department of Science Research and Information Management,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, People's Republic of China
| | - Liyuan Han
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
- Municipal Center for Disease Prevention and Control of Ningbo City, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian Chen
- Department of Epidemiology and Health Statistic, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Huiqin Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Lu Zhang
- School of Health Management, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Guixiu Jin
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jianmin Jiang
- Department of Science Research and Information Management,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Li W, Song LQ, Tan J. Combined effects of CYP1A1 MspI and GSTM1 genetic polymorphisms on risk of lung cancer: an updated meta-analysis. Tumour Biol 2014; 35:9281-90. [PMID: 24938875 DOI: 10.1007/s13277-014-2212-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022] Open
Abstract
Genetic polymorphisms of cytochrome P450 1A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) genes might contribute to the variability in individual susceptibility to lung cancer, but the reported results from individual studies are not always consistent. We therefore conducted a meta-analysis to systematically estimate the associations between polymorphisms of these two genes and risk of lung cancer. Twenty-one studies with 8,926 subjects were finally enrolled into this study. Meta-analysis was performed by RevMan 5.2. Odds ratio (OR) and its 95 % confidence interval (CI) were calculated to evaluate the susceptibility to lung cancer. Compared with the wild-type homozygous genotype, significantly elevated risk of lung cancer were associated with variant CYP1A1 MspI (m1/m2 + m2/m2 vs. m1/m1: OR = 1.27, 95 % CI = 1.12-1.43, P < 0.001) and deletion of GSTM1 (null vs. present: OR = 1.26, 95 % CI = 1.13-1.40, P < 0.001). Both the two genetic polymorphisms were independently associated with the risk of lung cancer. The pooled OR of lung cancer for population with both CYP1A1 MspI and GSTM1 mutations (MspI m1/m2 or m2/m2 and GSTM1 null) was 1.62 (95 % CI 1.27-2.07, P < 0.001) when compared with those without any of the above mutations, which is higher than single genetic polymorphism. In the stratified analysis, significantly higher risks of lung cancer associated with above genetic polymorphisms were found only in Asian population. This meta-analysis suggests that the CYP1A1 MspI and GSTM1 polymorphisms correlate with increased lung cancer susceptibility independently, and that there is an interaction between the two genes. However, the associations vary in different ethnic populations.
Collapse
Affiliation(s)
- Wen Li
- Department of Thoracic Surgery, General Hospital of Beijing Military Command, 5 Nan Men Cang Road, Dong Si Shi Tiao Street, Beijing, 100700, China,
| | | | | |
Collapse
|
12
|
Gilbertson T, Peluso ME, Munia A, Luján-Barroso L, Sánchez MJ, Navarro C, Amiano P, Barricarte A, Quirós J, Molina-Montes E, Sánchez-Cantalejo E, Tormo MJ, Chirlaque MD, Ardanaz E, Dorronsoro M, Confortini M, Bonet C, Sala N, González CA, Agudo A. Aromatic adducts and lung cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort. Carcinogenesis 2014; 35:2047-54. [DOI: 10.1093/carcin/bgu098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Chuang CY, Tung JN, Su MC, Wu BC, Hsin CH, Chen YJ, Yeh KT, Lee H, Cheng YW. BPDE-like DNA adduct level in oral tissue may act as a risk biomarker of oral cancer. Arch Oral Biol 2013; 58:102-9. [PMID: 22809837 DOI: 10.1016/j.archoralbio.2012.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 06/15/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Most reports have shown that PAH-related DNA adducts are positively correlated with the smoking status of oral cancer patients. However, these reports did not focus on a specific carcinogen in cigarette smoke. The purpose of this study was to elucidate the role of the BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)-DNA adduct in the development of oral cancer in Taiwanese patients. DESIGN We enrolled 158 oral cancer patients and 64 non-cancer controls to investigate whether there were differences in susceptibility to cigarette smoke exposure in the formation of DNA adducts between cancer patients and controls. Immunohistochemistry and ELISA (enzyme-linked immunosorbent assay) were used to evaluate BPDE-DNA adduct levels in this study. RESULTS Our data showed that the BPDE-DNA adduct levels were positively correlated with gender, smoking status, betel nut chewing and alcohol consumption. The difference in DNA adduct levels could be explained by genetic polymorphisms of glutathione S-transferase M1 (GSTM1), but not by cytochrome P-4501A1 (CYP1A1). Patients with high DNA adduct levels (≧34.03 adducts/10(8) nucleotides) had an approximately 9.936-fold risk of oral cancer compared with those with low DNA adduct levels (<34.03 adducts/10(8) nucleotides) (p<0.001). CONCLUSIONS We suggest that genetic background and carcinogen exposure may increase the risk of developing oral cancer.
Collapse
Affiliation(s)
- Chun-Yi Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hitoshi K, Katoh M, Suzuki T, Ando Y, Nadai M. Changes in expression of drug-metabolizing enzymes by single-walled carbon nanotubes in human respiratory tract cells. Drug Metab Dispos 2012; 40:579-87. [PMID: 22187486 DOI: 10.1124/dmd.111.043455] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted attention for biomedical and biotechnological applications, such as drug delivery. However, there are concerns about the safety of SWCNTs for use in humans. To investigate the potential use of SWCNTs for targeted drug delivery to the lung, we examined their effect on drug-metabolizing enzymes in primary normal human bronchial epithelial (NHBE) cells from two donors and the lung carcinoma A549 cell line. Exposure of NHBE and A549 cells to SWCNTs dysregulated some of the important drug-metabolizing enzymes expressed in the human respiratory organs. Exposure of NHBE cells to SWCNTs for 24 h had a pronounced effect on expression of CYP1A1 and CYP1B1 mRNAs, which were reduced to less than 1% of control cells. These effects were also observed in A549 cells. Exposure of A549, HepG2 hepatic carcinoma cells, and MCF-7 breast carcinoma cells to tetrachlorodibenzo-p-dioxin induced the expression and enzymatic activity of CYP1A1 and CYP1B1, which were also suppressed by SWCNTs, suggesting that SWCNTs down-regulated both basal and induced CYP1A1 and CYP1B1 activities. Chromatin immunoprecipitation assays revealed that the down-regulatory effect of SWCNTs may be due to inhibition of activated aryl hydrocarbon receptor binding to the enhancer regions of the CYP1A1 and CYP1B1 genes. Down-regulation of CYP1A1 and CYP1B1 genes by SWCNTs may affect the defense mechanisms by reducing procarcinogen bioactivation in the human lung.
Collapse
Affiliation(s)
- Kotaro Hitoshi
- Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
15
|
Lee MS, Asomaning K, Su L, Wain JC, Mark EJ, Christiani DC. MTHFR polymorphisms, folate intake and carcinogen DNA adducts in the lung. Int J Cancer 2012; 131:1203-9. [PMID: 22052259 DOI: 10.1002/ijc.27338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 01/31/2023]
Abstract
The methylenetetrahydrofolate reductase (MTHFR) genes and folate in one-carbon metabolism are essential for DNA methylation and synthesis. However, their role in carcinogen DNA damage in target lung tissue, a dosimeter for cancer risk, is not known. Our study aimed to investigate the association between genetic and nutritional one-carbon metabolism factors and DNA adducts in target lung. Data on 135 lung cancer cases from the Massachusetts General Hospital were studied. Genotyping was completed for MTHFR C677T (rs1801133) and A1298C (rs1801131). Information on dietary intake for one-carbon related micronutrients, folate and other B vitamin was derived from a validated food frequency questionnaire. DNA adducts in lung were measured by (32) P-postlabeling. After adjusting for potential confounders, DNA adduct levels in lung significantly increased by 69.2% [95% confidence interval (CI), 5.5% to 171.5%] for the MTHFR 1298AC+CC genotype. The high risk group, combining the A1298C (AC+CC) plus C677T (CT+TT) genotypes, had significantly enhanced levels of lung adducts by 210.7% (95% CI, 21.4% to 695.2%) in contrast to the A1298C (AA) plus C677T (CC) genotypes. Elevation of DNA adduct was pronounced-111.3% (95% CI, -3.0 to 360.5%) among 1298AC+CC patients, who consumed the lowest level of folate intake as compared to 1298AA individuals with highest tertile of intake. These results indicate that DNA adducts levels are influenced by MTHFR polymorphisms and low folate consumption, suggesting an important role of genetic and nutritional factors in protecting DNA damage from lung carcinogen in at-risk populations.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology Program, Harvard School of Public Health, and Department of Surgery, Massachusetts General Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wu YH, Wu TC, Liao JW, Yeh KT, Chen CY, Lee H. p53 Dysfunction by Xeroderma Pigmentosum Group C Defects Enhance Lung Adenocarcinoma Metastasis via Increased Mmp1 Expression. Cancer Res 2010; 70:10422-32. [PMID: 21056989 DOI: 10.1158/0008-5472.can-10-2615] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yi-Hui Wu
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Lee MS, Su L, Mark EJ, Wain JC, Christiani DC. Genetic modifiers of carcinogen DNA adducts in target lung and peripheral blood mononuclear cells. Carcinogenesis 2010; 31:2091-6. [PMID: 20935060 DOI: 10.1093/carcin/bgq208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Measurement of carcinogen DNA adducts in blood has been used as a surrogate for the target lung tissue. We aimed to examine whether genetic polymorphisms in several metabolic pathway genes modify the relation between DNA adducts in target lung and blood. One hundred and thirty-five early-stage lung cancer patients from the Massachusetts General Hospital were studied. DNA adducts were measured by the (32)P-postlabeling assay in lung and blood mononuclear cells (MNCs) in a subset of 53 who had paired blood samples. Single-nucleotide polymorphisms (SNPs) were assessed in genes involved in phase II (GSTs, NAT2, EPHX and NQO1), DNA repair (ERCC1, ERCC2 and XRCC1) and DNA methylation (MTHFR C677T and A1298C) pathways. There was a significant correlation between DNA adduct levels in lung and blood within the different genotypes, with one exception. Significant modifications in adducts were found by variants in genes for phase II metabolism [NAT2 (1.51 for rapid versus 0.76 for slow, P = 0.022)], DNA repair [ERCC1 C118T (P = 0.014), ERCC2 (P = 0.003) and XRCC1 (P = 0.025)] and MTHFR [C677T (P = 0.005) and A1298C (P = 0.005)]. The relation between DNA adducts in blood MNCs and target lung tissue was significantly modified by the single-nucleotide polymorphisms in the three main pathways. Despite the relatively small sample size, our results suggest that genetic factors may need to be considered when assessing the association of DNA adducts using surrogate tissue in studies of lung cancer. Further studies are needed to better understand their role and the mechanisms.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Eriksen KT, Sørensen M, Autrup H, Vogel U, Overvad K, Tjønneland A, Loft S, Raaschou-Nielsen O. Lifestyle, environmental, and genetic predictors of bulky DNA adducts in a study population nested within a prospective Danish cohort. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:583-595. [PMID: 20391138 DOI: 10.1080/15287390903566633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bulky DNA adducts are considered a potential biomarker of cancer risk. In this study, the association between various lifestyle, environmental, and genetic factors and the levels of bulky DNA adducts in peripheral leukocytes was examined in a study group nested within a population-based prospective Danish cohort. At enrollment, blood samples were collected and information on lifestyle, including dietary and smoking habits, obtained. Previously, bulky DNA adducts were measured in 245 individuals who developed lung cancer and 255 control members of the cohort. Of these 500 individuals, data on 375 individuals were included in this study, excluding 125 cases, which developed lung cancer within the first 3 yr after blood sampling. Bulky DNA adduct levels were measured by 32P-postlabeling technique and polymorphisms in carcinogen metabolism and DNA repair genes were determined. Potential predictors of bulky DNA adduct levels were analyzed by univariate and multivariate regression analyses. Women tended to have higher adduct levels than men. Living in central Copenhagen and surface darkness of fried meat and fish were associated with quantitative higher adduct levels. No significant associations were found between dietary factors or smoking and DNA adduct levels. Further, the results showed no prominent associations between any of 12 genetic polymorphisms and adduct levels. Overall, our study showed only few associations between dietary, environmental, and genetic factors and levels of bulky DNA adducts measured in peripheral leukocytes in a general Danish population.
Collapse
|
19
|
Modification of urinary N7-methylguanine excretion in smokers by glutathione-S-transferase M1 polymorphism. Toxicology 2009; 260:1-6. [DOI: 10.1016/j.tox.2009.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022]
|
20
|
Biomarkers of induced active and passive smoking damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:874-88. [PMID: 19440419 PMCID: PMC2672383 DOI: 10.3390/ijerph6030874] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/20/2009] [Indexed: 12/13/2022]
Abstract
In addition to the well-known link between smoking and lung cancer, large epidemiological studies have shown a relationship between smoking and cancers of the nose, oral cavity, oropharynx, larynx, esophagus, pancreas, bladder, kidney, stomach, liver, colon and cervix, as well as myeloid leukemia. Epidemiological evidence has reported a direct link between exposure of non-smokers to environmental tobacco smoke and disease, most notably, lung cancer. Much evidence demonstrates that carcinogenic-DNA adducts are useful markers of tobacco smoke exposure, providing an integrated measurement of carcinogen intake, metabolic activation, and delivery to the DNA in target tissues. Monitoring accessible surrogate tissues, such as white blood cells or bronchoalveolar lavage (BAL) cells, also provides a means of investigating passive and active tobacco exposure in healthy individuals and cancer patients. Levels of DNA adducts measured in many tissues of smokers are significantly higher than in non-smokers. While some studies have demonstrated an association between carcinogenic DNA adducts and cancer in current smokers, no association has been observed in ex or never smokers. The role of genetic susceptibility in the development of smoking related-cancer is essential. In order to establish whether smoking-related DNA adducts are biomarkers of tobacco smoke exposure and/or its carcinogenic activity we summarized all data that associated tobacco smoke exposure and smoking-related DNA adducts both in controls and/or in cancer cases and studies where the effect of genetic polymorphisms involved in the activation and deactivation of carcinogens were also evaluated. In the future we hope we will be able to screen for lung cancer susceptibility by using specific biomarkers and that subjects of compared groups can be stratified for multiple potential modulators of biomarkers, taking into account various confounding factors.
Collapse
|
21
|
Taioli E. Gene-environment interaction in tobacco-related cancers. Carcinogenesis 2008; 29:1467-74. [PMID: 18550573 PMCID: PMC2733188 DOI: 10.1093/carcin/bgn062] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 01/01/2023] Open
Abstract
This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene-tobacco interaction and cancer risk are presented. The assessment of gene-environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene-environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene-environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens.
Collapse
Affiliation(s)
- Emanuela Taioli
- Department of Epidemiology, University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, 5150 Center Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
22
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
Carlsten C, Sagoo GS, Frodsham AJ, Burke W, Higgins JPT. Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol 2008; 167:759-74. [PMID: 18270371 DOI: 10.1093/aje/kwm383] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple genes have been studied for potential associations with lung cancer. The gene most frequently associated with increased risk has been glutathione S-transferase M1 (GSTM1). The glutathione S-transferase enzyme family is known to catalyze detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. In this review, the authors summarize the available evidence associating lung cancer with the GSTM1 gene. They describe results from an updated meta-analysis of 98 published genetic association studies investigating the relation between the GSTM1 null variant and lung cancer risk including 19,638 lung cancer cases and 25,266 controls (counting cases and controls in each study only once). All studies considered, the GSTM1 null variant was associated with an increased risk of lung cancer (odds ratio (OR) = 1.22, 95% confidence interval (CI): 1.14, 1.30), but no increase in risk was seen (OR = 1.01, 95% CI: 0.91, 1.12) when only the five largest studies (>500 cases each) were considered. Furthermore, while GSTM1 null status conferred a significantly increased risk of lung cancer to East Asians (OR = 1.38, 95% CI: 1.24, 1.55), such a genotype did not confer increased risk to Caucasians. More data regarding the predictive value of GSTM1 genetic testing are needed before population-based testing may be reasonably considered.
Collapse
Affiliation(s)
- C Carlsten
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
24
|
Veglia F, Loft S, Matullo G, Peluso M, Munnia A, Perera F, Phillips DH, Tang D, Autrup H, Raaschou-Nielsen O, Tjønneland A, Vineis P. DNA adducts and cancer risk in prospective studies: a pooled analysis and a meta-analysis. Carcinogenesis 2008; 29:932-6. [PMID: 18343884 DOI: 10.1093/carcin/bgm286] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bulky DNA adducts are biomarkers of exposure to aromatic compounds and of the ability of the individual to metabolically activate carcinogens and to repair DNA damage. Their ability to predict cancer onset is uncertain. We have performed a pooled analysis of three prospective studies on cancer risk in which bulky DNA adducts have been measured in blood samples collected from healthy subjects (N = 1947; average follow-up 51-137 months). In addition, we have performed a meta-analysis by identifying all articles on the same subject published up to the end of 2006, including case-control studies. In the pooled analysis, a weakly statistically significant increase in the risk of lung cancer was apparent (14% per unit standard deviation change in adduct levels, 95% confidence interval 1-28%; using the weighted mean difference method, 0.15 SD, units higher adducts in cases than in controls). The association was evident only in current smokers and was absent in former smokers. Also the meta-analysis, which included both lung and bladder cancers, showed a statistically significant association in current smokers, whereas the results in never smokers were equivocal; in former smokers, no association was detected. The results of our pooled and meta-analyses suggest that bulky DNA adducts are associated with lung cancer arising in current smokers after a follow-up of several years.
Collapse
Affiliation(s)
- Fabrizio Veglia
- Life Sciences and Epidemiology Unit, ISI Foundation, Torino 10133, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Al Zabadi H, Ferrari L, Laurent AM, Tiberguent A, Paris C, Zmirou-Navier D. Biomonitoring of complex occupational exposures to carcinogens: the case of sewage workers in Paris. BMC Cancer 2008; 8:67. [PMID: 18325085 PMCID: PMC2292199 DOI: 10.1186/1471-2407-8-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 03/06/2008] [Indexed: 11/24/2022] Open
Abstract
Background Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects. Methods/design This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20–60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48. Discussion Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings.
Collapse
Affiliation(s)
- Hamzeh Al Zabadi
- INSERM-ERI 11, Nancy University Medical School, 9 av de la Forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | | | | | |
Collapse
|
26
|
Cheng YW, Tsai HJ, Wu JY, Hsu YF, Chen CY, Hao NJ, Lee H. A possible role for dihydrodiol dehydrogenase in the formation of benzo[a]pyrene-DNA adducts in lung cancer cells and tumor tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:14-21. [PMID: 17163506 DOI: 10.1002/em.20270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Epidemiological studies indicate that there is a gender difference in the susceptibility to tobacco and environmental carcinogens, and this gender difference is suspected to result in a higher risk for lung cancer among women. However, the molecular mechanisms underlying this sexual dimorphism remain unclear. In the present study, we have evaluated the roles of CYP1A1 and dihydrodiol dehydrogenase (DDH) in the formation of benzo[a]pyrene (BaP) DNA adducts in various lung cancer cell lines. Among six lung cancer cell lines tested, higher adduct levels were observed in CL-3 and CL1-1 cells, which had relatively high expression of both CYP1A1 and DDH isoform 1 (DHH1). To determine whether a reduction in DDH expression changed the adduct levels, an siRNA was used to knock down DDH1 expression in CL-3 cells. The BaP adduct levels in siDDH-CL-3 cells increased 1.4-2.2-fold relative to that of the parental CL-3 cells. We also examined BaP-like DNA adducts, and CYP1A1 and DDH1 expression by immunohistochemistry in 120 lung tumors. Detection of DNA adducts correlated with CYP1A1-positive tumors (P = 0.023), but not with DDH1-positive tumors. In addition, 28 of 33 tumors (85%) that were CYP1A1-positive and DDH1-negative contained detectable levels of DNA adducts, a proportion that was higher than for tumors from the other three categories of CYP1A1 and DDH1 expression (P = 0.012). Finally, a greater proportion of adduct-positive tumors from females were CYP1A1-positive/DDH1-negative (45.3%) than were tumors from males (27.3%). These results suggest that the reduction of DDH expression in lung tumors may contribute to an increase in DNA adduct levels, which may be partly responsible for the higher susceptibility of female lung cancer patients to DNA damage.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Saad AA, O'Connor PJ, Mostafa MH, Metwalli NE, Cooper DP, Margison GP, Povey AC. Bladder Tumor Contains Higher N7-Methylguanine Levels in DNA than Adjacent Normal Bladder Epithelium. Cancer Epidemiol Biomarkers Prev 2006; 15:740-3. [PMID: 16614117 DOI: 10.1158/1055-9965.epi-05-0813] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schistosoma haematobium-infected patients are more likely to develop bladder cancer and be more exposed to carcinogenic N-nitroso compounds than uninfected patients. As N7-methylguanine is a marker of exposure to methylating agents of this type, we have measured N7-methyldeoxyguanosine 3'-monophosphate (N7-MedGp) by (32)P postlabeling. DNA was isolated from 42 paired normal and tumor tissue of Egyptians with bladder cancer. N7-MedGp was detected in DNA from 93% of the tumors and 74% of the normal bladder tissue samples. Adduct levels were highly variable and ranged from 0.04 to 6.4 and from 0.02 to 0.72 micromol/mol deoxyguanosine 3'-monophosphate (dGp) in tumor and normal DNA, respectively. N7-MedGp levels in normal and tumor DNA were highly correlated with one another (P = 0.007). The mean difference (95% confidence interval) in adduct levels between tumor and normal DNA was 0.21 (0.13-0.32) micromol/mol dGp and this was statistically significant (P < 0.001). The adduct ratio (tumor DNA/normal DNA) varied between 0.2 and 136 (median, 4.6). N7-MedGp levels were not associated with gender, age, or the presence of schistosomiasis. However, lower N7-MedGp levels were found in normal DNA from individuals lacking the GSTM1 gene (P = 0.03) but not the GSTT1 gene or in subjects with the Ile105Val GSTP1 polymorphism. These results show that exposure to methylating agents is widespread and suggest that such exposure may play a role both in tumor initiation and progression.
Collapse
Affiliation(s)
- Abir A Saad
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester
| | | | | | | | | | | | | |
Collapse
|
28
|
Bak H, Autrup H, Thomsen BL, Tjønneland A, Overvad K, Vogel U, Raaschou-Nielsen O, Loft S. Bulky DNA adducts as risk indicator of lung cancer in a Danish case-cohort study. Int J Cancer 2006; 118:1618-22. [PMID: 16217769 DOI: 10.1002/ijc.21551] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known of the predictive value of the levels of DNA adducts in terms of cancer risk. We examined the association between bulky DNA adducts and risk of lung cancer in a population-based cohort, comprising of 25,717 men and 27,972 women aged 50-64 years at entry. We included 245 cases (137 men and 108 women) with lung cancer and a comparison group of 255 individuals (137 men and 118 women), matched on sex, age and smoking duration. Bulky adducts in white blood cells collected at enrollment and stored at -150 degrees C were analyzed by (32)P-postlabeling method, using the butanol enrichment procedure. The median level of bulky DNA adducts was 0.196 adduct/10(8) nucleotides (5-95 percentiles: 0.094-0.595) among current smokers who were later diagnosed with lung cancer and 0.163 adduct/10(8) nucleotides (5-95 percentiles: 0.091-0.455) among current smokers in the comparison group. The smoking adjusted incidence rate ratios (IRR) for lung cancer in relation to one log unit (natural logarithm) difference in adduct levels were 1.22 (95% CI 0.85-1.74), 1.33 (95% CI 0.89-1.98) and 0.76 (95% CI 0.39-1.47) among all, current and former smokers, respectively. Current smokers with bulky DNA adduct levels above the median had a significant higher lung cancer rate than those with adduct levels below the median (IRR = 1.61; 95% CI 1.04-2.49). The results are compatible with previous studies, suggesting a slightly higher risk of lung cancer with higher levels of adducts among smokers. Our results indicate that bulky DNA adducts may have a weak association with lung cancer risk.
Collapse
Affiliation(s)
- Helle Bak
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim MM, Glazer CA, Mambo E, Chatterjee A, Zhao M, Sidransky D, Califano JA. Head and neck cancer cell lines exhibit differential mitochondrial repair deficiency in response to 4NQO. Oral Oncol 2006; 42:201-7. [PMID: 16266817 DOI: 10.1016/j.oraloncology.2005.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 07/15/2005] [Indexed: 11/16/2022]
Abstract
Constituents of tobacco can cause DNA adduct formation and are implicated in head and neck squamous cell cancer (HNSC) development. We investigated the capacity of HNSC cell lines to repair mitochondrial DNA (mtDNA) damage induced by a DNA adduct-forming agent. HNSC cell lines underwent 4-nitroquinoline 1-oxide (4NQO) exposure with subsequent rescue with normal media. Real-time quantitative PCR for nuclear DNA (nDNA) and mtDNA was performed. mtDNA to nDNA ratios were calculated and standardized to mock-treated cells to assess mtDNA repair ability. Two of three tested cancer cell lines exposed to 4NQO exhibited consistent decreases in mtDNA/nDNA ratios throughout the different repair timepoints. At 24 h mtDNA/nDNA ratios of JHU-O19 and JHU-O22 decreased to 63% and 60% of controls, respectively. Conversely, a control keratinocyte cell line exhibited overall increases in mtDNA/nDNA ratios compared to baseline suggesting intact DNA repair mechanisms. By using a DNA adduct formation and repair model featuring 4NQO and HNSC cell lines, we have implicated faulty mtDNA repair as having a potential role in HNSC.
Collapse
Affiliation(s)
- Michael M Kim
- The John Hopkins University School of Medicine, Head and Neck Cancer Research Division, Department of Otolaryngology--Head and Neck Surgery, 601 N. Caroline Street, 6th Floor, Baltimore, MD 21287-0910, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Lai JC, Cheng YW, Chiou HL, Wu MF, Chen CY, Lee H. Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer. Int J Cancer 2005; 117:974-80. [PMID: 15986439 DOI: 10.1002/ijc.21278] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been documented that estrogen receptor (ER) transcription silencing due to hypermethylation is linked to the tumor progression of breast, uterine and prostate cancers. Additionally, ER hypermethylation in lung tumors has been associated with the exposure of specific carcinogens in animal study. The role of hypermethylation-induced ER transcription silencing in lung tumor progression and its prognostic value for non-small cell lung cancer (NSCLC) patients remained unclear. In our study, ER hypermethylation of 123 lung tumors and adjacent normal parts were examined by methylation-specific PCR (MSP). Estrogen receptor mRNA expression in lung tumors was determined by RT-PCR. Our data indicated that ER hypermethylation was only detected in lung tumors, but not in adjacent normal lung tissues. This suggests that ER hypermethylation may be associated with lung tumorigenesis. Among the clinical parameters studied, only gender factor was correlated with ER hypermethylation with a higher frequency of ER hypermethylation being in male patients than in female patients (58 vs. 34%, p = 0.01). After being stratified by gender and cigarette smoking status, a similarly high prevalence of ER hypermethylation was found in male smoking and nonsmoking patients (60 vs. 61%) as compared to that of female nonsmoking patients (34%). To investigate if 17-beta estradiol (E2) was responsible for such gender difference in ER hypermethylation, a lung cancer A549 cell with ER hypermethylation and without ER mRNA expression was treated with E2 of various concentrations for defined time intervals to show that an E2 treatment could restore the expression of ER mRNA and eliminate ER hypermethylation. Western blot data also showed that acetylated histone 3 and histone 4 of chromatin were increased significantly by E2 treatment. Thus, E2 can make ER mRNA re-expression by eliminating ER hypermethylation. To elucidate the prognostic value of ER hypermethylation, Kaplan-Meier analysis was carried out to show that patients with ER hypermethylation had a poorer prognosis than those without ER hypermethylation. Such prognostic prediction, however, applied only to male (p = 0.0044) patients. Cox regression analysis further showed the feasibility of ER hypermethylation as an independent prognostic factor of NSCLC (p = 0.007). It is possible that antiestrogens may have different therapeutic values for male and female lung cancer patients.
Collapse
Affiliation(s)
- Ji-Ching Lai
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Masson LF, Sharp L, Cotton SC, Little J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol 2005; 161:901-15. [PMID: 15870154 DOI: 10.1093/aje/kwi121] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P-450 (CYP) 1A1 plays a key role in phase I metabolism of polycyclic aromatic hydrocarbons and in estrogen metabolism. It is expressed predominantly in extrahepatic tissues, including the breast. Four CYP1A1 gene polymorphisms (3801T --> C, Ile462Val, 3205T --> C, and Thr461Asp) have been studied in relation to breast cancer. The 3801C variant is more common than the Val variant. Both variants occur more frequently in Asians than in White populations. The 3205T --> C polymorphism has been observed in African Americans only. Little data are available on the geographic/ethnic distribution of the Thr461Asp polymorphism. The functional significance of the polymorphisms is unclear. In 17 studies, no consistent association between breast cancer and CYP1A1 genotype was found. Meta-analysis found no significant risk for the genotypes 1) 3801C/C (relative risk (RR) = 0.97, 95% confidence interval (CI): 0.52, 1.80) or 3801T/C (RR = 0.91, 95% CI: 0.70, 1.19) versus 3801T/T, 2) Val/Val (RR = 1.04, 95% CI: 0.63, 1.74) or Ile/Val (RR = 0.92, 95% CI: 0.76, 1.10) versus Ile/Ile, or 3) Asp/Asp (RR = 0.95, 95% CI: 0.20, 4.49) or Thr/Asp (RR = 1.12, 95% CI: 0.87, 1.43) versus Thr/Thr. Future studies should explore possible interactions between CYP1A1 and sources of polycyclic aromatic hydrocarbons, markers of estrogen exposure, other lifestyle factors influencing hormonal levels, and other genes involved in polycyclic aromatic hydrocarbon metabolism or hormonal biosynthesis.
Collapse
Affiliation(s)
- L F Masson
- Epidemiology Group, Department of Public Health, University of Aberdeen, Aberdeen, Scotland.
| | | | | | | |
Collapse
|
32
|
Autrup H. Gene-Environment Interaction in Environmental Carcinogens. ENVIRONMENTAL SCIENCE AND TECHNOLOGY LIBRARY 2004. [DOI: 10.1007/978-0-306-48513-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Sørensen M, Autrup H, Møller P, Hertel O, Jensen SS, Vinzents P, Knudsen LE, Loft S. Linking exposure to environmental pollutants with biological effects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:255-71. [PMID: 14644327 DOI: 10.1016/j.mrrev.2003.06.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual exposure to PM(2.5), nitrogen dioxide (NO(2)) and benzene has been measured in groups of 40-50 subjects. Measured biomarkers included 1-hydroxypyrene, benzene metabolites (phenylmercapturic acid (PMA) and trans-trans-muconic acid (ttMA)), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine, DNA strand breaks, base oxidation, 8-oxodG and PAH bulky adducts in lymphocytes, markers of oxidative stress in plasma and genotypes of glutathione transferases (GSTs) and NADPH:quinone reductase (NQO1). With respect to benzene, the main result indicates that DNA base oxidation is correlated with PMA excretion. With respect to exposure to PM, biomarkers of oxidative damage showed significant positive association with the individual exposure. Thus, 8-oxodG in lymphocyte DNA and markers of oxidative damage to lipids and protein in plasma associated with PM(2.5) exposure. Several types of DNA damage showed seasonal variation. PAH adduct levels, DNA strand breaks and 8-oxodG in lymphocytes increased significantly in the summer period, requiring control of confounders. Similar seasonal effects on strand breaks and expression of the relevant DNA repair genes ERCC1 and OGG1 have been reported. In the present setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers.
Collapse
Affiliation(s)
- Mette Sørensen
- Institute of Public Health, c/o Department of Pharmacology, The Panum Institute, room 18-5-32, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Massion PP, Carbone DP. The molecular basis of lung cancer: molecular abnormalities and therapeutic implications. Respir Res 2003; 4:12. [PMID: 14641911 PMCID: PMC314397 DOI: 10.1186/1465-9921-4-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 10/07/2003] [Indexed: 11/10/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related death in the western world. Its incidence is highly correlated with cigarette smoking, and about 10% of long-term smokers will eventually be diagnosed with lung cancer, underscoring the need for strengthened anti-tobacco policies. Among the 10% of patients who develop lung cancer without a smoking history, the environmental or inherited causes of lung cancer are usually unclear. There is no validated screening method for lung cancer even in high-risk populations and the overall five-year survival has not changed significantly in the last 20 years. However, major progress has been made in the understanding of the disease and we are beginning to see this knowledge translated into the clinic. In this review, we will summarize the current state of knowledge regarding the cascade of events associated with lung cancer development. From subclinical DNA damage to overt invasive disease, the mechanisms leading to clinically and molecularly heterogeneous tumors are being unraveled. These lesions allow cells to escape the normal regulation of cell division, apoptosis and invasion. While all subtypes of non-small cell lung cancer have historically been treated the same, stage-for-stage, recent technological advances have allowed a better understanding of the molecular classification of the disease and provide hypotheses for molecular early detection and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Pierre P Massion
- Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville Tennessee, U.S.A. 37232-6838
| | - David P Carbone
- Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville Tennessee, U.S.A. 37232-6838
| |
Collapse
|
35
|
Revel A, Raanani H, Younglai E, Xu J, Rogers I, Han R, Savouret JF, Casper RF. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. J Appl Toxicol 2003; 23:255-61. [PMID: 12884409 DOI: 10.1002/jat.916] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzo[a]pyrene (BaP) is an agonistic ligand for the aryl hydrocarbon receptor (AhR) and a major environmental carcinogen implicated in the aetiology of lung cancer through the induction of benzo[a]pyrene diol epoxidation (BPDE) and BPDE-DNA adducts. Because BaP metabolization requires cytochrome P-450 1A1 (CYP1A1) induction through activation of the AhR, we hypothesized that resveratrol, a natural competitive inhibitor of AhR, could prevent these adverse effects of BaP on the lung. Balb-C mice were injected for 5 weeks with corn oil, BaP (5 mg kg(-1) week(-1)), resveratrol (50 mg kg(-1) week(-1)) or BaP + resveratrol. Immunohistochemistry was performed on lung sections for the determination of CYP1A1 protein, BPDE-DNA adducts and apoptosis. A semi-quantitative immunohistochemistry score (H score) was used for data analysis. Mice exposed to BaP had a significant induction of lung BPDE-DNA adducts when compared with controls (H scores: control, 26, interquartile range 18-33; BaP, 276, interquartile range 269-288; P < 0.01). The BPDE-DNA adduct induction by BaP was abrogated significantly by resveratrol (H score: BaP + resveratrol, 103, interquartile range 96-113). A similar pattern was found by immunohistochemistry for apoptosis (H scores: control, 121, interquartile range 102-137; BaP, 288, interquartile range 282-292, P < 0.05; BaP + resveratrol, 132, interquartile range 121-141, P = NS) and CYP1A1 (H scores: control, 170.3, interquartile range 164-175; BaP, 302.3, interquartile range 291-315, P < 0.05; BaP + resveratrol, 200.7, interquartile range 174-215, P = NS). Western blotting confirmed that resveratrol prevented BaP-induced CYP1A1 expression. This increase in CYP1A1 expression in response to BaP administration most likely causes BaP metabolism, BPDE-DNA adduct formation and subsequent apoptosis. All BaP-induced effects could be prevented by resveratrol, suggesting a possible chemopreventive role for this natural phytoalexin against the development of lung cancer.
Collapse
Affiliation(s)
- Ariel Revel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Toronto, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 21X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wen Cheng Y, Lee H. Environmental exposure and lung cancer among nonsmokers: an example of Taiwanese female lung cancer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2003; 21:1-28. [PMID: 12826030 DOI: 10.1081/gnc-120021371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide and in Taiwan. Cigarette smoking is considered to be the most important risk factor, since about 90% of lung cancer can be related to cigarette smoking. Despite the recent decrease of cigarette smoking, lung cancer is still the leading cause of cancer death in the United States. In Taiwan, only around 50% of lung cancer incidence could be associated with cigarette smoking, particularly less than 10% of Taiwanese women are smokers. Thus, the aetiology of lung cancer for nonsmokers remains unknown. DNA damages including bulky and oxidative damage may be related with mutation of tumor suppressor genes, such as p53 gene. The high DNA adduct levels in female may be associated with frequent exposure to indoor cooking oil fumes (COF) and outdoor heavy air pollution. Oxidative stress induced by COF was also discussed. Different p53 mutation spectra and mutation frequency between genders reflected that different environmental factors may be involved in nonsmoking male and female lung cancer development. Most importantly, our recent report has demonstrated that human papillomavirus (HPV) infection was associated with nonsmoking female lung cancer. Based on our studies with Taiwanese nonsmoking lung cancer as the model, the possible aetiological factors of lung cancer incidence in Taiwanese nonsmokers were elucidated.
Collapse
Affiliation(s)
- Ya Wen Cheng
- Institute of Medicine and Toxicology, Lung Cancer Research Center, Chung Shan Medical University, Taiwan, ROC
| | | |
Collapse
|
37
|
Abstract
DNA adducts associated with tobacco smoking could provide a marker of biologically effective dose of tobacco carcinogens and improve individual cancer risk prediction. A significant number of clinical and epidemiologic studies have reported associations of increased DNA adduct levels with the occurrence of the prevalent tobacco related cancers including cancer of the lung, head and neck, and bladder. The inducibility of DNA adducts following in vitro treatments using blood lymphocytes also appears to be a risk factor in the development of lung and head and neck cancer. Corroborative evidence pointing to the importance of DNA adducts in tobacco carcinogenesis include numerous studies showing associations of tobacco smoke exposure with the induction of DNA adducts in humans in vivo. Further effort is necessary, however, to more fully characterize the dose-response relationship between smoking and DNA adducts in exposed target and surrogate tissues. The relationship between gene polymorphisms thought to modify tobacco-related cancer risk and DNA adduct levels is complex. Results of some DNA adduct studies (both in vitro and in vivo) appear inconsistent with the epidemiologic findings. This is evident for polymorphisms involving both carcinogen metabolism (e.g. GSTP1) and DNA repair (e.g. XRCC1). Molecular studies of human tumors suggest associations of p53 mutation with DNA adducts and have revealed correlations of DNA adduct levels with somatic alterations (e.g. 3p21 LOH) that are thought to occur at the very earliest stages of tobacco carcinogenesis. More research is needed to assess the relationship between endogenous sources of DNA adducts and tobacco smoke exposure and the relative oncogenic effects of chemically stable versus unstable DNA adducts. Many potentially fruitful new avenues of cancer research are emerging that integrate DNA adduct analyses with assessments of smoking, genetics, diet and ambient air quality. These investigations aim to understand the multifactorial nature of interindividual variability in response to tobacco carcinogens. As these trends continue a variety of innovative study designs and approaches will become important in human populations.
Collapse
Affiliation(s)
- John K Wiencke
- Laboratory for Molecular Epidemiology, Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, CA 94143-0560, USA.
| |
Collapse
|
38
|
Abstract
Phenotypic resistance, acquired early in carcinogenesis, has an established role in the pathogenesis of cancer in well-characterised experimental systems, and possibly also has a role in the origin of human cancer. It has been suggested that sunlight, an established risk factor for human skin carcinogenesis, is able to induce rare altered cells resistant to toxicity and to favour their clonal expansion via toxic effects exerted on normal keratinocytes. Other major risk factors for human neoplasia, including smoking and ageing, may also act partly through imposition of a constrained growth environment in the target organ to favour the emergence of altered resistant cells. Strategies aimed at counteracting this constrained environment could be effective in attenuating the force that sustains clonal expansion of altered cells.
Collapse
Affiliation(s)
- E Laconi
- Department of Medical Sciences and Biotechnology, University of Cagliari, Italy.
| | | | | |
Collapse
|