1
|
Yan C, Yu S, Zhang J, Li Z, Lin Z, Zhang S, Li H, Ye Z, Huang J, Ye Y, Zhuang G. TIPE Inhibits Ferroptosis in Colorectal Cancer Cells by Regulating MGST1/ALOX5. Mol Cancer Res 2025; 23:143-154. [PMID: 39513751 DOI: 10.1158/1541-7786.mcr-24-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
TIPE is a protein highly expressed in various cancers that promotes ferroptosis in colorectal cancer cells. Ferroptosis is a nonapoptotic cell death caused by lipid peroxidation, and microsomal glutathione transferase 1 (MGST1) is a critical enzyme that resists lipid peroxidation. This study explored how TIPE regulates MGST1 expression to inhibit ferroptosis and promote colorectal cancer proliferation. TIPE was highly expressed in colorectal cancer tissues and positively correlated with the proliferation of human colorectal cancer cells. We measured levels of reactive oxygen species and lipid reactive oxygen species in colorectal cancer cells with differential expression of TIPE and detected ferroptosis using transmission electron microscopy. Bioinformatics analysis revealed a positive correlation of expression patterns between TIPE and MGST1 in colorectal cancer. TIPE regulated the expression of MGST1 by activating the phosphorylation of ERK1/2. Coimmunoprecipitation revealed binding between MGST1 and ALOX5. This binding inhibited the phosphorylation of ALOX5, inhibiting ferroptosis and promoting the proliferation of colorectal cancer cells. A tumor formation experiment in nude mice supported our findings that TIPE regulates the proliferation of colorectal cancer by regulating ferroptosis. Implications: TIPE inhibits colorectal cancer ferroptosis via an MGST1-ALOX5 interaction to promote colorectal cancer proliferation. These findings suggest future colorectal cancer treatment strategies.
Collapse
Affiliation(s)
- Changxiu Yan
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Shengnan Yu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Jing Zhang
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhen Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shiying Zhang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Haoyang Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Zhijian Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiyi Huang
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, China
- Jiujiang Research Institute of Xiamen University, Jiujiang, China
| |
Collapse
|
2
|
Gao J, Zhang H, Zhang F. Research progress of TIPE2 in immune-related diseases. Int Immunopharmacol 2023; 121:110514. [PMID: 37348234 DOI: 10.1016/j.intimp.2023.110514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
The tumor necrosis factor α-induced protein 8 (TNFAIP8) family, which consists of TNFAIP8 (TIPE), TNFAIP8L1 (TIPE1), TNFAIP8L2 (TIPE2) and TNFAIP8L3 (TIPE3), has recently emerged as a regulatory factor involved in immune response and tumorigenesis. Among its members, TIPE2 acts as a negative regulator of both innate and adaptive immunity, playing a crucial role in maintaining immune homeostasis by negatively regulating T cell receptor (TCR) and toll-like receptor (TLR) signal transduction. Immune homeostasis is an indispensable characteristic of the immune system, which prevents harmful inflammatory reactions and ensures the proper functioning of the body. A large number of studies have shown that abnormal TIPE2 expression exists in a variety of inflammation-related diseases such as asthma, colitis, and systemic lupus erythematosus, highlighting the importance of comprehending its function for the prevention and treatment of immune-related conditions. This review aims to provide an overview of the in vivo distribution and expression of TIPE2, its regulatory role in central and peripheral immune-related diseases, and the underlying mechanisms that govern its function in the inflammatory response. By delving into these aspects, a deeper understanding of the role and functionality of TIPE2 in inflammatory responses can be achieved.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Hanting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| |
Collapse
|
3
|
Ueda Y, Miura Y, Tomishige N, Sugimoto N, Murase M, Kawamura G, Sasaki N, Ishiwata T, Ozawa T. Mechanistic insights into cancer drug resistance through optogenetic PI3K signaling hyperactivation. Cell Chem Biol 2022; 29:1576-1587.e5. [PMID: 36288730 DOI: 10.1016/j.chembiol.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
Hyperactivation of phosphatidylinositol 3-kinase (PI3K) signaling is a prominent feature in cancer cells. However, the mechanism underlying malignant behaviors in the state remains unknown. Here, we describe a mechanism of cancer drug resistance through the protein synthesis pathway, downstream of PI3K signaling. An optogenetic tool (named PPAP2) controlling PI3K signaling was developed. Melanoma cells stably expressing PPAP2 (A375-PPAP2) acquired resistance to a cancer drug in the hyperactivation state. Proteome analyses revealed that expression of the antiapoptotic factor tumor necrosis factor alpha-induced protein 8 (TNFAIP8) was upregulated. TNFAIP8 upregulation was mediated by protein translation from preexisting mRNA. These results suggest that cancer cells escape death via upregulation of TNFAIP8 expression from preexisting mRNA even though alkylating cancer drugs damage DNA.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Megumi Murase
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Bhowmik KK, Barek MA, Aziz MA, Islam MS. Susceptibility of TNFAIP8, TNFAIP8L1, and TNFAIP2 Gene Polymorphisms on Cancer Risk: A Comprehensive Review and Meta-Analysis of Case-Control Studies. Technol Cancer Res Treat 2022; 21:15330338221123109. [PMID: 36254562 PMCID: PMC9580160 DOI: 10.1177/15330338221123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Objectives: The TNFAIP8 gene family and TNFAIP2 gene are inextricably linked to an elevated risk of cancer development. This systemic review and meta-analysis seeks to establish the relationship between TNFAIP8 (rs11064, rs1045241, rs1045242, and rs3813308), TNFAIP8L1 (rs1060555), and TNFAIP2 (rs710100 and rs8126) polymorphisms with the risk of cancer. Methods and Materials: A systematic search of multiple databases from January 2022 to April 2022 was used to identify relevant studies. Odds ratios (ORs) with corresponding 95% CI and p-value were calculated to assess the association. Bonferroni correction was performed to correct p-values. Trial sequential analysis (TSA) and in-silico messenger RNA expression were also performed. Review Manager 5.4 software was used for performing this meta-analysis. Results: This study comprised 6909 cancer patients and 7087 healthy participants from 14 studies. Four genetic models of rs11064 (codominant 2 [COD2]: OR = 2.30, p = 7.83 × 10-5; codominant 3 [COD3]: OR = 2.10, p = .0006; recessive model [RM]: OR = 2.24, p = .0001; AC: OR = 1.47, p = .037), two genetic models of rs1045241 (codominant 1 [COD1]: OR = 1.27, p = .009; overdominant model [ODM]: OR = 1.24, p = .018), four genetic models of rs1045242 (COD1: OR = 1.52, p = .005; dominant model (DM): OR = 1.56, p = .002; OD: OR = 1.48, p = .008; AC: OR = 1.48, p = .002), and three genetic models of rs8126 (COD2: OR = 1.41, p = .0005; COD3: OR = 1.44, p = .0002; RM: OR = 1.43, p = .0001) were statistically linked to cancer risk. Only one genetic model of rs1060555 polymorphism showed a significant protective association with cancer (COD2: OR = 0.80, p = .048). The outcomes of TSA also validated the findings of the meta-analysis. Conclusion: This study summarizes that rs11064, rs1045241, and rs1045242 polymorphisms of TNFAIP8 gene and rs8126 polymorphism of TNFAIP2 gene are significantly linked with the risk of cancer development. This meta-analysis was registered at INPLASY (registration number: INPLASY202270073).
Collapse
Affiliation(s)
- Khokon Kanti Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Abdul Barek
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh,Mohammad Safiqul Islam, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh.
| |
Collapse
|
5
|
TNFAIP8 protein functions as a tumor suppressor in inflammation-associated colorectal tumorigenesis. Cell Death Dis 2022; 13:311. [PMID: 35387985 PMCID: PMC8986800 DOI: 10.1038/s41419-022-04769-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe−/− mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.
Collapse
|
6
|
Sun Y, Zhao J, Sun X, Ma G. Identification of TNFAIP8 as an Immune-Related Biomarker Associated With Tumorigenesis and Prognosis in Cutaneous Melanoma Patients. Front Genet 2021; 12:783672. [PMID: 34925463 PMCID: PMC8671633 DOI: 10.3389/fgene.2021.783672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor-α–induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which is associated with inflammation and tumorigenesis. The potential role of TNFAIP8 in a tumor immune microenvironment in skin cutaneous melanoma (SKCM) has not yet been investigated. The TNFAIP8 expression was evaluated via gene expression profiling interactive analysis (GEPIA). We also evaluated the influence of TNFAIP8 on overall survival via GEPIA and PrognoScan. After GO and KEGG pathway analyses, the correlation between the TNFAIP8 expression level and immune cells or gene markers of the immune infiltration level was explored by R-language. The result showed the TNFAIP8 expression was significantly reduced in SKCM in comparison with normal control. In SKCM, the TNFAIP8 expression in higher levels was associated with the better overall survival. The high expression of TNFAIP8 was positively correlated with the immune score and promoted immune cell infiltration in SKCM patients. TNFAIP8 can be a positive prognosis marker or new immunotherapy target in SKCM.
Collapse
Affiliation(s)
- Yuliang Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Department of Hand Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jianxiong Zhao
- Key Laboratory of Experimental Teratology, Department of Human Anatomy, Ministry of Education, Shandong University School of Medicine, Jinan, China
| | - Xiaoru Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Padmavathi G, Monisha J, Bordoloi D, Banik K, Roy NK, Girisa S, Singh AK, Longkumer I, Baruah MN, Kunnumakkara AB. Tumor necrosis factor-α induced protein 8 (TNFAIP8/TIPE) family is differentially expressed in oral cancer and regulates tumorigenesis through Akt/mTOR/STAT3 signaling cascade. Life Sci 2021; 287:120118. [PMID: 34740574 DOI: 10.1016/j.lfs.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Highest incidence of oral cancer is reported in India with reduced survival rate in the advanced stages due to lack of effective biomarkers. Therefore, it is essential to develop novel biomarkers for the better management of this disease. In the current study, TNFAIP8/TIPE protein family comprising of four proteins is explored for its role in oral cancer. METHODS IHC analysis of oral cancer TMA and Western blot analysis of tobacco treated oral cancer cells were performed to determine the differential expression of TIPE proteins in oral cancer. Further, CRISPR/Cas9-mediated gene editing was done to generate TIPE proteins' knockouts and MTT, colony formation, wound healing, cell cycle and Western blot analysis were performed to determine the effect of gene knockouts on various cancer hallmarks and the associated molecular targets of TIPE proteins. RESULTS AND DISCUSSION IHC results revealed that expression of TIPE, TIPE2 and TIPE3 were upregulated and TIPE1 was downregulated in oral cancer tissues compared to normal tissues. Similar results were observed upon treating oral cancer cells with tobacco carcinogens. Furthermore, knockout of TIPE or TIPE2 or TIPE3 significantly reduced the survival, proliferation, colony formation and migration of oral cancer cells whereas knockout of TIPE1 had an opposite effect. Further, TIPE, TIPE2 and TIPE3 knockout-mediated inhibition of proliferation was associated with inhibition of cell cycle progression at S or G2/M phases, and downregulation of proteins involved in cancer progression. We found that TIPE, TIPE1 and TIPE2 proteins regulate oral cancer progression through modulation of Akt/mTOR signaling cascade, whereas TIPE3 acts through an Akt-independent mTOR/STAT3 pathway. CONCLUSION Collectively, the TIPE proteins were proved to play significant roles in the progression of oral cancer thus warranting research and clinic attention for their therapeutic and prognostic values and raising the importance of specific targeting of TIPE proteins in cancer treatment.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Imliwati Longkumer
- North-East Cancer Hospital and Research Institute, Guwahati 781023, Assam, India
| | | | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Liu SQ, Ren C, Yao RQ, Wu Y, Luan YY, Dong N, Yao YM. TNF-α-induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis 2021; 12:1032. [PMID: 34718337 PMCID: PMC8557212 DOI: 10.1038/s41419-021-04327-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-β (TGF-β)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.
Collapse
Affiliation(s)
- Shuang-Qing Liu
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Zhang X, Li Z, Sun Y, Liu G, Liu X, Zhou Y. Overexpression of Tumour Necrosis Factor-α-Induced Protein 8 is Associated with Prognosis in Colon Cancer. Cancer Manag Res 2021; 13:4055-4065. [PMID: 34045895 PMCID: PMC8147554 DOI: 10.2147/cmar.s297451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The present study aimed to examine the association of tumour necrosis factor-α-induced protein 8 (TIPE) expression levels with clinicopathological features and prognosis of patients with colon cancer following surgery. Patients and Methods The present study included 200 patients with colon cancer who underwent colon resection between June 2011 and October 2012. All follow-ups were censored in July 2020, with a median follow-up time of 62.25 months. Kaplan-Meier survival curve analysis and Cox regression analysis were used to determine predictors for the overall survival rate. Results High expression of TIPE was associated with lymph node metastasis, higher Dukes' stage and right-sided colon cancer (RCC). An exploratory subgroup analysis found that high expression of TIPE was associated with age ≥65, lymphatic invasion and higher Dukes' stage only in the RCC group (P<0.05), whereas no similar trend was observed in the left-sided colon cancer (LCC) subgroup. Age ≥65, differentiation, lymph node metastasis and TIPE expression levels were independent prognostic factors influencing the survival rate of patients with colon cancer following surgery in multivariate Cox analysis (P<0.05). ROC curve analysis showed that the immunoreactive score of TIPE had good predictive value for five-year survival rates (AUC=0.727) and lymph node metastasis (AUC=0.760) among patients with RCC. Survival analysis revealed that the expression of TIPE had a significant impact on survival, and higher expression levels suggested a worse prognosis. Conclusion This study demonstrated that TIPE may be a novel biomarker for predicting the survival outcome and lymph node metastasis. TIPE was overexpressed in colon cancer tissue and significantly associated with poor patient survival, especially in patients with RCC.
Collapse
Affiliation(s)
- Xingqi Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zequn Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yuqi Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Gan Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaodong Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
10
|
Zhong M, Qiu X, Liu Y, Yang Y, Gu L, Wang C, Chen H, Liu Z, Miao J, Zhuang G. TIPE Regulates DcR3 Expression and Function by Activating the PI3K/AKT Signaling Pathway in CRC. Front Oncol 2021; 10:623048. [PMID: 33718119 PMCID: PMC7943851 DOI: 10.3389/fonc.2020.623048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-induced protein-8 (TIPE) is highly expressed in colorectal cancer (CRC). Decoy receptor 3 (DcR3) is a soluble secreted protein that can antagonize Fas ligand (FasL)-induced apoptosis and promote tumorigenesis. It remains unclear whether TIPE can regulate DcR3 expression. In this study, we examined this question by analyzing the relationship between these factors in CRC. Bioinformatics and tissue microarrays were used to determine the expression of TIPE and DcR3 and their correlation in CRC. The expression of TIPE and DcR3 in colon cancer cells was detected. Plasma samples were collected from CRC patients, and DcR3 secretion was measured. Then, dual-luciferase reporter gene analysis was performed to assess the interaction between TIPE and DcR3. We exogenously altered TIPE expression and analyzed its function and influence on DcR3 secretion. Lipopolysaccharide (LPS) was used to stimulate TIPE-overexpressing HCT116 cells, and alterations in signaling pathways were detected. Additionally, inhibitors were used to confirm molecular mechanisms. We found that TIPE and DcR3 were highly expressed in CRC patients and that their expression levels were positively correlated. DcR3 was highly expressed in the plasma of cancer patients. We confirmed that TIPE and DcR3 were highly expressed in HCT116 cells. TIPE overexpression enhanced the transcriptional activity of the DcR3 promoter. TIPE activated the PI3K/AKT signaling pathway to regulate the expression of DcR3, thereby promoting cell proliferation and migration and inhibiting apoptosis. In summary, TIPE and DcR3 are highly expressed in CRC, and both proteins are associated with poor prognosis. TIPE regulates DcR3 expression by activating the PI3K/AKT signaling pathway in CRC, thus promoting cell proliferation and migration and inhibiting apoptosis. These findings may have clinical significance and promise for applications in the treatment or prognostication of CRC.
Collapse
Affiliation(s)
- Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yu Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China.,General Surgery Center of Bazhong Central Hospital, Bazhong, China
| | - Yan Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Chenxi Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Huiyu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongchen Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiayin Miao
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Niture S, Lin M, Odera JO, Moore J, Zhe H, Chen X, Suy S, Collins SP, Kumar D. TNFAIP8 drives metabolic reprogramming to promote prostate cancer cell proliferation. Int J Biochem Cell Biol 2021; 130:105885. [PMID: 33227392 PMCID: PMC7770075 DOI: 10.1016/j.biocel.2020.105885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of TIPE/TNFAIP8 family, has been involved in the development and progression of various human cancers. We hypothesized that TNFAIP8 promotes prostate cancer (PCa) progression via regulation of oxidative phosphorylation (OXPHOS) and glycolysis. Ectopic expression of TNFAIP8 increased PCa cell proliferation/migration/spheroid formation by enhancing cell metabolic activities. Mechanistically, TNFAIP8 activated the PI3K-AKT pathway and up-regulated PCa cell survival. TNFAIP8 was also found to regulate the expression of glucose metabolizing enzymes, enhancing glucose consumption, and endogenous ATP production. Treatment with a glycolysis inhibitor, 2-deoxyglucose (2-DG), reduced TNFAIP8 mediated glucose consumption, ATP production, spheroid formation, and PCa cell migration. By maintaining mitochondrial membrane potential, TNFAIP8 increased OXPHOS and glycolysis. Moreover, TNFAIP8 modulates the production of glycolytic metabolites in PCa cells. Collectively, our data suggest that TNFAIP8 exerts its oncogenic effects by enhancing glucose metabolism and by facilitating metabolic reprogramming in PCa cells. Therefore, TNFAIP8 may be a biomarker associated with prostate cancer and indicate a potential therapeutic target.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Minghui Lin
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Joab O Odera
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004 China
| | - Xiaoxin Chen
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, WA, DC 20057, USA
| | - Sean P Collins
- Department of Radiation Medicine, Georgetown University Hospital, WA, DC 20057, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA.
| |
Collapse
|
12
|
Gu Z, Cui X, Sun P, Wang X. Regulatory Roles of Tumor Necrosis Factor-α-Induced Protein 8 Like-Protein 2 in Inflammation, Immunity and Cancers: A Review. Cancer Manag Res 2020; 12:12735-12746. [PMID: 33364825 PMCID: PMC7751774 DOI: 10.2147/cmar.s283877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays a vital role in regulating inflammatory responses, immune homeostasis, and cancer development. Over the last decade, studies have shown that TIPE2 protein is differentially expressed in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of inflammatory responses and immune homeostasis, and change the basic characteristics of cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and prognosis of various human diseases, this review will focus on the expression pattern, structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers.
Collapse
Affiliation(s)
- Zhengzhong Gu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
13
|
Rastgoo N, Wu J, Liu A, Pourabdollah M, Atenafu EG, Reece D, Chen W, Chang H. Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma. Haematologica 2020; 105:2813-2823. [PMID: 33256380 PMCID: PMC7716364 DOI: 10.3324/haematol.2019.227579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/27/2019] [Indexed: 12/04/2022] Open
Abstract
The mechanisms of drug resistance in multiple myeloma are poorly understood. Here we show that CD47, an integrin-associated receptor, is significantly upregulated in drug resistant myeloma cells in comparison with parental cells, and that high expression of CD47 detected by immunohistochemistry is associated with shorter progression free and overall survivals in multiple myeloma patients. We show that miR-155 is expressed at low levels in drug resistant myeloma cells and is a direct regulator of CD47 through its 3'UTR. Furthermore, low miR-155 levels are associated with advanced stages of disease. MiR-155 overexpression suppressed CD47 expression on myeloma cell surface, leading to induction of phagocytosis of myeloma cells by macrophages and inhibition of tumor growth. MiR-155 overexpression also re-sensitized drug-resistant myeloma cells to bortezomib leading to cell death through targeting TNFAIP8, a negative mediator of apoptosis in vitro and in vivo. Thus, miR-155 mimics may serve as a promising new therapeutic modality by promoting phagocytosis and inducing apoptosis in patients with refractory/relapsed multiple myeloma.
Collapse
Affiliation(s)
- Nasrin Rastgoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| | - Maryam Pourabdollah
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G. Atenafu
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Donna Reece
- Department of Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Hematology, Beijing Chaoyang Hospital, Capital University Beijing, Beijing, China
| |
Collapse
|
14
|
Al-Khatib SM, Abdo N, Al-Eitan LN, Al-Mistarehi AHW, Zahran DJ, Kewan TZ. LTA, LEP, and TNF-a Gene Polymorphisms are Associated with Susceptibility and Overall Survival of Diffuse Large B-Cell lymphoma in an Arab Population: A Case-Control Study. Asian Pac J Cancer Prev 2020; 21:2783-2791. [PMID: 32986381 PMCID: PMC7779465 DOI: 10.31557/apjcp.2020.21.9.2783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 01/08/2023] Open
Abstract
Objective: In this study, we aimed to explore the relationship between five selected proinflammatory and immune-mediated genes (TNF rs1800629G>A, rs361525G>A, rs1799964T>C, LTA rs1800683G>A, rs909253A>G, TNFAIP8 rs1042541C>T, LEPR rs1327118G>C, and LEP rs2167270G>A) and the risk and overall survival of DLBCL patients within the Jordanian Arab population. Methods: One hundred twenty-five patients (125) diagnosed with DLBCL at the King Abdullah University Hospital (KAUH) between 2013 and 2018 and 238 healthy cancer-free control subjects with similar geographic and ethnic backgrounds to the patients were included in the study. Genomic DNA was extracted from the formalin-fixed paraffin-embedded tissues of the subjects and from peripheral blood samples of the controls. The Sequenom MassARRAY® sequencer system (iPLEX GOLD) was used. The analyses included assessments of population variability and survival. Results: Our study showed significant differences in the distribution of the studied polymorphisms of DLBCL between the patients and controls for TNF rs1800629G>A, LTA rs909253 G>A and LEP rs2167270 G>A. TNF rs1800629G>A (p = 0.01), in which the G allele harbors a higher risk of DLBCL (GG and GA genotypes when compared with AA genotype) (p = 0.044). The LTA rs909253 A>G polymorphism is associated with a higher risk of DLBCL in the allelic model (p = .004). LEP rs2167270 G>A polymorphism is associated with a decreased risk of DLBCL in the recessive mode models (p = .03). Subjects with the dominant model for TNF-a rs1799964 (TT genotype in comparison with the combined TT/TC genotype) and patients with the homozygous genotype (GG) of rs361525 have better overall survival rates. Conclusion: Our results confirmed the diversity and the heterogeneity of the disease. Although the study has a limitation because of its relatively small size, it clearly emphasizes the significance of ancestry and genetic composition as the determinants of DLBCL risk and behavior.
Collapse
Affiliation(s)
- Sohaib M Al-Khatib
- Department of Pathology and Laboratory Medicine Jordan University of Science and Technology Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel-Hameed W Al-Mistarehi
- Department of Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Deeb Jamil Zahran
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tariq Zuheir Kewan
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.,Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Pang Y, Zhao Y, Wang Y, Wang X, Wang R, Liu N, Li P, Ji M, Ye J, Sun T, Li J, Ma D, Lu F, Ji C. TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:158. [PMID: 32795319 PMCID: PMC7427779 DOI: 10.1186/s13046-020-01658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and evasion of apoptosis is among the fundamental underlying mechanisms. Therefore, unraveling molecular networks that drive this process constitutes an urgent unmet need. Herein, we aim to characterize the role and molecular mechanism of the tumor necrosis factor ɑ-induced protein 8 (TNFAIP8), a novel anti-apoptotic molecule, in AML chemoresistance. Methods The expression levels of TNFAIP8 were assessed in AML patients and cell lines by RT-qPCR and western blots. The transcriptional regulation of TNFAIP8 was analyzed with luciferase reporter assay and ChIP followed by RT-qPCR. Functional experiments were conducted to evaluate the effects of TNFAIP8 on apoptosis, drug sensitivity and proliferation of AML cells. Potential effects of TNFAIP8 on the activation of extracellular signal-regulated kinase (ERK) pathway were detected by western blots. CoIP and P21-activated kinase (PAK) pull-down assay were performed to ascertain the upstream target. The overall effects of TNFAIP8 on AML were examined in murine models. Results Upregulated TNFAIP8 expression was first confirmed in human AML patients and cell lines. E74 like ETS transcription factor 1 (ELF1) was then identified to contribute to its aberrant expression. Through manipulating TNFAIP8 expression, we described its role in protecting AML cells from apoptosis induced by chemotherapeutic agents and in promoting drug resistance. Notably, the leukemia-promoting action of TNFAIP8 was mediated by sustaining activity of the ERK signaling pathway, through an interaction with Rac family small GTPase 1 (Rac1). In addition, in vivo experiments confirmed that TNFAIP8 suppression lowered leukemia infiltration and improved survival. Conclusion Our data provide a molecular basis for the role of TNFAIP8 in chemoresistance and progression of AML and highlight the unique function of TNFAIP8 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yan Wang
- Department of Hematology, Taian central hospital, Taian, 271000, Shandong, China
| | - Xinlu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Tian Z, Shofer FS, Yao L, Sun H, Zhang H, Qin L, Chen YH, Zhang Y. TNFAIP8 family gene expressions in the mouse tail intervertebral disc injury model. JOR Spine 2020; 3:e1093. [PMID: 32613168 PMCID: PMC7323467 DOI: 10.1002/jsp2.1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/25/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The TNF-α-induced protein-8 (TNFAIP8, also known as TIPE) family of molecules comprises four members: TNFAIP8 and TIPEs1-3. Since the first description of these proteins, their roles in fine-tuning inflammation and in directing leukocyte migration have been described in several organ systems. However, their relationship with intervertebral disc (IVD) is unknown. MATERIALS AND METHODS Here, we describe the expression of TNFAIP8 family genes in the nucleus pulposus (NP) and annulus fibrosus (AF) of the normal adult murine IVD. We further describe the expression of these genes in the injured male and female murine IVD. RESULTS Tnfaip8 gene expression was decreased, and Tipe1 gene expression was essentially unchanged, in response to injury. Tipe2 and Tipe3 gene expression was markedly elevated in response to IVD injury, along with those encoding known inflammatory markers (ie, Tnfa, Il6, Cxcl1, and Adam8). Additionally, sex-related differences were also observed for some of these genes in intact and injured mouse IVDs. Future studies include examining tissue distribution of TNFAIP8 family proteins and identifying cells that produce them. In addition, examining mice that are deficient in TNFAIP8 molecules, in relation to gene expression, tissue morphology and mouse behavior, may further delineate the roles of these molecules in IVD inflammation and degeneration.
Collapse
Affiliation(s)
- Zuozhen Tian
- Department of Physical Medicine & RehabilitationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Frances S. Shofer
- Department of Emergency MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lutian Yao
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedics/Sports Medicine and Joint Surgery, First Affiliated HospitalChina Medical UniversityShenyangLiaoningChina
| | - Honghong Sun
- Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hongtao Zhang
- Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ling Qin
- Department of Emergency MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Youhai H. Chen
- Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- Department of Physical Medicine & RehabilitationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research Center (TMRC)Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Guo F, Yuan Y. Tumor Necrosis Factor Alpha-Induced Proteins in Malignant Tumors: Progress and Prospects. Onco Targets Ther 2020; 13:3303-3318. [PMID: 32368089 PMCID: PMC7182456 DOI: 10.2147/ott.s241344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is the first cytokine used in tumor biotherapy, but TNF-related drugs are limited by the lack of specific targets. Tumor necrosis factor alpha-induced proteins (TNFAIPs), derived from TNF, is a protein family and participates in proliferation, invasion and metastasis of tumor cells. In order to better understand biological functions and potential roles of TNFAIPs in malignant tumors, this paper in the form of “Gene–Protein–Tumor correlation” summarizes the biological characteristics, physiological functions and mechanisms of TNFAIPs by searching National Center of Biotechnology Information, GeneCards, UniProt and STRING databases. The relationship between TNFAIPs and malignant tumors is analyzed, and protein–protein interaction diagram in members of TNFAIPs is drawn based on TNF for the first time. We find that TNF as a key factor is related to TNFAIP1, TNFAIP3, TNFAIP5, TNFAIP6, TNFAIP8 and TNFAIP9, which can be directly involved in activating TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIP9. We confirm that the mechanism of TNFAIP1, TNFAIP2 and TNFAIP3 inducing tumors may be related to NF-κB signaling pathway, but the mechanism of tumor induction by other members of TNFAIPs is not clear. In the future, translational studies are needed to explore the mechanisms of TNF-TNFAIPs-tumors.
Collapse
Affiliation(s)
- Fang Guo
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China.,Department of Oncology, PLA Cancer Center, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuan Yuan
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
18
|
Ludwig N, Lotze MT. A treatise on endothelial biology and exosomes: homage to Theresa Maria Listowska Whiteside. HNO 2020; 68:71-79. [PMID: 31965194 DOI: 10.1007/s00106-019-00803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are the current primary research focus of Dr. Theresa L. Whiteside. They are key mediators of intercellular communication in the head and neck, as well as other sites. Their effects in the tumor microenvironment are manifold and include suppression of immunity, promotion of angiogenesis, enabling of metastasis, as well as reprogramming of fibroblasts and mesenchymal stromal cells. The aim of this communication is to summarize Dr. Whiteside's contribution to the field of exosome research and details the interactions of exosomes with endothelial cells leading to recent findings on how to target endothelial cells using exosomes as a therapeutic approach.
Collapse
Affiliation(s)
- N Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Surgery, Cardiothoracic Surgery, Bioengineering and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M T Lotze
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, G.27A, 5150 Centre Ave, 15213, Pittsburgh, PA, USA. .,Departments of Surgery, Cardiothoracic Surgery, Bioengineering and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Zhang X, Wang X, Khurm M, Zhan G, Zhang H, Ito Y, Guo Z. Alterations of Brain Quantitative Proteomics Profiling Revealed the Molecular Mechanisms of Diosgenin against Cerebral Ischemia Reperfusion Effects. J Proteome Res 2020; 19:1154-1168. [DOI: 10.1021/acs.jproteome.9b00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinxin Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Xingbin Wang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Muhammad Khurm
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanqun Zhan
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hui Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20814, Maryland, United States
| | - Zengjun Guo
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
20
|
Zhong M, Li N, Qiu X, Ye Y, Chen H, Hua J, Yin P, Zhuang G. TIPE regulates VEGFR2 expression and promotes angiogenesis in colorectal cancer. Int J Biol Sci 2020; 16:272-283. [PMID: 31929755 PMCID: PMC6949158 DOI: 10.7150/ijbs.37906] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Metastasis is the leading cause of death in colorectal cancer (CRC) patients. It is regulated mainly by tumor cell angiogenesis, and angiogenesis is caused by the binding of vascular endothelial growth factor (VEGF) to vascular endothelial growth factor receptor 2 (VEGFR2). Tumor necrosis factor-α-induced protein 8 (TNFAIP8, hereto after TIPE) plays an important role in tumorigenesis, development, and prognosis. However, the relationship between TIPE and VEGFR2 in CRC angiogenesis and the mechanism of action remain unknown. Method: In this study, we used quantitative real-time PCR, Western blotting and immunohistochemistry to detect TIPE and VEGFR2 expression in 55 specimens from CRC patients. We also used HCT116 CRC cells and human umbilical vein endothelial cells (HUVECs) for in vitro experiments by stably transducing shTIPE and shRNA control lentivirus into HCT116 cells, detecting VEGFR2 expression after TIPE knockdown and repurposing the culture supernatant as conditioned medium to stimulate angiogenesis of HUVECs. In vivo experiments with chicken chorioallantoic membranes (CAMs) and a nude mouse matrix subcutaneous tumor model were performed to validate the effects of TIPE on angiogenesis. Additionally, we analyzed the expression and phosphorylation levels of PDK1 and blocked PDK1 expression using inhibitors to determine whether TIPE-induced changes in VEGFR2-mediated angiogenesis acted via the PI3K-Akt pathway. Results: We found that TIPE and VEGFR2 are highly expressed in CRC and act as oncogenes. TIPE knockdown also downregulated VEGFR2 expression, which resulted in simultaneous inhibition of cell proliferation, cell migration and angiogenesis. Then, in vivo experiments further demonstrated that TIPE promotes angiogenesis in CRC. Finally, we found that TIPE promotes VEGFR2-mediated angiogenesis by upregulating PDK1 expression and phosphorylation and that blocking PDK1 expression can inhibit this process. Conclusion: TIPE promotes angiogenesis in CRC by regulating the expression of VEGFR2, which may be a target for antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Nini Li
- Department of Pathology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huiyu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianyu Hua
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping Yin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Guohong Zhuang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Kumari R, Palaniyandi S, Strattan E, Huang T, Kohler K, Jabbour N, Dalland J, Du J, Kesler MV, Chen YH, Hildebrandt GC. TNFAIP8 Deficiency Exacerbates Acute Graft Versus Host Disease in a Murine Model of Allogeneic Hematopoietic Cell Transplantation. Transplantation 2019; 104:500-510. [PMID: 31634333 DOI: 10.1097/tp.0000000000003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gastrointestinal acute graft-versus-host disease (GVHD) occurring after allogeneic hematopoietic cell transplant is an allo-reactive T cell and inflammatory cytokine driven organ injury with epithelial apoptosis as 1 of its hallmark findings and is associated with significant mortality. Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) acts as a negative mediator of apoptosis via inhibition of caspase-3 activation, promotes cell proliferation and Tipe deficiency is associated with increased inflammation. METHODS To evaluate the role of TIPE in acute GVHD, naive C57BL/6 and Tipe C57BL/6 mice were conditioned with 1000 cGy single dose total body irradiation, followed by transplantation of 10 million bone marrow cells and 20 million splenocytes from either syngeneic C57BL/6 or allogeneic BALB/c donors. RESULTS Allo TIPE-deficient mice developed exacerbated gut GVHD compared with allo controls and had significantly decreased survival (6 wk overall survival: 85% versus 37%; P < 0.05), higher clinical GVHD scores, more profound weight loss, increased serum proinflammatory cytokines (interleukin-17A, TNF, interleukin-6, and interferon-γ). T-cell infiltration into the ileum was increased; epithelial proliferation was decreased along with significantly higher levels of chemokines KC and monokine induced by gamma interferon. Using bone marrow chimeric experiments, TIPE was found to have a role in both hematopoietic and nonhematopoietic cells. CONCLUSIONS Absence of TIPE results in excessive inflammation and tissue injury after allo-HCT, supporting that TIPE confers immune homeostasis and has tissue-protective function during the development of gut GVHD and may be a potential future target to prevent or treat this complication after allogeneic HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Timothy Huang
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Katharina Kohler
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Nashwan Jabbour
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Joanna Dalland
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Jing Du
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Melissa V Kesler
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Gerhard C Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| |
Collapse
|
22
|
Wu S, Li W, Wu Z, Cheng T, Wang P, Li N, Liang X, Chi M, Zhang S, Ma Y, Li Y, Chai L. TNFAIP8 promotes cisplatin resistance in cervical carcinoma cells by inhibiting cellular apoptosis. Oncol Lett 2019; 17:4667-4674. [PMID: 30944654 PMCID: PMC6444441 DOI: 10.3892/ol.2019.10076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer is the second most prevalent malignant tumor in women worldwide. Failure of successful treatment is most prevalent in patients with the metastatic disease and the chemotherapy refractory disease. Tumor necrosis factor α-induced protein 8 (TNFAIP8) serves as an anti-apoptotic and pro-oncogenic protein, and is associated with cancer progression and poor prognosis in a number of different cancer types. However, the physiological and pathophysiological roles of TNFAIP8 in cervical carcinogenesis and development remain poorly understood. In the present study, it was demonstrated that TNFAIP8 protein expression levels were significantly increased in cervical cancer tissues compared with the non-tumor adjacent tissues using immunohistochemistry. Additionally, it was demonstrated that TNFAIP8 overexpression is associated with cisplatin resistance. Furthermore, depletion of TNFAIP8 impaired HeLa cell proliferation and viability in vitro, improved cisplatin sensitivity, and promoted cisplatin-induced cellular apoptosis and death. Subsequent mechanistic analysis demonstrated that TNFAIP8 silencing promoted caspase-8/-3 activation and p38 phosphorylation in HeLa cells treated with cisplatin, whereas apoptosis regulator B-cell lymphoma-2 expression was inhibited with TNFAIP8-silenced HeLa cells following treatment with cisplatin. These data suggested that TNFAIP8 serves as an anti-apoptotic protein against cisplatin-induced cell death, which eventually leads to chemotherapeutic drug-treatment failure. Therefore, the present data suggested that TNFAIP8 may be a promising therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Suxia Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Pathology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Weihua Li
- Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Zhenghui Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Tianran Cheng
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ping Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Na Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Xiaonan Liang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Mengmeng Chi
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Shuman Zhang
- Department of Gynaecology and Obstetrics, Affiliated Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| | - Yanyun Li
- Department of Gynaecology and Obstetrics, Affiliated Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
- Department of Immunology, Henan University School of Basic Medical Sciences, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
23
|
Liu T, Jiang L, Yu L, Ge T, Wang J, Gao H. Association of TNFAIP8 gene polymorphisms with endometrial cancer in northern Chinese women. Cancer Cell Int 2019; 19:105. [PMID: 31043860 PMCID: PMC6480735 DOI: 10.1186/s12935-019-0827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Tumor necrosis factor-a-induced protein 8 (TNFAIP8) presented a elevated expression in endometrial cancer (EC). However, the relationship of TNFAIP8 gene polymorphisms with EC risk remains unclear. This case–control study aimed to investigate the effect of single nucleotide polymorphisms (SNPs) in TNFAIP8 on northern Chinese women with EC. Methods SNP rs11064, rs1045241, and rs1045242 in TNFAIP8 were successfully genotyped in 248 cancer-free controls and 226 ECs by SNaPshot method, respectively. Logistic regression was performed to assess relationship of SNPs with EC risk. The relationships of SNPs with clinicopathological variables were evaluated by Chi-square test or Student’s t-test or Fisher’s text. Results The minor alleles of rs11064 in TNFAIP8 were strongly associated with EC risk, with adjust odds ratio (OR) of 1.719 (95% CI 1.180–2.506, P = 0.005). The minor allele of rs1045242 in the TNFAIP8 gene was strongly associated with with EC risk (adjust OR: 1.636, 95% CI 1.107–2.417, P = 0.014). rs11064 SNPs correlated with TNFAIP8 protein expression in EC (P = 0.015). For rs1045242, patients with AG + GG presented higher TNFAIP8 protein expression than that with AA (P = 0.020). It also showed that SNP rs11064 was associated with advanced FIGO stage (P = 0.001), deep myometrial invasion (P = 0.047), and lymph node metastasis (P = 0.048) under the codominant model in ECs. Conclusions SNP rs11064 in TNFAIP8 increased EC risk and significantly related with its protein expression in northern Chinese women. Electronic supplementary material The online version of this article (10.1186/s12935-019-0827-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianbo Liu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Liangliang Jiang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Libo Yu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Tingting Ge
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Jing Wang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Hongyu Gao
- 2Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| |
Collapse
|
24
|
Niture S, Dong X, Arthur E, Chimeh U, Niture SS, Zheng W, Kumar D. Oncogenic Role of Tumor Necrosis Factor α-Induced Protein 8 (TNFAIP8). Cells 2018; 8:cells8010009. [PMID: 30586922 PMCID: PMC6356598 DOI: 10.3390/cells8010009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) is a founding member of the TIPE family, which also includes TNFAIP8-like 1 (TIPE1), TNFAIP8-like 2 (TIPE2), and TNFAIP8-like 3 (TIPE3) proteins. Expression of TNFAIP8 is strongly associated with the development of various cancers including cancer of the prostate, liver, lung, breast, colon, esophagus, ovary, cervix, pancreas, and others. In human cancers, TNFAIP8 promotes cell proliferation, invasion, metastasis, drug resistance, autophagy, and tumorigenesis by inhibition of cell apoptosis. In order to better understand the molecular aspects, biological functions, and potential roles of TNFAIP8 in carcinogenesis, in this review, we focused on the expression, regulation, structural aspects, modifications/interactions, and oncogenic role of TNFAIP8 proteins in human cancers.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Xialan Dong
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | | | - Weifan Zheng
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
25
|
Wang J, Gao H, Liu G, Gu L, Yang C, Zhang F, Liu T. Tumor necrosis factor α–induced protein 8 expression as a predictor of prognosis and resistance in patients with advanced ovarian cancer treated with neoadjuvant chemotherapy. Hum Pathol 2018; 82:239-248. [DOI: 10.1016/j.humpath.2018.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 10/28/2022]
|
26
|
Ren XY, Wen X, Li YQ, Zhang J, He QM, Yang XJ, Tang XR, Wang YQ, Zhang PP, Chen XZ, Cheng B, Ma J, Liu N. TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:227. [PMID: 30217224 PMCID: PMC6137889 DOI: 10.1186/s13046-018-0881-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022]
Abstract
Background Increasing evidence recognizes that DNA methylation abnormalities play critical roles in cancer development. Our previous genome-wide methylation profile showed that tumor necrosis factor-alpha-induced protein 8 like 3 (TIPE3) was hypermethylated in nasopharyngeal carcinoma (NPC). However, the relationship between TIPE3 methylation and its mRNA expression, as well as its biological roles in NPC are unknown. Methods Bisulfite pyrosequencing and quantitative RT-PCR were performed to quantify the TIPE3 methylation and expression levels. Kaplan-Meier curves and Cox regression analysis were used to estimate the correlation between TIPE3 methylation levels and survival in two patient cohorts collected from two hospitals (n = 441). The MTT, colony formation, Transwell migration and invasion assays, and xenograft tumor growth and lung metastatic colonization models were used to identify the functions of TIPE3 on NPC cells. Results We found that TIPE3 CpG island (CGI) was hypermethylated and its mRNA levels were downregulated in many cancers, including NPC. TIPE3 downregulation was associated with its CGI hypermethylation. Furthermore, NPC patients with high TIPE3 CGI methylation levels had poorer clinical outcomes than those with low methylation levels. The TIPE3 CGI methylation level was an independent prognostic factor. Moreover, restoring TIPE3 expression significantly inhibited NPC cell proliferation, migration and invasion in vitro, and suppressed tumor growth and lung metastatic colonization in vivo, while silencing TIPE3 acted in an opposite way. Conclusions TIPE3 downregulation correlates with its CGI hypermethylation in several solid cancers. TIPE3 acts as a tumor suppressor in NPC, providing a further insight into NPC progression and representing a potential prognostic biomarker for NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0881-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Yue Ren
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xin Wen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
27
|
Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Lett 2018; 432:260-271. [DOI: 10.1016/j.canlet.2018.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
|
28
|
Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed Pharmacother 2018; 106:1325-1331. [PMID: 30119203 DOI: 10.1016/j.biopha.2018.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/27/2022] Open
Abstract
AIMS In this animal study, we tried to test the hypothesis that apocynin could play an anti-inflammation role by inhibiting NLRP3/X-linked inhibitor of apoptosis protein (XIAP) signalling and have an effect on antifibrosis in rats with diabetic nephropathy. MAIN METHODS Diabetic nephropathy rats were induced by tail-vein injection of streptozotocin at 60 mg/kg body weight in sodium citrate buffer (0.01 M, pH 4.5) with unrestricted access to food/water for 12 weeks, and rats with blood glucose levels above 18.0 mM were considered diabetic; the damage index for glomerular mesangial cells damage index was calculated by morphological examinations; protein and mRNA changes were analysed by western blotting immunohistochemistry and real-time quantitative polymerase chain reaction; interstitial fibrosis was assessed and scored using Masson's staining. KEY FINDINGS In rats with diabetic nephropathy, apocynin (1) reduced renal injury and improved renal function; (2) downregulated the expression of NLRP3 in renal cortex; (3) downregulated the expression of XIAP in renal cortex; and (4) attenuated renal fibrosis. SIGNIFICANCE As an inhibitor of reactive oxygen species (ROS), apocynin could downregulate the expression of NLRP3 and XIAP, and alleviate renal fibrosis, which meant not only that ROS was one type of ligands of NLRP3, but also that ROS mechanism and NLRP3 activation might be therapeutic targets in the treatment of diabetic nephropathy in the future.
Collapse
|
29
|
Niture S, Ramalinga M, Kedir H, Patacsil D, Niture SS, Li J, Mani H, Suy S, Collins S, Kumar D. TNFAIP8 promotes prostate cancer cell survival by inducing autophagy. Oncotarget 2018; 9:26884-26899. [PMID: 29928491 PMCID: PMC6003558 DOI: 10.18632/oncotarget.25529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is a TNF-α inducible anti-apoptotic protein with multiple roles in tumor growth and survival. Mechanisms of cell survival by TNFAIP8 remain elusive. We investigated the role of TNFAIP8 in the regulation of the cell cycle, autophagy, cell survival and neuroendocrine differentiation in prostate cancer cells. We showed that TNFAIP8 dysregulates cell-cycle-related proteins, in PC3 cells. Oncogenic cell survival, drug resistance and dysregulation of cell cycle-related proteins are often associated with autophagy. We demonstrated that TNFAIP8 induces autophagy by increasing expression of autophagy effectors such as LC3β I/II, Beclin1, 4EBP1, p62, and SIRT1. We also demonstrated that TNFAIP8 interacts with autophagy-related protein 3 (ATG3). TNFα treatment increased the expression of TNFAIP8, which was associated with increased autophagy and decreased apoptosis. We also observed an increase in expression of neuroendocrine differentiation markers, synaptophysin and chromogranin A, and drug resistance to anticancer drugs, docetaxel and doxorubicin, in cells transfected with TNFAIP8. Collectively, our findings reveal that by the creation of cellular autophagy events, TNFAIP8 promotes cell survival and drug resistance in prostate cancer cells.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Malathi Ramalinga
- Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Habib Kedir
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Dorrelyn Patacsil
- Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | | | - James Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, Falls Church, 22042 VA, USA
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Sean Collins
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| |
Collapse
|
30
|
Zhang L, Liu R, Luan YY, Yao YM. Tumor Necrosis Factor-α Induced Protein 8: Pathophysiology, Clinical Significance, and Regulatory Mechanism. Int J Biol Sci 2018; 14:398-405. [PMID: 29725261 PMCID: PMC5930472 DOI: 10.7150/ijbs.23268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α-induced protein-8 (TNFAIP8) is the earliest discovered component of TNFAIP8 family [tumor necrosis factor-α-induced protein-8 like (TIPE) family]. TNFAIP8 contains a putative death effector domain (DED) homologous to DED II in FLIP (Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein), which may affect cell survival/death process. Recently, it has been demonstrated that TNFAIP8 could inhibit apoptosis and autophagy in various types of cells. Moreover, TNFAIP8 level fluctuated evidently in patients with inflammatory, malignant, and autoimmune diseases, indicating that it might be an anti-apoptotic and oncogenetic protein. Herein we will review the discovery, gene/protein structure, pathophysiological functions, and clinical significance of TNFAIP8 together with its potential regulatory mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.,Emergency Department, The General Hospital of the Chinese PLA Rocket Force, Beijing 100088, People's Republic of China
| | - Ran Liu
- Department of Endocrinology, 307th Hospital of the Chinese PLA, Beijing 100071, People's Republic of China
| | - Ying-Yi Luan
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| |
Collapse
|
31
|
Luan YY, Yao RQ, Tong S, Dong N, Sheng ZY, Yao YM. Effect of tumor necrosis factor-α induced protein 8 like-2 on immune function of dendritic cells in mice following acute insults. Oncotarget 2017; 7:30178-92. [PMID: 27029075 PMCID: PMC5058673 DOI: 10.18632/oncotarget.8398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-α induced protein 8 like-2 (TNFAIP8L2, TIPE2) is a lately discovered negative regulator of innate immunity and cellular immunity. The present study was designed to investigate whether naturally occurring dendritic cells (DCs) could express TIPE2 mRNA/protein and its potential significance. Expressions of co-stimulatory molecules on DC surface and cytokines were analyzed to assess the functional role of TIPE2 in controlling DC maturation as well as activation. The activated DCs were assessed for their capacity to stimulate the proliferation and differentiation of T cells. It was found that TIPE2 was a cytoplasmic protein expressed in DCs, and the percentage of DCs which expressed co-stimulatory molecules and cytokines were obviously up-regulated when TIPE2 gene silenced by siRNA in vitro and in vivo. DCs undergone TIPE2 knockdown were found to promote the maturation of DCs, T-cell proliferation as well as differentiation, and they were significantly elevated IL-2 level and intranuclear NF-AT activation. Conversely, in over-expressing TIPE2 DC cells, it could inhibit T-cell proliferation and differentiation, and markedly down-regulate IL-2 expression and intranuclear NF-AT activation after scald injury. The results suggested that TIPE2 appeared to be a critical immunoregulatory molecule which affected DC maturation and subsequent T-cell mediated immunity.
Collapse
Affiliation(s)
- Ying-Yi Luan
- Medical School of Chinese PLA, The Chinese PLA General Hospital, Beijing, People's Republic of China.,Trauma Research Center, First Hospital Affiliated to The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ren-Qi Yao
- 10th Student Team, Undergraduate Medical School, Second Military Medical University, Shanghai, People's Republic of China
| | - Sen Tong
- Trauma Research Center, First Hospital Affiliated to The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ning Dong
- Trauma Research Center, First Hospital Affiliated to The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhi-Yong Sheng
- Trauma Research Center, First Hospital Affiliated to The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to The Chinese PLA General Hospital, Beijing, People's Republic of China.,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
32
|
Han Y, Tang Z, Zhao Y, Li Q, Wang E. TNFAIP8 regulates Hippo pathway through interacting with LATS1 to promote cell proliferation and invasion in lung cancer. Mol Carcinog 2017; 57:159-166. [PMID: 28926138 DOI: 10.1002/mc.22740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Han
- College of Basic Medical Sciences and Department of Pathology; First Affiliated Hospital; China Medical University; Shenyang Liaoning China
| | - ZhongPing Tang
- Department of Pathology; First Chengdu Renmin Hospital; Chengdu Sichuan China
| | - Yue Zhao
- College of Basic Medical Sciences and Department of Pathology; First Affiliated Hospital; China Medical University; Shenyang Liaoning China
| | - Qingchang Li
- College of Basic Medical Sciences and Department of Pathology; First Affiliated Hospital; China Medical University; Shenyang Liaoning China
| | - Enhua Wang
- College of Basic Medical Sciences and Department of Pathology; First Affiliated Hospital; China Medical University; Shenyang Liaoning China
| |
Collapse
|
33
|
Shao Y, Chen H, Lv M, Li C, Zhang W, Li Y, Zhao X, Bao Y. A novel TNFAIP8 gene mediates l-arginine metabolism in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2017; 69:26-34. [PMID: 28797638 DOI: 10.1016/j.fsi.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/04/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) family is a newly identified protein with vital roles in maintaining immune homeostasis. In the current study, we first cloned and characterized a TNFAIP8 gene from the invertebrate sea cucumber Apostichopus japonicus. The gene was designated as AjTNFAIP8. The full-length cDNA of AjTNFAIP8 was 1455 bp long and encoded a matured protein of 201 amino acid residues. Structural analysis indicated that AjTNFAIP8 had a death effector domain (DED)-like domain and composed of six α-helices. Multiple sequence alignment and phylogenetic analysis supported that AjTNFAIP8 is a new member of the TNFAIP8 family. Analysis of basal transcription in five tissues revealed the constitutive expression of AjTNFAIP8 in the detected tissues with highest expression in the respiratory tree and minimum expression in the tentacle. Vibrio splendidus infection and LPS stimulation could significantly downregulate the mRNA expression of AjTNFAIP8. More importantly, the transcription of pro-inflammatory molecule NOS and its production of NO content were significantly increased after AjTNFAIP8 silencing, with the suppression of agmatinase transcript and arginase activity. These results clearly indicated that AjTNFAIP8 is an essential negative regulator in innate immunity. Basic information for further exploration of the functional mechanisms of TNFAIP8 family in other marine invertebrate is provided.
Collapse
Affiliation(s)
- Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Huahui Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Miao Lv
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo 315100, PR China.
| |
Collapse
|
34
|
TNFAIP8 interacts with LATS1 and promotes aggressiveness through regulation of Hippo pathway in hepatocellular carcinoma. Oncotarget 2017; 8:15689-15703. [PMID: 28152516 PMCID: PMC5362516 DOI: 10.18632/oncotarget.14938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Although TNFAIP8 overexpression has been implicated in several human cancers, its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. Our study demonstrated that TNFAIP8 overexpression in primary HCC samples correlated with TNM stage, recurrence, poor prognosis and served as an independent favorable prognostic factor. We further showed that TNFAIP8 upregulated cell proliferation, migration, invasion and xenograft tumor growth of HCC cells. In addition, TNFAIP8 overexpression inhibited YAP phosphorylation, increased its nuclear localization and stabilization, leading to upregulation of cyclin proteins, CTGF and cell proliferation. We also found that TNFAIP8 could interact with LATS1 and decreased its phosphorylation. Depletion of LATS1 and YAP by siRNA blocked the biological effects of TNFAIP8. Collectively, the present study provides a novel finding that TNFAIP8 promotes HCC progression through LATS1-YAP signaling pathway. TNFAIP8 may serve as a candidate biomarker for poor prognosis and a target for new therapies.
Collapse
|
35
|
Sullivan C, Lage CR, Yoder JA, Postlethwait JH, Kim CH. Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts. PLoS One 2017; 12:e0179517. [PMID: 28658311 PMCID: PMC5489176 DOI: 10.1371/journal.pone.0179517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Comparative functional genomic studies require the proper identification of gene orthologs to properly exploit animal biomedical research models. To identify gene orthologs, comprehensive, conserved gene synteny analyses are necessary to unwind gene histories that are convoluted by two rounds of early vertebrate genome duplication, and in the case of the teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome duplication, was sequenced and applied as an orthology bridge to facilitate the identification of teleost orthologs to human genes and to enhance the power of teleosts as biomedical models. In this study, we apply the spotted gar orthology bridge to help describe the gene history of the vertebrate TNFAIP8 family. Members of the TNFAIP8 gene family have been linked to regulation of immune function and homeostasis and the development of multiple cancer types. Through a conserved gene synteny analysis, we identified zebrafish orthologs to human TNFAIP8L1 and TNFAIP8L3 genes and two co-orthologs to human TNFAIP8L2, but failed to identify an ortholog to human TNFAIP8. Through the application of the orthology bridge, we determined that teleost orthologs to human TNFAIP8 genes were likely lost in a genome inversion event after their divergence from their common ancestor with spotted gar. These findings demonstrate the value of this enhanced approach to gene history analysis and support the development of teleost models to study complex questions related to an array of biomedical issues, including immunity and cancer.
Collapse
Affiliation(s)
- Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Christopher R. Lage
- Program in Biology, University of Maine - Augusta, Augusta, Maine, United States of America
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Carol H. Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
36
|
Xiao M, Xu Q, Lou C, Qin Y, Ning X, Liu T, Zhao X, Jia S, Huang Y. Overexpression of TNFAIP8 is associated with tumor aggressiveness and poor prognosis in patients with invasive ductal breast carcinoma. Hum Pathol 2017; 62:40-49. [DOI: 10.1016/j.humpath.2016.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 02/04/2023]
|
37
|
Goldsmith JR, Fayngerts S, Chen YH. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol 2017; 14:482-487. [PMID: 28287114 DOI: 10.1038/cmi.2017.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
The TIPE (tumor necrosis factor-α-induced protein 8-like) family are newly described regulators of immunity and tumorigenesis consisting of four highly homologous mammalian proteins: TNFAIP8 (tumor necrosis factor-α-induced protein 8), TIPE1 (TNFAIP8-like 1, or TNFAIP8L1), TIPE2 (TNFAIP8L2) and TIPE3 (TNFAIP8L3). They are the only known transfer proteins of the lipid secondary messengers PIP2 (phosphatidylinositol 4,5-bisphosphate) and PIP3 (phosphatidylinositol 3,4,5-trisphosphate). Cell-surface receptors, such as G-protein-coupled receptors and receptor tyrosine kinases, regulate inflammation and cancer via several signaling pathways, including the nuclear factor (NF)-κB and phosphoinositide-3 kinase (PI3K) pathways, the latter of which is upstream of both Akt and STAT3 activation. An expression analysis in humans demonstrated that the TIPE family is dysregulated in cancer and inflammation, and studies both in mice and in vitro have demonstrated that this family of proteins plays a critical role in tumorigenesis and inflammatory responses. In this review, we summarize the current literature for all four family members, with a special focus on the phenotypic manifestations present in the various knockout murine strains, as well as the related cell signaling that has been elucidated to date.
Collapse
Affiliation(s)
- Jason R Goldsmith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Gao HY, Huo FC, Wang HY, Pei DS. MicroRNA-9 inhibits the gastric cancer cell proliferation by targeting TNFAIP8. Cell Prolif 2017; 50. [PMID: 28127811 DOI: 10.1111/cpr.12331] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNA-9 is frequently dysregulated in many human carcinoma types, including gastric cancer (GC). Previous studies demonstrated that the expression of TNFAIP8 in GC is correlated with tumour occurrence, development, invasion, metastasis and prognosis. However, till now, the relationship between MicroRNA-9 and TNFAIP8 in GC has not been reported. MATERIALS AND METHODS Levels of miR-9 and TNFAIP8 expression in GC tissues and in human GC cell lines were studied using qualitative real-time PCR (qRT-PCR) and Western blotting. Cell viability was detected using the CCK-8 and clone formation assays. A dual-luciferase reporter system was used to confirm the target gene of miR-9. RESULTS We found that the expression level of MicroRNA-9 in GC tissues and cell lines was significantly lower than that in adjacent non-cancerous tissues and human immortalized gastric epithelial cell (GES) line, respectively. In addition, overexpression of MicroRNA-9 markedly inhibited GC cell proliferation in vitro and tumour growth in vivo. Further experiments revealed that TNFAIP8 was a direct and functional target of MicroRNA-9 in GC and overexpression of MicroRNA-9 obviously down-regulated the expression of TNFAIP8, which was involved in the gastric carcinogenesis and cancer progression. CONCLUSION Our results suggested that MicroRNA-9-TNFAIP8 might represent a promising diagnostic biomarker for GC patients and could be a potential therapeutic target in the prevention and treatment of GC.
Collapse
Affiliation(s)
- Hong-Yu Gao
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, China
| | - Fu-Chun Huo
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, China
| | - Hai-Yan Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
Day TF, Mewani RR, Starr J, Li X, Chakravarty D, Ressom H, Zou X, Eidelman O, Pollard HB, Srivastava M, Kasid UN. Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression. Methods Mol Biol 2017; 1513:83-100. [PMID: 27807832 DOI: 10.1007/978-1-4939-6539-7_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the first discovered oncogenic and an anti-apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by NF-kB, and overexpression of TNFAIP8 has been correlated with poor prognosis in many cancers. Downregulation of TNFAIP8 expression has been associated with decreased pulmonary colonization of human tumor cells, and enhanced sensitivities of tumor xenografts to radiation and docetaxel. Here we have investigated the effects of depletion of TNFAIP8 on the mRNA, microRNA and protein expression profiles in prostate and breast cancers and melanoma. Depending on the tumor cell type, knockdown of TNFAIP8 was found to be associated with increased mRNA expression of several antiproliferative and apoptotic genes (e.g., IL-24, FAT3, LPHN2, EPHA3) and fatty acid oxidation gene ACADL, and decreased mRNA levels of oncogenes (e.g., NFAT5, MALAT1, MET, FOXA1, KRAS, S100P, OSTF1) and glutamate transporter gene SLC1A1. TNFAIP8 knockdown cells also exhibited decreased expression of multiple onco-proteins (e.g., PIK3CA, SRC, EGFR, IL5, ABL1, GAP43), and increased expression of the orphan nuclear receptor NR4A1 and alpha 1 adaptin subunit of the adaptor-related protein complex 2 AP2 critical to clathrin-mediated endocytosis. TNFAIP8-centric molecules were found to be predominately implicated in the hypoxia-inducible factor-1α (HIF-1α) signaling pathway, and cancer and development signaling networks. Thus TNFAIP8 seems to regulate the cell survival and cancer progression processes in a multifaceted manner. Future validation of the molecules identified in this study is likely to lead to new subset of molecules and functional determinants of cancer cell survival and progression.
Collapse
Affiliation(s)
- Timothy F Day
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Rajshree R Mewani
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Joshua Starr
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Center for Medical Proteomics, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Xin Li
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Debyani Chakravarty
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Habtom Ressom
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Xiaojun Zou
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Center for Medical Proteomics, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Center for Medical Proteomics, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Center for Medical Proteomics, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Usha N Kasid
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
40
|
Sun Z, Liu X, Song JH, Cheng Y, Liu Y, Jia Y, Meltzer SJ, Wang Z. TNFAIP8 overexpression: a potential predictor of lymphatic metastatic recurrence in pN0 esophageal squamous cell carcinoma after Ivor Lewis esophagectomy. Tumour Biol 2016; 37:10923-10934. [PMID: 26886285 DOI: 10.1007/s13277-016-4978-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis due to high lymphatic metastatic recurrence rates after Ivor Lewis esophagectomy. We sought to investigate the correlation between tumor necrosis factor alpha-induced protein 8 (TNFAIP8) expression and postoperative lymphatic recurrence in patients with pN0 ESCC. One hundred twenty-two patients with pN0 ESCC undergoing Ivor Lewis esophagectomy were enrolled in this study. TNFAIP8 overexpression was found in 73 (59.8 %) tumor specimens. The 3-year lymphatic metastatic recurrence rate among TNFAIP8-overexpressing patients was significantly higher than in TNFAIP8-negative patients (p = 0.003). Multivariate Cox regression identified TNFAIP8 overexpression as an independent risk factor for lymphatic recurrence (p = 0.048). TNFAIP8 messenger RNA (mRNA) levels were significantly higher in patients with lymphatic recurrence than in patients without tumor recurrence (p = 0.019). Stable silencing of TNFAIP8 expression in ESCC-derived cells (Eca109) reduced proliferation, motility, and invasion and induced apoptosis. In addition, transient silencing of TNFAIP8 expression decreased cell motility and invasion and increased apoptosis in a second ESCC-derived cell line (KYSE150). Taken together, these findings suggest that TNFAIP8 overexpression is a potential biomarker to identify pN0 ESCC patients at higher risk of lymphatic recurrence who may benefit from adjuvant therapy.
Collapse
Affiliation(s)
- Zhenguo Sun
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
- Division of Gastroenterology, Department of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Centre, The Johns Hopkins University School of Medicine, 1503 East Jefferson Street, Room 112, Baltimore, MD, 21287, USA
| | - Xiangyan Liu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Jee Hoon Song
- Division of Gastroenterology, Department of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Centre, The Johns Hopkins University School of Medicine, 1503 East Jefferson Street, Room 112, Baltimore, MD, 21287, USA
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Centre, The Johns Hopkins University School of Medicine, 1503 East Jefferson Street, Room 112, Baltimore, MD, 21287, USA
| | - Yu Liu
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Yang Jia
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine and Oncology and Sidney Kimmel Comprehensive Cancer Centre, The Johns Hopkins University School of Medicine, 1503 East Jefferson Street, Room 112, Baltimore, MD, 21287, USA.
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
41
|
Hu R, Qiu X, Hong S, Meng L, Hong X, Qiu J, Yang J, Zhuang G, Liu Z. Clinical significance of TIPE expression in gastric carcinoma. Onco Targets Ther 2016; 9:4473-81. [PMID: 27524904 PMCID: PMC4966678 DOI: 10.2147/ott.s100593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND TNFAIP8, also known as TIPE, is a suppressor of apoptosis. High expression of both TIPE mRNA and protein has been detected in various cancer cell lines and clinical specimens compared to healthy tissues. Many reports have shown that there is a strong correlation between TIPE overexpression and cancer progression and poor prognosis in human solid cancers. METHODS To illustrate the functional and clinical significance of TIPE in gastric cancer, we used reverse transcription polymerase chain reaction, quantitative real-time polymerase chain reaction, and immunohistochemistry to measure TIPE expression in clinical gastric specimens. Then, TIPE expression was knocked down by using shRNA and anti-DR5ScFv, to examine different expressions of TIPE in BGC823 cell lines, while cell proliferation and apoptosis were induced. RESULTS We found that there was a strong correlation between TIPE expression and TNM stage (P=0.044), tumor depth (P=0.016), lymph node metastasis (P=0.026), and distant metastasis (P=0.045). No significant correlation was found between TIPE expression with the patients' age (P=0.062) or sex (P=0.459). Anti-DR5ScFv induced TIPE depletion both in vitro and in vivo and resulted in apoptosis and suppression of proliferation. CONCLUSION Our results suggested that TIPE expression was associated with gastric cancer progression, and most importantly, suppressing TIPE expression might be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Ruyi Hu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Xingfeng Qiu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China; Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Fujian, People's Republic of China
| | - Shifu Hong
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Luxi Meng
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Xinya Hong
- Fujian Medical University, Fujian, People's Republic of China
| | - Jinhua Qiu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Jingjing Yang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Guohong Zhuang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Zhongchen Liu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China; Department of General Surgery, The Tenth People's Hospital of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Chen L, Yang X, Yang X, Fan K, Xiao P, Zhang J, Wang X. Association between the expression levels of tumor necrosis factor-α-induced protein 8 and the prognosis of patients with gastric adenocarcinoma. Exp Ther Med 2016; 12:238-244. [PMID: 27347043 PMCID: PMC4906960 DOI: 10.3892/etm.2016.3327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the expression levels of tumor necrosis factor-α-induced protein 8 (TNFAIP8) in gastric adenocarcinoma. TNFAIP8 expression levels in gastric adenocarcinoma tissue samples (with and without lymph node metastasis), adjacent normal tissue samples and metastatic lymph node tissue samples were detected by immunohistochemistry. The correlation between TNFAIP8 expression levels and clinicopathological data and gastric adenocarcinoma prognosis was analyzed. The results demonstrated that TNFAIP8 expression in gastric adenocarcinoma tissue samples and metastatic lymph node tissue samples markedly increased at a rate of 47.2% (50/106) and 81.7% (49/60), respectively, as compared with the adjacent normal tissue samples in which no TNGFAIP8 expression was detected (0%). This increase in TNFAIP8 expression was statistically significant. TNFAIP8 expression rates in the primary tumors (60%, 36/60) of patients with lymph node metastasis were significantly higher compared with the primary tumors of patients without lymph node metastasis (30.4%, 14/46). TNFAIP8 expression was associated with an increase in the severity of TNM stage, tumor grade, vascular invasion, lymph node metastasis and serum CA72-4 levels. The overall survival rate of patients with gastric adenocarcinoma and high TNFAIP8 expression was poorer compared with patients with low TNFAIP8 expression, and TNFAIP8 expression was negatively correlated with patient prognosis. The results also demonstrated that TNFAIP8 was an independent prognostic marker in gastric adenocarcinoma (relative risk, 1.736; P=0.029). In conclusion, the results of the present study demonstrated that TNFAIP8 expression was associated with the occurrence, development and metastasis of gastric adenocarcinoma, and negatively correlated with the prognosis of patients with gastric adenocarcinoma. TNFAIP8 may therefore serve as a prognostic factor for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ling Chen
- Department of Medical Oncology, Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Internal Medicine-Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Xigui Yang
- Department of Internal Medicine-Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Xiangshan Yang
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Kaixi Fan
- Department of Internal Medicine-Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Ping Xiao
- Department of Internal Medicine-Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Jing Zhang
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Xiuwen Wang
- Department of Medical Oncology, Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
43
|
Hu R, Liu W, Qiu X, Lin Z, Xie Y, Hong X, Paerhati R, Qi Z, Zhuang G, Liu Z. Expression of tumor necrosis factor-α-induced protein 8 in stage III gastric cancer and the correlation with DcR3 and ERK1/2. Oncol Lett 2016; 11:1835-1840. [PMID: 26998086 DOI: 10.3892/ol.2016.4133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) is a recently identified protein that is considered to be associated with various malignancies, including esophageal, breast and pancreatic cancer; however, the importance of TIPE in gastric cancer (GC) remains unknown. Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor superfamily that is expressed in digestive system neoplasms. The expression of DcR3 is regulated by the mitogen-activated protein kinase (MAPK)/MAPK kinase/extracellular signal-regulated kinase (ERK) signaling pathway. Reverse transcription-polymerase chain reaction was performed to detect the expression of TIPE, ERK and DcR3 in the pathological and tumor-adjacent normal gastric tissues of 30 patients that demonstrated stage III gastric adenocarcinoma. The expression and distribution of the TIPE protein was examined using immunohistochemistry, and the clinical significance and expression levels of DcR3 and ERK1/2 were evaluated. The expression of TIPE, ERK1/2 and DcR3 in the tumor tissues of GC was significantly increased compared with paracarcinoma tissues (P<0.05). In addition, TIPE expression positively correlated with DcR3 and ERK1 levels (r=0.538 and r=0.462, respectively; P<0.05). There was no statistical difference between tumor tissues from patients with varying age, gender, differentiation or lymph node metastasis (P>0.05). TIPE may be vital in the progression of GC. TIPE may be associated with the expression of DcR3 and ERK1/2, which may be involved in the cell apoptosis of GC. The present study elucidates the potential function of TIPE as a novel marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Ruyi Hu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China; Department of General Surgery, The Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Wenming Liu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China; Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Xingfeng Qiu
- Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Zhenghe Lin
- Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Yan Xie
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China
| | - Xingya Hong
- Department of Ultrasound, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361100, P.R. China
| | - Reyila Paerhati
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China
| | - Zhongquan Qi
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China
| | - Guohong Zhuang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China
| | - Zhongchen Liu
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100, P.R. China; Department of General Surgery, The Tenth People's Hospital of Tongji University, Shanghai 200000, P.R. China
| |
Collapse
|
44
|
Shen P, Zhang H, Su Z, Wang S, Xu H. In Silico Analysis of Tumor Necrosis Factor α-Induced Protein 8-Like-1 (TIPE1) Protein. PLoS One 2015. [PMID: 26207809 PMCID: PMC4514785 DOI: 10.1371/journal.pone.0134114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor α-induced protein 8 (TNFAIP8)-like protein 1 (TIPE1) was a member of TNFAIP8 family. Previous studies have shown that TIPE1 could induce apoptosis in hepatocellular carcinoma. In this study, we attempted to predict its potential structure. Bioinformatic analysis of TIPE1 was performed to predict its potential structure using the bioinfomatic web services or softwares. The results showed that the amino acid sequences of TIPE1 were well conserved in mammals. No signal peptide and no transmembrane domain existed in human TIPE1. The aliphatic index of TIPE1 was 100.75 and the theoretical pI was 9.57. TIPE1 was a kind of stable protein and its grand average of hydropathicity was -0.108. Various post-translational modifications were also speculated to exist in TIPE1. In addition, the results of Swiss-Model Server and Swiss-Pdb Viewer program revealed that the predicted three-dimensional structure of TIPE1 protein was stable and it may accord with the rule of stereochemistry. TIPE1 was predicted to interact with FBXW5, caspase8 and so on. In conclusion, TIPE1 may be a stable protein with no signal peptide and no transmembrane domain. The bioinformatic analysis of TIPE1 will provide the basis for the further study on the function of TIPE1.
Collapse
Affiliation(s)
- Pei Shen
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hong Zhang
- Department of Clinical Laboratory, Nantong Rich Hospital, The Fourth Clinical College of Yangzhou University, Nantong, Jiangsu, People’s Republic of China
| | - Zhaoliang Su
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- * E-mail: (Huaxi Xu)
| |
Collapse
|
45
|
Liu QQ, Zhang FF, Wang F, Qiu JH, Luo CH, Zhu GY, Liu YF. TIPE2 Inhibits Lung Cancer Growth Attributing to Promotion of Apoptosis by Regulating Some Apoptotic Molecules Expression. PLoS One 2015; 10:e0126176. [PMID: 25946186 PMCID: PMC4422750 DOI: 10.1371/journal.pone.0126176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
Recent studies found that TIPE2 was involved in cancer development. However, little is known about TIPE2 in lung cancer. Our study aims to clarify the role of TIPE2 in lung carcinogenesis. We examined the expression of TIPE2 in lung squamous cancer (LSC), small cell lung cancer and lung adenocarcinoma (AdC) tissues and found that TIPE2 expression was lost in small cell lung cancer, compared with adjacent non-tumor tissues. Overexpression of TIPE2 significantly inhibited the growth of lung cancer cell H446 in vitro and even suppressed tumor formation in vivo. Flow cytometry analysis found TIPE2 overexpression promoted apoptosis of H446. In TIPE2 over-expression cells, caspase-3, caspase-9, and Bax were significantly up-regulated while Bcl-2 was down-regulated. Moreover, coincident results were shown by immunohistochemistry in tumors from nude mice. TIPE2 inhibited the phosphorylation of Akt, while promoting the phosphorylation of P38, but had no effect on IκBα and ERK pathway. Taken together, TIPE2 promoted lung cancer cell apoptosis through affecting apoptosis-related molecules caspase-3, caspase-9, Bcl-2 and Bax, possibly via regulating P38 and Akt pathways, indicating that TIPE2 might be a novel marker for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Feng-Feng Zhang
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Fang Wang
- Department of Basic Medicine Science, NanYang Medical College, Nanyang, China
| | - Jing-Hua Qiu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Chun-Hua Luo
- The Department of Pathology, The Traditional Chinese Medical Hospital of Xiamen, Xiamen, Fujian, People’s Republic of China
| | - Guo-Yong Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, PR China
| | - Ying-Fu Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, PR China
- * E-mail:
| |
Collapse
|
46
|
Porturas TP, Sun H, Buchlis G, Lou Y, Liang X, Cathopoulis T, Fayngerts S, Johnson DS, Wang Z, Chen YH. Crucial roles of TNFAIP8 protein in regulating apoptosis and Listeria infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5743-50. [PMID: 25948813 DOI: 10.4049/jimmunol.1401987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 01/01/2023]
Abstract
TNF-α-induced protein 8 (TNFAIP8 or TIPE) is a newly described regulator of cancer and infection. However, its precise roles and mechanisms of actions are not well understood. We report in this article that TNFAIP8 regulates Listeria monocytogenes infection by controlling pathogen invasion and host cell apoptosis in a RAC1 GTPase-dependent manner. TNFAIP8-knockout mice were resistant to lethal L. monocytogenes infection and had reduced bacterial load in the liver and spleen. TNFAIP8 knockdown in murine liver HEPA1-6 cells increased apoptosis, reduced bacterial invasion into cells, and resulted in dysregulated RAC1 activation. TNFAIP8 could translocate to plasma membrane and preferentially associate with activated RAC1-GTP. The combined effect of reduced bacterial invasion and increased sensitivity to TNF-α-induced clearance likely protected the TNFAIP8-knockout mice from lethal listeriosis. Thus, by controlling bacterial invasion and the death of infected cells through RAC1, TNFAIP8 regulates the pathogenesis of L. monocytogenes infection.
Collapse
Affiliation(s)
- Thomas P Porturas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Honghong Sun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - George Buchlis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Yunwei Lou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, People's Republic of China
| | - Xiaohong Liang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, People's Republic of China
| | - Terry Cathopoulis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Svetlana Fayngerts
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Derek S Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Zhaojun Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
47
|
Cui J, Hao C, Zhang W, Shao J, Zhang N, Zhang G, Liu S. Identical expression profiling of human and murine TIPE3 protein reveals links to its functions. J Histochem Cytochem 2014; 63:206-16. [PMID: 25479791 DOI: 10.1369/0022155414564871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor-alpha-induced protein-8 like-3 (TNFAIP8L3, TIPE3) is a newly discovered member of TNFAIP8 family and regarded as a lipid second messenger transfer protein that promotes cancer. Yet the nature of the cells and tissues that express TIPE3 protein has not been determined. In this study, we examined TIPE3 expression in various murine and human tissues by immunohistochemistry and quantitative PCR. We found that TIPE3 expression was almost identical in most organs from human and mice. TIPE3 is a cytoplasmic protein expressed preferentially in epithelial-derived cells with secretory functions. Furthermore, TIPE3 protein is highly expressed in most human carcinoma cell lines. These results suggest that TIPE3 may play important roles in carcinogenesis and cell secretion.
Collapse
Affiliation(s)
- Jian Cui
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| | - Chunyan Hao
- Department of Pathology, Shandong University School of Medicine, Ji'nan, P.R. China. (CH)
| | - Wenqian Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| | - Jie Shao
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| | - Na Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| | - Guizhong Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| | - Suxia Liu
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China(JC, WZ, JS, NZ, GZ, SL)
| |
Collapse
|
48
|
Yang M, Zhao Q, Wang X, Liu T, Yao G, Lou C, Zhang Y. TNFAIP8 overexpression is associated with lymph node metastasis and poor prognosis in intestinal-type gastric adenocarcinoma. Histopathology 2014; 65:517-26. [PMID: 24621012 DOI: 10.1111/his.12413] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/08/2014] [Indexed: 02/06/2023]
Abstract
AIMS Tumour necrosis factor alpha-induced protein 8 (TNFAIP8) is implicated in the progression of several human malignancies, but its role in gastric adenocarcinoma is unknown. TNFAIP8 expression and its correlation with clinical significance in gastric adenocarcinoma are evaluated in this study. METHODS AND RESULTS The expression of TNFAIP8 was determined in primary gastric adenocarcinoma tissues using immunohistochemistry (IHC) and Western blotting analysis. TNFAIP8 expression was higher in gastric adenocarcinoma tissues. Elevated expression of TNFAIP8 in gastric adenocarcinoma was associated significantly with depth of invasion (P = 0.024), lymph node metastasis (P = 0.038) and Lauren classification (P = 0.048). Patients with tumours showing high TNFAIP8 expression had a significantly poorer overall survival (OS) and disease-free survival (DFS) than those with low TNFAIP8 expression in intestinal-type gastric adenocarcinoma (IGA) (P = 0.001 for both). In the multivariate Cox analysis, TNFAIP8 expression was an independent prognostic marker for OS and DFS in IGA with P-values of 0.006 and 0.007, respectively. CONCLUSIONS Our data suggest that TNFAIP8 overexpression may contribute to lymph node metastasis and poor prognosis in IGA.
Collapse
Affiliation(s)
- Ming Yang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Correlation of TNFAIP8 overexpression with the proliferation, metastasis, and disease-free survival in endometrial cancer. Tumour Biol 2014; 35:5805-14. [PMID: 24590269 DOI: 10.1007/s13277-014-1770-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/18/2014] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor alpha-induced protein 8 (TNFAIP8) is an apoptosis regulator proven to have an important function in the proliferation, invasion, metastasis, and progression of malignancies. In this study, we investigated the clinical role of TNFAIP8 overexpression in endometrial cancer (EC) and determined the relationship of TNFAIP8 with the proliferative antigen Ki-67 and metastasis-related gene matrix metallopeptidase 9 (MMP9) in 225 tumor specimens by immunohistochemistry and western blot, in order to elucidate more information on the role of TNFAIP8 protein with regard to the pathogenesis of EC. An association was observed between TNFAIP8 overexpression and clinicopathologic factors, such as advanced International Federation of Gynecology and Obstetrics stage (P<0.001), higher histologic grade (P=0.017), deep myometrial invasion (P=0.030), lymphovascular space invasion (P=0.011), lymph node metastasis (P<0.001), and recurrence. Furthermore, TNFAIP8 overexpression was strongly correlated with MMP9 and Ki-67 expression in the progression of ECs. Patients with high expression of TNFAIP8 (P<0.001 for both) and Ki-67 (P=0.007 and P=0.008) had poor overall survival and disease-free survival (DFS) rates. MMP9 overexpression did not affect survival outcomes (P>0.05). Multivariate Cox regression analysis revealed that TNFAIP8 (P=0.029) and lymph node metastasis (P=0.022) were independent factors of DFS in patients with EC. These findings suggested that TNFAIP8 may be used as a prognostic marker for the recurrence of EC, and its promotion of the proliferation and metastasis in EC may be due to its mediation of Ki-67 and MMP9.
Collapse
|
50
|
Liu T, Xia B, Lu Y, Xu Y, Lou G. TNFAIP8 overexpression is associated with platinum resistance in epithelial ovarian cancers with optimal cytoreduction. Hum Pathol 2014; 45:1251-7. [PMID: 24767861 DOI: 10.1016/j.humpath.2014.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/22/2014] [Accepted: 02/07/2014] [Indexed: 02/03/2023]
Abstract
Here, we correlated tumor necrosis factor α-induced protein 8 (TNFAIP8) messenger RNA (mRNA) expression with clinicopathological parameters and investigated the involvement of TNFAIP8 overexpression in platinum resistance of epithelial ovarian cancer (EOC). The status of TNFAIP8 protein was evaluated by Western blot analysis (n = 25) and immunohistochemistry (n = 134). TNFAIP8 mRNA expression was assessed with real-time polymerase chain reaction in fresh frozen EOC tissues (n = 40). TNFAIP8 overexpression at both mRNA and protein levels in platinum-resistant disease was clearly higher than that in platinum-sensitive disease (P < .05). Platinum resistance was independently correlated with residual tumor size (P = .025), ascites (P = .027), and TNFAIP8 overexpression (P = .003). In particular, TNFAIP8 overexpression was correlated with platinum resistance in EOCs with optimal cytoreduction (P = .001). TNFAIP8 mRNA expression was strongly associated with residual tumor size (P = .019). In conclusion, our findings indicate that TNFAIP8 overexpression is an independent predictor of platinum resistance and may be a potential biomarker for targeted therapy.
Collapse
Affiliation(s)
- Tianbo Liu
- Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China
| | - Bairong Xia
- Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China
| | - Yanhong Lu
- Department of Pathology, Heilongjiang Province Hospital, Harbin 150001, China
| | - Ye Xu
- Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China
| | - Ge Lou
- Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China.
| |
Collapse
|