1
|
The Expression of UGT46A1 Gene and Its Effect on Silkworm Feeding. Processes (Basel) 2021. [DOI: 10.3390/pr9081473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The silkworm, Bombyx mori, uses a complex olfactory system to determine whether the food is edible. As an odor degrading enzyme, UDP-glycosyltransferase (UGT) participates in the degradation of odor molecules in the olfactory system of the silkworm. By sequencing the whole genome of the silkworm NB and using comparative genomics methods, we found that UGT46A1 is unique in species that eat mulberry leaves. Bioinformatics shows that its function may be related to the feeding habits of the silkworm. In this study, it was found through quantitative real-time polymerase chain reaction (qRT-PCR) that UGT46A1 was highly expressed in the heads of silkworms, which was consistent with the conjecture that UGT46A1 was involved in silkworm olfactory recognition. RNA interference (RNAi) was used to knock down the expression of UGT46A1. By observing the silkworm’s tendency toward mulberry leaves and food selectivity, it was found that the silkworms that successfully knocked down the UGT46A1 gene altered their feeding habits and that their ability to find food was weakened, but they could eat more leaves of plants other than mulberry leaves. This evidence indicates that UGT46A1 may affect the silkworm’s feeding by influencing the olfactory system of the silkworm.
Collapse
|
2
|
Abstract
A detailed description of olfactory system development in ants reveals that - unlike in Drosophila and as in mammals - olfactory receptors may play a role, providing new insights into the developmental evolution of complex chemosensory systems.
Collapse
Affiliation(s)
- Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
3
|
Li H, Li T, Horns F, Li J, Xie Q, Xu C, Wu B, Kebschull JM, McLaughlin CN, Kolluru SS, Jones RC, Vacek D, Xie A, Luginbuhl DJ, Quake SR, Luo L. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr Biol 2020; 30:1189-1198.e5. [PMID: 32059767 DOI: 10.1016/j.cub.2020.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Felix Horns
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Justus M Kebschull
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert C Jones
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David Vacek
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Kozma MT, Schmidt M, Ngo-Vu H, Sparks SD, Senatore A, Derby CD. Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. PLoS One 2018; 13:e0203935. [PMID: 30240423 PMCID: PMC6150509 DOI: 10.1371/journal.pone.0203935] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
The spiny lobster, Panulirus argus, has two classes of chemosensilla representing “olfaction” and “distributed chemoreception,” as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Manfred Schmidt
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shea D. Sparks
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Brand P, Ramírez SR. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biol Evol 2018; 9:2023-2036. [PMID: 28854688 PMCID: PMC5597890 DOI: 10.1093/gbe/evx149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects.
Collapse
Affiliation(s)
- Philipp Brand
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis.,Population Biology Graduate Group, Center for Population Biology, University of California, Davis
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis
| |
Collapse
|
6
|
Hueston CE, Olsen D, Li Q, Okuwa S, Peng B, Wu J, Volkan PC. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons. PLoS Biol 2016; 14:e1002443. [PMID: 27093619 PMCID: PMC4836687 DOI: 10.1371/journal.pbio.1002443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.
Collapse
Affiliation(s)
- Catherine E. Hueston
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Douglas Olsen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Bo Peng
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Jianni Wu
- Undergraduate Program in Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jiang X, Pregitzer P, Grosse-Wilde E, Breer H, Krieger J. Identification and Characterization of Two "Sensory Neuron Membrane Proteins" (SNMPs) of the Desert Locust, Schistocerca gregaria (Orthoptera: Acrididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:33. [PMID: 27012870 PMCID: PMC4806715 DOI: 10.1093/jisesa/iew015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/04/2016] [Indexed: 05/14/2023]
Abstract
Pheromone-responsive neurons of insects not only require specific receptors but in addition several auxiliary components, including the "sensory neuron membrane protein," SNMP. Accordingly, SNMP is considered as a marker for neurons responding to pheromones. For the desert locust Schistocerca gregaria, it is known that the behavior, including aggregation behavior and courtship inhibition, is largely controlled by pheromones. However, little is known about pheromones, their receptors, and the pheromone-responsive cells in locusts. In this study, we have identified two SNMP subtypes, SNMP1 and SNMP2, and compared their phylogenetic relationship and primary structure motifs with SNMPs from other species. Both SNMPs were found in chemosensory tissues, especially the antennae. Employing double in situ hybridization, we identified and localized the SNMP-expressing cells in the antennae. Cells expressing SNMP1 were localized to sensilla trichodea but also to sensilla basiconica, which in locust respond to pheromones. One or a few cells express SNMP1 within the multineuron clusters from sensilla basiconica, whereas the SNMP2 subtype was expressed in cells surrounding the neuron clusters, possibly supporting cells. Based on the finding that SNMP1 is expressed in distinct neurons under chemosensory sensilla, it is conceivable that these cells may represent pheromone-responsive neurons of the desert locust.
Collapse
Affiliation(s)
- Xingcong Jiang
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany (; p_pregitzer@uni -hohen heim.de; ; )
| | - Pablo Pregitzer
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany (; p_pregitzer@uni -hohen heim.de; ; )
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Heinz Breer
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany (; p_pregitzer@uni -hohen heim.de; ; )
| | - Jürgen Krieger
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany (; p_pregitzer@uni -hohen heim.de; ; ), Department of Animal Physiology, Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, 06099 Halle, Germany, and juergen.krie
| |
Collapse
|
8
|
Smith DP. Volatile pheromone signalling in Drosophila. PHYSIOLOGICAL ENTOMOLOGY 2012; 37:10.1111/j.1365-3032.2011.00813.x. [PMID: 24347807 PMCID: PMC3859522 DOI: 10.1111/j.1365-3032.2011.00813.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Once captured by the antenna, 11-cis vaccenyl acetate (cVA) binds to an extracellular binding protein called LUSH that undergoes a conformational shift upon cVA binding. The stable LUSH-cVA complex is the activating ligand for pheromone receptors present on the dendrites of the aT1 neurones, comprising the only neurones that detect cVA pheromone. This mechanism explains the single molecule sensitivity of insect pheromone detection systems. The receptor that recognizes activated LUSH consists of a complex of several proteins, including Or67d, a member of the tuning odourant receptor family, Orco, a co-receptor ion channel, and SNMP, a CD36 homologue that may be an inhibitory subunit. In addition, genetic screens and reconstitution experiments reveal additional factors that are important for pheromone detection. Identification and functional dissection of these factors in Drosophila melanogaster Meigen should permit the identification of homologous factors in pathogenic insects and agricultural pests, which, in turn, may be viable candidates for novel classes of compounds to control populations of target insect species without impacting beneficial species.
Collapse
Affiliation(s)
- Dean P Smith
- University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| |
Collapse
|
9
|
Kamau L, Skilton RA, Odongo DO, Mwaura S, Githaka N, Kanduma E, Obura M, Kabiru E, Orago A, Musoke A, Bishop RP. Differential transcription of two highly divergent gut-expressed Bm86 antigen gene homologues in the tick Rhipicephalus appendiculatus (Acari: Ixodida). INSECT MOLECULAR BIOLOGY 2011; 20:105-114. [PMID: 20854482 DOI: 10.1111/j.1365-2583.2010.01043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptional control of gene expression is not well documented in the Arthropoda. We describe transcriptional analysis of two exceptionally divergent homologues (Ra86) of the Bm86 gut antigen from Rhipicephalus appendiculatus. Bm86 forms the basis of a commercial vaccine for the control of Rhipicephalus (Boophilus) microplus. The R. appendiculatus Ra86 proteins contain 654 and 693 amino acids, with only 80% amino acid sequence identity. Reverse-transcription PCR of gut cDNA showed transcription of only one genotype in individual female ticks. PCR amplification of 3' untranslated sequences from genomic DNA indicated that both variants could be encoded within a single genome. When both variants were present, one of the two Ra86 genotypes was transcriptionally dominant.
Collapse
Affiliation(s)
- L Kamau
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Imai T, Sakano H, Vosshall LB. Topographic mapping--the olfactory system. Cold Spring Harb Perspect Biol 2010; 2:a001776. [PMID: 20554703 DOI: 10.1101/cshperspect.a001776] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
Collapse
Affiliation(s)
- Takeshi Imai
- The University of Tokyo, Graduate School of Science, Department of Biophysics and Biochemistry, Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
11
|
Abstract
A central question in insect chemoreception is whether signaling occurs via G-proteins. Two families of seven-transmembrane-domain chemoreceptors, the odor (Or) and gustatory receptor (Gr) families, have been identified in Drosophila (Clyne et al., 1999, 2000; Vosshall et al., 1999). Ors mediate odor responses, whereas two Grs, Gr21a and Gr63a, mediate CO2 response (Hallem et al., 2004; Jones et al., 2007; Kwon et al., 2007). Using single-sensillum recordings, we systematically investigate the role of Galpha proteins in vivo, initially with RNA interference constructs, competitive peptides, and constitutively active Galpha proteins. The results do not support a role for Galpha proteins in odor sensitivity. In parallel experiments, manipulations of Galpha(q), but not other Galpha proteins, affected CO2 response. Transient, conditional, and ectopic expression analyses consistently supported a role for Galpha(q) in the response of CO2-sensing neurons, but not odor-sensing neurons. Genetic mosaic analysis confirmed that odor responses are normal in the absence of Galpha(q). Ggamma30A is also required for normal CO2 response. The simplest interpretation of these results is that Galpha(q) and Ggamma30A play a role in the response of CO2-sensing neurons, but are not required for Or-mediated odor signaling.
Collapse
|
12
|
Odor Detection in Insects: Volatile Codes. J Chem Ecol 2008; 34:882-97. [DOI: 10.1007/s10886-008-9485-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
|
13
|
Lin HH, Lin CY, Chiang AS. Internal representations of smell in the Drosophila brain. J Biomed Sci 2007; 14:453-9. [PMID: 17440836 DOI: 10.1007/s11373-007-9168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 01/26/2023] Open
Abstract
Recent advances in sensory neuroscience using Drosophila olfaction as a model system have revealed brain maps representing the external world. Once we understand how the brain's built-in capability generates the internal olfactory maps, we can then elaborate how the brain computes and makes decision to elicit complex behaviors. Here, we review current progress in mapping Drosophila olfactory circuits and discuss their relationships with innate olfactory behaviors.
Collapse
Affiliation(s)
- Hui-Hao Lin
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | | | | |
Collapse
|
14
|
Smith DP. Odor and pheromone detection in Drosophila melanogaster. Pflugers Arch 2007; 454:749-58. [PMID: 17205355 DOI: 10.1007/s00424-006-0190-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/08/2006] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has proven to be a useful model system to probe the mechanisms underlying the detection, discrimination, and perception of volatile odorants. The relatively small receptor repertoire of 62 odorant receptors makes the goal of understanding odor responses from the total receptor repertoire approachable in this system, and recent work has been directed toward this goal. In addition, new work not only sheds light but also raises more questions about the initial steps in odor perception in this system. Odorant receptor genes in Drosophila are predicted to encode seven transmembrane receptors, but surprising data suggest that these receptors may be inverted in the plasma membrane compared to classical G-protein coupled receptors. Finally, although some Drosophila odorant receptors are activated directly by odorant molecules, detection of a volatile pheromone, 11-cis vaccenyl acetate requires an extracellular adapter protein called LUSH for activation of pheromone sensitive neurons. Because pheromones are used by insects to trigger mating and other behaviors, these insights may herald new approaches to control behavior in pathogenic and agricultural pest insects.
Collapse
MESH Headings
- Acetates
- Animals
- Discrimination, Psychological/physiology
- Drosophila Proteins/agonists
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/anatomy & histology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Female
- GTP-Binding Proteins/metabolism
- Genes, Insect/physiology
- Humans
- Male
- Nerve Net
- Odorants
- Oleic Acids
- Olfactory Receptor Neurons/cytology
- Olfactory Receptor Neurons/physiology
- Pheromones/physiology
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Odorant/agonists
- Receptors, Odorant/genetics
- Receptors, Odorant/metabolism
- Receptors, Pheromone/agonists
- Receptors, Pheromone/genetics
- Receptors, Pheromone/metabolism
- Sense Organs/anatomy & histology
- Sense Organs/metabolism
- Sexual Behavior, Animal/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Smell/physiology
Collapse
Affiliation(s)
- Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA.
| |
Collapse
|
15
|
Abstract
Animals use their chemosensory systems to detect and discriminate among chemical cues in the environment. Remarkable progress has recently been made in our knowledge of the molecular and cellular basis of chemosensory perception in insects, based largely on studies in Drosophila. This progress has been possible due to the identification of gene families for olfactory and gustatory receptors, the use of electro-physiological recording techniques on sensory neurons, the multitude of genetic manipulations that are available in this species, and insights from several insect model systems. Recent studies show that the superfamily of chemoreceptor proteins represent the essential elements in chemosensory coding, endowing chemosensory neurons with their abilities to respond to specific sets of odorants, tastants or pheromones. Investigating how insects detect chemicals in their environment can show us how receptor protein structures relate to ligand binding, how nervous systems process complex information, and how chemosensory systems and genes evolve.
Collapse
Affiliation(s)
- Marien de Bruyne
- Institut Biologie, Neurobiologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
16
|
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 2006; 4:e20. [PMID: 16402857 PMCID: PMC1334387 DOI: 10.1371/journal.pbio.0040020] [Citation(s) in RCA: 712] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022] Open
Abstract
Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors. This study reveals a novel membrane topology for olfactory receptors in Drosophila and details the molecular mechanisms of receptor localization at the sensory cilia.
Collapse
Affiliation(s)
- Richard Benton
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Silke Sachse
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Stephen W Michnick
- 2Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Leslie B Vosshall
- 1Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
17
|
Gohl T, Krieger J. Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. INVERTEBRATE NEUROSCIENCE 2006; 6:13-21. [PMID: 16402239 DOI: 10.1007/s10158-005-0012-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
Abstract
Pheromone recognition in insects is thought to involve distinct receptor proteins in the dendritic membrane of antennal sensory neurons. We have generated antibodies directed against a peptide derived from the sequence of the candidate pheromone receptor HR13 from Heliothis virescens. The antibodies specifically labelled the cell bodies of a distinct neuron population housed in male-specific pheromone-sensitive sensilla. Combining antibody staining with in situ hybridization the reactive cells were found to express the HR13 gene. In addition, dendrites projecting into sensilla hairs as well as the axonal processes of immunoreactive cells were labelled. Labelling of axons has allowed visualization of their fasciculation within antennal segments and permits tracking of axons as they merge into the antennal nerve. The HR13 protein was first detected 1 day before eclosion. Thus, the distribution of HR13 protein in the antennal neurons of the male moth strongly suggests a role of the HR13 receptor in recognition of pheromones.
Collapse
Affiliation(s)
- Thomas Gohl
- Institute of Physiology (230), University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
| | | |
Collapse
|
18
|
Abstract
Insect odor and taste receptors are highly sensitive detectors of food, mates, and oviposition sites. Following the identification of the first insect odor and taste receptors in Drosophila melanogaster, these receptors were identified in a number of other insects, including the malaria vector mosquito Anopheles gambiae; the silk moth, Bombyx mori; and the tobacco budworm, Heliothis virescens. The chemical specificities of many of the D. melanogaster receptors, as well as a few of the A. gambiae and B. mori receptors, have now been determined either by analysis of deletion mutants or by ectopic expression in in vivo or heterologous expression systems. Here we discuss recent advances in our understanding of the molecular and cellular basis of odor and taste coding in insects.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
19
|
Ge H, Krishnan P, Liu L, Krishnan B, Davis RL, Hardin PE, Roman G. A Drosophila nonvisual arrestin is required for the maintenance of olfactory sensitivity. Chem Senses 2005; 31:49-62. [PMID: 16306316 PMCID: PMC2180162 DOI: 10.1093/chemse/bjj005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonvisual arrestins are a family of multifunctional adaptor molecules that regulate the activities of diverse families of receptors including G protein-coupled receptors, frizzled, and transforming growth factor-beta receptors. These activities indicate broad roles in both physiology and development for nonvisual arrestins. Drosophila melanogaster has a single nonvisual arrestin, kurtz, which is found at high levels within the adult olfactory receptor neurons (ORNs), suggesting a role for this gene in modulating olfactory sensitivity. Using heat-induced expression of a krz cDNA through development, we rescued krz(1) lethality. The resulting adults lacked detectable levels of krz in the olfactory system. The rescued krz(1) homozygotes have an incompletely penetrant antennal structural defect that was completely rescued by the neural expression of a krz cDNA. The krz(1) loss-of-function adults without visible antennal defects displayed diminished behavioral responsiveness to both aversive and attractive odors and also demonstrated reduced olfactory receptor potentials. Both the behavioral and electrophysiological phenotypes were rescued by the targeted expression of the krz cDNA within postdevelopmental ORNs. Thus, krz is required within the nervous system for antennal development and is required later in the ORNs for the maintenance of olfactory sensitivity in Drosophila. The reduced receptor potentials in krz(1) antenna indicate that nonvisual arrestins are required for the early odor-induced signaling events within the ORNs.
Collapse
Affiliation(s)
- Hong Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
| | - Parthasarathy Krishnan
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Lingzhi Liu
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Balaji Krishnan
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Ronald L. Davis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
| | - Paul E. Hardin
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Gregg Roman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77303, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
20
|
Dahanukar A, Hallem EA, Carlson JR. Insect chemoreception. Curr Opin Neurobiol 2005; 15:423-30. [PMID: 16006118 DOI: 10.1016/j.conb.2005.06.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 06/28/2005] [Indexed: 11/19/2022]
Abstract
Insect chemoreception is mediated by a large and diverse superfamily of seven-transmembrane domain receptors. These receptors were first identified in Drosophila, but have since been found in other insects, including mosquitoes and moths. Expression and functional analysis of these receptors have been used to identify receptor ligands and to map receptors to functional classes of neurons. Many receptors detect general odorants or tastants, whereas some detect pheromones. The non-canonical receptor Or83b, which is highly conserved across insect orders, dimerizes with odorant and pheromone receptors and is required for efficient localization of these proteins to dendrites of sensory neurons. These studies provide a foundation for understanding the molecular and cellular basis of olfactory and gustatory coding.
Collapse
Affiliation(s)
- Anupama Dahanukar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
21
|
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004; 43:703-14. [PMID: 15339651 DOI: 10.1016/j.neuron.2004.08.019] [Citation(s) in RCA: 958] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 10/25/2022]
Abstract
Fruit flies are attracted by a diversity of odors that signal the presence of food, potential mates, or attractive egg-laying sites. Most Drosophila olfactory neurons express two types of odorant receptor genes: Or83b, a broadly expressed receptor of unknown function, and one or more members of a family of 61 selectively expressed receptors. While the conventional odorant receptors are highly divergent, Or83b is remarkably conserved between insect species. Two models could account for Or83b function: it could interact with specific odor stimuli independent of conventional odorant receptors, or it could act in concert with these receptors to mediate responses to all odors. Our results support the second model. Dendritic localization of conventional odorant receptors is abolished in Or83b mutants. Consistent with this cellular defect, the Or83b mutation disrupts behavioral and electrophysiological responses to many odorants. Or83b therefore encodes an atypical odorant receptor that plays an essential general role in olfaction.
Collapse
Affiliation(s)
- Mattias C Larsson
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hummel T, Zipursky SL. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 2004; 42:77-88. [PMID: 15066266 DOI: 10.1016/s0896-6273(04)00158-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/13/2004] [Accepted: 03/04/2004] [Indexed: 11/26/2022]
Abstract
Drosophila olfactory receptor neurons (ORNs) elaborate a precise internal representation of the external olfactory world in the antennal lobe (AL), a structure analagous to the vertebrate olfactory bulb. ORNs expressing the same odorant receptor innervate common targets in a highly organized neuropilar structure inside the AL, the glomerulus. During normal development, ORNs target to specific regions of the AL and segregate into subclass-specific aggregates called protoglomeruli prior to extensive intermingling with target dendrites to form mature glomeruli. Using a panel of ORN subclass-specific markers, we demonstrate that in the adult AL, N-cadherin (N-cad) mutant ORN terminals remain segregated from dendrites of target neurons. N-cad plays a crucial role in protoglomerulus formation but is largely dispensible for targeting to the appropriate region of the AL. We propose that N-cad, a homophilic cell adhesion molecule, acts in a permissive fashion to promote subclass-specific sorting of ORN axon terminals into protoglomeruli.
Collapse
Affiliation(s)
- Thomas Hummel
- Howard Hughes Medical Institute, Department of Biological Chemistry, Geffen School of Medicine, Molecular Biology Institute, Box 951662, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Pitts RJ, Fox AN, Zwiebel LJ. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2004; 101:5058-63. [PMID: 15037749 PMCID: PMC387373 DOI: 10.1073/pnas.0308146101] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae is a highly anthropophilic mosquito responsible for the majority of malaria transmission in Africa. The biting and host preference behavior of this disease vector is largely influenced by its sense of smell, which is presumably facilitated by G protein-coupled receptor signaling [Takken, W. & Knols, B. (1999) Annu. Rev. Entomol. 44, 131-157]. Because of the importance of host preference to the mosquitoes' ability to transmit disease, we have initiated studies intended to elucidate the molecular mechanisms underlying olfaction in An. gambiae. In the course of these studies, we have identified a number of genes potentially involved in signal transduction, including a family of candidate odorant receptors. One of these receptors, encoded by GPRor7 (hereafter referred to as AgOr7), is remarkably similar to an odorant receptor that is expressed broadly in olfactory tissues and has been identified in Drosophila melanogaster and other insects [Krieger, J., Klink, O., Mohl, C., Raming, K. & Breer, H. (2003) J. Comp. Physiol. A 189, 519-526; Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. (1999) Cell 96, 725-736]. We have observed AgOr7 expression in olfactory and gustatory tissues in adult An. gambiae and during several stages of the mosquitoes' development. Within the female adult peripheral chemosensory system, antiserum against the AgOR7 polypeptide labels most sensilla of the antenna and maxillary palp as well as a subset of proboscis sensilla. Furthermore, AgOR7 antiserum labeling is observed within the larval antenna and maxillary palpus. These results are consistent with a role for AgOr7 in both olfaction and gustation in An. gambiae and raise the possibility that AgOr7 orthologs may also be of general importance to both modalities of chemosensation in other insects.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biological Sciences, Center for Molecular Neuroscience and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
24
|
Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003; 100 Suppl 2:14537-42. [PMID: 14608037 PMCID: PMC304115 DOI: 10.1073/pnas.2335847100] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
25
|
Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J Neurosci 2003. [PMID: 14586020 DOI: 10.1523/jneurosci.23-30-09906.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, individual olfactory neurons are thought to express a single odorant receptor (Or) gene, but it is not clear that all odor-evoked activity in each neuron is exclusively dependent on an individual odorant receptor. In Drosophila, little is known about what receptors impart odor sensitivity to particular olfactory neurons. Here, we demonstrate the use of gene targeting to produce a null mutant of the putative odorant receptor Or43b and find that the mutant is defective for odor-evoked activity in ab8A neurons, a single functional class of olfactory neurons in Drosophila. ab8A neurons lacking Or43b are still present in the mutants and display spontaneous activity but are insensitive to odor stimulation. Therefore, Or43b is required for odor responsiveness in these olfactory neurons in vivo. Or83b, a receptor expressed in a large fraction of olfactory neurons including Or43b neurons, does not confer odor responsiveness in the absence of Or43b. Olfactory behavior elicited by odorants that activate the ab8A neurons is indistinguishable between Or43b mutants and controls, demonstrating a surprising degree of functional redundancy among the limited odor receptor repertoire in this species. These studies demonstrate that a reverse genetic approach can be used to correlate specific olfactory receptors with odor specificity of functional classes of olfactory neurons.
Collapse
|
26
|
Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 2003; 37:827-41. [PMID: 12628173 DOI: 10.1016/s0896-6273(03)00094-1] [Citation(s) in RCA: 398] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigate how the molecular and cellular maps of the Drosophila olfactory system are integrated. A correspondence is established between individual odor receptors, neurons, and odors. We describe the expression of the Or22a and Or22b receptor genes, show localization to dendritic membranes, and find sexual dimorphism. Or22a maps to the ab3A neuron, which responds to ethyl butyrate. Analysis of a deletion mutant lacking Or22a, along with transgenic rescue experiments, confirms the mapping and demonstrates that an Or gene is required for olfactory function in vivo. Ectopic expression of Or47a in a mutant cell identifies the neuron from which it derives and its odor ligands. Ectopic expression in a wild-type cell shows that two receptors can function in a single cell. The ab3A neuron does not depend on normal odor receptor gene expression to navigate to its target in the CNS.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
27
|
Bhalerao S, Sen A, Stocker R, Rodrigues V. Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogaster. JOURNAL OF NEUROBIOLOGY 2003; 54:577-92. [PMID: 12555270 DOI: 10.1002/neu.10175] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have used green fluorescent protein to trace the projection patterns of olfactory neurons expressing identified candidate odorant receptors to the brain of Drosophila. At the periphery, receptor expression correlates with specific sense-organ subtype, independent of location on the antennal surface. The majority of neurons expressing a given receptor converge onto one or two major glomeruli as described previously. However, we detected a few additional glomeruli, which are less intensely innervated and also tend to be somewhat variable. This means that functionally similar olfactory neurons connect to small subsets of glomeruli rather than to a single glomerulus as believed previously. This finding has important implications for our understanding of odor coding and the generation of olfactory behavior.
Collapse
Affiliation(s)
- Sheetal Bhalerao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005, India
| | | | | | | |
Collapse
|
28
|
Abstract
Recent experiments in Drosophila demonstrate striking stereotypy in the neural architecture of the olfactory system. Functional imaging experiments in mammals and honeybees suggest a mechanism of odor coding that translates discrete patterns of activity in olfactory glomeruli into an odor image. Future experiments in Drosophila may permit a direct test of this odor-coding hypothesis.
Collapse
Affiliation(s)
- Andreas Keller
- Laboratory of Neurogenetics and Behavior, Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10021, USA.
| | | |
Collapse
|
29
|
Hummel T, Vasconcelos ML, Clemens JC, Fishilevich Y, Vosshall LB, Zipursky SL. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 2003; 37:221-31. [PMID: 12546818 DOI: 10.1016/s0896-6273(02)01183-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Different classes of olfactory receptor neurons (ORNs) in Drosophila innervate distinct targets, or glomeruli, in the antennal lobe of the brain. Here we demonstrate that specific ORN classes require the cell surface protein Dscam (Down Syndrome Cell Adhesion Molecule) to synapse in the correct glomeruli. Dscam mutant ORNs frequently terminated in ectopic sites both within and outside the antennal lobe. The morphology of Dscam mutant axon terminals in either ectopic or cognate targets was abnormal. Target specificity for other ORNs was not altered in Dscam mutants, suggesting that different ORNs use different strategies to regulate wiring. Multiple forms of Dscam RNA were detected in the developing antenna, and Dscam protein was localized to developing ORN axons. We propose a role for Dscam protein diversity in regulating ORN target specificity.
Collapse
Affiliation(s)
- Thomas Hummel
- Howard Hughes Medical Institute, Department of Biological Chemistry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|