1
|
Agrawal S. Considerations for Creating the Next Generation of RNA Therapeutics: Oligonucleotide Chemistry and Innate Immune Responses to Nucleic Acids. Nucleic Acid Ther 2024; 34:37-51. [PMID: 38578231 DOI: 10.1089/nat.2024.29009.sud] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
|
2
|
Agrawal S. The Evolution of Antisense Oligonucleotide Chemistry-A Personal Journey. Biomedicines 2021; 9:503. [PMID: 34063675 PMCID: PMC8147625 DOI: 10.3390/biomedicines9050503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023] Open
Abstract
Over the last four decades, tremendous progress has been made in use of synthetic oligonucleotides as therapeutics. This has been possible largely by introducing chemical modifications to provide drug like properties to oligonucleotides. In this article I have summarized twists and turns on use of chemical modifications and their road to success and highlight areas of future directions.
Collapse
Affiliation(s)
- Sudhir Agrawal
- ARNAY Sciences LLC, Shrewsbury, MA 01545, USA; or
- Department of Medicine, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| |
Collapse
|
3
|
Putta MR, Bhagat L, Wang D, Zhu FG, Kandimalla ER, Agrawal S. Immune-Stimulatory Dinucleotide at the 5'-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses. ACS Med Chem Lett 2013; 4:302-5. [PMID: 24900663 DOI: 10.1021/ml300482z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022] Open
Abstract
Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immune-stimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)-mediated immune responses. Chemical modifications such as 2'-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5'-side abrogate TLR9-mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5'-end region and the other toward the 3'-end region, incorporated 2'-O-methylribonucleotides selectively preceding the 5'- or 3'-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5'-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents.
Collapse
Affiliation(s)
- Mallikarjuna R. Putta
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Lakshmi Bhagat
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Daqing Wang
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Fu-Gang Zhu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Ekambar R. Kandimalla
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Sudhir Agrawal
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
4
|
Holtick U, Scheulen ME, von Bergwelt-Baildon MS, Weihrauch MR. Toll-like receptor 9 agonists as cancer therapeutics. Expert Opin Investig Drugs 2011; 20:361-72. [PMID: 21254877 DOI: 10.1517/13543784.2011.553187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Toll-like receptor 9 (TLR9) agonists, commonly referred to as CpG oligodeoxynucleotides (ODN), have been added to the arsenal of anti-cancer drugs as monotherapy or in combination with chemotherapy, radiotherapy and other immunotherapeutic approaches as they increase antigen presentation and boost anti-tumor T- and B-cell responses. Several synthetic TLR9 agonists have been developed for clinical grade use and displayed substantial efficacy in the preclinical and clinical models. AREAS COVERED This review summarizes TLR9 signaling and the impact of TLR9 agonists on the immune response. The most recent experimental and clinical data are analyzed as well as the development of new TLR9 agonists in current clinical trials. EXPERT OPINION Application of TLR9 agonists, in particular, combination strategies with chemo- or radiotherapy seem a promising and efficient immunotherapeutic approach in cancer patients even with refractory disease. Simultaneous application of TLR9 agonists aims at supporting the patient's immune response and overcoming specific immunosuppressant strategies developed by tumors. Combinatory approaches of the future might also seek for synergism of TLR9 agonists with other immunomodulatory strategies such as B-cell activation using the CD40-CD40L system.
Collapse
Affiliation(s)
- Udo Holtick
- University of Cologne, Department I for Internal Medicine, Hematology, Oncology, Cologne, Germany.
| | | | | | | |
Collapse
|
5
|
Putta MR, Yu D, Kandimalla ER. Synthesis, purification, and characterization of immune-modulatory oligodeoxynucleotides that act as agonists of Toll-like receptor 9. Methods Mol Biol 2011; 764:263-77. [PMID: 21748647 DOI: 10.1007/978-1-61779-188-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methods and protocols for automated synthesis and purification of immune modulatory oligonucleotides (IMOs), a novel class of Toll-like receptor 9 (TLR9) agonists, are described. IMOs containing two short identical sequences of 11-mers with phosphorothioate linkages can be synthesized in parallel synthetic strategy. A C3-linker that mimics the natural inter-nucleotide distance was commonly used for joining the two segments of IMOs. NittoPhase solid support bearing a symmetrical C3-linker (glycerol) and nucleoside-β-cyanoethyl-N,N-diisopropylphosphoramidites were used for IMO synthesis. The parallel synthesis was carried out in a 3'→ 5' direction with removal of the final dimethoxytrityl (DMT) protecting group. After synthesis, the IMO was cleaved and deprotected by treating with aqueous ammonia. The product was purified on anion-exchange HPLC, desalted, lyophilized, and characterized by anion-exchange HPLC, capillary gel electrophoresis, polyacrylamide gel electrophoresis, and MALDI-TOF mass spectral analysis.
Collapse
|
6
|
Yu D, Wang D, Zhu FG, Bhagat L, Dai M, Kandimalla ER, Agrawal S. Modifications incorporated in CpG motifs of oligodeoxynucleotides lead to antagonist activity of toll-like receptors 7 and 9. J Med Chem 2010; 52:5108-14. [PMID: 19650625 DOI: 10.1021/jm900730r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides act as agonists of TLR9 and induce Th1-type immune responses. In the present study, we synthesized CpG containing ODNs in which C or G was substituted with 2'-O-methylribonucleotides, 5-methyl-dC, or 2'-O-methyl-5-methyl-C and studied their immune stimulatory activity alone and in combination with TLR agonists. In mouse and human primary cell-based assays, modified ODNs did not stimulate immune responses but inhibited TLR9 agonist-induced immune stimulatory activity. In mice, modified ODNs did not induce cytokines but inhibited immune responses induced by agonists of TLR7 and TLR9. Modified ODNs did not inhibit endosomal TLR3- or cell-surface TLR4-agonist-induced cytokines. This study demonstrates that ODNs incorporated with chemical modifications in CpG dinucleotides do not induce immune stimulatory activity but act as antagonists of TLR7 and TLR9 in vitro and in vivo. These types of modifications are commonly employed in antisense sequences and thereby may affect the intended mechanism of action.
Collapse
Affiliation(s)
- Dong Yu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Putta MR, Yu D, Bhagat L, Wang D, Zhu FG, Kandimalla ER. Impact of nature and length of linker incorporated in agonists on toll-like receptor 9-mediated immune responses. J Med Chem 2010; 53:3730-8. [PMID: 20361743 DOI: 10.1021/jm100177p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oligodeoxynucleotides containing unmethylated CpG motifs act as ligands of Toll-like receptor 9 (TLR9). We previously reported a novel class of TLR9 agonists, referred to as immune-modulatory oligonucleotides (IMOs), in which two 11-mers of the same sequence are attached via their 3'-ends through a 1,2,3-propanetriol linker and contain a synthetic immune-stimulatory motif, Cp7-deaza-dG. In the present study, we have examined the impact of length, nature, and stereochemistry of the linker incorporated in agonists for TLR9 activation. The new linkers studied include (S)-(-)-1,2,4-butanetriol, 1,3,5-pentanetriol, cis,cis-1,3,5-cyclohexanetriol, cis,trans-1,3,5-cyclohexanetriol, 1,3,5-tris(2-hydroxyethyl)isocyanurate, tetraethyleneglycol, and hexaethyleneglycol in place of 1,2,3-propanetriol linker. Agonists with various linkers are studied for TLR9-mediated immune responses in HEK293 cells, human cell-based assays, and in vivo in mice. Results of these studies suggest that C3-C5 linkers, 1,2,3-propanetriol, (S)-(-)-1,2,4-butanetriol, or 1,3,5-pentanetriol, are optimal for stimulation of TLR9-mediated immune responses. Rigid C3 linkers with different stereochemistry have little effect on immune stimulation, while linkers longer than C5 reduced TLR9-mediated immune stimulation.
Collapse
|
8
|
Putta MR, Zhu FG, Wang D, Bhagat L, Dai M, Kandimalla ER, Agrawal S. Peptide conjugation at the 5'-end of oligodeoxynucleotides abrogates toll-like receptor 9-mediated immune stimulatory activity. Bioconjug Chem 2010; 21:39-45. [PMID: 20020767 DOI: 10.1021/bc900425s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial and synthetic DNA containing unmethylated CpG motifs act as ligands of Toll-like receptor 9 (TLR9). Our earlier studies showed that 5'-accessibility of synthetic oligodeoxynucleotides containing CpG motif (ODN) is required for TLR9-mediated immune stimulatory activity. Blocking the 5'-end of ODN through conjugation to a variety of moieties reduces immune stimulatory activity (Bioconjugate Chem. 2002, 13, 966-974). In the present study, we conjugated a model peptide, a 28-amino-acid-long beta-amyloid peptide, to either the 5'- or the 3'-end of an ODN via C3 and C6 alkyl linkers. We compared the immune stimulatory activity of the resulting conjugates with that of a parent ODN without conjugation in TLR9-transfected cells, mouse spleen cell cultures, and in vivo in mice. ODN with the peptide conjugated at the 3'-end via C3 and C6 linkers had immune stimulatory activity similar to that of the parent ODN in both in vitro and in vivo in mice. On the contrary, conjugation of peptide at the 5'-end of the ODN significantly abrogated immune stimulatory activity. In conclusion, the results presented here demonstrate that peptide/protein conjugation to ODN is optimal at the 3'-end with either C3 or C6 linker and conjugation at the 5'-end leads to significant loss of TLR9-mediated immune stimulation.
Collapse
|
9
|
Synthesis and immunological activities of novel agonists of toll-like receptor 9. Cell Immunol 2010; 263:105-13. [PMID: 20381019 DOI: 10.1016/j.cellimm.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/03/2010] [Indexed: 12/31/2022]
Abstract
Novel agonists of TLR9 with two 5'-ends and synthetic immune stimulatory motifs, referred to as immune modulatory oligonucleotides (IMOs) are potent agonists of TLR9. In the present study, we have designed and synthesized 15 novel IMOs by incorporating specific chemical modifications and studied their immune response profiles both in vitro and in vivo. Analysis of the immunostimulatory profiles of these IMOs in human and NHP cell-based assays suggest that changes in the number of synthetic immunostimulatory motifs gave only a subtle change in immune stimulation of pDCs as indicated by IFN-alpha production and pDC maturation while the addition of self-complementary sequences produced more dramatic changes in both pDC and B cell stimulation. All IMOs induced cytokine production in vivo immediately after administration in mice. Representative compounds were also compared for the ability to stimulate cytokine production in vivo (IFN-alpha and IP-10) in rhesus macaques after intra-muscular administration.
Collapse
|
10
|
Wang D, Bhagat L, Yu D, Zhu FG, Tang JX, Kandimalla ER, Agrawal S. Oligodeoxyribonucleotide-based antagonists for Toll-like receptors 7 and 9. J Med Chem 2009; 52:551-8. [PMID: 19102653 DOI: 10.1021/jm8014316] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oligodeoxyribonucleotides containing unmethylated CpG motifs act as TLR9 agonists. In this study, we evaluated oligonucleotides containing an unmethylated CpG motif in which two nucleotides adjacent to the CpG dinucleotide were substituted with 2'-O-methylribonucleotides, resulting in TLR7 and TLR9 antagonists. In mouse and human cell cultures, antagonists did not stimulate immune activation but inhibited TLR7 and TLR9 agonist-induced activity. In mice, antagonists inhibited immune responses induced by TLR9 agonists for up to several days, and the inhibition was dose-dependent. Antagonists also inhibited immune responses induced by an RNA-based TLR7/8 agonist but not TLRs 2, 3, 4, or 5 agonists in mice. Additionally, antagonist inhibited TLR9 agonist-induced IL-6 in lupus-prone MRL/lpr mouse spleen cell cultures. These results indicate that antagonists described herein can suppress immune responses induced by TLR7 and TLR9 agonists. Antagonists may be suitable candidates for treating inflammatory and autoimmune diseases where inappropriate or uncontrolled TLR activation has been implicated.
Collapse
Affiliation(s)
- Daqing Wang
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
TLRs (Toll-like receptors) are a family of innate immune receptors that induce protective immune responses against infections. Single-stranded viral RNA and bacterial DNA containing unmethylated CpG motifs are the ligands for TLR7 and TLR8 and 9 respectively. We have carried out extensive structure–activity relationship studies of DNA- and RNA-based compounds to elucidate the impact of nucleotide motifs and structures on these TLR-mediated immune responses. These studies have led us to design novel DNA- and RNA-based compounds, which act as potent agonists of TLR9 and TLR7 and 8 respectively. These novel synthetic agonists produce different immune response profiles depending on the structures and nucleotide motifs present in them. The ability to modulate TLR-mediated immune responses with these novel DNA- and RNA-based agonists in a desired fashion may allow targeting a broad range of diseases, including cancers, asthma, allergies and infections, alone or in combination with other therapeutic agents, and their use as adjuvants with vaccines. IMO-2055, our first lead candidate, is a TLR9 agonist that is currently in clinical evaluation in oncology patients. A second candidate, IMO-2125, is also a TLR9 agonist that has been shown to induce high and sustained levels of IFN (interferon) in non-human primates and is being evaluated in HepC-infected human subjects.
Collapse
|
12
|
Yu D, Putta MR, Bhagat L, Li Y, Zhu F, Wang D, Tang JX, Kandimalla ER, Agrawal S. Agonists of Toll-like receptor 9 containing synthetic dinucleotide motifs. J Med Chem 2007; 50:6411-8. [PMID: 17988082 DOI: 10.1021/jm070881l] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate Toll-like receptor 9 (TLR9). Our previous studies have shown that ODNs containing two 5'-ends are more immunostimulatory than those with one 5'-end. In the present study, to understand the role of functional groups in TLR9 recognition and subsequent immune response, we substituted C or G of a CpG dinucleotide with 5-OH-dC, 5-propyne-dC, furano-dT, 1-(2'-deoxy-beta- d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, dF, 4-thio-dU, N(3)-Me-dC, N (4)-Et-dC, Psi-iso-dC, and arabinoC or 7-deaza-dG, 7-deaza-8-aza-dG, 9-deaza-dG, N(1)-Me-dG, N(2)-Me-dG, 6-Thio-dG, dI, 8-OMe-dG, 8-O-allyl-dG, and arabinoG in ODN containing two 5'-ends. Agonists of TLR9 containing cytosine or guanine modification showed activity in HEK293 cells expressing TLR9, mouse spleen, and human cell-based assays and in vivo in mice. The results presented here provide insight into which specific chemical modifications at C or G of the CpG motif are recognized by TLR9 and the ability to modulate immune responses substituting natural C or G in immune modulatory oligonucleotides.
Collapse
Affiliation(s)
- Dong Yu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang H, Rayburn ER, Wang W, Kandimalla ER, Agrawal S, Zhang R. Immunomodulatory oligonucleotides as novel therapy for breast cancer: pharmacokinetics, in vitro and in vivo anticancer activity, and potentiation of antibody therapy. Mol Cancer Ther 2006; 5:2106-14. [PMID: 16928832 DOI: 10.1158/1535-7163.mct-06-0158] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oligonucleotides containing CpG motifs and immunomodulatory oligonucleotides (IMO) containing a synthetic immunostimulatory dinucleotide and a novel DNA structure have been suggested to have potential for the treatment of various human diseases. In the present study, a newly designed IMO was evaluated in several models of human (MCF-7 and BT474 xenograft) and murine (4T1 syngeneic) breast cancer. Pharmacokinetics studies of the IMO administered by s.c., i.v., p.o., or i.p. routes were also accomplished. The IMO was widely distributed to various tissues by all four routes, with s.c. administration yielding the highest concentration in tumor tissue. The IMO inhibited the growth of tumors in all three models of breast cancer, with the lowest dose of the IMO inhibiting MCF-7 xenograft tumor growth by >40%. Combining the IMO with the anticancer antibody, Herceptin, led to potent antitumor effects, resulting in >96% inhibition of tumor growth. The IMO also exerted in vitro antitumor activity, as measured by cell growth, apoptosis, and proliferation assays in the presence of Lipofectin. This is the first report of the pharmacokinetics of this agent in normal and tumor-bearing mice. Based on the present results, we believe that the IMO is a good candidate for clinical development for breast cancer therapy used either alone or in combination with conventional cancer therapeutic agents.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Boulevard, 113 Volker Hall, 35294, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rayburn ER, Wang W, Zhang Z, Li M, Zhang R, Wang H. Experimental therapy of prostate cancer with an immunomodulatory oligonucleotide: effects on tumor growth, apoptosis, proliferation, and potentiation of chemotherapy. Prostate 2006; 66:1653-63. [PMID: 16927305 DOI: 10.1002/pros.20485] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present study was designed to demonstrate the therapeutic efficacy of a novel immunomodulatory oligonucleotide (IMO) for prostate cancer. METHODS We evaluated the effects of the IMO in xenograft (PC-3) and syngeneic (TRAMP C1) models of prostate cancer, and in prostate cancer cells. The IMO was also evaluated in combination with chemotherapy, and the in vitro expression of TLR9 was examined. RESULTS The IMO had significant anti-tumor activity in both prostate cancer models and almost complete tumor regression was observed when the IMO was combined with taxotere or gemcitabine. TLR9 mRNA and protein were both expressed in prostate cancer cells. The IMO also induced apoptosis and decreased proliferation and survival of PC-3 cells in vitro in the presence of Lipofectin. CONCLUSIONS The IMO inhibits prostate cancer growth in vivo and in vitro, and potentiates the effects of conventional chemotherapeutic agents. This is the first report of TLR9 expression in prostate cancer cells.
Collapse
Affiliation(s)
- Elizabeth R Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wang H, Rayburn ER, Wang W, Kandimalla ER, Agrawal S, Zhang R. Chemotherapy and chemosensitization of non-small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Mol Cancer Ther 2006; 5:1585-92. [PMID: 16818518 DOI: 10.1158/1535-7163.mct-06-0094] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is a leading cause of death world-wide and the long-term survival rate for lung cancer patients is one of the lowest for any cancer. New therapies are urgently needed. The present study was designed to evaluate an immunomodulatory oligonucleotide as a novel type of therapy for lung cancer. The in vivo effects of the immunomodulatory oligonucleotides were determined in four tumor models derived from human non-small cell lung cancer (NSCLC) cell lines (A549, H1299, H358, and H520), administered alone or in combination with conventional chemotherapeutic agents used to treat lung cancer. The in vitro effects of the immunomodulatory oligonucleotide on the growth, apoptosis, and proliferation of NSCLC cells were also determined. We also examined NSCLC cells for expression of Toll-like receptor 9 (TLR9), the receptor for the immunomodulatory oligonucleotide. We showed several important findings: (a) treatment with the immunomodulatory oligonucleotide led to potent antitumor effects, inhibiting tumor growth by at least 60% in all four in vivo models; (b) combination with the immunomodulatory oligonucleotide led to enhanced effects following treatment with gemcitabine or Alimta; (c) the immunomodulatory oligonucleotide increased apoptosis, decreased proliferation, and decreased survival in A549 cells in vitro; and (d) both TLR9 mRNA and protein were expressed in NSCLC cells. The immunomodulatory oligonucleotide has potent antitumor effects as monotherapy and in combination with conventional chemotherapeutic agents, and may act directly on NSCLC cells via TLR9. The present study provides a rationale for developing the immunomodulatory oligonucleotide for lung cancer therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
16
|
Putta MR, Zhu F, Li Y, Bhagat L, Cong Y, Kandimalla ER, Agrawal S. Novel oligodeoxynucleotide agonists of TLR9 containing N3-Me-dC or N1-Me-dG modifications. Nucleic Acids Res 2006; 34:3231-8. [PMID: 16798912 PMCID: PMC1904100 DOI: 10.1093/nar/gkl430] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs activate Toll-Like Receptor 9 (TLR9). Our previous studies have shown the role of hydrogen-bond donor and acceptor groups of cytosine and guanine in the CpG motif and identified synthetic immunostimulatory motifs. In the present study to elucidate the significance of N3-position of cytosine and N1-position of guanine in the CpG motif, we substituted C or G of a CpG dinucleotide with N3-Me-cytosine or N1-Me-guanine, respectively, in immunomodulatory oligodeoxynucleotides (IMOs). IMOs containing N-Me-cytosine or N-Me-guanine in C- or G-position, respectively, of the CpG dinucleotide showed activation of HEK293 cells expressing TLR9, but not TLR3, 7 or 8. IMOs containing N-Me-cytosine or N-Me-guanine modification showed activity in mouse spleen cell cultures, in vivo in mice, and in human cell cultures. In addition, IMOs containing N-Me-substitutions reversed antigen-induced Th2 immune responses towards a Th1-type in OVA-sensitized mouse spleen cell cultures. These studies suggest that TLR9 tolerates a methyl group at N1-position of G and a methyl group at N3-position of C may interfere with TLR9 activation to some extent. These are the first studies elucidating the role of N3-position of cytosine and N1-position of guanine in a CpG motif for TLR9 activation and immune stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sudhir Agrawal
- To whom correspondence should be addressed. Tel: +1 617 679 5501; Fax: +1 617 679 5542;
| |
Collapse
|
17
|
Wang D, Kandimalla ER, Yu D, Tang JX, Agrawal S. Oral administration of second-generation immunomodulatory oligonucleotides induces mucosal Th1 immune responses and adjuvant activity. Vaccine 2005; 23:2614-22. [PMID: 15780444 DOI: 10.1016/j.vaccine.2004.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/29/2022]
Abstract
CpG DNA induces potent Th1 immune responses through Toll-like receptor 9. In the present study, we used oligonucleotides consisting of a novel 3'-3'-linked structure and synthetic stimulatory motifs, referred as second-generation immunomodulatory oligonucleotides (IMOs). The stimulatory motifs included: CpR, YpG, or R'pG (R = 2'-deoxy-7-deazaguanosine, Y = 2'-deoxy-5-hydroxy-cytidine, and R' = 1-[2'-deoxy-beta-d-ribofuranosyl]-2-oxo-7-deaza-8-methyl-purine). We evaluated the stability of orally administered IMOs in the gastrointestinal (GI) environment and their ability to induce mucosal immune responses in mice, and compared these characteristics with those of a conventional CpG DNA. The IMOs were significantly more stable than CpG DNA following oral administration, and IMOs induced stronger local and systemic immune responses as determined by MIP-1beta, MCP-1, IP-10, and IL-12 production. Mice orally immunized with ovalbumin (OVA) and IMO had higher levels of IgG2a antibodies in serum and IgA antibodies in intestinal mucosa than did mice immunized with OVA and CpG DNA. These studies demonstrate that IMOs are more stable than CpG DNA in the GI tract and can induce more potent mucosal Th1 adjuvant responses. IMOs may prove to be effective oral adjuvants, able to promote strong systemic and mucosal immune responses to oral vaccines and antigens for therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- Daqing Wang
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
18
|
Kandimalla ER, Bhagat L, Li Y, Yu D, Wang D, Cong YP, Song SS, Tang JX, Sullivan T, Agrawal S. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2'-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc Natl Acad Sci U S A 2005; 102:6925-30. [PMID: 15860583 PMCID: PMC1100782 DOI: 10.1073/pnas.0501729102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA and synthetic oligomers containing CpG dinucleotides activate the immune system through Toll-like receptor (TLR) 9. Here, we compare the immunostimulatory activity of three immunomers with different nucleotide sequences containing a synthetic cytosine-phosphate-2'-deoxy-7-deazaguanosine dinucleotide (CpR), called immunomodulatory oligonucleotides (IMOs), in mouse, human, and monkey systems. IMOs induced IL-12 and IFN-gamma secretion more than a control non-CpG IMO in mice. All three IMOs activated HEK293 cells expressing TLR9 but not TLR3, -7, or -8. IMOs induced human B-cell proliferation and enhanced expression of CD86 and CD69 surface markers on B cells. The three IMOs induced CD86 expression on human plasmacytoid dendritic cells, but only IMOs that contained a 5'-terminal TCR nucleotide sequence induced IFN-alpha secretion. A sequence that forms a duplex structure also was required for IFN-alpha induction in human peripheral blood mononuclear cell cultures. IMOs induced chemokine and cytokine gene expression in human peripheral blood mononuclear cells. In monkeys, all three IMOs induced transient changes in peripheral blood leukocytes and lymphocytes and activated B and T lymphocytes. All three IMOs induced IFN-alpha in vivo in monkeys; the IMO sequence that forms a stable secondary structure induced the highest levels of IFN-alpha. These studies are, to our knowledge, the first comprehensive studies to compare the activity of IMOs containing synthetic stimulatory CpR dinucleotides in mouse, monkey, and human systems. These results suggest that IMOs induce strong and rapid immunostimulation and that the CpR dinucleotide is recognized by TLR9, leading to immune-cell activation and cytokine secretion in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- B7-2 Antigen
- Base Sequence
- Cell Line
- Cell Proliferation
- Chemokines/metabolism
- CpG Islands
- Cytokines/chemistry
- Cytokines/metabolism
- DNA-Binding Proteins/agonists
- Dendritic Cells/cytology
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Gene Expression Regulation
- Haplorhini
- Humans
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Lectins, C-Type
- Leukocytes, Mononuclear/metabolism
- Lymphocytes/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nucleotides/chemistry
- Oligonucleotides/chemistry
- Protein Binding
- RNA, Messenger/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Time Factors
- Toll-Like Receptor 3
- Toll-Like Receptor 9
- Toll-Like Receptors
- Up-Regulation
Collapse
|
19
|
Bjersing JL, Tarkowski A, Kandimalla ER, Karlsson H, Agrawal S, Collins LV. Impact of site-specific nucleobase deletions on the arthritogenicity of DNA. Inflammation 2005; 28:159-68. [PMID: 15527171 DOI: 10.1023/b:ifla.0000039562.30451.0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (CpG ODN) potently stimulate the innate and acquired immune system. We have compared the in vivo and in vitro inflammatogenic properties of CpG ODNs containing a specific nucleobase deletion either 5'-upstream (ODN-2) or 3'-downstream (ODN-3) of the CpG motif, comparing with a prototype CpG ODN (ODN-1). The frequency of arthritis was similar after intra-articular (i.a.) injections of ODN-1 or ODN-3, but was significantly lower (p < 0.02) after i.a. injections of ODN-2. In vitro production of the pro-inflammatory cytokine TNF-alpha was higher in mouse spleen cell cultures exposed to ODN-2 in comparison to ODN-1. In addition, the level of IL-10 induced by ODN-2 was higher than that induced by ODN-1. On the other hand, TNF-alpha, IL-10, and MCP-1 levels, as well as splenocyte proliferative responses were all significantly lower for ODN-3 than for ODN-1. These results suggest that a 5'-upstream nucleobase deletion reduces arthritogenicity, while maintaining or increasing the production of pro- and anti-inflammatory factors. In contrast, a 3'-downstream nucleobase deletion has no effect on arthritogenicity, despite significantly lower levels of proliferation and pro- and anti-inflammatory cytokines, compared with ODN-1. This study indicates that specific structural elements within the ODN sequence but outside the CpG motif, modulate the immunostimulatory properties of CpG ODNs.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Wu CCN, Lee J, Raz E, Corr M, Carson DA. Necessity of oligonucleotide aggregation for toll-like receptor 9 activation. J Biol Chem 2004; 279:33071-8. [PMID: 15184382 DOI: 10.1074/jbc.m311662200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 9 (TLR9), a member of the interleukin-1 (IL-1) family of pathogen-associated molecular pattern receptors, is activated by unmethylated CpG-containing sequences in bacterial DNA or synthetic oligonucleotides (ODNs) in the endosomal compartment. The stimulation of an IL-1 response is thought to require the aggregation of its receptor. By analogy, we postulated that the potency of a TLR9 ligand should depend first on its ability to enter cells and gain access to TLR9 and second on its capacity to form a multimeric complex capable of cross-linking these receptors. Previously, we selected from a random library a series of phosphodiester ODNs with enhanced ability to permeate cells. Here, we studied the structural requirements for these penetrating ODNs to elicit a functional TLR9 response, as assessed by cytokine production from bone marrow-derived mouse mononuclear cells. The presence of a prototypic murine immunostimulatory DNA hexameric sequence (purine-purine-CG-pyrimidine-pyrimidine) in the ODNs was not sufficient for stimulation. In addition, the TLR9-activating ODNs had to have the ability to form aggregates and often to form secondary structures near the core CpG motifs. Multimerization was promoted by the presence of a guanine-rich 3'-terminus. The phosphodiester ODNs with CpG motifs that did not aggregate antagonized the effects of the multimeric TLR9 activators. These findings suggest that an optimal TLR9 agonist needs to contain a spatially distinct multimerization domain and a receptor binding CpG domain. This concept may prove useful for the design of new TLR9-modulating agents.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Base Sequence
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cells, Cultured
- Cross-Linking Reagents
- DNA/chemistry
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/physiology
- Interleukin-12/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/physiology
- Structure-Activity Relationship
- Toll-Like Receptor 9
Collapse
Affiliation(s)
- Christina C N Wu
- Division of Rheumatology Allergy and Immunology, Department of Medicine and the Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California 92093-0663, USA.
| | | | | | | | | |
Collapse
|
21
|
Agrawal S, Kandimalla ER. Modulation of Toll-like Receptor 9 Responses through Synthetic Immunostimulatory Motifs of DNA. Ann N Y Acad Sci 2004; 1002:30-42. [PMID: 14751820 DOI: 10.1196/annals.1281.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial, plasmid, and synthetic DNA containing unmethylated CpG dinucleotides in specific sequence contexts activate the vertebrate innate immune system. A pattern recognition receptor (PRR), toll-like receptor 9 (TLR9), recognizes CpG DNA and activates signaling cascade leading to the secretion of a number of cytokines and chemokines. Our extensive structure-immunostimulatory activity relationship studies showed that a number of synthetic pyrimidine (Y) and purine (R) nucleotides are accepted by the receptor as substitutes for natural deoxycytidine and deoxyguanosine in a CpG dinucleotide. These studies permitted development of synthetic immunostimulatory motifs YpG, CpR, and YpR and established the nucleotide motif recognition pattern of the receptor. A number of site-specific chemical modifications in the flanking sequences to the CpG dinucleotide permitted modulation of immunostimulatory affects in a predictable manner. Our studies also showed that TLR9 recognizes and reads the CpG DNA sequence from the 5'-end. Design of oligonucleotides with two 5'-ends, immunomers, resulted in potent immunomodulatory agents with distinct cytokine profiles. Immunomers containing synthetic immunostimulatory motifs produced different cytokine induction profiles compared with natural CpG motifs. Importantly, some of these synthetic motifs showed optimal activity in both mouse and human systems without requiring to change sequences, suggesting overriding the species-dependent specificity of the receptor by the use of synthetic motifs. In this article, we review current understanding of structural recognition and functional modulation of TLR9 receptor by second-generation immunomodulatory oligonucleotides and their potential application as wide spectrum therapeutic agents.
Collapse
|
22
|
Kandimalla ER, Bhagat L, Zhu FG, Yu D, Cong YP, Wang D, Tang JX, Tang JY, Knetter CF, Lien E, Agrawal S. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif. Proc Natl Acad Sci U S A 2003; 100:14303-8. [PMID: 14610275 PMCID: PMC283587 DOI: 10.1073/pnas.2335947100] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 02/03/2023] Open
Abstract
Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3'-3-linked oligos, referred to as immunomers. Oligos containing the RpG motif induced cytokine secretion in mouse spleen-cell cultures. Immunomers containing RpG dinucleotides showed activity in transfected-HEK293 cells stably expressing mouse TLR9, suggesting direct involvement of TLR9 in the recognition of RpG motif. In J774 macrophages, RpG motifs activated NF-kappa B and mitogen-activated protein kinase pathways. Immunomers containing the RpG dinucleotide induced high levels of IL-12 and IFN-gamma, but lower IL-6 in time- and concentration-dependent fashion in mouse spleen-cell cultures costimulated with IL-2. Importantly, immunomers containing GTRGTT and GARGTT motifs were recognized to a similar extent by both mouse and human immune systems. Additionally, both mouse- and human-specific RpG immunomers potently stimulated proliferation of peripheral blood mononuclear cells obtained from diverse vertebrate species, including monkey, pig, horse, sheep, goat, rat, and chicken. An immunomer containing GTRGTT motif prevented conalbumin-induced and ragweed allergen-induced allergic inflammation in mice. We show that a synthetic bicyclic nucleotide is recognized in the C position of a CpG dinucleotide by immune cells from diverse vertebrate species without bias for flanking sequences, suggesting a divergent nucleotide motif recognition pattern of TLR9.
Collapse
|
23
|
Cong YP, Song SS, Bhagat L, Pandey RK, Yu D, Kandimalla ER, Agrawal S. Self-stabilized CpG DNAs optimally activate human B cells and plasmacytoid dendritic cells. Biochem Biophys Res Commun 2003; 310:1133-9. [PMID: 14559233 DOI: 10.1016/j.bbrc.2003.09.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently showed that 5'-terminal secondary structures in CpG DNA affect activity significantly more than those at the 3'-end [Biochem. Biophys. Res. Commun. 306 (2003) 948]. The need for an accessible 5'-end of CpG DNA for activity suggested that the receptor reads the DNA sequence from this end. In continuation of these studies, we have designed immunomodulatory oligonucleotides (IMOs), consisting of a nine-mer stimulatory domain, containing a CpG motif and a hairpin-loop structure at the 3'-end, referred to as self-stabilized CpG DNAs. We studied the ability of self-stabilized CpG DNAs to stimulate human B-cell proliferation and interferon-alpha (IFN-alpha) secretion in plasmacytoid dendritic cell (pDC) culture assays. Self-stabilized CpG DNAs activated human B cells and induced plasmacytoid dendritic cells to secrete high levels of IFN-alpha. While both stimulatory and secondary structures in CpG DNAs were required for pDC activation, CpG motifs were sufficient to activate B cells. Interestingly, CpG motifs were not required for activity in the hairpin duplex region. Further modifications of the hairpin duplex region with a mixture of oligodeoxynucleotides and oligo-2'-O-methylribonucleotides in a heteroduplex formation permitted activation of both human B cells and pDCs.
Collapse
Affiliation(s)
- Yan-Ping Cong
- Hybridon, Inc., 345 Vassar Street,Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kandimalla ER, Bhagat L, Cong YP, Pandey RK, Yu D, Zhao Q, Agrawal S. Secondary structures in CpG oligonucleotides affect immunostimulatory activity. Biochem Biophys Res Commun 2003; 306:948-53. [PMID: 12821134 DOI: 10.1016/s0006-291x(03)01080-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oligodeoxynucleotides containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system. Our previous studies showed that the 5(')-end of a CpG oligonucleotide should be accessible for receptor recognition and subsequent immune stimulation. Activity is abrogated if this end is blocked by joining two CpG oligos through 5(')-5(') linkage. It was not known whether a similar effect would arise from secondary structures at either end of a CpG oligo, such as hairpin loops or terminal dimers. In the present study we found that 5(')-terminal secondary structures affect activity significantly more than those at the 3(')-end. The need for an open 5(')-end suggests that the receptor responsible for immune stimulation reads the DNA sequence from this end. These results may also provide insights to place CpG motifs appropriately in DNA vaccines to induce additional Th1 type responses.
Collapse
|
25
|
Kandimalla ER, Agrawal S. Chemistry of CpG DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2003; Chapter 4:Unit 4.16. [PMID: 18428906 DOI: 10.1002/0471142700.nc0416s12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The vertebrate immune system can recognize specific pathogen-associated molecular patterns in invading microorganisms, including the unmethylated CpG dinucleotide. This unit discusses the receptors that recognize CpG motifs and important aspects of the sequence context of CpG motifs to the end of understanding and designing CpG DNA for therapeutic purposes.
Collapse
|
26
|
Kandimalla ER, Bhagat L, Wang D, Yu D, Zhu FG, Tang J, Wang H, Huang P, Zhang R, Agrawal S. Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Res 2003; 31:2393-400. [PMID: 12711684 PMCID: PMC154229 DOI: 10.1093/nar/gkg343] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 02/25/2003] [Accepted: 03/07/2003] [Indexed: 11/14/2022] Open
Abstract
Unmethylated CpG dinucleotides present within certain specific sequence contexts in bacterial and synthetic DNA stimulate innate immune responses and induce cytokine secretion. Recently, we showed that CpG DNAs containing two 5'-ends, immunomers, are more potent in both regards. In this study, we show that an immunomer containing a synthetic CpR motif (R = 2'-deoxy-7-deazaguanosine) is a potent immunostimulatory agent. However, the profile of cytokine induction is different from that with immunomers containing a natural CpG motif. In general, a CpR immunomer induced higher interleukin (IL)-12 and lower IL-6 secretion. Compared with conventional CpG DNAs, both types of immunomers showed a rapid and enhanced activation of the transcription factor NF-kappaB in J774 cells. NF-kappaB activation by CpG DNA corresponded to degradation of IkappaBalpha in J774 cells. All three immunostimulatory oligonucleotides activated the p38 mitogen-activated protein kinase pathway as expected. Immunomers containing CpG and CpR motifs showed potent reversal of the antigen-induced Th2 immune response towards a Th1 type in antigen-sensitized mouse spleen cell cultures. Immunomers containing a CpR motif showed significant antitumor activity in nude mice bearing MCF-7 human breast cancer and U87MG glioblastoma xenografts. These studies suggest the ability for a divergent synthetic nucleotide motif recognition pattern of the receptor involved in the immunostimulatory pathway and the possibility of using synthetic nucleotides to elicit different cytokine response patterns.
Collapse
|
27
|
Bhagat L, Zhu FG, Yu D, Tang J, Wang H, Kandimalla ER, Zhang R, Agrawal S. CpG penta- and hexadeoxyribonucleotides as potent immunomodulatory agents. Biochem Biophys Res Commun 2003; 300:853-61. [PMID: 12559951 DOI: 10.1016/s0006-291x(02)02943-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We demonstrate a new design for immunomodulatory CpG DNA containing two sequences each with as few as five or six-nucleotides joined together via 3(')-3(') linkers. These do not require the -PuPu(Py)CGPyPy- hexameric motif generally found essential for CpG DNA immune stimulation. These novel, short-immunomers show potent immunostimulatory activity manifested by IL-12 and IL-6 secretion in murine spleen cell and PBMC cultures and splenomegaly in vivo. Short-immunomers show strong activation of NF-kappaB and stress-activated signaling pathways and induce cytokines in J774 cell cultures. The same sequences also induce cytokines in healthy human PBMC cultures whereas conventional CpG DNA requires different optimal sequences for murine and human immune cells. Additionally, short-immunomers inhibit IL-5 secretion and induce IFN-gamma secretion in conalbumin-sensitized mouse spleen cell cultures, suggesting reversal of established Th2 responses to Th1 type responses. Short-immunomer also inhibits growth of MCF-7 human tumor xenograft in nude mice. This is the first report of activity with such short DNA sequences and also of sequences lacking hexameric motifs proposed in earlier studies.
Collapse
Affiliation(s)
- Lakshmi Bhagat
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu D, Kandimalla ER, Bhagat L, Tang JY, Cong Y, Tang J, Agrawal S. 'Immunomers'--novel 3'-3'-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res 2002; 30:4460-9. [PMID: 12384593 PMCID: PMC137145 DOI: 10.1093/nar/gkf582] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/29/2002] [Accepted: 08/29/2002] [Indexed: 12/22/2022] Open
Abstract
Oligodeoxyribonucleotides containing CpG dinucleotides (CpG DNAs) are currently being evaluated as novel immunomodulators in clinical trials. Recently, we showed that an accessible 5' end is required for immunostimulatory activity and blocking the 5' end of CpG DNA by conjugation of certain ligands abrogates immunostimulatory activity. Based on these results, we designed and synthesized 3'-3'-linked CpG DNAs that contained two or more identical CpG DNA segments, referred to here as 'immunomers'. The use of solid support bearing diDMT-glyceryl-linker permitted convenient synthesis of immunomers with both segments synthesized simultaneously, giving better yields and purity. The in vitro and in vivo studies suggest that as a result of accessibility to two 5' ends for recognition, immunomers show an enhanced immunostimulatory activity compared with linear CpG DNAs. We also studied the suitability of a number of different linkers for attaching the two segments of immunomers. A C3-linker was found to be optimal for joining the two segments of immunomers. Incorporation of multiple linkers between the two segments of immunomers resulted in different cytokine profiles depending on the nature and number of linkers incorporated. Additionally, the length of immunomer also plays a significant role in inducing immune responses. An immunomer containing 11 nt in each segment showed the highest activity and an 11mer linear CpG DNA failed to stimulate an immune response. These results suggest that immunomers have several advantages over conventional linear CpG DNAs for immunomodulatory activity studies.
Collapse
Affiliation(s)
- Dong Yu
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Yu D, Zhu FG, Bhagat L, Wang H, Kandimalla ER, Zhang R, Agrawal S. Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem Biophys Res Commun 2002; 297:83-90. [PMID: 12220512 DOI: 10.1016/s0006-291x(02)02127-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bacterial and synthetic DNAs, containing CpG dinucleotides in specific sequence contexts, activate the vertebrate immune system. Unlike phosphorothioate (PS) CpG DNAs, phosphodiester (PO) CpG DNAs require either palindromic sequences and/or poly(dG) sequences at the 3(')-end for activity. Here, we report 'PO-immunomers' having two PO-CpG DNA molecules joined through their 3(')-ends. These PO-imunomers permitted us, for the first time, to assess immunostimulatory properties of PO-CpG DNAs in vitro and in vivo without the need for palindromic and/or poly(dG) sequences. In medium containing 10% fetal bovine serum, PO-immunomers were more resistant than PO-CpG DNAs to nucleases. Compared to PS-CpG DNA in BALB/c and C3H/HeJ mice spleen cell culture assays, PO-immunomers showed increased IL-12 secretion and minimal amounts of IL-6 secretion. PO-immunomers activated NF-kappa B and induced cytokine secretion in J774 cell cultures. In addition, PO-immunomers showed antitumor activity in nude mice bearing human breast (MCF-7) and prostate (DU145) cancer xenografts.
Collapse
Affiliation(s)
- Dong Yu
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu D, Kandimalla ER, Zhao Q, Cong Y, Agrawal S. Immunostimulatory properties of phosphorothioate CpG DNA containing both 3'-5'- and 2'-5'-internucleotide linkages. Nucleic Acids Res 2002; 30:1613-9. [PMID: 11917022 PMCID: PMC101845 DOI: 10.1093/nar/30.7.1613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 02/12/2002] [Accepted: 02/12/2002] [Indexed: 11/12/2022] Open
Abstract
Synthetic oligodeoxyribonucleotides containing CpG-dinucleotides (CpG DNA) in specific sequence contexts activate the vertebrate immune system. We have examined the effect of 3'-deoxy-2'-5'-ribonucleoside (3'-deoxynucleoside) incorporation into CpG DNA on the immunostimulatory activity. Incorporation of 3'-deoxynucleosides results in the formation of 2'-5'-internucleotide linkages in an otherwise 3'-5'-linked CpG DNA. In studies, both in vitro and in vivo, CpG DNA containing unnatural 3'-deoxynucleoside either within the CpG-dinucleotide or adjacent to the CpG-dinucleotide failed to induce immunostimulatory activity, suggesting that the modification was not recognized by the receptors. Incorporation of the same modification distal to the CpG-dinucleotide in the 5'-flanking sequence potentiated the immunostimulatory activity of the CpG DNA. The same modification when incorporated in the 3'-flanking sequence had an insignificant effect on immunostimulatory activity of CpG DNA. Interestingly, substitution of a 3'-deoxynucleoside in the 5'-flanking sequence distal to the CpG-dinucleotide resulted in increased IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. The incorporation of the same modification in the 3'-flanking sequence resulted in lower IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. These results suggest that site-specific incorporation of 3'-deoxynucleotides in CpG DNA modulates immunostimulatory properties.
Collapse
Affiliation(s)
- Dong Yu
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The observation that oligodeoxynucleotides containing CpG dinucleotides (CpG DNA) exhibit several immunological effects has led to their use as therapeutic agents and adjuvants for various diseases. Several CpG DNA drug candidates are currently being evaluated, either as monotherapies or as adjuvants (with vaccines, antibodies, antigens and allergens), in preclinical and clinical trials against cancers, viral and bacterial infections, allergies and asthma. Knowledge gained from studies of the medicinal chemistry of CpG DNA has provided a basis for designing a second generation of CpG DNA agents with desirable cytokine-inducing and potent immunomodulatory activity. This article reviews recent progress in understanding the effects of CpG DNA, the medicinal chemistry of CpG DNA, and its possible therapeutic applications.
Collapse
Affiliation(s)
- Sudhir Agrawal
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02137, USA.
| | | |
Collapse
|