1
|
Terebieniec A, Xu L, Peng M, Mäkelä MR, de Vries RP. L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile. J Fungi (Basel) 2025; 11:301. [PMID: 40278122 PMCID: PMC12028159 DOI: 10.3390/jof11040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
Collapse
Affiliation(s)
- Agata Terebieniec
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Li Xu
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Mao Peng
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Miia R. Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland;
| | - Ronald P. de Vries
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| |
Collapse
|
2
|
Niu J, Ma B, Shen J, Zhu H, Lu Y, Lu Z, Lu F, Zhu P. Enzymatic degradation of mycotoxin patulin by a short-chain dehydrogenase/reductase from Bacillus subtilis and its application in apple juice. Food Microbiol 2025; 126:104676. [PMID: 39638445 DOI: 10.1016/j.fm.2024.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024]
Abstract
Patulin (PAT), a notorious mycotoxin widely found in fruits and their derived products, poses serious health risks to humans and animals due to its high toxicity. Biodegradation based on microbial enzymes has shown broad application prospects in controlling PAT contamination due to its environmental friendliness, high efficiency, strong specificity, and mild conditions of action. Bacillus subtilis is a cosmopolitan probiotic bacterium with an extensive enzymatic profile, which could serve as a valuable resource for the effective production of a range of enzymes utilized in various industrial processes and production applications. In this work, we demonstrated that a short-chain dehydrogenase/reductase from B. subtilis (BsSDR) that can effectively convert PAT to the non-toxic E-ascladiol. Multiple sequence alignment results revealed that BsSDR displayed less than 30% identity with the previously reported PAT-degrading enzymes, indicating that it is a novel PAT-degrading enzyme. BsSDR exhibited a powerful PAT-degrading ability and strong PAT tolerance, as it was capable of degrading over 95% of PAT at initial concentrations of 50-500 μM. In addition, BsSDR exhibited the highest activity at pH 8.0 and 40 °C, and retained more than 60% residual activity after incubation at 40 °C for 3 h, indicating a remarkable thermostability of BsSDR. Molecular docking and site-directed mutagenesis indicated that the catalytic triad formed by the residues (S, Y, and K) was the key for short-chain dehydrogenase/reductase activity and this conserved catalytic mechanism was followed in BsSDR catalysis. More importantly, BsSDR is able to eliminate 83.61% of PAT in apple juice without compromising its quality during the biodegradation process. These results suggest that BsSDR may serve as a promising detoxification agent for the degradation of PAT in food processing.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Lu
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Niu J, Zhu H, Shen J, Ma B, Chi H, Lu Z, Lu F, Zhu P. Identification and Application of Novel Patulin-Degrading Enzymes from Bacillus subtilis 168. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25801-25810. [PMID: 39500734 DOI: 10.1021/acs.jafc.4c06999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Patulin (PAT), a toxic secondary metabolite produced mainly by Penicillium species that frequently contaminates fruit and fruit-derived products, poses serious health risks to humans and animals. In the present study, three short-chain dehydrogenases/reductases (SDRs) with PAT-degrading ability, designated BsSDR1, BsSDR2, and BsSDR3, were identified from the genome of Bacillus subtilis 168. BsSDR1 and BsSDR2 showed powerful PAT elimination abilities, which can completely convert PAT to nontoxic E-ascladiol. Moreover, BsSDR1, BsSDR2, and BsSDR3 shared the highest sequence identity of 36.03% with the reported PAT-degrading enzymes, indicating that they are novel PAT-degrading enzymes. BsSDR1, BsSDR2, and BsSDR3 exhibited the highest activity against PAT at 40, 40, and 35 °C, respectively. Additionally, BsSDR1, BsSDR2, and BsSDR3 displayed remarkable thermostability, retaining 32.50, 24.63, and 46.74% residual activity, respectively, after incubation at 50 °C for 1 h. Three-dimensional (3D) simulation and site-directed mutagenesis indicated that the catalytic triad formed by the residues (Ser, Tyr, and Lys) was the key for SDR activity, and this conserved catalytic mechanism was followed in the catalytic process of novel PAT-degrading enzymes BsSDR1, BsSDR2, and BsSDR3. More importantly, BsSDR1, BsSDR2, and BsSDR3 can degrade PAT in apple juice at rates of 86.90, 90.17, and 61.57%, respectively. The identification of BsSDR1, BsSDR2, and BsSDR3 enriched the PAT-degrading enzyme libraries, providing promising candidates for PAT decontamination in the food industry.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Lou D, Cao Y, Duan H, Tan J, Li B, Zhou Y, Wang D. Characterization of a Novel Thermostable 7α-Hydroxysteroid Dehydrogenase. Protein Pept Lett 2024; 31:153-160. [PMID: 38288819 DOI: 10.2174/0109298665279004231229100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 05/30/2024]
Abstract
BACKGROUND 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH). METHODS The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2. RESULTS Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme's activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity. CONCLUSION We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Hongtao Duan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Binyan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yuanjun Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, 250022, China
| |
Collapse
|
5
|
Satyaveanthan MV, Ng CL, Awang A, Lam KW, Hassan M. Isolation, purification and biochemical characterization of Conopomorpha cramerella farnesol dehydrogenase. INSECT MOLECULAR BIOLOGY 2023; 32:143-159. [PMID: 36454188 DOI: 10.1111/imb.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.
Collapse
Affiliation(s)
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Alias Awang
- Cocoa Research & Development Centre (Bagan Datuk), Malaysian Cocoa Board, Sg. Sumun, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
6
|
Lou D, Zhang X, Cao Y, Zhou Z, Liu C, Kuang G, Tan J, Zhu L. A novel NADP(H)-dependent 3α-HSDH from the intestinal microbiome of Ursus thibetanus. Int J Biol Macromol 2022; 219:159-165. [PMID: 35934074 DOI: 10.1016/j.ijbiomac.2022.07.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022]
Abstract
3α-HSDHs have a crucial role in the bioconversion of steroids, and have been widely applied in the detection of total bile acid (TBA). In this study, we report a novel NADP(H)-dependent 3α-HSDH (named Sc 3α-HSDH) cloned from the intestinal microbiome of Ursus thibetanus. Sc 3α-HSDH was solubly expressed in E. coli (BL21) as a recombinant glutathione-S-transferase (GST)-tagged protein and freed from its GST-fusion by cleavage using the PreScission protease. Sc 3α-HSDH is a new member of the short-chain dehydrogenases/reductase superfamily (SDRs) with a typical α/β folding pattern, based on protein three-dimensional models predicted by AlphaFold. The best activity of Sc 3α-HSDH occurred at pH 8.5 and the temperature optima was 55 °C, indicating that Sc 3α-HSDH is not an extremozyme. The catalytic efficiencies (kcat/Km) of Sc 3α-HSDH catalyzing the oxidation reaction with the substrates, glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA), were 183.617 and 34.458 s-1 mM-1, respectively. In addition, multiple metal ions can enhance the activity of Sc 3α-HSDH when used at concentrations ranging from 2 % to 42 %. The results also suggest that the metagenomic approach is an efficient method for identifying novel enzymes.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Xiaoli Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Zixin Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Cheng Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
7
|
von Horsten S, Lippert ML, Geisselbrecht Y, Schühle K, Schall I, Essen LO, Heider J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J 2021; 289:1023-1042. [PMID: 34601806 DOI: 10.1111/febs.16216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Anaerobic toluene degradation proceeds by fumarate addition to produce (R)-benzylsuccinate as first intermediate, which is further degraded via β-oxidation by five enzymes encoded in the conserved bbs operon. This study characterizes two enzymes of this pathway, (E)-benzylidenesuccinyl-CoA hydratase (BbsH), and (S,R)-2-(α-hydroxybenzyl)succinyl-CoA dehydrogenase (BbsCD) from Thauera aromatica. BbsH, a member of the enoyl-CoA hydratase family, converts (E)-benzylidenesuccinyl-CoA to 2-(α-hydroxybenzyl)succinyl-CoA and was subsequently used in a coupled enzyme assay with BbsCD, which belongs to the short-chain dehydrogenases/reductase (SDR) family. The BbsCD crystal structure shows a C2-symmetric heterotetramer consisting of BbsC2 and BbsD2 dimers. BbsD subunits are catalytically active and capable of binding NAD+ and substrate, whereas BbsC subunits represent built-in pseudoenzyme moieties lacking all motifs of the SDR family required for substrate binding or catalysis. Molecular modeling studies predict that the active site of BbsD is specific for conversion of the (S,R)-diastereomer of 2-(α-hydroxybenzyl)succinyl-CoA to (S)-2-benzoylsuccinyl-CoA by hydride transfer to the re-face of nicotinamide adenine dinucleotide (NAD)+ . Furthermore, BbsC subunits are not engaged in substrate binding and merely serve as scaffold for the BbsD dimer. BbsCD represents a novel clade of related enzymes within the SDR family, which adopt a heterotetrameric architecture and catalyze the β-oxidation of aromatic succinate adducts.
Collapse
Affiliation(s)
| | | | | | - Karola Schühle
- Department of Biology, Philipps-Universität, Marburg, Germany
| | - Iris Schall
- Department of Biology, Philipps-Universität, Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Philipps-Universität, Marburg, Germany
| |
Collapse
|
8
|
Dong H, Chang MCY. Structural Basis for Branched Substrate Selectivity in a Ketoreductase from Ascaris suum. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongjun Dong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Michelle C. Y. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720-3200, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
| |
Collapse
|
9
|
Liu D, Gou L, Bai Y, Fan TP, Zheng X, Cai Y. Converting the 3-quinuclidinone reductase from Agrobacterium tumefaciens into the ethyl 4-chloroacetoacetate reductase by site-directed mutagenesis. Biotechnol Appl Biochem 2021; 69:1428-1437. [PMID: 34148265 DOI: 10.1002/bab.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
In this study, the 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) was modified by site-directed mutagenesis. And we further obtained a saturation mutant library in which the residue 197 was mutated. A single-point mutation converted the wild enzyme that originally had no catalytic activity in reduction of ethyl 4-chloroacetoacetate (COBE) into an enzyme with catalytic activity. The results of enzyme activity assays showed that the seven variants could asymmetrically reduce COBE to ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) with NADH as coenzyme. In the library, the variant E197N showed higher catalytic efficiency than others. The E197N was optimally active at pH 6.0 and 40°C, and the catalytic efficiency (kcat /Km ) for COBE was 51.36 s-1 ·mM-1 . This study showed that the substrate specificity of AtQR could be changed through site-directed mutagenesis at the residue 197.
Collapse
Affiliation(s)
- Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Satyaveanthan MV, Suhaimi SA, Ng CL, Muhd-Noor ND, Awang A, Lam KW, Hassan M. Purification, biochemical characterisation and bioinformatic analysis of recombinant farnesol dehydrogenase from Theobroma cacao. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:143-155. [PMID: 33588320 DOI: 10.1016/j.plaphy.2021.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.
Collapse
Affiliation(s)
| | - Saidi-Adha Suhaimi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Noor-Dina Muhd-Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia; Enzyme & Microbial Technology Center (EMTech), Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Alias Awang
- Cocoa Research & Development Centre (Bagan Datuk), Malaysian Cocoa Board, P.O. Box 30, Sg. Dulang Road, Sg. Sumun, Perak, 36307, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
11
|
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci Rep 2021; 11:7050. [PMID: 33782435 PMCID: PMC8007833 DOI: 10.1038/s41598-021-86400-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.
Collapse
|
12
|
Zang W, Zheng X. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radic Biol Med 2020; 160:768-774. [PMID: 32950687 PMCID: PMC7497778 DOI: 10.1016/j.freeradbiomed.2020.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
NmrA-like proteins are NAD(P) (H) interacting molecules whose structures are similar to that of short-chain dehydrogenases. In this review, we focus on an NADP(H) sensor, HSCARG (also named NMRAL1), which is a NmrA-like protein that is widely present in mammals, and provide a comprehensive overview of the current knowledge of its structure and physiological functions. HSCARG selectively binds to the reduced form of type II coenzyme NADPH via its Rossmann fold domain. In response to reduction of intracellular NADPH concentration, HSCARG transforms from homodimer to monomer and exhibits enhanced interactions with its binding partners. In the cytoplasm, HSCARG negatively regulates innate immunity through impairing the activities of NF-κB and RLR pathways. Besides, HSCARG regulates redox homeostasis via suppression of ROS and NO generation. Intensive and persistent oxidative stress leads to translocation of HSCARG from the cytoplasm to the nucleus, where it regulates the DNA damage response. Taken together, HSCARG functions as a linkage between cellular redox status and other signaling pathways and fine-tunes cellular response to redox changes.
Collapse
Affiliation(s)
- Weicheng Zang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Labine M, DePledge L, Feirer N, Greenwich J, Fuqua C, Allen KD. Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00098-20. [PMID: 32482721 PMCID: PMC8404713 DOI: 10.1128/jb.00098-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Pterins are ubiquitous biomolecules with diverse functions including roles as cofactors, pigments, and redox mediators. Recently, a novel pterin-dependent signaling pathway that controls biofilm formation was identified in the plant pathogen, Agrobacterium tumefaciens A key player in this pathway is a pteridine reductase termed PruA, where its enzymatic activity has been shown to control surface attachment and limit biofilm formation. Here, we biochemically characterize PruA to investigate the catalytic properties and substrate specificity of this pteridine reductase. PruA demonstrates maximal catalytic efficiency with dihydrobiopterin and comparable activities with the stereoisomers dihydromonapterin and dihydroneopterin. Since A. tumefaciens does not synthesize or utilize biopterins, the likely physiological substrate is dihydromonapterin or dihydroneopterin, or both. Notably, PruA does not exhibit pteridine reductase activity with dihydrofolate or fully oxidized pterins. Site-directed mutagenesis studies of a conserved tyrosine residue, the key component of a putative catalytic triad, indicate that this tyrosine is not directly involved in PruA catalysis but may be important for substrate or cofactor binding. Additionally, mutagenesis of the arginine residue in the N-terminal TGX3RXG motif significantly reduces the catalytic efficiency of PruA, supporting its proposed role in pterin binding and catalysis. Finally, we report the enzymatic characterization of PruA homologs from Pseudomonas aeruginosa and Brucella abortus, thus expanding the roles and potential significance of pteridine reductases in diverse bacteria.Importance Biofilms are complex multicellular communities that are formed by diverse bacteria. In the plant pathogen, Agrobacterium tumefaciens, the transition from a free-living motile state to a non-motile biofilm state is governed by a novel signaling pathway involving small molecules called pterins. The involvement of pterins in biofilm formation is unexpected and prompts many questions about the molecular details of this pathway. This work biochemically characterizes the PruA pteridine reductase involved in the signaling pathway to reveal its enzymatic properties and substrate preference, thus providing important insight into pterin biosynthesis and its role in A. tumefaciens biofilm control. Additionally, the enzymatic characteristics of related pteridine reductases from mammalian pathogens are examined to uncover potential roles of these enzymes in other bacteria.
Collapse
Affiliation(s)
- Monica Labine
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lisa DePledge
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, USA
| | - Nathan Feirer
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
14
|
Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii. Biochem Biophys Res Commun 2019; 518:465-471. [PMID: 31443964 DOI: 10.1016/j.bbrc.2019.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Å and the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.
Collapse
|
15
|
Akai S, Ikushiro H, Sawai T, Yano T, Kamiya N, Miyahara I. The crystal structure of homoserine dehydrogenase complexed with l-homoserine and NADPH in a closed form. J Biochem 2019; 165:185-195. [PMID: 30423116 DOI: 10.1093/jb/mvy094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Homoserine dehydrogenase from Thermus thermophilus (TtHSD) is a key enzyme in the aspartate pathway that catalyses the reversible conversion of l-aspartate-β-semialdehyde to l-homoserine (l-Hse) with NAD(P)H. We determined the crystal structures of unliganded TtHSD, TtHSD complexed with l-Hse and NADPH, and Lys99Ala and Lys195Ala mutant TtHSDs, which have no enzymatic activity, complexed with l-Hse and NADP+ at 1.83, 2.00, 1.87 and 1.93 Å resolutions, respectively. Binding of l-Hse and NADPH induced the conformational changes of TtHSD from an open to a closed form: the mobile loop containing Glu180 approached to fix l-Hse and NADPH, and both Lys99 and Lys195 could make hydrogen bonds with the hydroxy group of l-Hse. The ternary complex of TtHSDs in the closed form mimicked a Michaelis complex better than the previously reported open form structures from other species. In the crystal structure of Lys99Ala TtHSD, the productive geometry of the ternary complex was almost preserved with one new water molecule taking over the hydrogen bonds associated with Lys99, while the positions of Lys195 and l-Hse were significantly retained with those of the wild-type enzyme. These results propose new possibilities that Lys99 is the acid-base catalytic residue of HSDs.
Collapse
Affiliation(s)
- Shota Akai
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Hiroko Ikushiro
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Taiki Sawai
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takato Yano
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Nobuo Kamiya
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Ikuko Miyahara
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
16
|
Sallin O, Reymond L, Gondrand C, Raith F, Koch B, Johnsson K. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. eLife 2018; 7:32638. [PMID: 29809136 PMCID: PMC5990361 DOI: 10.7554/elife.32638] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action.
Collapse
Affiliation(s)
- Olivier Sallin
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Luc Reymond
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.,National Centre of Competence in Research in Chemical Biology, Lausanne, Switzerland
| | - Corentin Gondrand
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Fabio Raith
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.,Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.,National Centre of Competence in Research in Chemical Biology, Lausanne, Switzerland
| |
Collapse
|
17
|
Zemanová L, Kirubakaran P, Pato IH, Štambergová H, Vondrášek J. The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing. Int J Biol Macromol 2017; 105:171-182. [PMID: 28687384 DOI: 10.1016/j.ijbiomac.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022]
Abstract
Human DHRS7 (SDR34C1) is one of insufficiently described enzymes of the short-chain dehydrogenase/reductase superfamily. The members of this superfamily often play an important pato/physiological role in the human body, participating in the metabolism of diverse substrates (e.g. retinoids, steroids, xenobiotics). A systematic approach to the identification of novel, physiological substrates of DHRS7 based on a combination of homology modeling, structure-based virtual screening and experimental evaluation has been used. Three novel substrates of DHRS7 (dihydrotestosterone, benzil and 4,4'-dimetylbenzil) have been described.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic
| | - Ignacio Hernando Pato
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic.
| |
Collapse
|
18
|
Hayashi J, Yamamoto K, Yoneda K, Ohshima T, Sakuraba H. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis. Proteins 2016; 84:1786-1796. [PMID: 27616573 DOI: 10.1002/prot.25161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 11/08/2022]
Abstract
A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Junji Hayashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Kaori Yamamoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-1404, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| |
Collapse
|
19
|
Fukuda Y, Sakuraba H, Araki T, Ohshima T, Yoneda K. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1. Enzyme Microb Technol 2016; 91:17-25. [DOI: 10.1016/j.enzmictec.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
|
20
|
Herman BE, Szabó J, Bacsa I, Wölfling J, Schneider G, Bálint M, Hetényi C, Mernyák E, Szécsi M. Comparative investigation of the in vitro inhibitory potencies of 13-epimeric estrones and D-secoestrones towards 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2016; 31:61-69. [PMID: 27424610 DOI: 10.1080/14756366.2016.1204610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of 13-epimeric estrones, D-secooxime and D-secoalcohol estrone compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated. The transformation of estrone to 17β-estradiol was studied by an in vitro radiosubstrate incubation method. 13α-Estrone inhibited the enzyme activity effectively with an IC50 value of 1.2 μM, which indicates that enzyme affinity is similar to that of the natural estrone substrate. The 13β derivatives and the compounds bearing a 3-hydroxy group generally exerted stronger inhibition than the 13α and 3-ether counterparts. The 3-hydroxy-13β-D-secoalcohol and the 3-hydroxy-13α-D-secooxime displayed an outstanding cofactor dependence, i.e. more efficient inhibition in the presence of NADH than NADPH. The 3-hydroxy-13β-D-secooxime has an IC50 value of 0.070 μM and is one of the most effective 17β-HSD1 inhibitors reported to date in the literature.
Collapse
Affiliation(s)
| | - Johanna Szabó
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Ildikó Bacsa
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - János Wölfling
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Bálint
- c Department of Biochemistry , Eötvös Loránd University , Budapest , Hungary , and
| | - Csaba Hetényi
- d MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences , Budapest , Hungary
| | - Erzsébet Mernyák
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mihály Szécsi
- a 1st Department of Medicine, University of Szeged , Szeged , Hungary
| |
Collapse
|
21
|
Menon BRK, Hardman SJO, Scrutton NS, Heyes DJ. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:236-43. [PMID: 27285815 PMCID: PMC4970445 DOI: 10.1016/j.jphotobiol.2016.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Identified several active site residues that can interact with coenzyme/substrate Multiple residues are important in excited state POR–protochlorophyllide interactions. New structural model for T. elongatus POR to rationalize mutagenesis outcomes POR active site geometry is finely-tuned to support photochemistry.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Samantha J O Hardman
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Derren J Heyes
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Kawada Y, Yokoyama S, Yanase E, Niwa T, Suzuki T. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:113-21. [PMID: 27508112 PMCID: PMC4965515 DOI: 10.12938/bmfh.2015-023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 01/28/2023]
Abstract
Daidzein (DZN) is converted to equol (EQL) by intestinal bacteria. We previously reported that
Eggerthella sp. YY7918, which is found in human feces, is an EQL-producing bacterium and
analyzed its whole genomic sequence. We found three coding sequences (CDSs) in this bacterium that showed 99%
similarity to the EQL-producing enzymes of Lactococcus sp. 20-92. These identified CDSs were
designated eqlA, eqlB, and eqlC and thought to encode
daidzein reductase (DZNR), dihydrodaidzein reductase (DHDR), and tetrahydrodaidzein reductase (THDR),
respectively. These genes were cloned into pColdII. Recombinant plasmids were then introduced into
Escherichia coli BL21 (DE3) and DZNR, DHDR, and THDR were expressed and purified by
6×His-Tag chromatography. We confirmed that these three enzymes were involved in the conversion of DZN to EQL.
Purified DZNR converted DZN to dihydrodaizein (DHD) in the presence of NADPH. DHDR converted DHD to
tetrahydrodaizein (THD) in the presence of NADPH. Neither enzyme showed activities with NADH. THDR converted
THD in the absence of cofactors, NAD(P)H, and also produced DHD as a by-product. Thus, we propose that THDR is
not a reductase but a new type of dismutase. The GC content of these clusters was 64%, similar to the overall
genomic GC content for Eggerthella and Coriobacteriaceae (56–60%), and higher than that for
Lactococcus garvieae (39%), even though the gene cluster showed 99% similarity to that in
Lactococcus sp. 20-92. Taken together, our results indicate that the gene cluster
associated with EQL production evolved in high-GC bacteria including Coriobacteriaceae and was then laterally
transferred to Lactococcus sp. 20-92.
Collapse
Affiliation(s)
- Yuika Kawada
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinichiro Yokoyama
- Department of Food Technology, Industrial Technology Center, Gifu Prefectural Government, 47 Kitaoyobi, Kasamatsu, Hashima, Gifu 501-6064, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
23
|
The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: new insights into the conserved arginines for NADP(H) recognition. Sci Rep 2016; 6:22885. [PMID: 26961171 PMCID: PMC4785404 DOI: 10.1038/srep22885] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2016] [Indexed: 11/09/2022] Open
Abstract
7α-hydroxysteroid dehydrogenase (7α-HSDH) can catalyse the oxidation of C7 α-OH of the steroid nucleus in the bile acid metabolism. In the paper we determined the crystal structure of 7α-HSDH from Clostridium absonum (CA 7α-HSDH) complexed with taurochenodeoxycholic acid (TCDCA) and NADP(+) by X-ray diffraction, which, as a tetramer, possesses the typical α/β folding pattern. The four subunits of an asymmetric unit lie in the fact that there are the stable hydrophobic interactions between Q-axis-related subunits. Significantly, we captured an active state of the NADP(+), confirming that nicotinamide moiety of NADP(+) act as electron carrier in the dehydrogenation. On the basis of crystal structure analysis, site-directed mutagenesis and MD simulation, furthermore, we find that the guanidinium of Arg38 can form the stable cation-π interaction with the adenine ring of NADP(+), and the cation-π interaction and hydrogen bonds between Arg38 and NADP(+) have a significant anchor effect on the cofactor binding to CA 7α-HSDH.
Collapse
|
24
|
Magomedova Z, Grecu A, Sensen CW, Schwab H, Heidinger P. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates. J Biotechnol 2016; 221:78-90. [DOI: 10.1016/j.jbiotec.2016.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|
25
|
Fukuda Y, Sone T, Sakuraba H, Araki T, Ohshima T, Shibata T, Yoneda K. A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure. FEBS J 2015. [PMID: 26206323 DOI: 10.1111/febs.13385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene encoding a functionally unknown protein that is specifically expressed in the thyroidectomized chicken fatty liver and has a predicted amino acid sequence similar to that of NAD(P)H-dependent carbonyl reductase was overexpressed in Escherichia coli; its product was purified and characterized. The expressed enzyme was an NAD(P)H-dependent broad substrate specificity carbonyl reductase and was inhibited by arachidonic acid at 1.5 μm. Enzymological characterization indicated that the enzyme could be classified as a cytosolic-type carbonyl reductase. The enzyme's 3D structure was determined using the molecular replacement method at 1.98 Å resolution in the presence of NADPH and ethylene glycol. The asymmetric unit consisted of two subunits, and a noncrystallographic twofold axis generated the functional dimer. The structures of the subunits, A and B, differed from each other. In subunit A, the active site contained an ethylene glycol molecule absent in subunit B. Consequently, Tyr172 in subunit A rotated by 103.7° in comparison with subunit B, which leads to active site closure in subunit A. In Y172A mutant, the Km value for 9,10-phenanthrenequinone (model substrate) was 12.5 times higher than that for the wild-type enzyme, indicating that Tyr172 plays a key role in substrate binding in this carbonyl reductase. Because the Tyr172-containing active site lid structure (Ile164-Gln174) is not conserved in all known carbonyl reductases, our results provide new insights into substrate binding of carbonyl reductase. The catalytic properties and crystal structure revealed that thyroidectomized chicken fatty liver carbonyl reductase is a novel enzyme.
Collapse
Affiliation(s)
- Yudai Fukuda
- Department of Bioscience, Tokai University, Kumamoto, Japan
| | - Takeki Sone
- Department of Bioscience, Tokai University, Kumamoto, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Kagawa University, Kagawa, Japan
| | - Tomohiro Araki
- Department of Bioscience, Tokai University, Kumamoto, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Takeshi Shibata
- Department of Animal Science, Tokai University, Kumamoto, Japan
| | | |
Collapse
|
26
|
Hayashi J, Inoue S, Kim K, Yoneda K, Kawarabayasi Y, Ohshima T, Sakuraba H. Crystal Structures of a Hyperthermophilic Archaeal Homoserine Dehydrogenase Suggest a Novel Cofactor Binding Mode for Oxidoreductases. Sci Rep 2015; 5:11674. [PMID: 26154028 PMCID: PMC4495429 DOI: 10.1038/srep11674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 11/15/2022] Open
Abstract
NAD(P)-dependent dehydrogenases differ according to their coenzyme preference: some prefer NAD, others NADP, and still others exhibit dual cofactor specificity. The structure of a newly identified archaeal homoserine dehydrogenase showed this enzyme to have a strong preference for NADP. However, NADP did not act as a cofactor with this enzyme, but as a strong inhibitor of NAD-dependent homoserine oxidation. Structural analysis and site-directed mutagenesis showed that the large number of interactions between the cofactor and the enzyme are responsible for the lack of reactivity of the enzyme towards NADP. This observation suggests this enzyme exhibits a new variation on cofactor binding to a dehydrogenase: very strong NADP binding that acts as an obstacle to NAD(P)-dependent dehydrogenase catalytic activity.
Collapse
Affiliation(s)
- Junji Hayashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | - Shota Inoue
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-1404, Japan
| | - Yutaka Kawarabayasi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Amagasaki 661-0974, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
27
|
Han X, Qian L, Zhang L, Liu X. Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1476-86. [PMID: 26116145 DOI: 10.1016/j.bbapap.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/03/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Abstract
L-Rhamnose (Rha) is synthesized via a similar enzymatic pathway in bacteria, plants and fungi. In plants, nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER) catalyzes the final step in the conversion of dTDP/UDP-α-D-Glc to dTDP/UDP-β-L-Rha in an NAD(P)H dependent manner. Currently, only biochemical evidence for the function of NRS/ER has been described. In this study, a crystal structure for Arabidopsis thaliana NRS/ER was determined, which is the first report of a eukaryotic rhamnose synthase with both epimerase and reductase activities. NRS/ER functions as a metal ion independent homodimer that forms through hydrophobic interactions via a four-helix bundle. Each monomer exhibits α/β folding that can be divided into two regions, nucleotide cofactor binding domain and sugar substrate binding domain. The affinities of ligands with NRS/ER were measured using isothermal titration calorimetry, which showed that NRS/ER has a preference for dTDP over UDP, while the cofactor binding site has a similar affinity for NADH and NADPH. Structural analysis coupled to site-directed mutagenesis suggested C115 and K183 as the acid/base pair responsible for epimerization, while T113, Y144 and K148 are the conserved residues in reduction. These findings shed light on the molecular mechanism of NRS/ER and were helpful to explore other eukaryotic enzymes involved in L-Rha synthesis.
Collapse
Affiliation(s)
- Xiaodong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Food and Pharmaceutical Engineering Institute, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China.
| | - Lei Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China.
| | - Lianwen Zhang
- College of Pharmacy, Collaborative Innovation Center for Biotherapy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Belyaeva OV, Chang C, Berlett MC, Kedishvili NY. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family. Chem Biol Interact 2014; 234:135-43. [PMID: 25451586 DOI: 10.1016/j.cbi.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/09/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama - Birmingham, Birmingham, AL 35294, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama - Birmingham, Birmingham, AL 35294, USA
| | - Michael C Berlett
- Department of Biochemistry and Molecular Genetics, University of Alabama - Birmingham, Birmingham, AL 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama - Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Hao W, Ji F, Wang J, Zhang Y, Wang T, Bao Y. Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Chen XH, Wei P, Wang XT, Zong MH, Lou WY. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization. PLoS One 2014; 9:e94543. [PMID: 24740089 PMCID: PMC3989197 DOI: 10.1371/journal.pone.0094543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 03/18/2014] [Indexed: 11/20/2022] Open
Abstract
A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be used as coenzyme. For the reduction of 4'-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM), showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4'-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min). For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
| | - Ping Wei
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Ting Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Ebert B, Kisiela M, Maser E. Human DCXR - another ‘moonlighting protein’ involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility? Biol Rev Camb Philos Soc 2014; 90:254-78. [DOI: 10.1111/brv.12108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 02/21/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| |
Collapse
|
32
|
Son M, Bang WY, Park C, Lee Y, Kwon SG, Kim SW, Kim CW, Lee KW. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR. PLoS One 2014; 9:e90712. [PMID: 24646606 PMCID: PMC3960098 DOI: 10.1371/journal.pone.0090712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/03/2014] [Indexed: 12/02/2022] Open
Abstract
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Collapse
Affiliation(s)
- Minky Son
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Woo Young Bang
- Industry-Academic Cooperation Foundation, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Yuno Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Seul Gi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Sam Woong Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| |
Collapse
|
33
|
Pampa KJ, Lokanath NK, Kunishima N, Rai RV. The first crystal structure of NAD-dependent 3-dehydro-2-deoxy-D-gluconate dehydrogenase from Thermus thermophilus HB8. ACTA ACUST UNITED AC 2014; 70:994-1004. [PMID: 24699644 DOI: 10.1107/s1399004713034925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022]
Abstract
2-Keto-3-deoxygluconate (KDG) is one of the important intermediates in pectin metabolism. An enzyme involved in this pathway, 3-dehydro-3-deoxy-D-gluconate 5-dehydrogenase (DDGDH), has been identified which converts 2,5-diketo-3-deoxygluconate to KDG. The enzyme is a member of the short-chain dehydrogenase (SDR) family. To gain insight into the function of this enzyme at the molecular level, the first crystal structure of DDGDH from Thermus thermophilus HB8 has been determined in the apo form, as well as in complexes with the cofactor and with citrate, by X-ray diffraction methods. The crystal structures reveal a tight tetrameric oligomerization. The secondary-structural elements and catalytically important residues of the enzyme were highly conserved amongst the proteins of the NAD(P)-dependent SDR family. The DDGDH protomer contains a dinucleotide-binding fold which binds the coenzyme NAD(+) in an intersubunit cleft; hence, the observed oligomeric state might be important for the catalytic function. This enzyme prefers NAD(H) rather than NADP(H) as the physiological cofactor. A structural comparison of DDGDH with mouse lung carbonyl reductase suggests that a significant difference in the α-loop-α region of this enzyme is associated with the coenzyme specificity. The structural data allow a detailed understanding of the functional role of the conserved catalytic triad (Ser129-Tyr144-Lys148) in cofactor and substrate recognition, thus providing substantial insights into DDGDH catalysis. From analysis of the three-dimensional structure, intersubunit hydrophobic interactions were found to be important for enzyme oligomerization and thermostability.
Collapse
Affiliation(s)
- Kudigana J Pampa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Neratur K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Naoki Kunishima
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ravishankar Vittal Rai
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
34
|
Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol 2014; 98:3889-904. [DOI: 10.1007/s00253-014-5619-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
35
|
Itoh N, Isotani K, Makino Y, Kato M, Kitayama K, Ishimota T. PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis. Enzyme Microb Technol 2013; 55:140-50. [PMID: 24411457 DOI: 10.1016/j.enzmictec.2013.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/27/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
The amplification of useful genes from metagenomes offers great biotechnological potential. We employed this approach to isolate alcohol dehydrogenase (adh) genes from Pseudomonas to aid in the synthesis of optically pure alcohols from various ketones. A PCR primer combination synthesized by reference to the adh sequences of known Pseudomonas genes was used to amplify full-length adh genes directly from 17 samples of DNA extracted from soil. Three such adh preparations were used to construct Escherichia coli plasmid libraries. Of the approximately 2800 colonies obtained, 240 putative adh-positive clones were identified by colony-PCR. Next, 23 functional adh genes named using the descriptors HBadh and HPadh were analyzed. The adh genes obtained via this metagenomic approach varied in their DNA and amino acid sequences. Expression of the gene products in E. coli indicated varying substrate specificity. Two representative genes, HBadh-1 and HPadh-24, expressed in E. coli and Pseudomonas putida, respectively, were purified and characterized in detail. The enzyme products of these genes were confirmed to be useful for producing anti-Prelog chiral alcohols.
Collapse
Affiliation(s)
- Nobuya Itoh
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Kentaro Isotani
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshihide Makino
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masaki Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kouta Kitayama
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tuyoshi Ishimota
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
36
|
Jimenez-Lopez JC, Kotchoni SO, Hernandez-Soriano MC, Gachomo EW, Alché JD. Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen. J Comput Aided Mol Des 2013; 27:873-95. [PMID: 24154826 DOI: 10.1007/s10822-013-9686-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Isoflavone reductase-like proteins (IRLs) are enzymes with key roles in the metabolism of diverse flavonoids. Last identified olive pollen allergen (Ole e 12) is an IRL relevant for allergy amelioration, since it exhibits high prevalence among atopic patients. The goals of this study are the characterization of (A) the structural-functionality of Ole e 12 with a focus in its catalytic mechanism, and (B) its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering (1) physicochemical properties and functional-regulatory motifs, (2) sequence analysis, 2-D and 3D structural homology modeling comparative study and molecular docking, (3) conservational and evolutionary analysis, (4) catalytic mechanism modeling, and (5) sequence, structure-docking based B-cell epitopes prediction, while T-cell epitopes were predicted by inhibitory concentration and binding score methods. Structural-based detailed features, phylogenetic and sequences analysis have identified Ole e 12 as phenylcoumaran benzylic ether reductase. A catalytic mechanism has been proposed for Ole e 12 which display Lys133 as one of the conserved residues of the IRLs catalytic tetrad (Asn-Ser-Tyr-Lys). Structure characterization revealed a conserved protein folding among plants IRLs. However, sequence polymorphism significantly affected residues involved in the catalytic pocket structure and environment (cofactor and substrate interaction-recognition). It might also be responsible for IRLs isoforms functionality and regulation, since micro-heterogeneities affected physicochemical and posttranslational motifs. This polymorphism might have large implications for molecular differences in B- and T-cells epitopes of Ole e 12, and its identification may help designing strategies to improve the component-resolving diagnosis and immunotherapy of pollen and food allergy through development of molecular tools.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008, Granada, Spain,
| | | | | | | | | |
Collapse
|
37
|
Lerchner A, Jarasch A, Meining W, Schiefner A, Skerra A. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity. Biotechnol Bioeng 2013; 110:2803-14. [PMID: 23686719 DOI: 10.1002/bit.24956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
The NADP⁺-dependent alcohol dehydrogenase from Ralstonia sp. (RasADH) belongs to the protein superfamily of short-chain dehydrogenases/reductases (SDRs). As an enzyme that accepts different types of substrates--including bulky-bulky as well as small-bulky secondary alcohols or ketones--with high stereoselectivity, it offers potential as a biocatalyst for industrial biotechnology. To understand substrate and cosubstrate specificities of RasADH we determined the crystal structure of the apo-enzyme as well as its NADP⁺-bound state with resolutions down to 2.8 Å. RasADH displays a homotetrameric quaternary structure that can be described as a dimer of homodimers while in each subunit a seven-stranded parallel β-sheet, flanked by three α-helices on each side, forms a Rossmann fold-type dinucleotide binding domain. Docking of the well-known substrate (S)-1-phenylethanol clearly revealed the structural determinants of stereospecificity. To favor practical RasADH application in the context of established cofactor recycling systems, for example, those involving an NADH-dependent amino acid dehydrogenase, we attempted to rationally change its cosubstrate specificity from NADP⁺ to NAD⁺ utilizing the structural information that NADP⁺ specificity is largely governed by the residues Asn15, Gly37, Arg38, and Arg39. Furthermore, an extensive sequence alignment with homologous dehydrogenases that have different cosubstrate specificities revealed a modified general SDR motif ASNG (instead of NNAG) at positions 86-89 of RasADH. Consequently, we constructed mutant enzymes with one (G37D), four (N15G/G37D/R38V/R39S), and six (N15G/G37D/R38V/R39S/A86N/S88A) amino acid exchanges. RasADH (N15G/G37D/R38V/R39S) was better able to accept NAD⁺ while showing much reduced catalytic efficiency with NADP⁺, leading to a change in NADH/NADPH specificity by a factor of ∼3.6 million.
Collapse
Affiliation(s)
- Alexandra Lerchner
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
38
|
Yang S, Jan YH, Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Sepiapterin reductase mediates chemical redox cycling in lung epithelial cells. J Biol Chem 2013; 288:19221-37. [PMID: 23640889 PMCID: PMC3696693 DOI: 10.1074/jbc.m112.402164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 04/18/2013] [Indexed: 11/06/2022] Open
Abstract
In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury.
Collapse
Affiliation(s)
- Shaojun Yang
- From the Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Yi-Hua Jan
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Joshua P. Gray
- the Department of Science, United States Coast Guard Academy, New London, Connecticut 06320, and
| | - Vladimir Mishin
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E. Heck
- the Department of Environmental Health Science, New York Medical College, Valhalla, New York 10595
| | - Debra L. Laskin
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D. Laskin
- From the Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
39
|
Alka K, Windle HJ, Cornally D, Ryan BJ, Henehan GTM. A short chain NAD(H)-dependent alcohol dehydrogenase (HpSCADH) from Helicobacter pylori: a role in growth under neutral and acidic conditions. Int J Biochem Cell Biol 2013; 45:1347-55. [PMID: 23583739 DOI: 10.1016/j.biocel.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022]
Abstract
Toxic aldehydes produced by alcohol dehydrogenases have been implicated in the pathogenesis of Helicobacter pylori-related damage to the gastric mucosa. Despite this, the enzymes that might be responsible for producing such aldehydes have not been fully described. It was, therefore, of considerable interest to characterize the alcohol oxidizing enzymes in this pathogen. Previous work in this laboratory characterized two such H. pylori enzymes that had broad specificity for a range of aromatic alcohol substrates. However, an enzyme with specificity for aliphatic alcohols is likely to be required in order that H. pylori can metabolize the wide range of substrates encountered in the gastric mucosa. In this study we describe HpSCADH, an alcohol dehydrogenase from H. pylori 26695 with broad specificity for aliphatic alcohols. HpSCADH was classified in the cD1e subfamily of classical short chain alcohol dehydrogenases. The enzyme was a monomer of approximately 29kDa with a preference for NAD(+) as cofactor. Pyrazole was found to be a competitive inhibitor of HpSCADH. The physiological role of this enzyme was explored by construction of an HpSCADH isogenic mutant. At pH 7.0 the mutant showed reduced growth which became more pronounced when the pH was lowered to 5.0. When pyrazole was added to wild type H. pylori cells it caused growth profiles to be reduced to match those of the isogenic mutant suggesting that HpSCADH inhibition alone was responsible for growth impairment. Taken together, the data relating to the alcohol metabolizing enzymes of this pathogen indicate that they play an important role in H. pylori growth and adaptation to acidic environments. The therapeutic potential of targeting H. pylori alcohol dehydrogenases is discussed.
Collapse
Affiliation(s)
- Kumari Alka
- School of Food Science and Environmental Health, Dublin Institute of Technology, Marlborough Street, Dublin 1, Ireland
| | | | | | | | | |
Collapse
|
40
|
Rajavel M, Perinbam K, Gopal B. Structural insights into the role ofBacillus subtilisYwfH (BacG) in tetrahydrotyrosine synthesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:324-32. [DOI: 10.1107/s0907444912046690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/12/2012] [Indexed: 11/10/2022]
|
41
|
Yoneda K, Fukuda Y, Shibata T, Araki T, Nikki T, Sakuraba H, Ohshima T. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012. [PMID: 23192050 DOI: 10.1107/s1744309112046453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 300 as the precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=104.26, b=81.32, c=77.27 Å, β=119.43°, and diffracted to 1.86 Å resolution on beamline NE3A at the Photon Factory. The overall Rmerge was 5.4% and the data completeness was 99.4%.
Collapse
Affiliation(s)
- Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Buysschaert G, Verstraete K, Savvides SN, Vergauwen B. Crystallization of an atypical short-chain dehydrogenase from Vibrio vulnificus lacking the conserved catalytic tetrad. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:771-4. [PMID: 22750861 PMCID: PMC3388918 DOI: 10.1107/s1744309112018672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/25/2012] [Indexed: 01/22/2023]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are a rapidly expanding superfamily of enzymes that are found in all kingdoms of life. Hallmarked by a highly conserved Asn-Ser-Tyr-Lys catalytic tetrad, SDRs have a broad substrate spectrum and play diverse roles in key metabolic processes. Locus tag VVA1599 in Vibrio vulnificus encodes a short-chain dehydrogenase (hereafter referred to as SDRvv) which lacks the signature catalytic tetrad of SDR members. Structure-based protein sequence alignments have suggested that SDRvv may harbour a unique binding site for its nicotinamide cofactor. To date, structural studies of SDRs with altered catalytic centres are underrepresented in the scientific literature, thus limiting understanding of their spectrum of substrate and cofactor preferences. Here, the expression, purification and crystallization of recombinant SDRvv are presented. Two well diffracting crystal forms could be obtained by cocrystallization in the presence of the reduced form of the phosphorylated nicotinamide cofactor NADPH. The collected data were of sufficient quality for successful structure determination by molecular replacement and subsequent refinement. This work sets the stage for deriving the identity of the natural substrate of SDRvv and the structure-function landscape of typical and atypical SDRs.
Collapse
Affiliation(s)
- Geraldine Buysschaert
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Unit for Structural Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Unit for Structural Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Savvas N. Savvides
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Unit for Structural Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bjorn Vergauwen
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Unit for Structural Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
43
|
Kim SM, Paek KH, Lee SB. Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 2012; 16:447-54. [PMID: 22481639 DOI: 10.1007/s00792-012-0444-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 11/30/2022]
Abstract
Thermoplasma acidophilum utilizes L-rhamnose as a sole carbon source. To determine the metabolic pathway of L-rhamnose in Archaea, we identified and characterized L-rhamnose dehydrogenase (RhaD) in T. acidophilum. Ta0747P gene, which encodes the putative T. acidophilum RhaD (Ta_RhaD) enzyme belonging to the short-chain dehydrogenase/reductase family, was expressed in E. coli as an active enzyme catalyzing the oxidation of L-rhamnose to L-rhamnono-1,4-lactone. Analysis of catalytic properties revealed that Ta_RhaD oxidized L-rhamnose, L-lyxose, and L-mannose using only NADP(+) as a cofactor, which is different from NAD(+)/NADP(+)-specific bacterial RhaDs and NAD(+)-specific eukaryal RhaDs. Ta_RhaD showed the highest activity toward L-rhamnose at 60 °C and pH 7. The K (m) and k (cat) values were 0.46 mM, 1,341.3 min(-1) for L-rhamnose and 0.1 mM, 1,027.2 min(-1) for NADP(+), respectively. Phylogenetic analysis indicated that branched lineages of archaeal RhaD are quite distinct from those of Bacteria and Eukarya. This is the first report on the identification and characterization of NADP(+)-specific RhaD.
Collapse
Affiliation(s)
- Suk Min Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, 790-784, Korea
| | | | | |
Collapse
|
44
|
Moon J, Liu ZL. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzyme Microb Technol 2011; 50:115-20. [PMID: 22226197 DOI: 10.1016/j.enzmictec.2011.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/23/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
Furfural and 5-hydroxymethylfurfural (HMF) are inhibitors generated by lignocellulosic biomass pretreatment such as dilute acid hydrolysis that inhibit microbial growth and interfere with subsequent fermentation. It is possible to in situ detoxify these inhibitory compounds by aldehyde reductions using tolerant Saccharomyces cerevisiae. YOL151W (GRE2) is a commonly recognized up-regulated gene expressed under stress conditions that encodes reductase activities toward furfural and HMF using cofactor NADH. Applying a directed enzyme evolution approach, we altered the genetic code of GRE2 yielding two mutants with amino acid substitutions of Gln261 to Arg261 and Phe283 to Leu283; and Ile107 to Val107, Gln261 to Arg261, and Val285 to Asp285 for strain Y62-C11 and Y62-G6, respectively. Clones of these mutants showed faster growth rates and were able to establish viable cultures under 30 mM HMF challenges when compared with a wild type GRE2 clone when inoculated into synthetic medium containing this inhibitor. Compared with the wild type control, crude cell extracts of the two mutants showed 3- to 4-fold and 3- to 9-fold increased specific enzyme activity using NADH toward HMF and furfural reduction, respectively. While retaining its aldehyde reductase activities using the cofactor NADH, mutant Y62-G6 displayed significantly greater reductase activities using NADPH as the cofactor with 13- and 15-fold increase toward furfural and HMF, respectively, as measured by its partially purified protein. Using reverse engineering and site directed mutagenesis methods, we were able to confirm that the amino acid substitution of the Asp285 is responsible for the increased aldehyde reductase activities by utilizing the additional cofactor NADPH.
Collapse
Affiliation(s)
- Jaewoong Moon
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL 61604, USA
| | | |
Collapse
|
45
|
Bonnett SA, Papireddy K, Higgins S, del Cardayre S, Reynolds KA. Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 2011; 50:9633-40. [PMID: 21958090 DOI: 10.1021/bi201096w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OleD is shown to play a key reductive role in the generation of alkenes (olefins) from acyl thioesters in Stenotrophomonas maltophilia. The gene coding for OleD clusters with three other genes, oleABC, and all appear to be transcribed in the same direction as an operon in various olefin producing bacteria. In this study, a series of substrates varying in chain length and stereochemistry were synthesized and used to elucidate the functional role and substrate specificity of OleD. We demonstrated that OleD, which is an NADP(H) dependent reductase, is a homodimer which catalyzes the reversible stereospecific reduction of 2-alkyl-3-ketoalkanoic acids. Maximal catalytic efficiency was observed with syn-2-decyl-3-hydroxytetradecanoic acid, with a k(cat)/K(m) 5- and 8-fold higher than for syn-2-octyl-3-hydroxydodecanoic acid and syn-2-hexyl-3-hydroxydecanoic acid, respectively. OleD activity was not observed with syn-2-butyl-3-hydroxyoctanoic acid and compounds lacking a 2-alkyl group such as 3-ketodecanoic and 3-hydroxydecanoic acids, suggesting the necessity of the 2-alkyl chain for enzyme recognition and catalysis. Using diastereomeric pairs of substrates and 4 enantiopure isomers of 2-hexyl-3-hydroxydecanoic acid of known stereochemistry, OleD was shown to have a marked stereochemical preference for the (2R,3S)-isomer. Finally, experiments involving OleA and OleD demonstrate the first 3 steps and stereochemical course in olefin formation from acyl thioesters; condensation to form a 2-alkyl-3-ketoacyl thioester, subsequent thioester hydrolysis, and ketone reduction.
Collapse
Affiliation(s)
- Shilah A Bonnett
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | | | | | | | | |
Collapse
|
46
|
Favia AD, Masetti M, Recanatini M, Cavalli A. Substrate binding process and mechanistic functioning of type 1 11β-hydroxysteroid dehydrogenase from enhanced sampling methods. PLoS One 2011; 6:e25375. [PMID: 21966510 PMCID: PMC3179505 DOI: 10.1371/journal.pone.0025375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant), and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a) the reason behind the functional dimerisation of 11β-HSD-1, b) the key role of Y177 in the cortisone binding event, c) the fine tuning of the active site degree of solvation, and d) the role of the S228-P237 loop in ligand recognition.
Collapse
Affiliation(s)
- Angelo D Favia
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Genoa, Italy.
| | | | | | | |
Collapse
|
47
|
Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11β-hydroxysteroid dehydrogenase 1. Biochem J 2011; 436:621-9. [PMID: 21453287 DOI: 10.1042/bj20110022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oxidized bile acid 7-oxoLCA (7-oxolithocholic acid), formed primarily by gut micro-organisms, is reduced in human liver to CDCA (chenodeoxycholic acid) and, to a lesser extent, UDCA (ursodeoxycholic acid). The enzyme(s) responsible remained unknown. Using human liver microsomes, we observed enhanced 7-oxoLCA reduction in the presence of detergent. The reaction was dependent on NADPH and stimulated by glucose 6-phosphate, suggesting localization of the enzyme in the ER (endoplasmic reticulum) and dependence on NADPH-generating H6PDH (hexose-6-phosphate dehydrogenase). Using recombinant human 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), we demonstrate efficient conversion of 7-oxoLCA into CDCA and, to a lesser extent, UDCA. Unlike the reversible metabolism of glucocorticoids, 11β-HSD1 mediated solely 7-oxo reduction of 7-oxoLCA and its taurine and glycine conjugates. Furthermore, we investigated the interference of bile acids with 11β-HSD1-dependent interconversion of glucocorticoids. 7-OxoLCA and its conjugates preferentially inhibited cortisone reduction, and CDCA and its conjugates inhibited cortisol oxidation. Three-dimensional modelling provided an explanation for the binding mode and selectivity of the bile acids studied. The results reveal that 11β-HSD1 is responsible for 7-oxoLCA reduction in humans, providing a further link between hepatic glucocorticoid activation and bile acid metabolism. These findings also suggest the need for animal and clinical studies to explore whether inhibition of 11β-HSD1 to reduce cortisol levels would also lead to an accumulation of 7-oxoLCA, thereby potentially affecting bile acid-mediated functions.
Collapse
|
48
|
Tarrío R, Ayala FJ, Rodríguez-Trelles F. The Vein Patterning 1 (VEP1) gene family laterally spread through an ecological network. PLoS One 2011; 6:e22279. [PMID: 21818306 PMCID: PMC3144213 DOI: 10.1371/journal.pone.0022279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/18/2011] [Indexed: 11/23/2022] Open
Abstract
Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments.
Collapse
Affiliation(s)
- Rosa Tarrío
- Universidad de Santiago de Compostela, CIBERER, Genome Medicine Group, Santiago de Compostela, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco Rodríguez-Trelles
- Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans. Chem Biol Interact 2011; 191:75-82. [DOI: 10.1016/j.cbi.2011.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 11/21/2022]
|
50
|
Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K. Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1925-36. [PMID: 20685299 DOI: 10.1016/j.bbapap.2010.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 11/27/2022]
Abstract
In Sphingomonas sp. A1, alginate is degraded by alginate lyases to its constituent monosaccharides, which are nonenzymatically converted to an alpha-keto acid, namely, 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH). The properties of the DEH-metabolizing enzyme and its gene in strain A1 were characterized. In the presence of alginate, strain A1 cells inducibly produced an NADPH-dependent DEH reductase (A1-R) in their cytoplasm. Molecular cloning of the enzyme gene indicated that A1-R belonged to the short-chain dehydrogenase/reductase superfamily and catalyzed the conversion of DEH to 2-keto-3-deoxy-d-gluconic acid most efficiently at around pH 7.0 and 50 degrees C. Crystal structures of A1-R and its complex with NADP were determined at around 1.6A resolution by X-ray crystallography. The enzyme consists of three layers (alpha/beta/alpha), with a coenzyme-binding Rossmann fold. NADP is surrounded by positively charged residues, and Gly-38 and Arg-39 are crucial for NADP binding. Site-directed mutagenesis studies suggest that Ser-150, Tyr-164, and Lys-168 located around the Rossmann fold constitute the catalytic triad. To our knowledge, this is the first report on molecular cloning and structure determination of a bacterial DEH reductase responsible for alginate metabolism.
Collapse
Affiliation(s)
- Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|