1
|
Czaja TP, Beldring SN, Renaud C, Engelsen SB. Mimicking the properties of commercial chocolate mousses using plant proteins as foaming stabilisers. Texture, rheology, color and proton mobility. Food Res Int 2025; 212:116450. [PMID: 40382043 DOI: 10.1016/j.foodres.2025.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/22/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The growing demand for plant-based food has led to explore plant proteins as substitutes for animal ingredients in aerated foods like chocolate mousse. This study examines how three plant proteins-pea protein isolate, soy protein concentrate, and kidney bean flour-affect the texture, structure, consistency, and water mobility of chocolate mousse. Sixteen different chocolate mousse recipes were prepared using these three plant proteins, with variations in foaming time, rotor speed, and ingredient proportions. The prepared mousses were evaluated for color, texture, rheology, pH, and water mobility and compartmentalization using time domain 1H nuclear magnetic resonance relaxometry (TD-NMR). Commercial samples were included for comparison. Multivariate analysis showed that mousses made with pea and soy proteins were the most similar in texture and structure to commercial products when the recipe was properly adjusted. This study highlights the potential of plant-based proteins for creating plant-based chocolate mousses. The use of TD-NMR in combination with rheology, and texture analysis provided insights into how plant proteins interact with other ingredients, which can help in optimizing the processing methods for better texture, consistency, and quality.
Collapse
Affiliation(s)
- Tomasz Pawel Czaja
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | | | - Camille Renaud
- ADRIA Food Expertise, ZA, Créac'h Gwen, 29000 Quimper, France
| | - Søren Balling Engelsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Patros Zagaja KM, Roy MC, Jakuba K, Quino J, Bartlett JA, Oduro MS, Sarkar A, Schmidt HF, Mei Y, Liu Y, Harrington B, Samas B. Deconstructing Annealing Phenomena in Modified Release Lipid Multiparticulates. Mol Pharm 2025. [PMID: 40271933 DOI: 10.1021/acs.molpharmaceut.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This work investigates annealing-induced changes in modified release lipid multiparticulates composed of glyceryl behenate and poloxamer 407. Multiparticulates were manufactured using multiple lots of excipients and then annealed at 3 different temperatures across 45-50 °C (75% RH) until kinetically stable dissolution profiles were achieved. Throughout annealing, multiparticulates were analyzed using powder X-ray diffraction, scanning electron microscopy, quantitative 1H NMR, Raman spectroscopy, and novel flow-NMR dissolution techniques. Supporting nonlinear mixed effects models helped systematically link these orthogonal tools to dissolution, altogether providing strong evidence of concurrent glyceryl behenate crystal refinement with phase separation and migration of the poloxamer 407 from glyceryl behenate as the drivers for changes in dissolution with annealing. These findings demonstrate the importance of annealing glyceryl behenate-poloxamer 407 multiparticulates to achieve the complex matrix needed for modified release.
Collapse
Affiliation(s)
| | - Michael C Roy
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Kavan Jakuba
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Jaypee Quino
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Jeremy A Bartlett
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Michael Safo Oduro
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Aritra Sarkar
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - Yong Mei
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Yizhou Liu
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Brent Harrington
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Brian Samas
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
3
|
Steinkellner C, Kroll L, Franke K. Bigels containing different wax-based oleogels as laminating fat replacers in croissants. Curr Res Food Sci 2025; 10:101042. [PMID: 40231316 PMCID: PMC11995129 DOI: 10.1016/j.crfs.2025.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, bigels were developed to mimic the characteristics of traditional laminating fats, butter and margarine, in croissants. The bigels consist of 80 % oleogel (canola oil, wax and monoacylglyceride) and 20 % hydrogel (water and xanthan gum). Beeswax (BW), carnauba wax (CBW), candelilla wax (CLW), and rice bran wax (RBW) were evaluated as oleogelators at concentrations between 12 and 20 % w/w in the oleogel. The effects of wax concentration, temperature, and mechanical work (plasticizing) on texture, solid fat content, and microstructure of the bigels were investigated. Bigels' solid fat content and mechanical properties were less temperature sensitive than controls, but mechanical work (plasticizing) had detrimental effects on their texture. Differences in bigel firmness between waxes at the same concentration could be attributed to different wax crystal structures. Plasticized bigels most similar in texture to the controls were those with 18 % BW, 14 % CBW, 14 % CLW, and 20 % RBW. These bigels were tested as laminating fats in croissants at 100 % replacement levels. After lamination, the croissant doughs with bigels exhibited irregular fat layering, resulting in more dense and less airy croissant pore structure. While bigel croissants possessed a comparable volume, they were generally flatter and wider compared to croissants with control fats. In terms of texture, bigel croissants displayed a lower degree of staling, but had overall higher firmness. Furthermore, they had similar springiness and cohesiveness, but increased chewiness. With respect to nutritional value, croissant made with bigels contained significantly less saturated fatty acids.
Collapse
Affiliation(s)
- Christine Steinkellner
- Institute of Food and One Health, Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Lina Kroll
- Institute of Food and One Health, Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Knut Franke
- Institute of Food and One Health, Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| |
Collapse
|
4
|
Loke YH, Phang HC, Mohamad N, Kee PE, Chew YL, Lee SK, Goh CF, Yeo CI, Liew KB. Cocoa Butter: Evolution from Natural Food Ingredient to Pharmaceutical Excipient and Drug Delivery System. PLANTA MEDICA 2024; 90:824-833. [PMID: 39043195 DOI: 10.1055/a-2359-8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For decades, cocoa butter has been extensively used in food industries, particularly in the production of chocolate confectioneries. The composition of fats within cocoa butter, such as stearic acid, palmitic acid, and oleic acid, determines its properties. Studies have indicated the existence of at least six polymorphic forms of cocoa butter, each possessing distinct characteristics and melting points. Recently, cocoa butter has garnered attention for its potential as a delivery system for pharmaceutical products. This review thoroughly explores cocoa butter, encompassing its production process, composition, properties, and polymorphism. It delves into its diverse applications across various industries including food, cosmetics, and pharmaceuticals. Additionally, the review investigates cocoa butter alternatives aiming to substitute cocoa butter and their roles in different drug delivery systems. The unique properties of cocoa butter have sparked interest in pharmaceutical industries, particularly since its introduction as a drug delivery system and excipient. This has prompted researchers and industry stakeholders to explore novel formulations and delivery methods, thereby expanding the range of options available to consumers in the pharmaceutical market.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yik-Ling Chew
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
5
|
Timlin M, Brodkorb A, O'Callaghan TF, Harbourne N, Drouin G, Pacheco-Pappenheim S, Murphy JP, O'Donovan M, Hennessy D, Pierce KM, Fitzpatrick E, McCarthy K, Hogan SA. Pasture feeding improves the nutritional, textural, and techno-functional characteristics of butter. J Dairy Sci 2024; 107:5376-5392. [PMID: 38580153 DOI: 10.3168/jds.2023-24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
There is an increasing consumer desire for pasture-derived dairy products, as outdoor pasture-based feeding systems are perceived as a natural environment for animals. Despite this, the number of grazing animals globally has declined as a result of the higher milk yields achieved by indoor TMR feeding systems, in addition to the changing climatic conditions and lower grazing knowledge and infrastructure. This has led to the development of pasture-fed standards, stipulating the necessity of pasture and its minimum requirements as the primary feed source for products advertising such claims, with various requirements depending on the region for which it was produced. This work investigates the differences in the composition and techno-functional properties of butters produced from high, medium and no pasture allowance diets during early, mid, and late lactation. Butters were produced using milks collected from 3 feeding systems: outdoor pasture grazing (high pasture allowance); indoor TMR (no pasture allowance); and a partial mixed ration (medium pasture allowance) system, which involved outdoor pasture grazing during the day and indoor TMR feeding at night. Butters were manufactured during early, mid, and late lactation. Creams derived from TMR feeding systems exhibited the highest milk fat globule size. The fatty acid profiles of butters also differed significantly as a function of diet and could be readily discriminated by partial least squares analysis. The most important fatty acids in such an analysis, as indicated by their highest variable importance projection scores, were CLA C18:2 cis-9,trans-11 (rumenic acid), C16:1n-7 trans (trans-palmitoleic acid), C18:1 trans (elaidic acid), C18:3n-3 (α-linolenic acid), and C18:2n-6 (linoleic acid). Increasing pasture allowances resulted in reduced crystallization temperatures and hardness of butters and concurrently increasing the "yellow" color. Yellow color was strongly correlated with Raman peaks commonly associated with carotenoids. The milk fat globule size of cream decreased with advancing stage of lactation and churning time of cream was lowest in early lactation. Differences in the fatty acid and triglyceride contents of butter as a result of lactation and dietary effects demonstrated significant correlations with the hardness, rheological, melting, and crystallization profiles of the butters. This work highlighted the improved nutritional profile and functional properties of butter with increasing dietary pasture allowance, primarily as a result of increasing proportions of unsaturated fatty acids. Biomarkers of pasture feeding (response in milk proportionate to the pasture allowance) associated with the pasture-fed status of butters were also identified as a result of the significant changes in the fatty acid profile with increasing pasture allowance. This was achieved through the use of 3 authentic feeding systems with varying pasture allowances, commonly operated by farmers around the world and conducted across 3 stages of lactation.
Collapse
Affiliation(s)
- Mark Timlin
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - André Brodkorb
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Tom F O'Callaghan
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
| | - Niamh Harbourne
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland
| | - Gaetan Drouin
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Sara Pacheco-Pappenheim
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland; Dairy Processing Technology Centre, University of Limerick, Sreelane V94 T9PX Limerick, Ireland
| | - John P Murphy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Michael O'Donovan
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Deirdre Hennessy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K Cork, Ireland
| | - Karina M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8 Dublin 4, Ireland; Food for Health Ireland, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Ellen Fitzpatrick
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland; Teagasc, Environmental Research Centre, Johnstown Castle, Y35 Y521 Wexford, Ireland
| | - Kieran McCarthy
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy P61 P302 Co. Cork, Ireland
| | - Sean A Hogan
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| |
Collapse
|
6
|
Werner-Cárcamo ER, Soleimaniam Y, Macias-Rodriguez BA, Rubilar M, Marangoni AG. Mechanical properties of wax-oleogels: Assessing their potential to mimic commercial margarine functionality under small and large deformations. Food Res Int 2024; 189:114579. [PMID: 38876599 DOI: 10.1016/j.foodres.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Utilizing waxes to gel oils presents a viable approach for diminishing trans and saturated fat levels in commercial fats such as margarines. This technique ensures that oleogels mimic traditional fats in terms of rheological properties, oil-binding capacity, and overall structure. Our study employed cooling-shear rates to finely adjust physical characteristics, evaluating rheology via SAOS-LAOS, oil retention, and crystal structure of wax oleogels, compared against commercial margarines as benchmarks. Findings indicate that wax oleogels, under specific cooling/shear conditions, exhibit softer yet more ductile-like behavior, akin to margarine, while retaining oil effectively. This similarity is evidenced through Lissajous curves and plastic dissipation ratio during yielding, reflecting a ductile yielding response characterized by square-like Lissajous curves and a plastic dissipation ratio index approximating one. Although these crystallization conditions influence the mechanical properties of wax oleogels, they do not alter oil losses or wax characteristics.
Collapse
Affiliation(s)
- Erwin R Werner-Cárcamo
- Doctorate in Sciences Engineering with Specialization in Bioprocesses, Universidad de La Frontera (UFRO), Av. Francisco Salazar 01145, Temuco, Chile; Department of Food Science, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada.
| | - Yasamin Soleimaniam
- Department of Food Science, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Braulio A Macias-Rodriguez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Mónica Rubilar
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Alejandro G Marangoni
- Department of Food Science, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Kim SH, Jo YJ, Lee SH, Park SH. Development of Oleogel-Based Fat Replacer and Its Application in Pan Bread Making. Foods 2024; 13:1678. [PMID: 38890906 PMCID: PMC11171671 DOI: 10.3390/foods13111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
In recent years, the bakery industry has been exploring alternative fats to replace traditional solid fats. Shortening, a common baking ingredient, is produced through the hydrogenation of vegetable oils, resulting in high levels of saturated and trans fatty acids, despite its vegetable oil origin. The excessive consumption of these fats has been associated with negative health effects, including dyslipidemia and cardiovascular issues. Oleogels, incorporating hydroxypropyl methylcellulose (HPMC), xanthan gum (XG), and olive oil, were utilized to replace shortening in the production of white pan bread. The substitution of shortening with oleogel in the white pan bread preparation demonstrated potential reductions in saturated fat, trans fat, and the ratio of saturated fat to unsaturated fatty acids. Specifically, with the complete substitution of shortening with oleogel, saturated fatty acids decreased by 52.46% and trans fatty acids by 75.72%, with unsaturated fatty acids increasing by 57.18%. Our findings revealed no significant difference in volume between bread made with shortening and bread with up to 50% shortening substitution. Moreover, when compared to bread made with shortening and 50% oleogel substitution, no adverse effects on the quality characteristics of volume and expansion properties were observed, and the retrogradation rate was delayed. This study suggests that incorporating oleogels, formed with hydrocolloids such as HPMC and XG, to replace shortening in bread, in conjunction with traditional solid fats, provides positive effects on the quality and nutritional aspects of the bread compared to using oleogel alone. Through this study, we demonstrate the use of oleogels as a healthier alternative to shortening, without reducing the bread's quality, thus offering a practical solution to reduce unhealthy fats in bakery products.
Collapse
Affiliation(s)
- Sung-Huo Kim
- Department of Food & Nutrition, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Yeon-Ji Jo
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Department of Marin Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Sung Ho Lee
- SPC Group Research Institute of Food and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hoon Park
- Department of Food & Nutrition, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| |
Collapse
|
8
|
Jeong S, Oh I. Characterization of mixed-component oleogels: Beeswax and glycerol monostearate interactions towards Tenebrio Molitor larvae oil. Curr Res Food Sci 2024; 8:100689. [PMID: 38333773 PMCID: PMC10850890 DOI: 10.1016/j.crfs.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Edible insects are attracting attention as an alternative food due to their excellent production efficiency, lower carbon consumption, and containing high protein. Tenebrio Molitor larvae (TM), one of the approved edible insects worldwide, contain more than 30 % fat content consisting of 70 % unsaturated fatty acids, and particularly high phospholipids. Most of the research has focused on the utilization of proteins, and there are few studies using oils from TM. Therefore, in this study, to expand the utilization of TM oil in food applications, the oleogel was prepared with TM oil fortified by the incorporation of beeswax (BSW) and glycerol monostearate (GMS), and their structure, rheological and thermal properties were evaluated. The interaction between BSW and GMS contributed to the strength of the oleogel structure. The addition of GMS or the increase of the gelator concentrations resulted in increasing the melting point, which is consistent with the observed increase in viscoelasticity. As the temperature increased, the solid fat content decreased. The result of FT-IR suggests that TM oil is physically solidified without changing chemical composition through oleogelation. This study suggests a new processing direction for edible insects by confirming the rheological, thermal, and physicochemical characteristics of TM oil-based oleogel.
Collapse
Affiliation(s)
- Sohui Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
9
|
Gao W, Yang G, Zhang D, Xu X, Hu J, Meng P, Liu W. Evaluation of high oleic sunflower oil oleogels with beeswax, beeswax-glyceryl monopalmitate, and beeswax-Span80 in cookie preparation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6198-6207. [PMID: 37140538 DOI: 10.1002/jsfa.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Shortening is used widely in cookie preparation to improve quality and texture. However, large amounts of saturated and trans fatty acids present in shortening have adverse effects on human health, and much effort has been made to reduce the use of shortening. The use of oleogels might be a suitable alternative. In this study, the oleogels of high oleic sunflower oil with beeswax (BW), BW-glyceryl monopalmitate (BW-GMP), and BW-Span80 (BW-S80) were prepared and their suitability to replace shortening in cookie preparation was evaluated. RESULTS The solid fat content of BW, BW-GMP, and BW-S80 oleogels was significantly lower than that of commercial shortening when the temperature was not higher than 35 °C. However, the oil-binding capacity of these oleogels was almost similar to that of shortening. The crystals in the shortening and oleogels were β' form mainly; however, the morphology of crystal aggregates in these oleogels was different from that of shortening. The textural and rheological properties of doughs prepared with the oleogels were similar, and clearly different from those of dough with commercial shortening. The breaking strengths of cookies made with oleogels were lower than that of cookies prepared with shortening. However, cookies containing BW-GMP and BW-S80 oleogels were similar in density and color to those prepared with shortening. CONCLUSION The textural properties and color of cookies with BW-GMP and BW-S80 oleogels were very similar to those of the cookies containing commercial shortening. The BW-GMP and BW-S80 oleogels could act as alternatives to shortening in the preparation of cookies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weifeng Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Guolong Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Dan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaoxin Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jingbo Hu
- College of Chemical Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Pengcheng Meng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
10
|
Wang Q, Espert M, Salvador A, Sanz T. Shortening replacement by emulsion and foam template hydroxypropyl methylcellulose (HPMC)-based oleogels in puff pastry dough. Rheological and texture properties. Curr Res Food Sci 2023; 7:100558. [PMID: 37592957 PMCID: PMC10432165 DOI: 10.1016/j.crfs.2023.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Shortening plays an essential function in the formulation of sweet laminated bakery products, but has a potential health risk due to their high percentage of saturated fatty acids. In this paper, the feasibility of hydroxypropyl methylcellulose (HPMC) oleogels prepared with emulsion template (ET) and foam template (FT) approaches as fat sources in a puff pastry dough was investigated. Spreadability and thermal properties of control shortening, 100% ET and FT oleogels and shortening/oleogel (50/50) blends were measured. The different systems were applied as the fat source in a puff pastry dough, and their effect on rheological and texture properties was investigated. Results showed that partial replacement of shortening with oleogels could significantly decrease the firmness values (from 115 to 26 N) (P < 0.05) and increased the spreadability of shortening. The methodology to prepare the oleogel (FT or ET) also significantly affected the texture parameters. FT blends had the highest spreadability with significantly lower firmness values and area under the curve. Thermal values showed that both oleogels could slightly increase the melting point of shortening from 47 to 50 °C. The replacement of shortening with oleogel decreases the viscoelasticity of puff pastry dough and increases its thermal stability but does not significantly change dough viscoelasticity in the shortening/oleogel mixture. These results indicated that both oleogels have promising potential to replace shortening in puff pastry dough formulations, but the ET oleogel showed a more similar behavior to the control shortening than the FT oleogel.
Collapse
Affiliation(s)
- Q. Wang
- Department of Food Science. Institute of Agrochemistry and Food Technology (IATA-CSIC), Agustín Escardino 7, Paterna, Valencia, Spain
| | - M. Espert
- Department of Food Science. Institute of Agrochemistry and Food Technology (IATA-CSIC), Agustín Escardino 7, Paterna, Valencia, Spain
| | - A. Salvador
- Department of Food Science. Institute of Agrochemistry and Food Technology (IATA-CSIC), Agustín Escardino 7, Paterna, Valencia, Spain
| | - T. Sanz
- Department of Food Science. Institute of Agrochemistry and Food Technology (IATA-CSIC), Agustín Escardino 7, Paterna, Valencia, Spain
| |
Collapse
|
11
|
Li L, Liu G. Engineering effect of oleogels with different structuring mechanisms on the crystallization behavior of cocoa butter. Food Chem 2023; 422:136292. [PMID: 37150114 DOI: 10.1016/j.foodchem.2023.136292] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
As promising cocoa butter (CB) alternatives, oleogels have the potential to prevent fat blooms of chocolate. We aimed to explore possible reasons for the bloom resistance of oleogels by investigating the crystallization behavior of CB-oleogel blends, including crystallization kinetics, thermodynamic properties, crystal polymorphism, and oil distribution. Oleogels structured by monoglyceric stearate (MO), β-sitosterol/lecithin (SLO), and ethylcellulose (EO) were selected as representative oleogels with various structuring-mechanisms. Crystallization kinetic results showed that the crystallization dimension of CB-oleogel increased with the oleogel proportion (from one-dimensional to multi-dimensional), confirming that CB crystallization was inhibited. The presence of liquid oil and oleogelators in oleogels may increase the free energy barrier for CB crystallization. The proton mobility of liquid oil in CB-MO was lower because MO was more tightly bound to CB. The crystallization mechanism of the CB-oleogel suggested that the inhibitory effect of oleogels on CB crystallization delayed the polymorphic transition, thereby improving the bloom stability of chocolate.
Collapse
Affiliation(s)
- Linlin Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Dai D, Cao B, Hao XL, Li ZH, Yu ZW. Free-Standing Two-Dimensional Crystals Formed from Self-Assembled Ionic Liquids. J Phys Chem Lett 2023; 14:2744-2749. [PMID: 36897097 DOI: 10.1021/acs.jpclett.3c00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fabrication of two-dimensional crystals (2DCs) has attracted very large interest because it creates materials with various surface structural features and special surface properties. Normally, this is limited to sheets networked together with strong covalent or coordination bonds. Against this understanding, we discovered macroscopic scale free-standing 2DCs in the aqueous dispersions of [Cnmim]X (X = Br, NO3; n = 14, 16, 18) using simultaneous synchrotron small- and wide-angle X-ray scattering techniques. On the other hand, the 2DCs are also a kind of novel hydrogel holding water content up to 98 wt %. This unusual phenomenon is attributed to the weak interactions between imidazole headgroups and counterions. The observation reported in this work is expected to contribute to theorists in their pursuit of the general principles governing the stability of 2D materials. It may also enlighten experimentalists in designing new free-standing 2DCs for various applications.
Collapse
Affiliation(s)
- Dong Dai
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bobo Cao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Lei Hao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Hong Li
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wu Yu
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Laporte L, Ducouret G, Gobeaux F, Lesaine A, Hotton C, Bizien T, Michot L, de Viguerie L. Rheo-SAXS characterization of lead-treated oils: Understanding the influence of lead driers on artistic oil paint's flow properties. J Colloid Interface Sci 2023; 633:566-574. [PMID: 36470137 DOI: 10.1016/j.jcis.2022.11.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
From the 15th century onwards, painters began to treat their oils with lead compounds before grinding them with pigments. Such a treatment induces the partial hydrolysis of the oil triglycerides and the formation of lead soaps, which significantly modify the rheological properties of the oil paint. Organization at the supramolecular scale is thus expected to explain these macroscopic changes. Synchrotron Rheo-SAXS (Small Angle X-ray Scattering) measurements were carried out on lead-treated oils, with different lead contents. We can now propose a full picture of the relationship between structure and rheological properties of historical saponified oils. At rest, lead soaps in oil are organized as lamellar phases with a characteristic period of 50 Å. Under shear, the loss of viscoelastic properties can be linked to the modification of this organization. Continuous shear resulted in a preferential and reversible orientation of the lamellar domains which increased with the concentration of lead soaps. The parallel orientation predominates over the entire shear range (0-1000 s-1). Conversely, oscillatory shear coiled the lamellae into cylinders that oriented themselves vertically in the rheometer cell. This is the first report of such a vertical cylindrical structure obtained under shear from lamellae.
Collapse
Affiliation(s)
- Lucie Laporte
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France.
| | - Guylaine Ducouret
- Laboratoire Science et Ingénierie de la Matière Molle (SIMM), CNRS UMR 7615, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Frédéric Gobeaux
- LIONS - NIMBE, UMR 3685 CEA/CNRS, CEA Saclay, 91191 Gif sur Yvette, France
| | - Arnaud Lesaine
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
| | - Claire Hotton
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes interfaciaux (PHENIX), UMR CNRS 8234, Sorbonne Université, 4 place Jussieu 75005 Paris, France
| | - Thomas Bizien
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Laurent Michot
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes interfaciaux (PHENIX), UMR CNRS 8234, Sorbonne Université, 4 place Jussieu 75005 Paris, France
| | - Laurence de Viguerie
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
14
|
Baking using oleogels. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1002/fsat.3701_6.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
15
|
Sanches SCDC, Ré MI, Silva-Júnior JOC, Ribeiro-Costa RM. Organogel of Acai Oil in Cosmetics: Microstructure, Stability, Rheology and Mechanical Properties. Gels 2023; 9:gels9020150. [PMID: 36826320 PMCID: PMC9956281 DOI: 10.3390/gels9020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 02/16/2023] Open
Abstract
Organogel (OG) is a semi-solid material composed of gelling molecules organized in the presence of an appropriate organic solvent, through physical or chemical interactions, in a continuous net. This investigation aimed at preparing and characterizing an organogel from acai oil with hyaluronic acid (HA) structured by 12-hydroxystearic acid (12-HSA), aiming at topical anti-aging application. Organogels containing or not containing HA were analyzed by Fourier-transform Infrared Spectroscopy, polarized light optical microscopy, thermal analysis, texture analysis, rheology, HA quantification and oxidative stability. The organogel containing hyaluronic acid (OG + HA) has a spherulitic texture morphology with a net-like structure and absorption bands that evidenced the presence of HA in the three-dimensional net of organogel. The thermal analysis confirmed the gelation and the insertion of HA, as well as a good thermal stability, which is also confirmed by the study of oxidative stability carried out under different temperature conditions for 90 days. The texture and rheology studies indicated a viscoelastic behavior. HA quantification shows the efficiency of the HA cross-linking process in the three-dimensional net of organogel with 11.22 µg/mL for cross-linked HA. Thus, it is concluded that OG + HA shows potentially promising physicochemical characteristics for the development of a cosmetic system.
Collapse
Affiliation(s)
| | - Maria Inês Ré
- IMT Mines Albi-Carmaux, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, Université de Toulouse, CEDEX 09, 81013 Albi, France
| | - José Otávio Carréra Silva-Júnior
- Laboratory R&D Pharmaceutical and Cosmetic, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
- Correspondence: ; Tel.: +55-91-3201-7203
| |
Collapse
|
16
|
Soodoo N, Bouzidi L, Narine S. Effect of Pendant Sulfide and Sulfonyl Groups on the Thermal, Flow, and Antioxidative Properties of Lipid-Based Aliphatic Monoesters. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navindra Soodoo
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| | - Laziz Bouzidi
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| | - Suresh Narine
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| |
Collapse
|
17
|
Shafika Abdul Kadir N, Khor YP, Lee YJ, Lan D, Qi S, Wang Y, Tan CP. Formation of 3-MCPD and glycidyl esters in biscuits produced using soybean oil-based diacylglycerol stearin-shortening blends: Impacts of different baking temperatures and blending ratios. Food Res Int 2022; 162:112055. [DOI: 10.1016/j.foodres.2022.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
18
|
Gao H, Gao W, Yang X, Liu Y, Wang Z. Malleability and Physicochemical Properties of Industrial Sheet Margarine with Shea Olein after Interesterification. Foods 2022; 11:foods11223592. [PMID: 36429184 PMCID: PMC9689388 DOI: 10.3390/foods11223592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The malleability of Industrial Sheet Margarine (ISM) is essential for the formation of consistent layered structures of pastry products. However, there is limited reporting on how to improve the malleability of ISM with zero trans fatty acids (TFA) at an industrial production scale. Therefore, herein, Shea Olein (SHOL), rich in stearic acid C18:0, was employed as a value-added formulation ingredient to replace palm olein (POL) in palm-based formula (palm stearin:palm kernel olein:palm olein, 50:15:35, w/w/w) and the chemical interesterification (CIE) fat as ISM material was performed to improve the application performance. The addition of SHOL improved the crystallization characteristics by increasing the β' crystal content from 70.86% to 92.29% compared with a POL-added formula. The hardness of the two formulations after CIE decreased by 60% and 65%, respectively, compared with that before CIE due to the decrease of PPP and POP, and the increase of POS and PSS triacylglycerols. Melting profiles, polymorphism, and crystal structures systematically proved the bending and sheeting features and functional properties. The bending abilities and malleability of ISM with SHOL and CIE fats were significantly improved, resulting in a more conducive application performance. The study provided a practical approach to improving the malleability of ISM in industrial-level production.
Collapse
Affiliation(s)
- Houbin Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wei Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaomin Yang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-15951581339
| |
Collapse
|
19
|
Perez-Santana M, Cagampang GB, Nieves C, Cedeño V, MacIntosh AJ. Use of High Oleic Palm Oils in Fluid Shortenings and Effect on Physical Properties of Cookies. Foods 2022; 11:foods11182793. [PMID: 36140921 PMCID: PMC9497844 DOI: 10.3390/foods11182793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Quality characteristics of bakery products rely partially on the amount and type of fats in their formulation. This study focused on producing emulsified shortenings with high oleic palm oil fractions to be thermo-mechanically characterized and used in the baking of high-fat cookies. Palm oil and hydrogenated fats were commonly used in bakery shortenings to achieve texture and flavor. However, saturated and trans-fats have been shown to cause detrimental health effects, motivating their replacement by unsaturated fats. High oleic palm oil (HOPO) is a novel oil with lower saturated fat and higher oleic acid compared to traditional palm oil (TPO). High oleic red olein (HORO) is a carotene-rich fraction of HOPO. Emulsified shortenings with 30% saturated fat containing HOPO, HORO, and TPO were produced. All shortenings resulted in similar onset temperatures of crystallization and melting points through DSC. Mid-melting peaks observed on TPO where absent in HOPO and HORO shortenings, reflected in lower hardness and calculated SFC of HOPO and HORO shortenings vs. TPO shortening. However, physical properties of shortening-containing cookies were not statistically different. It was demonstrated how HOPO and HORO can be used as alternative fats to TPO in the making of shortenings to be used in baking applications.
Collapse
|
20
|
Pinho LS, de Lima PM, de Sá SHG, Chen D, Campanella OH, da Costa Rodrigues CE, Favaro-Trindade CS. Encapsulation of Rich-Carotenoids Extract from Guaraná ( Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods 2022; 11:2557. [PMID: 36076743 PMCID: PMC9455470 DOI: 10.3390/foods11172557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla Magalhães de Lima
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Samuel Henrique Gomes de Sá
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | | | - Carmen Sílvia Favaro-Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
21
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
22
|
Classification, Processing Procedures, and Market Demand of Chinese Biscuits and the Breeding of Special Wheat for Biscuit Making. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6679776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the improvement of living standards, consumers’ demand for wheat food is gradually diversified. Biscuit, as a kind of convenience food, becomes a consumer’s leisure snack due to its characteristics such as low processing cost, easy-to-carry and convenient-to-eat traits, long shelf life, diverse varieties, and rich tastes, which have attracted more and more people. Biscuits are composed of four main ingredients, which are flour, fat/oil, sugar, and water, whereas several secondary ingredients also are important sources of high molecular carbohydrates, plant proteins, vitamins, and minerals for human beings. In this study, we systematically summarized the related research of biscuits, including the main types of China’s biscuits, the market demands, and statistics of wheat planting, production, and import in recent ten years, as well as the research of soft wheat breeding for biscuit. The flour consumption of biscuit industry has been maintained at more than 4 million tons, accounting for more than 30% of the flour consumption in food industry. The planting area of wheat in China has stabilized around 22.8 million hectares in 2010–2020, while the yield of wheat has increased 18.0% (20.86 million t) due to the increase of yield per unit of wheat. China’s total annual pastry import bill increased 5 times and the gap between import and export bill of pastry has been increased more than 7 times from 2010 to 2020, suggesting the strong demand of the national pastry market. This research also provides a direction for the future breeding of special soft wheat for biscuits in China.
Collapse
|
23
|
The interaction of polyglycerol esters with sorbitan tristearate, and sorbitan monostearate in structuring a low-saturated fat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Gomes da Silva M, Ramponi Rodrigues de Godoi K, Pavie Cardoso L, Paula Badan Ribeiro A. Effect of stabilization and fatty acids chain length on the crystallization behavior of interesterified blends during storage. Food Res Int 2022; 157:111208. [DOI: 10.1016/j.foodres.2022.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
|
25
|
Jones A, Martini S. Relationship between the physical properties of butter and water loss during lamination. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annalisa Jones
- Department of Nutrition, Dietetics, and Food Sciences Utah State University Logan Utah USA
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences Utah State University Logan Utah USA
| |
Collapse
|
26
|
Merlino M, Arena E, Cincotta F, Condurso C, Brighina S, Grasso A, Fallico B, Verzera A. Fat type and baking conditions for cookies recipe: a sensomic approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Merlino
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Elena Arena
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Fabrizio Cincotta
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Concetta Condurso
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Selina Brighina
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonia Grasso
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Biagio Fallico
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonella Verzera
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| |
Collapse
|
27
|
Li S, Zhu L, Wu G, Jin Q, Wang X, Zhang H. Relationship between the microstructure and physical properties of emulsifier based oleogels and cookies quality. Food Chem 2022; 377:131966. [PMID: 35008023 DOI: 10.1016/j.foodchem.2021.131966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 11/24/2022]
Abstract
In this paper, the correlation between microstructure and physical properties of emulsifier based oleogels and qualities of cookies, as well as the key factors affecting cookies hardness was studied by using four kinds of food-grade emulsifiers with different concentrations. Monoacylglycerol (MAG) and sorbitan monostearate (SPAN) cookies showed similar hardness and L*, a*, b* to those of shortening cookies, in the concentration range of 6-15% and 12-18%, respectively, and their cross sections are uniformly porous. The solid fat content and α crystals content of emulsifier based oleogels showed no significant effect on cookie hardness. Besides, oleogel cookies prepared with emulsifier gelators with higher hydrophile-lipophile balance value showed lower hardness. In the results, higher shear viscosity (at 25 °C) of emulsifier based oleogels were determined to be the key factor for softer cookies. This study provides theoretical support for the quality control of novel cookies with emulsifier based oleogels.
Collapse
Affiliation(s)
- Shiyi Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
28
|
Decision Tree of Materials: A Model of Halal Control Point (HCP) Identification in Small-Scale Bakery to Support Halal Certification. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:5244586. [PMID: 35465217 PMCID: PMC9019479 DOI: 10.1155/2022/5244586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
A bakery is a business that bakes flour-based foods, including bread, cookies, cakes, pastries, and pies, and sells them. Some bakeries are also categorized as large scale, medium scale, and small scale. Halal embraces all food category; bakery product can satisfy the challenge and opportunity of halal food segment market. The small-scale bakery will benefit from creating a halal certification to attract new customers. The first stage of submission for halal certification is identifying Halal Control Points (HCP) of materials and production. The material tracing uses a decision tree. The purpose of this study is to identify HCP in materials and production processes and provide alternative improvements. Identification of HCP in material decision trees to determine contains non-HCP (halal) material, HCP material, and haram (forbidden) material. Happy Cake bakery uses 75% non-HCP (halal) materials and 25% HCP (noncertified halal) materials from 80 ingredients. Bakery Canggi Fully has 83.3% halal materials and 16.6% noncertified halal materials from 24 ingredients. Bakery MacCheese has 79% of halal materials and 21% of noncertified halal materials from 43 ingredients. The decision tree makes it very easy to identify the halal status of ingredients. The HCP ingredients need to be replaced with clearly halal ingredients. Substitution of HCP material to halal-certified ingredients may affect production costs, product quality, and profit. Therefore, it is necessary to choose a suitable halal material. Halal certification requires a high commitment of small-scale bakery businesses.
Collapse
|
29
|
Kouhsari F, Saberi F, Kowalczewski PŁ, Lorenzo JM, Kieliszek M. Effect of the various fats on the structural characteristics of the hard dough biscuit. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Yazar G, Rosell CM. Fat replacers in baked products: their impact on rheological properties and final product quality. Crit Rev Food Sci Nutr 2022; 63:7653-7676. [PMID: 35285734 DOI: 10.1080/10408398.2022.2048353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many baked products, except for bread, (i.e., cakes, cookies, laminated pastries, and so on) generally contain high levels of fat in their formulas and they require different bakery fats that impart product-specific quality characteristics through their functionalities. Even though, fat is crucial for baked product quality, strategies have been developed to replace fat in their formulas as high fat intake is associated with chronic diseases such as obesity, diabetes, and cardiovascular heart diseases. Besides, the solid bakery fats contain trans- and saturated fats, and their consumption has been shown to increase total and low-density lipoprotein cholesterol levels and to constitute a risk factor for cardiovascular diseases when consumed at elevated levels. Therefore, the aim of this review was to provide a detailed summary of the functionality of lipids/fats (endogenous lipids, surfactants, shortening) in different baked products, the rheological behavior of bakery fats and their contribution to baked product quality, the impact of different types of fat replacers (carbohydrate-, protein-, lipid-based) on dough/batter rheology, and on the quality characteristics of the resulting reduced-fat baked products.
Collapse
Affiliation(s)
- Gamze Yazar
- Department of Animal, Veterinary and Food Sciences, University of Idaho, ID, USA
| | - Cristina M Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
32
|
Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Nam KH. Beef tallow injection matrix for serial crystallography. Sci Rep 2022; 12:694. [PMID: 35027663 PMCID: PMC8758675 DOI: 10.1038/s41598-021-04714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Serial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea. .,POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
34
|
Gao H, Gao W, Yang X, Liu Y, Wang Z. Effects of different tempering temperatures on the properties of industrial sheet margarine. RSC Adv 2022; 12:23311-23321. [PMID: 36090435 PMCID: PMC9380702 DOI: 10.1039/d2ra03999k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023] Open
Abstract
Tempering conditions have significant effects on the microstructure, physicochemical properties and application functionalities of ISM.
Collapse
Affiliation(s)
- Houbin Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- Wilmar (shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, 200137, China
| | - Wei Gao
- School of Materials Science and Engineering, Tianjin University of Technology. Tianjin, 300384, China
| | - Xiaomin Yang
- Wilmar (shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, 200137, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
35
|
Cui H, Li J, Xu X, Li J, Lu M, Song H, Wang S, Yang L, Zhu D, Liu H. Enzymatic interesterification of beef tallow/coconut oil blends to produce a superior margarine base stock. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Huaitian Cui
- College of Food Science and Technology Bohai University Jinzhou 121013 China
| | - Jun Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Xinyue Xu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
| | - Jiayi Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
| | - Miaomiao Lu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| |
Collapse
|
36
|
DUNDAR AN, AYDIN E, YILDIZ E, PARLAK O. Effects of chia seed on chemical properties and quality characteristics of regular and low-fat crackers. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.26120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
da Silva TLT, Fernandes GD, Arellano DB. Development of reduced saturated fat cookie fillings using multicomponent oleogels. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thais Lomonaco Teodoro da Silva
- Department of Food Technology, Faculty of Food Engineering University of Campinas (Unicamp) Cidade Universitária Zeferino Vaz Campinas Sao Paulo Brazil
- Science des Aliments et Formulation Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Gabriel Deschamps Fernandes
- Department of Food Technology, Faculty of Food Engineering University of Campinas (Unicamp) Cidade Universitária Zeferino Vaz Campinas Sao Paulo Brazil
| | - Daniel Barrera Arellano
- Department of Food Technology, Faculty of Food Engineering University of Campinas (Unicamp) Cidade Universitária Zeferino Vaz Campinas Sao Paulo Brazil
| |
Collapse
|
38
|
Celia CV, Adriana VC, Gaspar EC, Aurelio DL. Effect of baking powder as a substitute of pork lard on the texture of Mexican tamales. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Bharti D, Kim D, Cerqueira MA, Mohanty B, Habibullah SK, Banerjee I, Pal K. Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels 2021; 7:133. [PMID: 34563019 PMCID: PMC8482198 DOI: 10.3390/gels7030133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The use of an appropriate oleogelator in the structuring of vegetable oil is a crucial point of consideration. Sunflower wax (SFW) is used as an oleogelator and displays an excellent potential to bind vegetable oils. The current study aimed to look for the effects of hydrophobic (SPAN-80) and hydrophilic (TWEEN-80) emulsifiers on the oleogels prepared using SFW and sunflower oil (SO). The biodegradability and all formulations showed globular crystals on their surface that varied in size and number. Wax ester, being the most abundant component of SFW, was found to produce fibrous and needle-like entanglements capable of binding more than 99% of SO. The formulations containing 3 mg of liquid emulsifiers in 20 g of oleogels showed better mechanical properties such as spreadability and lower firmness than the other tested concentrations. Although the FTIR spectra of all the formulations were similar, which indicated not much variation in the molecular interactions, XRD diffractograms confirmed the presence of β' form of fat crystals. Further, the mentioned formulations also showed larger average crystallite sizes, which was supported by slow gelation kinetics. A characteristic melting point (Tm~60 °C) of triglyceride was visualized through DSC thermograms. However, a higher melting point in the case of few formulations suggests the possibility of even a stable β polymorph. The formed oleogels indicated the significant contribution of diffusion for curcumin release. Altogether, the use of SFW and SO oleogels with modified properties using biodegradable emulsifiers can be beneficial in replacing saturated fats and fat-derived products.
Collapse
Affiliation(s)
- Deepti Bharti
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Seoul 151742, Gwangwon-do, Korea;
| | - Miguel Angelo Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India; (B.M.); (S.H.)
| | - SK Habibullah
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India; (B.M.); (S.H.)
| | - Indranil Banerjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342037, India;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| |
Collapse
|
40
|
Fadini AL, Alvim ID, Carazzato CA, Paganotti KBDF, Miguel AMRDO, Rodrigues RAF. Microparticles loaded with fish oil: stability studies, food application and sensory evaluation. J Microencapsul 2021; 38:365-380. [PMID: 34278940 DOI: 10.1080/02652048.2021.1948622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
AIM Evaluate the stability of microparticles loaded with fish oil produced by spray drying, spray chilling and by the combination of these techniques (double-shell) and use the microparticles for food application. METHODS Samples were stored for 180 days at 6 °C and 24 °C (75% RH). Performed investigations included encapsulation efficiency, moisture content, aw, size (laser scattering), colour (L*, a*, b*), polyunsaturated fatty acids (PUFAs) (GC), thermal behaviour (DSC) and crystalline structure (XRD). RESULTS Double-shell microparticles containing 26 wt% core material, 22.74 ± 0.02 µm (D0.5) and 2.05 ± 0.03 span index, 1.262 ± 0.026 wt% moisture content and 0.240 ± 0.001 of aw had PUFAs retention higher than 90 wt% during storage at 6 °C without changes in crystalline structure (β'-type crystals) and melting temperature (54 °C). The sensory evaluation suggested low fish oil release in oral phase digestion. CONCLUSIONS Double-shell microparticles were effective to protect and deliver PUFAs.
Collapse
Affiliation(s)
- Ana Lúcia Fadini
- Cereal Chocotec, Institute of Food Technology, Campinas, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodney Alexandre Ferreira Rodrigues
- Phytochemistry Division, CPQBA, University of Campinas, Paulínia, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Study on the Introduction of Solid Fat with a High Content of Unsaturated Fatty Acids to Gluten-Free Muffins as a Basis for Designing Food with Higher Health Value. Int J Mol Sci 2021; 22:ijms22179220. [PMID: 34502126 PMCID: PMC8430945 DOI: 10.3390/ijms22179220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Shortenings are high in undesirable nutritionally saturated fatty acids. The aim of the study was to produce gluten-free muffins (GFM) of increased health quality and available to people intolerant to gluten, in which the shortenings were replaced with solid oleogels, consisting of 95% rapeseed oil. METHODS The dough and baked products were subjected to physical, textural, and structural analyses. Moreover, the fatty acids composition, chemical quality of fats extracted from muffins, and color of the products were determined. The dough was also observed at 600× magnification in bright field and polarized light microscopy, and microtomographic analysis of the structure of GTM was performed. RESULTS There was no effect of the type of lipids on physical properties, including water content in gluten-free muffins. However, the baked products differed in total porosity and brightness, as well as intensity of red and yellow colors. The use of rapeseed oil oleogels, instead of shortening in the muffin recipe, resulted in a decrease in the dietary undesirable SFA in lipid fractions (by approximately 40%), an increase in the content of MUFA (by approximately 30%), and an increase in the content of PUFA (by approximately 15%), with acceptable chemical quality. CONCLUSIONS Research confirms the possibility of obtaining products with increased nutritional value available to consumers on a gluten-free diet.
Collapse
|
42
|
Zhang Z, Lee WJ, Xie X, Ye J, Tan CP, Lai OM, Li A, Wang Y. Enzymatic Interesterification of Palm Stearin and Palm Olein Blend Catalyzed by sn-1,3-Specific Lipase: Interesterification Degree, Acyl Migration, and Physical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9056-9066. [PMID: 33433208 DOI: 10.1021/acs.jafc.0c06297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acyl migration of fatty acid at sn-2 is often observed alongside enzymatic interesterification (EIE), causing the loss of lipase selectivity toward the acyl group at sn-1,3. In this study, an oil blend consisting of palm stearin (PST) and palm olein (POL) was interesterified via a chemical interesterification (CIE) and enzymatic method using a packed bed reactor. Characterization in terms of the triacylglycerol (TAG) compositions, sn-2 fatty acid distributions, and solid fat content profiles was performed. In comparison to that of CIE fats, EIE fats showed different modification effects on the solid fat content. Under similar reaction conditions, different interesterification degrees (IDs) were obtained according to the various blend ratios. Using the same mass ratio of substrates (POL/PST of 9:1), the EIE reaction time and temperature affected the ID and the change in the fatty acyl group at the sn-2 position. Under the reaction time of 46 min, an ID of 94.41% was acquired, while at 80 °C, the degree of acyl migration at sn-2 was 92.87%. EIE with high acyl migration exhibited a lower crystallization rate than that of EIE with low acyl migration. However, the effect of acyl migration on crystal polymorphism and oxidative stability was insignificant. Outcomes from this study are meaningful for the establishment of a theoretical basis for a controlled positional-specific EIE that is catalyzed by sn-1,3-specific lipase.
Collapse
Affiliation(s)
- Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xiaodong Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jing Ye
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Chin Ping Tan
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Oi Ming Lai
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Aijun Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
43
|
Zhou X, Yeomans M, Thomas A, Wilde P, Linter B, Methven L. Individual differences in oral tactile sensitivity and gustatory fatty acid sensitivity and their relationship with fungiform papillae density, mouth behaviour and texture perception of a food model varying in fat. Food Qual Prefer 2021. [DOI: 10.1016/j.foodqual.2020.104116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, Wang Y, Nehdi IA, Tan CP. In-depth characterization of palm-based diacylglycerol-virgin coconut oil blends with enhanced techno-functional properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Pan H, Xu X, Qian Z, Cheng H, Shen X, Chen S, Ye X. Xanthan gum-assisted fabrication of stable emulsion-based oleogel structured with gelatin and proanthocyanidins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
de Oliveira PD, da Silva DA, Pires WP, Bezerra CV, da Silva LHM, da Cruz Rodrigues AM. Enzymatic interesterification effect on the physicochemical and technological properties of cupuassu seed fat and inaja pulp oil blends. Food Res Int 2021; 145:110384. [PMID: 34112430 DOI: 10.1016/j.foodres.2021.110384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/07/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
The objective of this work was to evaluate the effect of enzymatic interesterification process in blends with different proportions (w:w) of cupuassu fat and inaja oil (80:20, 70:30, 60:40, 50:50 and 40:60). The interesterification reaction was carried out at 65 °C, agitation at 150 rpm, and enzyme concentration of 5% (w/w), for 6 h. Acidity index, melting point, consistency and solid fat content of the blends were characterized before and after the interesterification process. Fatty acid content was characterized in cupuassu fat and inaja oil and, nutritional quality indexes of atherogenicity (AI) and thrombogenicity (TI) were calculated. Enzymatic interesterification promoted a decrease in acidity (<0.6%) and changes in the blends' properties, making them suitable for food product preparation. All esterified blends (cupuassu seed fat:inaja pulp oil) presented suitable consistency properties, plasticity and spreadability to be used for the preparation of functional, table and soft table types of margarine and used in food preparation such as special fats.
Collapse
Affiliation(s)
- Pedro Danilo de Oliveira
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Dayala Albuquerque da Silva
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Werbeth Pereira Pires
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Carolina Vieira Bezerra
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Luiza Helena Meller da Silva
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil.
| | - Antonio Manoel da Cruz Rodrigues
- Physical Measurement Laboratory, Postgraduate Program in Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| |
Collapse
|
47
|
Liu W, Liu D, Yao Y, Li C. Effects of Low-melting-point Fractions of Cocoa Butter on Rice Bran Wax-corn Oil Mixtures: Thermal, Crystallization and Rheological Properties. J Oleo Sci 2021; 70:491-502. [PMID: 33692236 DOI: 10.5650/jos.ess20250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fatty acid compositions, polymorphism, solid fat content (SFC), thermal properties, microstructure and rheological properties of fat blends of rice bran wax and corn oil (RWC) with low-melting-point fractions of cocoa butter (LFCB) in the range of 20-50% were investigated. With the raising content of LFCB, the hardness, SFC, storage modulus (G') and loss modulus (G'') of blend samples increased. The unsaturated fatty acids of blend samples with different LFCB proportion were in the range of 60.42% to 71.25%. Two kinds of polymorphism were observed in blend samples, which were β'-Form and β-Form. During the crystallization process, the rice bran wax was first crystallized, and then induced a part of LFCB formed β'-Form crystals and another LFCB formed the β-Form crystals. The results show that the addition of LFCB could improve the plasticity of fat blends and reduce the difference in properties between them and commercial shortening.
Collapse
Affiliation(s)
- Wentao Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Dan Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology
| |
Collapse
|
48
|
Shotts ML, Plans M, Wong K, Milligan AM, Aykas DP, Rodriguez-Saona LE. Application of Mid-Infrared Portable Spectrometer for the Rapid Determination of Trans-Fatty Acid Content in Lipid Extracts of Snack and Bakery Products. J AOAC Int 2021; 104:29-38. [PMID: 33313755 DOI: 10.1093/jaoacint/qsaa116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 08/16/2020] [Indexed: 11/14/2022]
Abstract
In 2015, the US Food and Drug Administration passed a ban on the "generally recognized as safe" status of partially hydrogenated oils (PHOs), and in June 2018, PHOs were prohibited from being used. Our objective was to develop a predictive model to quantify trans-fat concentrations in bakery and snacks products using a portable mid-infrared (MIR) spectrometer. The approach was tested using 24 calibration standards (consisting of trielaidin in triolein and tripalmitin) and 87 bakery and snack products ranging from ND to 65% trans-fat. The fat was extracted by grinding products into powders and extracting the fat using petroleum ether. Gas Chromatography (AOCS Cd 14c-94) was used to determine the fatty acid profile and trans-fat content. Spectra were acquired by directly placing the fat (200 μL) onto the heated (65 ± 1°C) 5-reflection ZnSe crystal of a portable MIR spectrometer. Partial least squares regression (PLSR) models were developed using the calibration standards and extracted fats spectra targeting the signal of the C-H out-of-plane deformation band at 966 cm-1. Best model performances were obtained using the spectra of the extracted fat from bakery and snack products with the standard error of prediction of 0.5 g of trans-fats per 100 g of fat. We found that 25% of products labeled as zero trans-fat/serving did not comply with the maximum tolerance levels based on GC-FAME analysis. Portable FTIR devices operating in attenuated total reflection (ATR) mode can provide the food industry and government food inspectors with rapid, accurate, and high throughput measurements for routine screening to facilitate regulatory compliance.
Collapse
Affiliation(s)
- Mei-Ling Shotts
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA
| | - Marcal Plans
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA
| | - Kevin Wong
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA
| | - Alex M Milligan
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA
| | - Didem P Aykas
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA.,Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis E Rodriguez-Saona
- The Ohio State University Department of Food Science and Technology, Parker Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Gutiérrez-Luna K, Astiasarán I, Ansorena D. Gels as fat replacers in bakery products: a review. Crit Rev Food Sci Nutr 2021; 62:3768-3781. [PMID: 33412906 DOI: 10.1080/10408398.2020.1869693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several strategies have been studied to replace or decrease fat content in bakery products aiming improving their nutritional profile. This paper reviewed the effect of different vehiculization systems (hydrogels, emulgels and oleogels) as fat replacers in different types of bakery goods, focusing on technological and nutritional properties of the reformulated products. The most commonly used fat source for replacement purposes were vegetable oils with high monounsaturated fatty acid content, such as olive oil and canola oil (44% of the revised papers used them), whereas high polyunsaturated fatty acid content oils were used in 34% of papers. Oleogelation was the most frequent used method of oil structuring, using waxes and fibers as stabilizers. Reductions of total fat between 19% and 46% and saturated fatty acid between 33% and 87% were achieved, enough to reach the minimum legal limit to state nutrition claims, under the EU legislation, on several products. Sensory evaluation results showed that partially replaced products (<75% replacement) were more appreciated by panelists than fully replaced ones. This review highlights the wide range of alternatives within gel-like fat replacers, that have potential to be applied in different bakery products and the challenge to produce nutritionally enhanced foods and technologically and sensory acceptable.
Collapse
Affiliation(s)
- Katherine Gutiérrez-Luna
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
50
|
Yılmaz B, Ağagündüz D. Fractionated palm oils: emerging roles in the food industry and possible cardiovascular effects. Crit Rev Food Sci Nutr 2021; 62:1990-1998. [PMID: 33393824 DOI: 10.1080/10408398.2020.1869694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The public health debate about fats and human health has been ongoing for a long time. Specifically, the fat types commonly used in the food industry and the techniques used in extracting them are remarkable in terms of human health. Among these, palm oil, which is mainly associated with cardiovascular disease (CVD), is a vegetable oil type that is widely used in the food industry. Moreover, the fractionation of palm oil has become quite common in the food industry when compared to other culinary oils and fats. Fractional crystallization, which has been recently regarded as an alternative to hydrogenization and interesterification methods, has become more popular in edible oil technology, even though it is an ancient method. The main fractions of palm oil are palm olein and palm stearin. Palm oil fractions, which have some pros and cons, are used in edible oils, such as margarine/shortening, as well as bread and cake-like pastry production. Since the fatty acid composition of palm oil, palm kernel oil, and their fractions is different, each type of oil needs to be evaluated separately with regards to their CVD effects and food preparation applications. However, the effects of the fractionation method and the fractional palm oil produced on health are controversial in the literature. In this review, the use of palm oil produced via the fractional crystallization method in the food industry and its potential CVD effects were evaluated.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | | |
Collapse
|