1
|
Cheng X, Xing C, Zhang F, Lin L, Zhao K, Dong H, Huang X, Zhang S. Pyrus pyrifolia WRKY31 activates the ribosomal protein gene RPL12 to confer black spot resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112487. [PMID: 40194684 DOI: 10.1016/j.plantsci.2025.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Ribosomal proteins (RPs) are essential for genetic transcription and translation, playing a key role in plant growth, development, and stress responses, including disease resistance. However, the function and transcriptional regulation of RPL12 remain poorly understood. Investigating the gene function and the transcription factors that govern its expression is crucial to understanding its mechanism. In this study, a novel transcription factor gene, PpWRKY31, was isolated from Pyrus pyrifolia. The PpWRKY31 protein is expressed in the nucleus and belongs to Group IIb WRKY transcription factors. qRT-PCR analysis revealed that its expression was upregulated under the treatment of Alternaria alternata, as well as to exogenous hormonal treatments. Using yeast one-hybrid (Y1H) assay, dual-luciferase eporter assay, and electrophoretic mobility shift assay (EMSA), we demonstrated that PpWRKY31 can bind to the W-box element in the promoter region of PpRPL12. Overexpression of either PpWRKY31 or PpRPL12 enhanced the resistance of both pear and Arabidopsis thaliana plants to black spot disease, evidenced by reduced lesion size and increased activity of defense enzyme. Conversely, silencing of PpWRKY31 or PpRPL12 markedly diminished the resistance of pear to black spot disease. PpWRKY31 overexpression was observed to notably enhance the expression of PpRPL12 and genes associated with salicylic acid, inducing changes in the activity of enzymes related to the phenylpropanoid pathway, such as phenylalanine ammonia-lyase (PAL). In conclusion, this study elucidates a novel PpWRKY31-PpRPL12 signaling pathway that enhances resistance to pear black spot disease, providing insights into the regulatory networks underpinning plant defense responses. CORE: Pear black spot disease, caused by Alternaria alternata, seriously affects fruit quality and yield. We identified that PpWRKY31 transgenic calli responded to Alternaria alternata in pear. PpWRKY31 binds to the W-box cis-element of the PpRPL12 promoter, upregulating the expression of PpRPL12. The PpWRKY31-PpRPL12 regulatory module indirectly influences the downstream salicylic acid and phenylpropanoid pathways, ultimately enhancing the pear's black spot resistance. GENE AND ACCESSION NUMBERS: The sequence information used in this study is available in the Pear Genome Database (http://peargenome.njau.edu.cn/), the National Center for Biotechnology Information (NCBI) database, and The Arabidopsis Information Resource, see Table S2.
Collapse
Affiliation(s)
- Xiangyu Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; Shandong Institute of Pomology, Tai'an 271099, China.
| | - Feng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Keke Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; The Sanya Institute of Nanjing Agricultural University, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; The Sanya Institute of Nanjing Agricultural University, China.
| |
Collapse
|
2
|
Gutiérrez Cruz AI, de Anda-Jáuregui G, Hernández-Lemus E. Gene Co-Expression Analysis Reveals Functional Differences Between Early- and Late-Onset Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:200. [PMID: 40136454 PMCID: PMC11941623 DOI: 10.3390/cimb47030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The rising prevalence of Alzheimer's disease (AD), particularly among older adults, has driven increased research into its underlying mechanisms and risk factors. Aging, genetic susceptibility, and cardiovascular health are recognized contributors to AD, but how the age of onset affects disease progression remains underexplored. This study investigates the role of early- versus late-onset Alzheimer's disease (EOAD and LOAD, respectively) in shaping the trajectory of cognitive decline. Leveraging data from the Religious Orders Study and Memory and Aging Project (ROSMAP), two cohorts were established: individuals with early-onset AD and those with late-onset AD. Comprehensive analyses, including differential gene expression profiling, pathway enrichment, and gene co-expression network construction, were conducted to identify distinct molecular signatures associated with each cohort. Network modularity learning algorithms were used to discern the inner structure of co-expression networks and their related functional features. Computed network descriptors provided deeper insights into the influence of age at onset on the biological progression of AD.
Collapse
Affiliation(s)
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Garat J, Di Paolo A, Eastman G, Castillo PE, Sotelo-Silveira J. The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes. Neuroscience 2025; 567:195-208. [PMID: 39755230 DOI: 10.1016/j.neuroscience.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. However, compelling evidence supports its essential and pervasive role in axonal function in the mature nervous system. Remarkably, in the last five decades, Uruguayan neuroscientists have contributed significantly to demonstrating axonal LPS by studying motor and sensory axons of the peripheral nervous system of mammals, as well as giant axons of the squid and the Mauthner cell of fish. For LPS to occur, a highly regulated transport system must deliver the necessary macromolecules, such as mRNAs and ribosomes. This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
Collapse
Affiliation(s)
- Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| |
Collapse
|
4
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
5
|
Li L, Zhou H, Cui Y, Xu K. Trim13-induced ubiquitination of RPS27A inhibits the progression of lung cancer by depending on the inactivation of NF-κB signaling pathway. Physiol Rep 2024; 12:e70157. [PMID: 39667820 PMCID: PMC11637613 DOI: 10.14814/phy2.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide. Recent studies have shown that tripartite motif 13 (TRIM13) play important regulatory roles in the progression of different tumors. In this study, we focused on the role of TRIM13 in LC tumorigenesis and its underlying molecular mechanisms. The study demonstrated TRIM13 was identified as a novel tumor suppressor gene of LC and its overexpression suppressed LC progression in vitro and in vivo. Mechanistically, TRIM13 interacted with RPS27A, increasing RPS27A ubiquitination and degradation. Furthermore, RPS27A overexpression reversed the inhibitory effect of TRIM13 overexpression on LC progression. By binding to RPS27A and encouraging its ubiquitination and degradation, TRIM13 hindered LC advancement. We also found that RPS27A overexpression reversed the inhibitory effect of TRIM13 overexpression on NF-κB signaling, thereby further promoting the proliferation and metastasis of LC cell lines. Therefore, targeting the TRIM13/RPS27A/NF-κB signaling axis may be a promising target for LC treatment.
Collapse
Affiliation(s)
- Lailing Li
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Hui Zhou
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Yayun Cui
- Division of Life Sciences and Medicine, Department of Cancer Radiotherapy, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Ke Xu
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| |
Collapse
|
6
|
Gokulan CG, Bangale U, Balija V, Ballichatla S, Potupureddi G, Rao D, Varma P, Magar N, Jallipalli K, Manthri S, Padmakumari AP, Laha GS, Rao LVS, Barbadikar KM, Raman MS, Patel HK, Maganti SM, Sonti RV. Multiomics-assisted characterization of rice-Yellow Stem Borer interaction provides genomic and mechanistic insights into stem borer resistance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:122. [PMID: 38713254 DOI: 10.1007/s00122-024-04628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.
Collapse
Affiliation(s)
- C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Umakanth Bangale
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Vishalakshi Balija
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Suneel Ballichatla
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gopi Potupureddi
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Deepti Rao
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Prashanth Varma
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Nakul Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Karteek Jallipalli
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Sravan Manthri
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - A P Padmakumari
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gouri S Laha
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - L V Subba Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | | | | | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Ghaziabad, 201002, India.
| | - Sheshu Madhav Maganti
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India.
- ICAR-Central Tobacco Research Institute, Rajamahendravaram, Andhra Pradesh, 533105, India.
| | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
7
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
8
|
Zhou MS, Zheng SY, Chen C, Li X, Zhang Q, Zhao YJ, Zhang W. Gene expression analysis to identify mechanisms underlying improvement of myocardial fibrosis by finerenone in SHR. Biochem Pharmacol 2024; 220:115975. [PMID: 38086490 DOI: 10.1016/j.bcp.2023.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Both spironolactone and finerenone treatments significantly reduced SBP and there was no statistical difference in their antihypertensive effects. The differences in body weight (at the end of 1/2/3/4 week) to pre-dose body weight ratio and heart rate (at the end of 1/2/3/4 week) to pre-dose heart rate ratio were not statistically significant in the vehicle, spironolactone, finerenone, and control groups.There was no statistically significant difference in mortality among the vehicle, spironolactone, and finerenone groups. The relative heart mass, ANP, BNP, CVF, Col I, TGF-β, and Casp-3 were gradually decreased in vehicle group, spironolactone group, and finerenone group. Among them, BNP, CVF, TGF-β, and Casp-3 were significantly decreased in the finerenone group compared with the vehicle group. HE and Masson staining showed that the cardiomyocytes of rats in the vehicle group and spironolactone group were disorganized, with cell hypertrophy, significantly enlarged cell gaps and a large amount of collagen deposition, whereas the cardiomyocytes of rats in the finerenone group and the control group were more neatly arranged, with smaller cell gaps and a small amount of collagen tissue deposition. RNA sequencing (RNA-seq) showed that there was a total of 119 differentially expressed genes (DEGs) between finerenone treatment and vehicle treatment. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the signaling pathways involved were mainly in drug metabolism-cytochrome P450, chemical carcinogenesis, IL-17 signaling pathway, axon guidance, and hematopoietic cell lineage. Protein-protein interaction (PPI) analysis showed that the core genes were Oaslf, Nos2, LOC687780, Rhobtb1, Ephb3, and Rps27a.
Collapse
Affiliation(s)
- Ming-Shuang Zhou
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| | - Shao-Ying Zheng
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Cheng Chen
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Xue Li
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Qin Zhang
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China
| | - Ya-Jing Zhao
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| | - Wen Zhang
- Fuwai Yunnan Hospital,Chinese Academy of Medical Sciences, No.528, Shahe North Road, Wuhua District, Kunming City, Yunnan Province, China.
| |
Collapse
|
9
|
Liu XY, Tan Q, Li LX. A pan-cancer analysis of Dyskeratosis congenita 1 (DKC1) as a prognostic biomarker. Hereditas 2023; 160:38. [PMID: 38082360 PMCID: PMC10712082 DOI: 10.1186/s41065-023-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1), a critical component of telomerase complex, is highly expressed in a variety of human cancers. However, the association of DKC1 with cancer occurrence and development stages is not clear, making a pan-cancer analysis crucial. METHODS We conducted a study using various bioinformatic databases such as TIMER, GEPIA, UALCAN, and KM plotter Analysis to examine the different expressions of DKC1 in multiple tissues and its correlation with pathological stages. Through KEGG analysis, GO enrichment analysis and Venn analysis, we were able to reveal DKC1-associated genes and signaling pathways. In addition, we performed several tests including the CCK, wound healing assay, cell cycle arrest assay, transwell assay and Sa-β-gal staining on DKC1-deleted MDA-231 cells. RESULTS Our study demonstrates that DKC1 has relatively low expression specificity in different tissues. Furthermore, we found that in ACC, KICH, KIRP and LIHC, the expression level of DKC1 is positively correlated with pathological stages. Conversely, in NHSC, KIRP, LGG, LIHC, MESO and SARC, we observed a negative influence of DKC1 expression level on the overall survival rate. We also found a significant positive correlation between DKC1 expression and Tumor Mutational Burden in 14 tumors. Additionally, we observed a significantly negative impact of DKC1 DNA methylation on gene expression at the promoter region in BRCA. We also identified numerous phosphorylation sites concentrated at the C-terminus of the DKC1 protein. Our GO analysis revealed a correlation between DKC1 and ribosomal biosynthesis pathways, and the common element UTP14A was identified. We also observed decreased rates of cell proliferation, migration and invasion abilities in DKC1-knockout MDA-MB-231 cell lines. Furthermore, DKC1-knockout induced cell cycle arrest and caused cell senescence. CONCLUSIONS Our findings suggest that the precise expression of DKC1 is closely associated with the occurrence and developmental stages of cancer in multiple tissues. Depletion of DKC1 can inhibit the abilities of cancer cells to proliferate, migrate, and invade by arresting the cell cycle and inducing cell senescence. Therefore, DKC1 may be a valuable prognostic biomarker for the diagnosis and treatment of cancer in various tissues.
Collapse
Affiliation(s)
- Xin-Ying Liu
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lin-Xiao Li
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China.
| |
Collapse
|
10
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|
11
|
Duan H, Zhang S, Zarai Y, Öllinger R, Wu Y, Sun L, Hu C, He Y, Tian G, Rad R, Kong X, Cheng Y, Tuller T, Wolf DA. eIF3 mRNA selectivity profiling reveals eIF3k as a cancer-relevant regulator of ribosome content. EMBO J 2023:e112362. [PMID: 37155573 DOI: 10.15252/embj.2022112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.
Collapse
Affiliation(s)
- Haoran Duan
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Siqiong Zhang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yoram Zarai
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yanmeng Wu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Li Sun
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Cheng Hu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yaohui He
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Guiyou Tian
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Xiangquan Kong
- Department of Radiation Oncology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Yabin Cheng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Dieter A Wolf
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
12
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
13
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
14
|
Filipek K, Deryło K, Michalec-Wawiórka B, Zaciura M, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Czapiński J, Rivero-Müller A, Wawiórka L, Tchórzewski M. Identification of a novel alternatively spliced isoform of the ribosomal uL10 protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194890. [PMID: 36328276 DOI: 10.1016/j.bbagrm.2022.194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Alternative splicing is one of the key mechanisms extending the complexity of genetic information and at the same time adaptability of higher eukaryotes. As a result, the broad spectrum of isoforms produced by alternative splicing allows organisms to fine-tune their proteome; however, the functions of the majority of alternatively spliced protein isoforms are largely unknown. Ribosomal protein isoforms are one of the groups for which data are limited. Here we report characterization of an alternatively spliced isoform of the ribosomal uL10 protein, named uL10β. The uL10 protein constitutes the core element of the ribosomal stalk structure within the GTPase associated center, which represents the landing platform for translational GTPases - trGTPases. The stalk plays an important role in the ribosome-dependent stimulation of GTP by trGTPases, which confer unidirectional trajectory for the ribosome, allosterically contributing to the speed and accuracy of translation. We have shown that the newly identified uL10β protein is stably expressed in mammalian cells and is primarily located within the nuclear compartment with a minor signal within the cytoplasm. Importantly, uL10β is able to bind to the ribosomal particle, but is mainly associated with 60S and 80S particles; additionally, the uL10β undergoes re-localization into the mitochondria upon endoplasmic reticulum stress induction. Our results suggest a specific stress-related dual role of uL10β, supporting the idea of existence of specialized ribosomes with an altered GTPase associated center.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kamil Deryło
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; Polish-Japanese Academy of Information Technology, Warsaw 02-008, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093 Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093 Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
15
|
RpS3 Is Required for Spermatogenesis of Drosophila melanogaster. Cells 2023; 12:cells12040573. [PMID: 36831240 PMCID: PMC9954509 DOI: 10.3390/cells12040573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ribosomal proteins (RPs) constitute the ribosome, thus participating in the protein biosynthesis process. Emerging studies have suggested that many RPs exhibit different expression levels across various tissues and function in a context-dependent manner for animal development. Drosophila melanogaster RpS3 encodes the ribosomal protein S3, one component of the 40S subunit of ribosomes. We found that RpS3 is highly expressed in the reproductive organs of adult flies and its depletion in male germline cells led to severe defects in sperm production and male fertility. Immunofluorescence staining showed that RpS3 knockdown had little effect on early germ cell differentiation, but strongly disrupted the spermatid elongation and individualization processes. Furthermore, we observed abnormal morphology and activity of mitochondrial derivatives in the elongating spermatids of RpS3-knockdown testes, which could cause the failure of axoneme elongation. We also found that RpS3 RNAi inhibited the formation of the individualization complex that takes charge of disassociating the spermatid bundle. In addition, excessive apoptotic cells were detected in the RpS3-knockdown testes, possibly to clean the defective spermatids. Together, our data demonstrated that RpS3 plays an important role in regulating spermatid elongation and individualization processes and, therefore, is required for normal Drosophila spermatogenesis.
Collapse
|
16
|
Li J, Zhang Y, Lu T, Liang R, Wu Z, Liu M, Qin L, Chen H, Yan X, Deng S, Zheng J, Liu Q. Identification of diagnostic genes for both Alzheimer's disease and Metabolic syndrome by the machine learning algorithm. Front Immunol 2022; 13:1037318. [PMID: 36405716 PMCID: PMC9667080 DOI: 10.3389/fimmu.2022.1037318] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disease worldwide. Metabolic syndrome is the most common metabolic and endocrine disease in the elderly. Some studies have suggested a possible association between MetS and AD, but few studied genes that have a co-diagnostic role in both diseases. METHODS The microarray data of AD (GSE63060 and GSE63061 were merged after the batch effect was removed) and MetS (GSE98895) in the GEO database were downloaded. The WGCNA was used to identify the co-expression modules related to AD and MetS. RF and LASSO were used to identify the candidate genes. Machine learning XGBoost improves the diagnostic effect of hub gene in AD and MetS. The CIBERSORT algorithm was performed to assess immune cell infiltration MetS and AD samples and to investigate the relationship between biomarkers and infiltrating immune cells. The peripheral blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data from patients with AD and normal individuals were visualized with the Seurat standard flow dimension reduction clustering the metabolic pathway activity changes each cell with ssGSEA. RESULTS The brown module was identified as the significant module with AD and MetS. GO analysis of shared genes showed that intracellular transport and establishment of localization in cell and organelle organization were enriched in the pathophysiology of AD and MetS. By using RF and Lasso learning methods, we finally obtained eight diagnostic genes, namely ARHGAP4, SNRPG, UQCRB, PSMA3, DPM1, MED6, RPL36AL and RPS27A. Their AUC were all greater than 0.7. Higher immune cell infiltrations expressions were found in the two diseases and were positively linked to the characteristic genes. The scRNA-seq datasets finally obtained seven cell clusters. Seven major cell types including CD8 T cell, monocytes, T cells, NK cell, B cells, dendritic cells and macrophages were clustered according to immune cell markers. The ssGSEA revealed that immune-related gene (SNRPG) was significantly regulated in the glycolysis-metabolic pathway. CONCLUSION We identified genes with common diagnostic effects on both MetS and AD, and found genes involved in multiple metabolic pathways associated with various immune cells.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yang Zhang
- General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Tanli Lu
- Department of Neurology, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Rui Liang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhikang Wu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meimei Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Linyao Qin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shan Deng
- Department of Neurology, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jiemin Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
17
|
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Ponce-Alquicira E. Ribosomes: The New Role of Ribosomal Proteins as Natural Antimicrobials. Int J Mol Sci 2022; 23:ijms23169123. [PMID: 36012387 PMCID: PMC9409020 DOI: 10.3390/ijms23169123] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are those capable of performing more than one biochemical or biophysical function within the same polypeptide chain. They have been a recent focus of research due to their potential applications in the health, pharmacological, and nutritional sciences. Among them, some ribosomal proteins involved in assembly and protein translation have also shown other functionalities, including inhibiting infectious bacteria, viruses, parasites, fungi, and tumor cells. Therefore, they may be considered antimicrobial peptides (AMPs). However, information regarding the mechanism of action of ribosomal proteins as AMPs is not yet fully understood. Researchers have suggested that the antimicrobial activity of ribosomal proteins may be associated with an increase in intracellular reactive oxidative species (ROS) in target cells, which, in turn, could affect membrane integrity and cause their inactivation and death. Moreover, the global overuse of antibiotics has resulted in an increase in pathogenic bacteria resistant to common antibiotics. Therefore, AMPs such as ribosomal proteins may have potential applications in the pharmaceutical and food industries in the place of antibiotics. This article provides an overview of the potential roles of ribosomes and AMP ribosomal proteins in conjunction with their potential applications.
Collapse
Affiliation(s)
- Jessica J. Hurtado-Rios
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
18
|
Deciphering the Molecular Mechanisms of Chilling Tolerance in Lsi1-Overexpressing Rice. Int J Mol Sci 2022; 23:ijms23094667. [PMID: 35563058 PMCID: PMC9103898 DOI: 10.3390/ijms23094667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Improving tolerance to low-temperature stress during the rice seedling stage is of great significance in agricultural science. In this study, using the low silicon gene 1 (Lsi1)-overexpressing (Dular-OE) and wild-type rice (Dular-WT), we showed that Lsi1 overexpression enhances chilling tolerance in Dular-OE. The overexpression of the Lsi1 increases silicon absorption, but it was not the main reason for chilling tolerance in Dular-OE. Instead, our data suggest that the overexpression of a Lsi1-encoding NIP and its interaction with key proteins lead to chilling tolerance in Dular-OE. Additionally, we show that the high-mobility group protein (HMG1) binds to the promoter of Lsi1, positively regulating its expression. Moreover, Nod26-like major intrinsic protein (NIP)’s interaction with α and β subunits of ATP synthase and the 14-3-3f protein was validated by co-immunoprecipitation (Co-IP), bimolecular fluorescent complementary (BiFC), and GST-pulldown assays. Western blotting revealed that the overexpression of NIP positively regulates the ATP-synthase subunits that subsequently upregulate calcineurin B-like interacting protein kinases (CIPK) negatively regulating 14-3-3f. Overall, these NIP-mediated changes trigger corresponding pathways in an orderly manner, enhancing chilling tolerance in Dular-OE.
Collapse
|
19
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Li MY, Zhao C, Chen L, Yao FY, Zhong FM, Chen Y, Xu S, Jiang JY, Yang YL, Min QH, Lin J, Zhang HB, Liu J, Wang XZ, Huang B. Quantitative Proteomic Analysis of Plasma Exosomes to Identify the Candidate Biomarker of Imatinib Resistance in Chronic Myeloid Leukemia Patients. Front Oncol 2022; 11:779567. [PMID: 34993140 PMCID: PMC8724304 DOI: 10.3389/fonc.2021.779567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Imatinib (IM), a tyrosine kinase inhibitor (TKI), has markedly improved the survival and life quality of chronic myeloid leukemia (CML) patients. However, the lack of specific biomarkers for IM resistance remains a serious clinical challenge. Recently, growing evidence has suggested that exosome-harbored proteins were involved in tumor drug resistance and could be novel biomarkers for the diagnosis and drug sensitivity prediction of cancer. Therefore, we aimed to investigate the proteomic profile of plasma exosomes derived from CML patients to identify ideal biomarkers for IM resistance. Methods We extracted exosomes from pooled plasma samples of 9 imatinib-resistant CML patients and 9 imatinib-sensitive CML patients by ultracentrifugation. Then, we identified the expression levels of exosomal proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS) based label free quantification. Bioinformatics analyses were used to analyze the proteomic data. Finally, the western blot (WB) and parallel reaction monitoring (PRM) analyses were applied to validate the candidate proteins. Results A total of 2812 proteins were identified in plasma exosomes from imatinib-resistant and imatinib-sensitive CML patients, including 279 differentially expressed proteins (DEPs) with restricted criteria (fold change≥1.5 or ≤0.667, p<0.05). Compared with imatinib-sensitive CML patients, 151 proteins were up-regulated and 128 proteins were down-regulated. Bioinformatics analyses revealed that the main function of the upregulated proteins was regulation of protein synthesis, while the downregulated proteins were mainly involved in lipid metabolism. The top 20 hub genes were obtained using STRING and Cytoscape, most of which were components of ribosomes. Moreover, we found that RPL13 and RPL14 exhibited exceptional upregulation in imatinib-resistant CML patients, which were further confirmed by PRM and WB. Conclusion Proteomic analysis of plasma exosomes provides new ideas and important information for the study of IM resistance in CML. Especially the exosomal proteins (RPL13 and RPL14), which may have great potential as biomarkers of IM resistance.
Collapse
Affiliation(s)
- Mei-Yong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cui Zhao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Huanggang Central Hospital Affiliated to Changjiang University, Huanggang, China
| | - Lian Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hua Min
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Bin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Berloco MF, Minervini CF, Moschetti R, Palazzo A, Viggiano L, Marsano RM. Evidence of the Physical Interaction between Rpl22 and the Transposable Element Doc5, a Heterochromatic Transposon of Drosophila melanogaster. Genes (Basel) 2021; 12:1997. [PMID: 34946947 PMCID: PMC8701128 DOI: 10.3390/genes12121997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.
Collapse
Affiliation(s)
- Maria Francesca Berloco
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberta Moschetti
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Antonio Palazzo
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Luigi Viggiano
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | | |
Collapse
|
22
|
Romsdahl J, Schultzhaus Z, Cuomo CA, Dong H, Abeyratne-Perera H, Hervey WJ, Wang Z. Phenotypic Characterization and Comparative Genomics of the Melanin-Producing Yeast Exophiala lecanii-corni Reveals a Distinct Stress Tolerance Profile and Reduced Ribosomal Genetic Content. J Fungi (Basel) 2021; 7:1078. [PMID: 34947060 PMCID: PMC8709033 DOI: 10.3390/jof7121078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
| | - Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Hashanthi Abeyratne-Perera
- American Society for Engineering Education Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - W. Judson Hervey
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| |
Collapse
|
23
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
24
|
Das S, Roy B, Chakrabarty S. Non-ribosomal insights into ribosomal P2 protein in Plasmodium falciparum-infected erythrocytes. Microbiologyopen 2021; 10:e1188. [PMID: 34459544 PMCID: PMC8380560 DOI: 10.1002/mbo3.1188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/12/2022] Open
Abstract
The enormous complexity of the eukaryotic ribosome has been a real challenge in unlocking the mechanistic aspects of its amazing molecular function during mRNA translation and many non‐canonical activities of ribosomal proteins in eukaryotic cells. While exploring the uncanny nature of ribosomal P proteins in malaria parasites Plasmodium falciparum, the 60S stalk ribosomal P2 protein has been shown to get exported to the infected erythrocyte (IE) surface as an SDS‐resistant oligomer during the early to the mid‐trophozoite stage. Inhibiting IE surface P2 either by monoclonal antibody or through genetic knockdown resulted in nuclear division arrest of the parasite. This strange and serendipitous finding has led us to explore more about un‐canonical cell biology and the structural involvement of P2 protein in Plasmodium in the search for a novel biochemical role during parasite propagation in the human host.
Collapse
Affiliation(s)
- Sudipta Das
- Asymmetric Cell Division Laboratory, Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Bhaskar Roy
- Asymmetric Cell Division Laboratory, Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saswata Chakrabarty
- Asymmetric Cell Division Laboratory, Division of Infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
25
|
Xia Y, Zhang X, Sun D, Gao Y, Zhang X, Wang L, Cai Q, Wang Q, Sun J. Effects of water-soluble components of atmospheric particulates from rare earth mining areas in China on lung cancer cell cycle. Part Fibre Toxicol 2021; 18:27. [PMID: 34340691 PMCID: PMC8330054 DOI: 10.1186/s12989-021-00416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to investigate the effects of water soluble particulate matter (WSPM) on the viability and protein expression profile of human lung adenocarcinoma cell A549 in the Bayou Obo rare earth mining area, and explore the influence of WSPM on the A549 cell cycle. RESULTS It was found that WSPM can inhibit the viability of A549 cells and induce cell arrest in the G2/M phase. Compared with controls, exposure to WSPM10 and WSPM2.5 induced 134 and 116 proteins to be differentially expressed in A549 cells, respectively. In addition, 33 and 31 differentially expressed proteins were further confirmed, and was consistent with the proteomic analysis. The most prominent enrichment in ribosome-associated proteins were presented. When RPL6, RPL13, or RPL18A gene expression was inhibited, A549 cells were arrested in the G1 phase, affecting the expression of Cyclin D1, p21, RB1, Cyclin A2, Cyclin B1, CDC25A, CDK2, CHEK2 and E2F1. Furthermore, the La3+, Ce3+, Nd3+ and F- in WSPM also inhibited the viability of A549 cells. After 24 h of exposure to 2 mM of NaF, A549 cells were also arrested in the G2/M phase, while the other three compounds did not have this effect. These four compounds affected the cell cycle regulatory factors in A549 cells, mainly focusing on effecting the expression of CDK2, CDK4, RB1, ATM, TP53 and MDM2 genes. These results are consistent with the those from WSPM exposure. CONCLUSIONS These results revealed that WSPM from rare earth mines decreased the viability of A549 cells, and induced cell cycle G2/M phase arrest, and even apoptosis, which may be independent of the NF-κB/MYD88 pathway, and be perceived by the TLR4 receptor. The dysfunction of the cell cycle is correlated to the down-expression of ribosomal proteins (RPs). However, it is not the direct reason for the A549 cell arrest in the G2/M phase. La3+, Ce3+, and F- are probably the main toxic substances in WSPM, and may be regulate the A549 cell cycle by affecting the expression of genes, such as MDM2, RB1, ATM, TP53, E2F1, CDK2 and CDK4. These results indicate the importance for further research into the relationship between APM and lung cancer.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dejun Sun
- Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yumin Gao
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Xiaoe Zhang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Li Wang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Qingjun Cai
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Qihao Wang
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China
| | - Juan Sun
- School of Public Health, Inner Mongolia Autonomous Region, Jinshan Economic and Technological Development Zone, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, 010010, Hohhot, China.
| |
Collapse
|
26
|
Chen Y, Yao L, Wang Y, Ji X, Gao Z, Zhang S, Ji G. Identification of ribosomal protein L30 as an uncharacterized antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104067. [PMID: 33705790 DOI: 10.1016/j.dci.2021.104067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Several ribosomal proteins have been shown to adopt for an antimicrobial function as antimicrobial proteins (AMPs). However, information as such is rather limited and their mode of action remains ill-defined. Here we demonstrated that amphioxus RPL30, BjRPL30, was a previously uncharacterized AMP, which was not only capable of binding Gram-negative and Gram-positive bacteria via interaction with LPS, LTA and PGN but also capable of killing the bacteria. We also showed that the residues positioned at 2-46 formed the core region for the antimicrobial activity of BjRPL30. Notably, both the hydrophobic ratio and net charge as well as 3D structures of the residues corresponding to BjRPL302-27 and BjRPL3023-46 from both eukaryotic and prokaryotic RPL30 proteins were closely similar to those of BjRPL302-27 and BjRPL3023-46, suggesting the antibacterial activity of RPL30 was highly conserved. This was further corroborated by the fact that the synthesized counterparts human RPL5-30 and RPL26-49 also had antibacterial activity. We show that the recombinant protein BjRPL30 executes antimicrobial function in vitro by a kind of membranolytic action including interaction with bacterial membrane through LPS, LTA and PGN as well as induction of membrane depolarization. Finally, we found that neither BjRPL30 nor its truncated form BjRPL302-27 and BjRPL3023-46 had hemolytic activity towards human red blood cells, making them promising lead molecules for the design of novel AMPs against bacteria. Altogether, these indicated that RPL30 is a member of AMP which has ancient origin and is highly conserve throughout evolution.
Collapse
Affiliation(s)
- Ying Chen
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaohan Ji
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China
| | - Guangdong Ji
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
Sim EUH, Lee CW, Narayanan K. The roles of ribosomal proteins in nasopharyngeal cancer: culprits, sentinels or both. Biomark Res 2021; 9:51. [PMID: 34193301 PMCID: PMC8247250 DOI: 10.1186/s40364-021-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosomal protein genes encode products that are essential for cellular protein biosynthesis and are major components of ribosomes. Canonically, they are involved in the complex system of ribosome biogenesis pivotal to the catalysis of protein translation. Amid this tightly organised process, some ribosomal proteins have unique spatial and temporal physiological activity giving rise to their extra-ribosomal functions. Many of these extra-ribosomal roles pertain to cellular growth and differentiation, thus implicating the involvement of some ribosomal proteins in organogenesis. Consequently, dysregulated functions of these ribosomal proteins could be linked to oncogenesis or neoplastic transformation of human cells. Their suspected roles in carcinogenesis have been reported but not specifically explained for malignancy of the nasopharynx. This is despite the fact that literature since one and half decade ago have documented the association of ribosomal proteins to nasopharyngeal cancer. In this review, we explain the association and contribution of dysregulated expression among a subset of ribosomal proteins to nasopharyngeal oncogenesis. The relationship of these ribosomal proteins with the cancer are explained. We provide information to indicate that the dysfunctional extra-ribosomal activities of specific ribosomal proteins are tightly involved with the molecular pathogenesis of nasopharyngeal cancer albeit mechanisms yet to be precisely defined. The complete knowledge of this will impact future applications in the effective management of nasopharyngeal cancer.
Collapse
Affiliation(s)
- Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Choon-Weng Lee
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kumaran Narayanan
- School of Science, Monash University, 46150, Bandar Sunway, Selangor, Malaysia.,Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, NY, 10029, USA
| |
Collapse
|
28
|
Serin N, Dihazi GH, Tayyeb A, Lenz C, Müller GA, Zeisberg M, Dihazi H. Calreticulin Deficiency Disturbs Ribosome Biogenesis and Results in Retardation in Embryonic Kidney Development. Int J Mol Sci 2021; 22:5858. [PMID: 34070742 PMCID: PMC8198291 DOI: 10.3390/ijms22115858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Nephrogenesis is driven by complex signaling pathways that control cell growth and differentiation. The endoplasmic reticulum chaperone calreticulin (Calr) is well known for its function in calcium storage and in the folding of glycoproteins. Its role in kidney development is still not understood. We provide evidence for a pivotal role of Calr in nephrogenesis in this investigation. We show that Calr deficiency results in the disrupted formation of an intact nephrogenic zone and in retardation of nephrogenesis, as evidenced by the disturbance in the formation of comma-shaped and s-shaped bodies. Using proteomics and transcriptomics approaches, we demonstrated that in addition to an alteration in Wnt-signaling key proteins, embryonic kidneys from Calr-/- showed an overall impairment in expression of ribosomal proteins which reveals disturbances in protein synthesis and nephrogenesis. CRISPR/cas9 mediated knockout confirmed that Calr deficiency is associated with a deficiency of several ribosomal proteins and key proteins in ribosome biogenesis. Our data highlights a direct link between Calr expression and the ribosome biogenesis.
Collapse
Affiliation(s)
- Nazli Serin
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (N.S.); (G.A.M.); (M.Z.)
- Department of Hematology and Oncology, University of Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Gry H. Dihazi
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (G.H.D.); (C.L.)
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Christof Lenz
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (G.H.D.); (C.L.)
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (N.S.); (G.A.M.); (M.Z.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (N.S.); (G.A.M.); (M.Z.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (N.S.); (G.A.M.); (M.Z.)
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
29
|
Uzair M, Long H, Zafar SA, Patil SB, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. PLANT PHYSIOLOGY 2021; 186:497-518. [PMID: 33591317 PMCID: PMC8154097 DOI: 10.1093/plphys/kiab075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 05/19/2023]
Abstract
Leaf morphology influences photosynthesis, transpiration, and ultimately crop yield. However, the molecular mechanism of leaf development is still not fully understood. Here, we identified and characterized the narrow leaf21 (nal21) mutant in rice (Oryza sativa), showing a significant reduction in leaf width, leaf length and plant height, and increased tiller number. Microscopic observation revealed defects in the vascular system and reduced epidermal cell size and number in the nal21 leaf blade. Map-based cloning revealed that NAL21 encodes a ribosomal small subunit protein RPS3A. Ribosome-targeting antibiotics resistance assay and ribosome profiling showed a significant reduction in the free 40S ribosome subunit in the nal21 mutant. The nal21 mutant showed aberrant auxin responses in which multiple auxin response factors (ARFs) harboring upstream open-reading frames (uORFs) in their 5'-untranslated region were repressed at the translational level. The WUSCHEL-related homeobox 3A (OsWOX3A) gene, a key transcription factor involved in leaf blade lateral outgrowth, is also under the translational regulation by RPS3A. Transformation with modified OsARF11, OsARF16, and OsWOX3A genomic DNA (gDNA) lacking uORFs rescued the narrow leaf phenotype of nal21 to a better extent than transformation with their native gDNA, implying that RPS3A could regulate translation of ARFs and WOX3A through uORFs. Our results demonstrate that proper translational regulation of key factors involved in leaf development is essential to maintain normal leaf morphology.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Long
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
30
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
31
|
Changes in bioactive proteins and serum proteome of human milk under different frozen storage. Food Chem 2021; 352:129436. [PMID: 33691214 DOI: 10.1016/j.foodchem.2021.129436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to investigate changes in macronutrients, total bacterial count, and serum proteome of human milk (HM) under different frozen storage (-18°C and -60°C, 60 d and 180 d) by using IBT Labeling proteomics techniques and ELISA kit. The results indicated that total protein concentrations and total aerobic bacterial counts were significantly decreased at -18°C, while no difference at -60°C. A total of 1617 proteins were identified and quantified, and 173 proteins were significantly different. The -18°C storage had much higher influence on HM serum protein profiles than that of -60°C. Increased milk fat globule membrane (MFGM) proteins at -18°C are highly related to the damage of MFGM and transfer of MFGM proteins. The reduction of bioactive proteins is probably related to the ice-induced denaturation. In conclusion, fast cooling and ultra-low constant temperature are more suitable for the cryopreservation of human milk.
Collapse
|
32
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
33
|
Finkelshtein A, Khamesa H, Tuan LA, Rabanim M, Chamovitz DA. Overexpression of the ribosomal S30 subunit leads to indole-3-carbinol tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:668-677. [PMID: 33128319 DOI: 10.1111/tpj.15062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have identified and characterized a novel Arabidopsis mutant tolerant to I3C, ICT1. This mutant was identified following screening of the Full-length cDNA Over-eXpression library (FOX) seed collection for root growth in the presence of exogenous I3C. ICT1 carries the AT2G19750 gene, which encodes an S30 ribosomal protein. Overexpression, but not knockout, of the S30 gene causes tolerance to I3C. The tolerance is specific to I3C, since ICT1 did not exhibit pronounced tolerance to other indole or benzoxazinoid molecules tested. ICT1 maintains I3C-induced antagonism of auxin signaling, indicating that the tolerance is due to an auxin-independent mechanism. Transcript profiling experiments revealed that ICT1 is transcriptionally primed to respond to I3C treatment.
Collapse
Affiliation(s)
- Alin Finkelshtein
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Hala Khamesa
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Luu Anh Tuan
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Manely Rabanim
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Daniel A Chamovitz
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, 69978, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
34
|
Chen C, Liu H, Zabad S, Rivera N, Rowin E, Hassan M, Gomez De Jesus SM, Llinás Santos PS, Kravchenko K, Mikhova M, Ketterer S, Shen A, Shen S, Navas E, Horan B, Raudsepp J, Jeffery C. MoonProt 3.0: an update of the moonlighting proteins database. Nucleic Acids Res 2021; 49:D368-D372. [PMID: 33245761 PMCID: PMC7778978 DOI: 10.1093/nar/gkaa1101] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 01/09/2023] Open
Abstract
MoonProt 3.0 (http://moonlightingproteins.org) is an updated open-access database storing expert-curated annotations for moonlighting proteins. Moonlighting proteins have two or more physiologically relevant distinct biochemical or biophysical functions performed by a single polypeptide chain. Here, we describe an expansion in the database since our previous report in the Database Issue of Nucleic Acids Research in 2018. For this release, the number of proteins annotated has been expanded to over 500 proteins and dozens of protein annotations have been updated with additional information, including more structures in the Protein Data Bank, compared with version 2.0. The new entries include more examples from humans, plants and archaea, more proteins involved in disease and proteins with different combinations of functions. More kinds of information about the proteins and the species in which they have multiple functions has been added, including CATH and SCOP classification of structure, known and predicted disorder, predicted transmembrane helices, type of organism, relationship of the protein to disease, and relationship of organism to cause of disease.
Collapse
Affiliation(s)
- Chang Chen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shadi Zabad
- Department of Computer Science, McGill University, Montreal, QC, Canada
| | - Nina Rivera
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Emily Rowin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maheen Hassan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Karyna Kravchenko
- Department of Biotechnology and Bioengineering, V. N. Karazin Kharkiv National University, IL 61002, Ukraine
| | | | - Sophia Ketterer
- Cold Spring Harbor High School, Cold Spring Harbor, NY 11724, USA
| | - Annabel Shen
- Cold Spring Harbor High School, Cold Spring Harbor, NY 11724, USA
| | - Sophia Shen
- Cold Spring Harbor High School, Cold Spring Harbor, NY 11724, USA
| | - Erin Navas
- Northport High School, Northport, NY 11768, USA
| | - Bryan Horan
- Northport High School, Northport, NY 11768, USA
| | - Jaak Raudsepp
- Cold Spring Harbor High School, Cold Spring Harbor, NY 11724, USA
| | - Constance Jeffery
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
35
|
Xiong W, Lan T, Mo B. Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:607157. [PMID: 33968093 PMCID: PMC8096920 DOI: 10.3389/fpls.2021.607157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Ribosomes are basic translational machines in all living cells. The plant cytosolic ribosome is composed of four rRNAs and approximately 81 ribosomal proteins (RPs). In addition to the fundamental functions of RPs in the messenger RNA decoding process as well as in polypeptide synthesis and ribosome assembly, extraribosomal functions of RPs that occur in the absence of the ribosome have been proposed and studied with respect to RPs' ability to interact with RNAs and non-ribosomal proteins. In a few cases, extraribosomal functions of several RPs have been demonstrated with solid evidences in plants, including microRNA biogenesis, anti-virus defenses, and plant immunity, which have fascinated biologists. We believe that the widespread duplication of RP genes in plants may increase the potential of extraribosomal functions of RPs and more extraribosomal functions of plant RPs will be discovered in the future. In this article we review the current knowledge concerning the extraribosomal functions of RPs in plants and described the prospects for future research in this fascinating area.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Beixin Mo,
| |
Collapse
|
36
|
Cui X, Zhang S, Zhang Q, Guo X, Wu C, Yao M, Sun D. Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages. Front Genet 2020; 11:548268. [PMID: 33343617 PMCID: PMC7744623 DOI: 10.3389/fgene.2020.548268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
A total of 31 differentially expressed genes in the mammary glands were identified in our previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely high and low milk protein and fat percentages. To determine the regulation of milk composition traits, we herein investigated the expression profiles of microRNA (miRNA) using small RNA sequencing based on the same samples as in the previous RNA-Seq experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs among the reads were identified. Among these miRNAs, 71 were found differentially expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21 of the differentially expressed genes reported in our previous RNA-Seq study were predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG pathway analyses showed that these targets were enriched for functions such as metabolism of protein and fat, and development of mammary gland, which indicating the critical role of these miRNAs in regulating the formation of milk protein and fat. With dual luciferase report assay, we further validated the regulatory role of 7 differentially expressed miRNAs through interaction with the specific sequences in 3'UTR of the targets. In conclusion, the current study investigated the complexity of the mammary gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of differential miRNAs expression and the data from previous study RNA-seq provided the opportunity to identify the key candidate genes for milk composition traits.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Mingze Yao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Ramu VS, Dawane A, Lee S, Oh S, Lee H, Sun L, Senthil‐Kumar M, Mysore KS. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:1481-1494. [PMID: 32964634 PMCID: PMC7548997 DOI: 10.1111/mpp.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.
Collapse
Affiliation(s)
- Vemanna S. Ramu
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Akashata Dawane
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Seonghee Lee
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
Gulf Coast Research and Education CenterInstitute of Food and Agricultural ScienceUniversity of FloridaWimaumaFloridaUSA
| | - Sunhee Oh
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | | | - Liang Sun
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | - Muthappa Senthil‐Kumar
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
National Institute of Plant Genome ResearchNew DelhiIndia
| | | |
Collapse
|
38
|
Prakash C, Pandey M, Talwar S, Singh Y, Kanojiya S, Pandey AK, Kumar N. Extra-ribosomal functions of Mtb RpsB in imparting stress resilience and drug tolerance to mycobacteria. Biochimie 2020; 177:87-97. [PMID: 32828823 DOI: 10.1016/j.biochi.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/21/2023]
Abstract
Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.
Collapse
Affiliation(s)
- Chetan Prakash
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Manitosh Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India; Department of Life Sciences, ITM University, Gwalior 475001, Madhya Pradesh, India
| | - Sakshi Talwar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yatendra Singh
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Amit Kumar Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
39
|
Liang S, Zhu S, Zhao Q, Yu Y, Dong H, Wang Q, Wang H, Yu S, Huang B, Han H. Molecular characterization of 60S ribosomal protein L12 of E. tenella. Exp Parasitol 2020; 217:107963. [PMID: 32781092 DOI: 10.1016/j.exppara.2020.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
This study analyzed the large-subunit (60S) ribosomal protein L12 of Eimeria tenella (Et60s-RPL12). A full-length cDNA was cloned, and the recombinant protein was expressed in E. coli BL21 and inoculated in rabbits to produce the polyclonal antibody. Quantitative real-time polymerase chain reaction and western blotting were used to analyze the transcription levels of Et60s-RPL12 and translation levels in different developmental stages of E. tenella. The results showed that the mRNA transcription level of Et60s-RPL12 was highest in second-generation merozoites, whereas the translation level was highest in unsporulated oocysts. Indirect immunofluorescence showed that Et60s-RPL12 was localized to the anterior region and surface of sporozoites, except for the two refractile bodies. As the invasion of DF-1 cells progressed, fluorescence intensity was increased, and Et60s-RPL12 was localized to the parasitophorous vacuole membrane (PVM). The secretion assay results using staurosporine indicated that this protein was secreted, but not from micronemes. The role of Et60s-RPL12 in invasion was evaluated in vitro. The results of the invasion assay showed that polyclonal antibody inhibited host cell invasion by the parasite, which reached about 12%. However, the rate of invasion was not correlated with the concentration of IgG.
Collapse
Affiliation(s)
- Shanshan Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qingjie Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shuilan Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China.
| |
Collapse
|
40
|
Filipek K, Michalec-Wawiórka B, Boguszewska A, Kmiecik S, Tchórzewski M. Phosphorylation of the N-terminal domain of ribosomal P-stalk protein uL10 governs its association with the ribosome. FEBS Lett 2020; 594:3002-3019. [PMID: 32668052 DOI: 10.1002/1873-3468.13885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
The uL10 protein is the main constituent of the ribosomal P-stalk, anchoring the whole stalk to the ribosome through interactions with rRNA. The P-stalk is the core of the GTPase-associated center (GAC), a critical element for ribosome biogenesis and ribosome translational activity. All P-stalk proteins (uL10, P1, and P2) undergo phosphorylation within their C termini. Here, we show that uL10 has multiple phosphorylation sites, mapped also within the N-terminal rRNA-binding domain. Our results reveal that the introduction of a negative charge within the N terminus of uL10 impairs its association with the ribosome. These findings demonstrate that uL10 N-terminal phosphorylation has regulatory potential governing the uL10 interaction with the ribosome and may control the activity of GAC.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aleksandra Boguszewska
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
41
|
Molecular study of binding of Plasmodium ribosomal protein P2 to erythrocytes. Biochimie 2020; 176:181-191. [PMID: 32717409 DOI: 10.1016/j.biochi.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
The ribosomal protein P2 of Plasmodium falciparum, (PfP2), performs certain unique extra-ribosomal functions. During the few hours of cell-division, PfP2 protein moves to the external surface of the infected erythrocytes (IE) as an SDS-resistant oligomer, and at that stage treatment with specific anti- PfP2 antibodies results in an arrest of the parasite cell-division. Amongst the oligomeric forms of PfP2, mainly the homo-tetramer is peripherally anchored on the external surface of the IE. To study the anchoring of PfP2 tetramer on IE-surface, we have explored the binding properties of PfP2 protein. Using NMR and erythrocyte pull-down studies, here we report that the homo-tetrameric PfP2 protein interacted specifically with erythrocytes and not leukocytes. The hydrophobic N-terminal 72 amino acid region is the major interacting domain. The binding of P2 to RBCs was neuraminidase resistant, but trypsin sensitive. The RBC binding was exclusive to the Plasmodium PfP2 protein as even the homologous protein of the closely related Apicomplexan parasite Toxoplasma gondii TgP2 protein did not interact with erythrocytes. Pull down assays, immunoprecipitation and mass spectrometry data showed that erythrocytic Band 3 protein is a possible interactor of Plasmodium PfP2 protein on the erythrocyte surface.
Collapse
|
42
|
Huang S, Aleksashin NA, Loveland AB, Klepacki D, Reier K, Kefi A, Szal T, Remme J, Jaeger L, Vázquez-Laslop N, Korostelev AA, Mankin AS. Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly. Nat Commun 2020; 11:2900. [PMID: 32518240 PMCID: PMC7283268 DOI: 10.1038/s41467-020-16694-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis.
Collapse
Affiliation(s)
- Shijie Huang
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA, 01605, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kaspar Reier
- Institute of Molecular and Cellular Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Amira Kefi
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Teresa Szal
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jaanus Remme
- Institute of Molecular and Cellular Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Luc Jaeger
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA, 93106-9510, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA, 01605, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
43
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
44
|
Pszczółkowska A, Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A. rps3 as a Candidate Mitochondrial Gene for the Molecular Identification of Species from the Colletotrichum acutatum Species Complex. Genes (Basel) 2020; 11:E552. [PMID: 32422999 PMCID: PMC7290925 DOI: 10.3390/genes11050552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum species form one of the most economically significant groups of pathogenic fungi and lead to significant losses in the production of major crops-in particular, fruits, vegetables, ornamental plants, shrubs, and trees. Members of the genus Colletotrichum cause anthracnose disease in many plants. Due to their considerable variation, these fungi have been widely investigated in genetic studies as model organisms. Here, we report the complete mitochondrial genome sequences of four Colletotrichum species (C. fioriniae, C. lupini, C. salicis, and C. tamarilloi). The reported circular mitogenomes range from 30,020 (C. fioriniae) to 36,554 bp (C. lupini) in size and have identical sets of genes, including 15 protein-coding genes, two ribosomal RNA genes, and 29 tRNA genes. All four mitogenomes are characterized by a rather poor repetitive sequence content with only forward repeat representatives and a low number of microsatellites. The topology of the phylogenetic tree reflects the systematic positions of the studied species, with representatives of each Colletotrichum species complex gathered in one clade. A comparative analysis reveals consistency in the gene composition and order of Colletotrichum mitogenomes, although some highly divergent regions are also identified, like the rps3 gene which appears as a source of potential diagnostic markers for all studied Colletotrichum species.
Collapse
Affiliation(s)
- Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| |
Collapse
|
45
|
Posttranscriptional Regulation of tnaA by Protein-RNA Interaction Mediated by Ribosomal Protein L4 in Escherichia coli. J Bacteriol 2020; 202:JB.00799-19. [PMID: 32123036 PMCID: PMC7186457 DOI: 10.1128/jb.00799-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022] Open
Abstract
Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions. Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5′ or 3′ half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon. IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions.
Collapse
|
46
|
Simpson LJ, Reader JS, Tzima E. Mechanical Regulation of Protein Translation in the Cardiovascular System. Front Cell Dev Biol 2020; 8:34. [PMID: 32083081 PMCID: PMC7006472 DOI: 10.3389/fcell.2020.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways. The canonical mechanism of protein synthesis typically involves transcription and translation. Protein translation occurs globally throughout the cell to maintain general function but localized protein synthesis allows for precise spatiotemporal control of protein translation. This Review will cover studies on the role of biomechanical stress -induced translational control in the heart (often in the context of physiological and pathological hypertrophy). We will also discuss the much less studied effects of mechanical forces in regulating protein translation in the vasculature. Understanding how the mechanical environment influences protein translational mechanisms in the cardiovascular system, will help to inform disease pathogenesis and potential areas of therapeutic intervention.
Collapse
Affiliation(s)
- Lisa J Simpson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John S Reader
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ellie Tzima
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
48
|
Brisdelli F, Di Francesco L, Giorgi A, Lizzi AR, Luzi C, Mignogna G, Bozzi A, Schininà ME. Proteomic Analysis of Quercetin-Treated K562 Cells. Int J Mol Sci 2019; 21:ijms21010032. [PMID: 31861640 PMCID: PMC6981597 DOI: 10.3390/ijms21010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Among natural products under investigation for their additive potential in cancer prevention and treatment, the flavonoid quercetin has received attention for its effects on the cell cycle arrest and apoptosis. In the past, we addressed this issue in K562 cells, a cellular model of the human chronic myeloid leukemia. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) proteomics with the aim to increase knowledge on the regulative and metabolic pathways modulated by quercetin in these cells. After 24 h of quercetin treatment, we observed that apoptosis was not completely established, thus we selected this time range to capture quantitative data. As a result, we were able to achieve a robust identification of 1703 proteins, and to measure fold changes between quercetin-treated and untreated cells for 1206 proteins. Through a bioinformatics functional analysis on a subset of 112 proteins, we propose that the apoptotic phenotype of K562 cells entails a significant modulation of the translational machinery, RNA metabolism, antioxidant defense systems, and enzymes involved in lipid metabolism. Finally, we selected eight differentially expressed proteins, validated their modulated expression in quercetin-treated K562 cells, and discussed their possible role in flavonoid cytotoxicity. This quantitative profiling, performed for the first time on this type of tumor cells upon treatment with a flavonoid, will contribute to revealing the molecular basis of the multiplicity of the effects selectively exerted by quercetin on K562 cells.
Collapse
Affiliation(s)
- Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Laura Di Francesco
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Giuseppina Mignogna
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Argante Bozzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - M. Eugenia Schininà
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
- Correspondence:
| |
Collapse
|
49
|
Ntountoumi C, Vlastaridis P, Mossialos D, Stathopoulos C, Iliopoulos I, Promponas V, Oliver SG, Amoutzias GD. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res 2019; 47:9998-10009. [PMID: 31504783 PMCID: PMC6821194 DOI: 10.1093/nar/gkz730] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.
Collapse
Affiliation(s)
- Chrysa Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | | | | | - Vasilios Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| |
Collapse
|
50
|
Abnormal development of zebrafish after knockout and knockdown of ribosomal protein L10a. Sci Rep 2019; 9:18130. [PMID: 31792295 PMCID: PMC6889351 DOI: 10.1038/s41598-019-54544-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/14/2019] [Indexed: 12/03/2022] Open
Abstract
In this study, to investigate the secondary function of Rpl10a in zebrafish development, morpholino antisense oligonucleotides (MOs) were used to knock down the zebrafish ribosomal protein L10a (rpl10a). At 25 hpf (hours post-fertilization), embryos injected with the rpl10a MO showed an abnormal morphology, including short bodies, curved tails, and small yolk sac extensions. We observed pigment reductions, edema, larger yolk sacs, smaller eyes and smaller yolk sac extensions at 50 hpf. In addition, reductions in the expression of primordial germ cell (PGC) marker genes (nanos1 and vasa) were observed in rpl10a knockdown embryos. A rescue experiment using a rpl10a mRNA co-injection showed the recovery of the morphology and red blood cell production similar to wild-type. Moreover, the CRISPR-Cas9 system was used to edit the sequence of rpl10a exon 5, resulting in a homozygous 5-bp deletion in the zebrafish genome. The mutant embryos displayed a morphology similar to that of the knockdown animals. Furthermore, the loss of rpl10a function led to reduced expression of gata1, hbae3, and hbbe1 (erythroid synthesis) and increased tp53 expression. Overall, the results suggested that Rpl10a deficiency caused delays in embryonic development, as well as apoptosis and anemia, in zebrafish.
Collapse
|