1
|
Brini M, Carafoli E, Calì T. The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 2017; 483:1116-1124. [DOI: 10.1016/j.bbrc.2016.07.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
|
2
|
Meyer LAT, Kaselis A, Satkauskas S, Bagnard D. Analysis of Semaphorin-Induced Growth Cone Collapse and Axon Growth Inhibition. Methods Mol Biol 2017; 1493:171-183. [PMID: 27787850 DOI: 10.1007/978-1-4939-6448-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The axonal growth cone is a specialized structure enabling axon extension and proper guidance to its target by sensing the extracellular environment. A growth cone collapse assay is a popular approach designed to characterize the inhibitory effect of secreted guidance cues in vitro. However, the actin cytoskeleton of the growth cone is very sensitive to various factors like physical impact, temperature, and acidity of environment that may also induce responses resembling those of guidance signals. Herein, we provide an easy and reproducible method to analyze growth cone sensitivity to the prototypic guidance molecule family class 3 semaphorin. This protocol is intended to present a systematic approach that is easy to apply to any soluble factors with a potential to impact axon elongation.
Collapse
Affiliation(s)
- Lionel A T Meyer
- INSERM U1109, MN3t lab, Labex Medalis, University of Strasbourg, Pôle API, 300 Bvd S. Brant, Illkirch, France
| | - Andrius Kaselis
- Biophysical Research Group, Biology Department, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Satkauskas
- Biophysical Research Group, Biology Department, Vytautas Magnus University, Kaunas, Lithuania
| | - Dominique Bagnard
- INSERM U1109, MN3t lab, Labex Medalis, University of Strasbourg, Pôle API, 300 Bvd S. Brant, Illkirch, France.
| |
Collapse
|
3
|
Zanin JP, Battiato NL, Rovasio RA. Neurotrophic factor NT-3 displays a non-canonical cell guidance signaling function for cephalic neural crest cells. Eur J Cell Biol 2013; 92:264-79. [PMID: 24252516 DOI: 10.1016/j.ejcb.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/13/2013] [Indexed: 12/30/2022] Open
Abstract
Chemotactic cell migration is triggered by extracellular concentration gradients of molecules segregated by target fields. Neural crest cells (NCCs), paradigmatic as an accurately moving cell population, undergo wide dispersion along multiple pathways, invading with precision defined sites of the embryo to differentiate into many derivatives. This report addresses the involvement of NT-3 in early colonization by cephalic NCCs invading the optic vesicle region. The results of in vitro and in vivo approaches showed that NCCs migrate directionally up an NT-3 concentration gradient. We also demonstrated the expression of NT-3 in the ocular region as well as their functional TrkB, TrkC and p75 receptors on cephalic NCCs. On whole-mount embryo, a perturbed distribution of NCCs colonizing the optic vesicle target field was shown after morpholino cancelation of cephalic NT-3 or TrkC receptor on NCCs, as well as in situ blocking of TrkC receptor of mesencephalic NCCs by specific antibody released from inserted microbeads. The present results strongly suggest that, among other complementary cell guidance factor(s), the chemotactic response of NCCs toward the ocular region NT-3 gradient is essential for spatiotemporal cell orientation, amplifying the functional scope of this neurotrophic factor as a molecular guide for the embryo cells, besides its well-known canonical functions.
Collapse
Affiliation(s)
- Juan P Zanin
- Center for Cellular and Molecular Biology - IIBYT (CONICET, UNC), FCEFN, National University of Cordoba, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | | | | |
Collapse
|
4
|
Zhong YS, Wang J, Liu WM, Zhu YH. Potassium ion channels in retinal ganglion cells (review). Mol Med Rep 2013; 8:311-9. [PMID: 23732984 DOI: 10.3892/mmr.2013.1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age‑related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP‑sensitive K+ (KATP), tandem‑pore domain K+ (TASK), voltage‑gated K+ (Kv), ether‑à‑go‑go (Eag) and Ca2+‑activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.
Collapse
Affiliation(s)
- Yi-Sheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | | | |
Collapse
|
5
|
Insights into Stem Cell Factor chemotactic guidance of neural crest cells revealed by a real-time directionality-based assay. Eur J Cell Biol 2012; 91:375-90. [DOI: 10.1016/j.ejcb.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
|
6
|
Kumada T, Komuro Y, Li Y, Hu T, Wang Z, Littner Y, Komuro H. Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 2010; 170:1328-44. [PMID: 20691765 PMCID: PMC2949482 DOI: 10.1016/j.neuroscience.2010.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 01/24/2023]
Abstract
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single intraperitoneal injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
Collapse
Affiliation(s)
- T Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Weiss JL, Hui H, Burgoyne RD. Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 2010; 30:1283-92. [PMID: 21104311 PMCID: PMC11498851 DOI: 10.1007/s10571-010-9588-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/01/2022]
Abstract
Calcium (Ca(2+)) is an important intracellular messenger underlying cell physiology. Ca(2+) channels are the main entry route for Ca(2+) into excitable cells, and regulate processes such as neurotransmitter release and neuronal outgrowth. Neuronal Calcium Sensor-1 (NCS-1) is a member of the Calmodulin superfamily of EF-hand Ca(2+) sensing proteins residing in the subfamily of NCS proteins. NCS-1 was originally discovered in Drosophila as an overexpression mutant (Frequenin), having an increased frequency of Ca(2+)-evoked neurotransmission. NCS-1 is N-terminally myristoylated, can bind intracellular membranes, and has a Ca(2+) affinity of 0.3 μM. Over 10 years ago it was discovered that NCS-1 overexpression enhances Ca(2+)-evoked secretion in bovine adrenal chromaffin cells. The mechanism was unclear, but there was no apparent direct effect on the exocytotic machinery. It was revealed, again in chromaffin cells, that NCS-1 regulates voltage-gated Ca(2+) channels (Cavs) in G-Protein Coupled Receptor (GPCR) signaling pathways. This work in chromaffin cells highlighted NCS-1 as an important modulator of neurotransmission. NCS-1 has since been shown to regulate and/or directly interact with many proteins including Cavs (P/Q, N, and L), TRPC1/5 channels, GPCRs, IP3R, and PI4 kinase type IIIβ. NCS-1 also affects neuronal outgrowth having roles in learning and memory affecting both short- and long-term synaptic plasticity. It is not known if NCS-1 affects neurotransmission and synaptic plasticity via its effect on PIP2 levels, and/or via a direct interaction with Ca(2+) channels or their signaling complexes. This review gives a historical account of NCS-1 function, examining contributions from chromaffin cells, PC12 cells and other models, to describe how NCS-1's regulation of Ca(2+) channels allows it to exert its physiological effects.
Collapse
Affiliation(s)
- Jamie L Weiss
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA.
| | | | | |
Collapse
|
8
|
Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. Dev Biol 2008; 326:237-49. [PMID: 19063877 DOI: 10.1016/j.ydbio.2008.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 10/05/2008] [Accepted: 11/17/2008] [Indexed: 11/23/2022]
Abstract
External guidance cues play a role in controlling neuronal cell turning in the developing brain, but little is known about whether intrinsic programs are also involved in controlling the turning. In this study, we examined whether granule cells undergo autonomous changes in the direction of migration in the microexplant cultures of the early postnatal mouse cerebellum. We found that granule cells exhibit spontaneous and periodical turning without cell-cell contact and in the absence of external guidance cues. The frequency of turning was increased by stimulating the Ca(2+) influx and the internal Ca(2+) release, or inhibiting the cAMP signaling pathway, while the frequency was reduced by inhibiting the Ca(2+) influx. Granule cell turning in vitro was classified into four distinct modes, which were characterized by the morphological changes in the leading process and the trailing process, such as bifurcating, turning, withdrawing, and changing the polarity. The occurrence of the 1st and 2nd modes of turning was differentially affected by altering the Ca(2+) and cAMP signaling pathways. Collectively, the results demonstrate that intrinsic programs regulate the autonomous turning of cerebellar granule cells in vitro. Furthermore, the results suggest that extrinsic signals play a role as essential modulators of intrinsic programs.
Collapse
|
9
|
Song M, Kim HS, Park JM, Kim SH, Kim IH, Ryu SH, Suh PG. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 2007; 20:94-104. [PMID: 18029144 DOI: 10.1016/j.cellsig.2007.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Post-translational modification of cellular proteins by beta-o-linked N-acetylglucosamine (o-GlcNAc) moieties plays a significant role in signal transduction by modulating protein stability, protein-protein interactions, transactivation processes, and the enzyme activities of target proteins. Though various classes of proteins are known to be regulated by o-GlcNAc modification (o-GlcNAcylation), the mechanism that regulates o-linked GlcNAc transferase (OGT) activity remains unknown. Here, we report that potassium chloride-induced depolarization provokes the activation of OGT and subsequent o-GlcNAcylation of proteins in neuroblastoma NG-108-15 cells. Moreover, such an induction of protein o-GlcNAcylation was abolished by treating cells with either a voltage-gated calcium channel inhibitor or a calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. In addition, CaMKIV was found to specifically phosphorylate and activate OGT in vivo and in vitro, which implies that CaMKIV is required for depolarization-induced activation of OGT. Furthermore, we found that OGT is involved in depolarization-induced and CaMKIV-dependent activation of activator protein-1 (AP-1) and subsequent tissue inhibitor of metalloproteinase-1 (Timp-1) gene expression. Taken together, our findings suggest that CaMKIV activated OGT, and OGT has an essential role on the process of CaMKIV-dependent AP-1 activation under depolarization in neuronal cells.
Collapse
Affiliation(s)
- Minseok Song
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyung-Buk 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Kip SN, Gray NW, Burette A, Canbay A, Weinberg RJ, Strehler EE. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus 2006; 16:20-34. [PMID: 16200642 PMCID: PMC3873839 DOI: 10.1002/hipo.20129] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spatial and temporal control of intracellular calcium signaling is essential for neuronal development and function. The termination of local Ca2+ signaling and the maintenance of basal Ca2+ levels require specific extrusion systems in the plasma membrane. In rat hippocampal neurons (HNs) developing in vitro, transcripts for all isoforms of the plasma membrane Ca2+ pump and the Na/Ca2+ exchanger, and the major nonphotoreceptor Na+/Ca2+,K+ exchangers (NCKX) were strongly upregulated during the second week in culture. Upregulation of plasma membrane calcium ATPases (PMCAs)1, 3, and 4 mRNA coincided with a splice shift from the ubiquitous b-type to the neuron-specific a-type with altered calmodulin regulation. Expression of all PMCA isoforms increased over 5-fold during the first 2 weeks. PMCA immunoreactivity was initially concentrated in the soma and growth cones of developing HNs. As the cells matured, PMCAs concentrated in the dendritic membrane and often colocalized with actin-rich dendritic spines in mature neurons. In the developing rat hippocampal CA1 region, immunohistochemistry confirmed the upregulation of all PMCAs and showed that by the end of the second postnatal week, PMCAs1, 2, and 3 were concentrated in the neuropil, with less intense staining of cell bodies in the pyramidal layer. PMCA4 staining was restricted to a few cells showing intense labeling of the cell periphery and neurites. These results establish that all major Ca2+ extrusion systems are strongly upregulated in HNs during the first 2 weeks of postnatal development. The overall increase in Ca2+ extrusion systems is accompanied by changes in the expression and cellular localization of different isoforms of the Ca2+ pumps and exchangers. The accumulation of PMCAs in dendrites and dendritic spines coincides with the functional maturation in these neurons, suggesting the importance of the proper spatial organization of Ca2+ extrusion systems for synaptic function and development.
Collapse
Affiliation(s)
- Sertac N. Kip
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Noah W. Gray
- Molecular Neuroscience Graduate Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Alain Burette
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ali Canbay
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Richard J. Weinberg
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Molecular Neuroscience Graduate Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Pollock NS, Atkinson-Leadbeater K, Johnston J, Larouche M, Wildering WC, McFarlane S. Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. Eur J Neurosci 2005; 22:569-78. [PMID: 16101738 DOI: 10.1111/j.1460-9568.2005.04242.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenopus retinal ganglion cell growth cones express various voltage-gated potassium (Kv) channels. We showed previously that 4-aminopyridine and tetraethylammonium have different effects on the outward currents of embryonic Xenopus retinal ganglion cells. Therefore, we asked whether these Kv channel inhibitors differentially regulate the response of retinal ganglion cell growth cones to extrinsic cues. First, we tested the role of Kv channels in axon extension mediated by a substrate bound cue and found that 4-aminopyridine blocked, whereas tetraethylammonium enhanced basal extension on laminin. Yet, when the growth cones were stimulated to extend with application of soluble growth factors, both inhibitors resulted in a return to the basal extension rates observed in the presence of laminin alone. Second, we asked if Kv channels modulate the response of retinal ganglion cell growth cones to a guidance cue, the chemorepellent fibroblast growth factor-2. When presented in a gradient to one side of the growth cone, fibroblast growth factor-2 repulsed retinal ganglion cell growth cones in the presence of 4-aminopyridine but not tetraethylammonium. These data argue that tetraethylammonium- and 4-aminopyridine-sensitive Kv channels differ in the manner by which they regulate the response of retinal ganglion cell axons to extension and guidance cues. Non-ratiometric calcium imaging indicated that differences in the ability of tetraethylammonium- and 4-aminopyridine-sensitive Kv channels to regulate calcium activity within the growth cone may underlie their unique modulation of growth cone behaviour.
Collapse
Affiliation(s)
- N S Pollock
- Genes and Development Research Group, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Goodhill GJ, Gu M, Urbach JS. Predicting Axonal Response to Molecular Gradients with a Computational Model of Filopodial Dynamics. Neural Comput 2004; 16:2221-43. [PMID: 15476599 DOI: 10.1162/0899766041941934] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axons are often guided to their targets in the developing nervous system by attractive or repulsive molecular concentration gradients. We propose a computational model for gradient sensing and directed movement of the growth cone mediated by filopodia. We show that relatively simple mechanisms are sufficient to generate realistic trajectories for both the short-term response of axons to steep gradients and the long-term response of axons to shallow gradients. The model makes testable predictions for axonal response to attractive and repulsive gradients of different concentrations and steepness, the size of the intracellular amplification of the gradient signal, and the differences in intracellular signaling required for repulsive versus attractive turning.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007, USA.
| | | | | |
Collapse
|
14
|
Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, Nozaki N, Banker G, Soderling TR. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 2004; 24:3786-94. [PMID: 15084659 PMCID: PMC6729350 DOI: 10.1523/jneurosci.3294-03.2004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium and calmodulin (CaM) are important signaling molecules that regulate axonal or dendritic extension and branching. The Ca2+-dependent stimulation of neurite elongation has generally been assumed to be mediated by CaM-kinase II (CaMKII), although other members of the CaMK family are highly expressed in developing neurons. We have examined this assumption using a combination of dominant-negative CaMKs (dnCaMKs) and other specific CaMK inhibitors. Here we report that inhibition of cytosolic CaMKI, but not CaMKII or nuclear CaMKIV, dramatically decreases axonal outgrowth and branching in cultured neonatal hippocampal and postnatal cerebellar granule neurons. CaMKI is found throughout the cell cytosol, including the growth cone. Growth cones of neurons expressing dnCaMI or dnCaMKK, the upstream activator of CaMKI, exhibit collapsed morphology with a prominent reduction in lamellipodia. Live-cell imaging confirms that these morphological changes are associated with a dramatic decrease in growth cone motility. Treatment of neurons with 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), an inhibitor of CaMKK, causes a similar change in morphology and reduction in growth cone motility, and this inhibition can be rescued by transfection with an STO-609-insensitive mutant of CaMKK or by transfection with constitutively active CaMKI. These results identify CaMKI as a positive transducer of growth cone motility and axon outgrowth and provide a new physiological role for the CaMKK-CaMKI pathway.
Collapse
Affiliation(s)
- Gary A Wayman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Surface expression of the netrin receptor UNC5H1 is regulated through a protein kinase C-interacting protein/protein kinase-dependent mechanism. J Neurosci 2004. [PMID: 14672991 DOI: 10.1523/jneurosci.23-36-11279.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrin-1 is a bifunctional guidance cue that directs migrating neurons and axons based on specific receptors expressed on the cell surface. Attraction occurs through the receptor Deleted in Colorectal Cancer (DCC) and repulsion occurs through a receptor complex of DCC and UNC5H, the vertebrate homolog to Caenorhabditis elegans UNC-5, but how the specific surface expression of these receptors is achieved remains unknown. Here, we demonstrate that surface expression of UNC5H1 is regulated in neurons by protein interacting with C kinase-1 (PICK1) and protein kinase C (PKC), and show that one mechanism by which cells control their response to netrin-1 is by changing the surface availability of receptors. We identified PICK1 as a binding partner for UNC5H1 using the yeast two-hybrid system and found that the extreme three C-terminal amino acids of UNC5H1 interact with the PSD-95/Dlg/ZO-1 (PDZ) domain of PICK1. Coexpression of UNC5H1 and PICK1 in heterologous cells results in the recruitment of PICK1 to UNC5H1 clusters. Endogenous UNC5H1 and PICK1 coimmunoprecipitate from extracts of cultured hippocampal neurons and P4 cortices, and immunohistochemistry shows that UNC5H1, PICK1, and PKC are all present in growth cones. PKC activation induces the formation of UNC5H1/PICK1/PKC complexes and leads to the specific removal of UNC5H1, but not DCC, from the surface of neurons and growth cones via a PICK1/PKC-dependent mechanism. Lastly, we demonstrate that activating PKC, which decreases surface expression of UNC5H1, inhibits netrin-1-dependent collapse of hippocampal growth cones. Together, our results suggest that by regulating the surface expression of UNC5Hs, an axon can modulate its repellent response to netrin-1.
Collapse
|
16
|
Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 2003; 69:391-418. [PMID: 12880633 DOI: 10.1016/s0301-0082(03)00053-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+)-induced Ca(2+) release (CICR) mediated by sarcoplasmic reticulum resident ryanodine receptors (RyRs) has been well described in cardiac, skeletal and smooth muscle. In brain, RyRs are localised primarily to endoplasmic reticulum (ER) and have been demonstrated in postsynaptic entities, astrocytes and oligodendrocytes where they regulate intracellular Ca(2+) concentration ([Ca(2+)](i)), membrane potential and the activity of a variety of second messenger systems. Recently, the contribution of presynaptic RyRs and CICR to functions of central and peripheral presynaptic terminals, including neurotransmitter release, has received increased attention. However, there is no general agreement that RyRs are localised to presynaptic terminals, nor is it clear that RyRs regulate a large enough pool of intracellular Ca(2+) to be physiologically significant. Here, we review direct and indirect evidence that on balance favours the notion that ER and RyRs are found in presynaptic terminals and are physiologically significant. In so doing, it became obvious that some of the controversy originates from issues related to (i) the ability to demonstrate conclusively the physical presence of ER and RyRs, (ii) whether the biophysical properties of RyRs are such that they can contribute physiologically to regulation of presynaptic [Ca(2+)](i), (iii) how ER Ca(2+) load and feedback gain of CICR contributes to the ability to detect functionally relevant RyRs, (iv) the distance that Ca(2+) diffuses from plasma membranes to RyRs to trigger CICR and from RyRs to the Active Zone to enhance vesicle release, and (v) the experimental conditions used. The recognition that ER Ca(2+) stores are able to modulate local Ca(2+) levels and neurotransmitter release in presynaptic terminals will aid in the understanding of the cellular mechanisms controlling neuronal function.
Collapse
Affiliation(s)
- Ron Bouchard
- Division of Neuroscience Research, St. Boniface Research Centre, Winnipeg, Canada R2H 2A6
| | | | | |
Collapse
|
17
|
Abstract
Ca(2+) and cAMP signalling pathways are tightly interconnected and the cellular effects mediated by the two second messengers depend strictly on reciprocal modulation. The signalling network that derives from such interplay holds the potential for expanding the information content of the signal enormously and, thus, can contribute substantially to the specificity and diversity of the response. Recent work points to interdependent Ca(2+) and cAMP oscillation patterns as a new paradigm for signal transduction.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, Padua, Italy.
| | | |
Collapse
|
18
|
Pollock NS, Ferguson SCD, McFarlane S. Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis. J Comp Neurol 2002; 452:381-91. [PMID: 12355420 DOI: 10.1002/cne.10401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accumulating evidence suggests that voltage-dependent potassium (Kv) channels have important and varied roles in the development of neuronal and non-neuronal cell types. They have been implicated in processes such as proliferation, cell adhesion, migration, neurite outgrowth, and axon guidance. In this study, we used antibodies against several electrically active Kv channel alpha-subunits (Kv1-4) to describe the spatial and temporal expression patterns of Kv channel subunits in Xenopus laevis retinal ganglion cell (RGC) somata, axons, and growth cones. We found that RGCs express Kv1.3-, Kv1.5-, Kv3.4-, and Kv4.2-like subunits. Each subunit displayed unique cellular and subcellular distributions. Moreover, the expression patterns changed considerably over the major period of Xenopus retinal cell genesis and differentiation. Weak or no immunoreactivity was observed with antibodies against Kv1.1, Kv1.2, Kv1.4, Kv1.6, and Kv3.2 subunits in RGCs or other retinal cell types. In support of our previous pharmacologic evidence implicating Kv channels in RGC axon outgrowth, we found that Kv1.5-, Kv3.4-, and Kv4.2-like proteins, but not Kv1.3-like subunits, are abundantly expressed in RGC growth cones.
Collapse
Affiliation(s)
- Natashka S Pollock
- Genes and Development Research Group, University of Calgary, Health Sciences Centre, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
19
|
Lancaster E, Oh EJ, Gover T, Weinreich D. Calcium and calcium-activated currents in vagotomized rat primary vagal afferent neurons. J Physiol 2002; 540:543-56. [PMID: 11956342 PMCID: PMC2290244 DOI: 10.1113/jphysiol.2001.013121] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adult inferior vagal ganglion neurons (nodose ganglion neurons, NGNs) were acutely isolated 4-6 days after section of their peripheral axons (vagotomy) and examined with the whole-cell patch-clamp technique. A subset (approximately 25 %) of vagotomized NGNs displayed depolarizing after-potentials (DAPs), not present in control NGNs. DAPs were inhibited by niflumic acid (125 microM) or cadmium (100 microM), and had a reversal potential near E(Cl), indicating that they were due to Ca(2+)-activated chloride current (I(Cl(Ca))). N-type, L-type, T-/R- and other types of voltage-dependent Ca(2+) channels provided about 43, 2, 16 and 40 % of the trigger Ca(2+) for DAP generation, respectively. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was estimated using fura-2 fluorescence. Resting [Ca(2+)](i) and peak [Ca(2+)](i) elevation induced by activating Ca(2+)-induced Ca(2+) release (CICR) stores with 10 mM caffeine were not significantly different among control NGNs, vagotomized NGNs with DAPs and vagotomized NGNs without DAPs, averaging 54 +/- 7.9 (n = 19; P = 0.49) and 2022 +/- 1059 nM (n = 19; P = 0.44), respectively. Blocking CICR with 10 microM ryanodine reduced DAP amplitude by approximately 37 %. Ca(2+) influx induced by action potential waveforms was increased by over 250 % in vagotomized NGNs with DAPs (19.0 +/- 2.1 pC) compared to control NGNs (5.0 +/- 0.8 pC) or vagotomized NGNs without DAPs (7.0 +/- 0.8 pC). L-type, N-type, T-/R-type and other types of Ca(2+) influx were increased proportionately in vagotomized NGNs with DAPs. In conclusion, a subset of vagotomized NGNs have increased Ca(2+) currents and express I(Cl(Ca)). These NGNs respond electrically to increases in [Ca(2+)](i) during regeneration.
Collapse
Affiliation(s)
- Eric Lancaster
- The Neuroscience Program, University of Maryland, School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, USA
| | | | | | | |
Collapse
|
20
|
Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 2001; 65:309-38. [PMID: 11473791 DOI: 10.1016/s0301-0082(01)00004-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Meldolesi
- DIBIT, Scientific Institute S. Raffaele, Vita-Salute University, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
21
|
Moutinho A, Hussey PJ, Trewavas AJ, Malhó R. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 2001; 98:10481-6. [PMID: 11517303 PMCID: PMC56986 DOI: 10.1073/pnas.171104598] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Indexed: 11/18/2022] Open
Abstract
Pollen tube growth and reorientation is a prerequisite for fertilization and seed formation. Here we report imaging of cAMP distribution in living pollen tubes microinjected with the protein kinase A-derived fluorosensor. Growing tubes revealed a uniform distribution of cAMP with a resting concentration of approximately 100-150 nM. Modulators of adenylyl cyclase (AC), forskolin, and dideoxyadenosine could alter these values. Transient elevations in the apical region could be correlated with changes in the tube-growth axis, suggesting a role for cAMP in polarized growth. Changes in cAMP arise through the activity of a putative AC identified in pollen. This signaling protein shows homology to functional motifs in fungal AC. Expression of the cDNA in Escherichia coli resulted in cAMP increase and complemented a catabolic defect in the fermentation of carbohydrates caused by the absence of cAMP in a cyaA mutant. Antisense assays performed with oligodeoxynucleotide probes directed against conserved motifs perturbed tip growth, suggesting that modulation of cAMP concentration is vital for tip growth.
Collapse
Affiliation(s)
- A Moutinho
- Department of Plant Biology, Faculdade de Ciências de Lisboa, University of Lisbon, Block C2, Lisboa, 1749-016 Lisbon, Portugal
| | | | | | | |
Collapse
|
22
|
Cancela JM. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol 2001; 63:99-117. [PMID: 11181950 DOI: 10.1146/annurev.physiol.63.1.99] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to control cell functions, hormones and neurotransmitters generate an amazing diversity of Ca2+ signals such as local and global Ca2+ elevations and also Ca2+ oscillations. In pancreatic acinar cells, cholecystokinin (CCK) stimulates secretion of digestive enzyme and promotes cell growth, whereas acetylcholine (ACh) essentially triggers enzyme secretion. Pancreatic acinar cells are a classic model for the study of CCK- and ACh-evoked specific Ca2+ signals. In addition to inositol 1,4,5 trisphosphate (IP3), recent studies have shown that cyclic ADPribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) release Ca2+ in pancreatic acinar cells. Moreover, it has also been shown that both ACh and CCK trigger Ca2+ spikes by co-activation of IP3 and ryanodine receptors but by different means. ACh uses IP3 and Ca2+, whereas CCK uses cADPr and NAADP. In addition, CCK activates phospholipase A2 and D. The concept emerging from these studies is that agonist-specific Ca2+ signals in a single target cell are generated by combination of different intracellular messengers.
Collapse
Affiliation(s)
- J M Cancela
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|