1
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
2
|
McNicol GR, Dalby MJ, Stewart PS. A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells. J Theor Biol 2025; 596:111965. [PMID: 39442686 DOI: 10.1016/j.jtbi.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction-diffusion-advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell-substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin-Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues in vitro and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.
Collapse
Affiliation(s)
- Gordon R McNicol
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
3
|
Wu X, Chen M, Lin S, Chen S, Gu J, Wu Y, Qu M, Gong W, Yao Q, Li H, Zou X, Chen D, Xiao G. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice. Aging Dis 2023; 14:1818-1833. [PMID: 37196110 PMCID: PMC10529740 DOI: 10.14336/ad.2023.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023] Open
Abstract
Degenerative disc disease (DDD) is one of the most common skeletal disorders affecting aged populations. DDD is the leading cause of low back/neck pain, resulting in disability and huge socioeconomic burdens. However, the molecular mechanisms underlying DDD initiation and progression remain poorly understood. Pinch1 and Pinch2 are LIM-domain-containing proteins with crucial functions in mediating multiple fundamental biological processes, such as focal adhesion, cytoskeletal organization, cell proliferation, migration, and survival. In this study, we found that Pinch1 and Pinch2 were both highly expressed in healthy intervertebral discs (IVDs) and dramatically downregulated in degenerative IVDs in mice. Deleting Pinch1 in aggrecan-expressing cells and Pinch2 globally (AggrecanCreERT2; Pinch1fl/fl; Pinch2-/-) caused striking spontaneous DDD-like lesions in lumbar IVDs in mice. Pinch loss inhibited cell proliferation and promoted extracellular matrix (ECM) degradation and apoptosis in lumbar IVDs. Pinch loss markedly enhanced the production of pro-inflammatory cytokines, especially TNFα, in lumbar IVDs and exacerbated instability-induced DDD defects in mice. Pharmacological inhibition of TNFα signaling mitigated the DDD-like lesions caused by Pinch loss. In human degenerative NP samples, reduced expression of Pinch proteins was correlated with severe DDD progression and a markedly upregulated expression of TNFα. Collectively, we demonstrate the crucial role of Pinch proteins in maintaining IVD homeostasis and define a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Sheng Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Jingliang Gu
- Department of Orthopedics, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Yuchen Wu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Rao TC, Ma VPY, Blanchard A, Urner TM, Grandhi S, Salaita K, Mattheyses AL. EGFR activation attenuates the mechanical threshold for integrin tension and focal adhesion formation. J Cell Sci 2020; 133:jcs238840. [PMID: 32546532 PMCID: PMC7358133 DOI: 10.1242/jcs.238840] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanical forces, growth factors and the extracellular matrix all play crucial roles in cell adhesion. To understand how epidermal growth factor receptor (EGFR) impacts the mechanics of adhesion, we employed tension gauge tether (TGT) probes displaying the integrin ligand cRGDfK and quantified integrin tension. EGF exposure significantly increased spread area, cell circularity, integrated integrin tension, mechanical rupture density, radial organization and size of focal adhesions in Cos-7 cells on TGT surfaces. These findings suggest that EGFR regulates integrin tension and the spatial organization of focal adhesions. Additionally, we found that the mechanical tension threshold for outside-in integrin activation is tunable by EGFR. Parallel genetic and pharmacologic strategies demonstrated that these phenotypes are driven by ligand-dependent EGFR signaling. Our results establish a novel mechanism whereby EGFR regulates integrin activation and cell adhesion, providing control over cellular responses to the environment.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Aaron Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Tara M Urner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shreya Grandhi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Rody WJ, Chamberlain CA, Emory-Carter AK, McHugh KP, Wallet SM, Spicer V, Krokhin O, Holliday LS. The proteome of extracellular vesicles released by clastic cells differs based on their substrate. PLoS One 2019; 14:e0219602. [PMID: 31291376 PMCID: PMC6619814 DOI: 10.1371/journal.pone.0219602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) from osteoclasts are important regulators in intercellular communication. Here, we investigated the proteome of EVs from clastic cells plated on plastic (clasts), bone (osteoclasts) and dentin (odontoclasts) by two-dimensional high performance liquid chromatography mass spectrometry seeking differences attributable to distinct mineralized matrices. A total of 1,952 proteins were identified. Of the 500 most abundant proteins in EVs, osteoclast and odontoclast EVs were 83.3% identical, while clasts shared 70.7% of the proteins with osteoclasts and 74.2% of proteins with odontoclasts. For each protein, the differences between the total ion count values were mapped to an expression ratio histogram (Z-score) in order to detect proteins differentially expressed. Stabilin-1 and macrophage mannose receptor-1 were significantly-enriched in EVs from odontoclasts compared with osteoclasts (Z = 2.45, Z = 3.34) and clasts (Z = 13.86, Z = 1.81) and were abundant in odontoclast EVs. Numerous less abundant proteins were differentially-enriched. Subunits of known protein complexes were abundant in clastic EVs, and were present at levels consistent with them being in assembled protein complexes. These included the proteasome, COP1, COP9, the T complex and a novel sub-complex of vacuolar H+-ATPase (V-ATPase), which included the (pro) renin receptor. The (pro) renin receptor was immunoprecipitated using an anti-E-subunit antibody from detergent-solubilized EVs, supporting the idea that the V-ATPase subunits present were in the same protein complex. We conclude that the protein composition of EVs released by clastic cells changes based on the substrate. Clastic EVs are enriched in various protein complexes including a previously undescribed V-ATPase sub-complex.
Collapse
Affiliation(s)
- Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, United States of America
- * E-mail: (WJR); (LSH)
| | - Casey A. Chamberlain
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Alyssa K. Emory-Carter
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Kevin P. McHugh
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Shannon M. Wallet
- School of Dental Medicine, East Carolina University, Greenville, NC, United States of America
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Oleg Krokhin
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - L. Shannon Holliday
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, United States of America
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL, United States of America
- * E-mail: (WJR); (LSH)
| |
Collapse
|
6
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
7
|
Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater 2018; 79:83-95. [PMID: 30134207 DOI: 10.1016/j.actbio.2018.08.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Abstract
It is generally recognised that mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical properties of the substrates. However, the precise biophysical mechanism that enables MSCs to respond to substrate properties remains unclear. In the current study, polydimethylsiloxane (PDMS) substrates with different stiffnesses were fabricated and the way in which the elastic modulus of the substrate regulated differentiation towards osteogenesis and adipogenesis in adipose-derived stromal cells (ASCs) was explored. Initially, a cell morphology change by SEM was observed between the stiff and soft substrates. The cytoskeleton stains including microfilament by F-actin and microtubule by α- and β-tubulin further showed a larger cell spreading area on the stiff substrate. Then the expression of vinculin, in charge for the linkage of adhesion molecules to the actin cytoskeleton, was enhanced on the stiff substrate. This change in focal adhesion plaque further triggered intracellular β-catenin signaling and promoted its nuclear translocation especially on the stiff substrate. The influence of β-catenin signaling on direct differentiation to osteogenic lineages was through direct binding between its downstream protein, Lef-1, and the osteogenic transcriptional factors, Runx2 and Osx, while on differentiation to adipogenic lineages was through modulating the expression of PPARγ. The imbalance of stiffness-induced β-catenin signaling finally induced a stronger osteogenesis and a weaker adipogenesis on the stiff substrate relative to those on the soft substrate. This study indicates the importance of stiffness on ASC differentiation and could help to increase understanding of the mechanism underlying molecular signal transduction from mechanosensing, mechanotransducing to stem cell differentiation. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells can differentiate into multiple lineages, such as adipogenesis, myogenesis, neurogenesis, angiogenesis and osteogenesis, through influence of biophysical properties of the extracellular matrix. However, the precise bio-mechanism that triggers stem cell differentiation in response to matrix biophysical properties remains unclear. In the current study, we provide a series of experiments involving the characterization of cell morphology, microfilament, microtubule and adhesion capacity of adipose-derived stromal cells (ASCs) in response to substrate stiffness, and further elucidation of cytoplasmic β-catenin-dependent signal transduction, nuclear translocation and resultant promoter activation of transcriptional factors for osteogenesis and adipogenesis. This study provides an explanation on deeper understanding of bio-mechanism underlying substrate stiffness-triggered β-catenin signal transduction from active mechanosensing, mechanotransducing to stem cell differentiation.
Collapse
|
8
|
Xie J, Zhang D, Ling Y, Yuan Q, Chenchen Z, Wei D, Zhou X. Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids Surf B Biointerfaces 2018; 175:576-585. [PMID: 30580148 DOI: 10.1016/j.colsurfb.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Adipose-derived stromal cells (ASCs) have potential in bioengineering angiogenesis due to their paracrine role in supporting endothelial tubulogenesis and vascular network formation. However, the precise mechanism of the inner angiogenic capacity of ASCs determined by the biophysical properties of the extracellular matrix needs to be further elucidated. In the current study, we fabricated two silicon-based elastomer polydimethylsiloxane (PDMS) substrates with different stiffnesses (stiff substrate, E = 195 kPa and soft substrate, E = 15 kPa) and found there were cytoskeletal changes in ASCs in response to different substrate stiffnesses. We then showed the expression of vinculin in focal adhesion plaques was enhanced and the nuclear translocation of β-catenin signaling was increased in ASCs on the stiff substrate relative to those on the soft substrate. We next used bioinformatics and found the downstream proteins of β-catenin signaling had binding sites in the promoter of vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis; then, we further confirmed the enhanced endogenous VEGFA expression in ASCs on the stiff substrate relative to that on the soft substrate. Finally, by using ectogenic VEGFA, we showed the stiff substrate could promote angiogenesis of ASCs in the form of more ring-like formations in 2D and vessel-like structure formations in 3D under VEGFA induction compared to that of the soft substrate. This study not only indicates the inner angiogenic capacity of ASCs but also elucidates the influence of substrate elasticity on ASC differentiation in bioengineering angiogenesis.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Ling
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhou Chenchen
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Wei
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Khoshgoftar M, Torzilli PA, Maher SA. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res 2018; 36:721-729. [PMID: 29044742 PMCID: PMC5839971 DOI: 10.1002/jor.23774] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
Understanding the mechanical factors that drive the biological responses of chondrocytes is central to our interpretation of the cascade of events that lead to osteoarthritic changes in articular cartilage. Chondrocyte mechanics is complicated by changes in tissue properties that can occur as osteoarthritis (OA) progresses and by the interaction between macro-scale, tissue level, properties, and micro-scale pericellular matrix (PCM) and local extracellular matrix (ECM) properties, both of which cannot be easily studied using in vitro systems. Our objective was to study the influence of macro- and micro-scale OA-associated structural changes on chondrocyte strains. We developed a multi-scale finite element model of articular cartilage subjected to unconfined loading, for the following three conditions: (i) normal articular cartilage, (ii) OA cartilage (where macro and micro-scale changes in collagen content, matrix modulus, and permeability were modeled), and (iii) early-stage OA cartilage (where only micro-scale changes in matrix modulus were modeled). In the macro-scale model, we found that a depth-dependent strain field was induced in both healthy and OA cartilage and that the middle and superficial zones of OA cartilage had increased tensile and compressive strains. At the micro-scale, chondrocyte shear strains were sensitive to PCM and local ECM properties. In the early-OA model, micro-scale spatial softening of PCM and ECM resulted in a substantial increase (30%) of chondrocyte shear strain, even with no structural changes in macro-scale tissue properties. Our study provides evidence that micromechanical changes at the cellular level may affect chondrocyte activities before macro-scale degradations at the tissue level become apparent. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:721-729, 2018.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States
| | - Peter A. Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1087
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1083
| |
Collapse
|
10
|
Kim A, Im M, Ma JY. SRVF, a novel herbal formula including Scrophulariae Radix and Viticis Fructus, disrupts focal adhesion and causes detachment-induced apoptosis in malignant cancer cells. Sci Rep 2017; 7:12756. [PMID: 29038437 PMCID: PMC5643381 DOI: 10.1038/s41598-017-12934-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
When cells lose adhesion, they undergo detachment-induced apoptosis, known as anoikis. In contrast, tumor cells acquire resistance to anoikis, enabling them to survive, even after separating from neighboring cells or the ECM. Therefore, agents that restore anoikis sensitivity may serve as anti-cancer candidates. In this study, we constructed a novel herbal formula, SRVF, which contains Scrophulariae Radix (SR) and Viticis Fructus (VF). SRVF rapidly decreased cell adhesion, altered the cell morphology to round, and induced cell death; however, SR, VF, or their co-treatment did not. SRVF arrested HT1080 cells in G2/M phase, increased the levels of pro-apoptotic proteins, and decreased the levels of anti-apoptotic proteins. Furthermore, SRVF efficiently reduced cell-cell and cell-ECM interactions by disrupting the F-actin cytoskeleton and down-regulating the levels of focal adhesion-related proteins, suggesting that SRVF efficiently triggers detachment-induced apoptosis (i.e., anoikis) in malignant cancer cells. In xenograft mouse models, daily oral administration of 50 or 100 mg/kg SRVF retarded tumor growth in vivo, and repeated administration of SRVF did not cause systemic toxicity in normal mice. These data collectively indicate that SRVF induces cancer cell death by restoring anoikis sensitivity via disrupting focal adhesion. Therefore, SRVF may be a safe and potent anti-cancer herbal decoction.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
11
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
12
|
Abstract
Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions.
Collapse
Affiliation(s)
- Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | | | | |
Collapse
|
13
|
Lam PY, Mangos S, Green JM, Reiser J, Huttenlocher A. In vivo imaging and characterization of actin microridges. PLoS One 2015; 10:e0115639. [PMID: 25629723 PMCID: PMC4309568 DOI: 10.1371/journal.pone.0115639] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022] Open
Abstract
Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.
Collapse
Affiliation(s)
- Pui-ying Lam
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Steve Mangos
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Julie M. Green
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States of America
- * E-mail:
| |
Collapse
|
14
|
Khoshgoftar M, Ito K, van Donkelaar CC. The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:3112-21. [DOI: 10.1089/ten.tea.2013.0676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|
16
|
Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis. Cell Death Dis 2013; 4:e527. [PMID: 23470534 PMCID: PMC3613836 DOI: 10.1038/cddis.2013.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Collapse
|
17
|
CHEN YIXIN, CHEN XIAOWEN, LI CHANGGANG, YUE LIJIE, MAI HUIRONG, WEN FEIQIU. Effect of tumor gangliosides on tyrosine phosphorylation of p125FAK in platelet adhesion to collagen. Oncol Rep 2012; 29:343-8. [DOI: 10.3892/or.2012.2092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/28/2012] [Indexed: 11/05/2022] Open
|
18
|
Rape A, Guo WH, Wang YL. Microtubule depolymerization induces traction force increase through two distinct pathways. J Cell Sci 2011; 124:4233-40. [PMID: 22193960 DOI: 10.1242/jcs.090563] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Traction forces increase after microtubule depolymerization; however, the signaling mechanisms underlying this, in particular the dependence upon myosin II, remain unclear. We investigated the mechanism of traction force increase after nocodazole-induced microtubule depolymerization by applying traction force microscopy to cells cultured on micropatterned polyacrylamide hydrogels to obtain samples of homogeneous shape and size. Control cells and cells treated with a focal adhesion kinase (FAK) inhibitor showed similar increases in traction forces, indicating that the response is independent of FAK. Surprisingly, pharmacological inhibition of myosin II did not prevent the increase of residual traction forces upon nocodazole treatment. This increase was abolished upon pharmacological inhibition of FAK. These results suggest two distinct pathways for the regulation of traction forces. First, microtubule depolymerization activates a myosin-II-dependent mechanism through a FAK-independent pathway. Second, microtubule depolymerization also enhances traction forces through a myosin-II-independent, FAK-regulated pathway. Traction forces are therefore regulated by a complex network of complementary signals and force-generating mechanisms.
Collapse
Affiliation(s)
- Andrew Rape
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
19
|
Rondas D, Tomas A, Soto-Ribeiro M, Wehrle-Haller B, Halban PA. Novel mechanistic link between focal adhesion remodeling and glucose-stimulated insulin secretion. J Biol Chem 2011; 287:2423-36. [PMID: 22139838 DOI: 10.1074/jbc.m111.279885] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Dieter Rondas
- Department of Genetic Medicine and Development, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
20
|
Kaneko Y, Lecce L, Murphy CR. Ovarian hormones regulate expression of the focal adhesion proteins, talin and paxillin, in rat uterine luminal but not glandular epithelial cells. Histochem Cell Biol 2009; 132:613-22. [PMID: 19779731 DOI: 10.1007/s00418-009-0641-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
During early pregnancy in the rat, focal adhesions disassemble in uterine luminal epithelial cells at the time of implantation to facilitate their removal so that the implanting blastocyst can invade into the underlying endometrial decidual cells. This study investigated the effect of ovarian hormones on the distribution and protein expression of two focal adhesion proteins, talin and paxillin, in rat uterine luminal and glandular epithelial cells under various hormone regimes. Talin and paxillin showed a major distributional change between different hormone regimes. Talin and paxillin were highly concentrated along the basal cell surface of uterine luminal epithelial cells in response to oestrogen treatment. However, this prominent staining of talin and paxillin was absent and also a corresponding reduction of paxillin expression was demonstrated in response to progesterone alone or progesterone in combination with oestrogen, which is also observed at the time of implantation. In contrast, the distribution of talin and paxillin in uterine glandular epithelial cells was localised on the basal cell surface and remained unchanged in all hormone regimes. Thus, not all focal adhesions are hormonally dependent in the rat uterus; however, the dynamics of focal adhesion in uterine luminal epithelial cells is tightly regulated by ovarian hormones. In particular, focal adhesion disassembly in uterine luminal epithelial cells, a key component to establish successful implantation, is predominantly under the influence of progesterone.
Collapse
Affiliation(s)
- Yui Kaneko
- Disciplines of Anatomy and Histology, School of Medical Sciences, The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
21
|
Yamazoe S, Shimogawa H, Sato SI, Esko JD, Uesugi M. A Dumbbell-Shaped Small Molecule that Promotes Cell Adhesion and Growth. ACTA ACUST UNITED AC 2009; 16:773-82. [DOI: 10.1016/j.chembiol.2009.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/03/2009] [Accepted: 06/19/2009] [Indexed: 11/24/2022]
|
22
|
|
23
|
Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O'Byrne K, Nie D, Honn KV. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 2008; 26:503-24. [PMID: 17943411 DOI: 10.1007/s10555-007-9098-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies.
Collapse
Affiliation(s)
- Graham P Pidgeon
- Department of Clinical Surgery, Trinity College Dublin, St. James Hospital, Dublin 8, Ireland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update 2006; 12:731-46. [PMID: 16982667 DOI: 10.1093/humupd/dml004] [Citation(s) in RCA: 571] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryo implantation is a three-stage process (apposition, adhesion and invasion) involving synchronized crosstalk between a receptive endometrium and a functional blastocyst. This ovarian steroid-dependent phenomenon can only take place during the window of implantation, a self-limited period of endometrial receptivity spanning between days 20 and 24 of the menstrual cycle. Implantation involves a complex sequence of signalling events, consisting in the acquisition of adhesion ligands together with the loss of inhibitory components, which are crucial to the establishment of pregnancy. Histological evaluation, now considered to add little clinically significant information, should be replaced by functional assessment of endometrial receptivity. A large number of molecular mediators have been identified to date, including adhesion molecules, cytokines, growth factors, lipids and others. Thus, endometrial biopsy samples can be used to identify molecules associated with uterine receptivity to obtain a better insight into human implantation. In addition, development of functional in vitro systems to study embryo-uterine interactions will lead to better definition of the interactions existing between the molecules involved in this process. The purpose of this review was not only to describe the different players of the implantation process but also to try to portray the relationship between these factors and their timing in the process of uterine receptivity.
Collapse
Affiliation(s)
- Hanna Achache
- Department of Obstetrics and Gynecology, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
25
|
Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA, Marinkovich MP, Isseroff RR. beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 2006; 17:4925-35. [PMID: 16914518 PMCID: PMC1635387 DOI: 10.1091/mbc.e06-05-0433] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endogenous DC electric fields (EF) are present during embryogenesis and are generated in vivo upon wounding, providing guidance cues for directional cell migration (galvanotaxis) required in these processes. To understand the role of beta (beta)4 integrin in directional migration, the migratory paths of either primary human keratinocytes (NHK), beta4 integrin-null human keratinocytes (beta4-), or those in which beta4 integrin was reexpressed (beta4+), were tracked during exposure to EFs of physiological magnitude (100 mV/mm). Although the expression of beta4 integrin had no effect on the rate of cell movement, it was essential for directional (cathodal) migration in the absence of epidermal growth factor (EGF). The addition of EGF potentiated the directional response, suggesting that at least two distinct but synergistic signaling pathways coordinate galvanotaxis. Expression of either a ligand binding-defective beta4 (beta4+AD) or beta4 with a truncated cytoplasmic tail (beta4+CT) resulted in loss of directionality in the absence of EGF, whereas inhibition of Rac1 blinded the cells to the EF even in the presence of EGF. In summary, both the beta4 integrin ligand-binding and cytoplasmic domains together with EGF were required for the synergistic activation of a Rac-dependent signaling pathway that was essential for keratinocyte directional migration in response to a galvanotactic stimulus.
Collapse
Affiliation(s)
- Christine E. Pullar
- *Department of Dermatology, University of California, Davis, Davis, CA 95616
| | - Brian S. Baier
- *Department of Dermatology, University of California, Davis, Davis, CA 95616
| | - Yoshinobu Kariya
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alan J. Russell
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Basil A.J. Horst
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - M. Peter Marinkovich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
- VA Palo Alto Health Care System, Department of Veterans Affairs, Stanford, CA 94304
| | - R. Rivkah Isseroff
- *Department of Dermatology, University of California, Davis, Davis, CA 95616
- Dermatology Service, Northern California Health Care System, Department of Veterans Affairs, Mather, CA 95655; and
| |
Collapse
|
26
|
Pullar CE, Rizzo A, Isseroff RR. β-Adrenergic Receptor Antagonists Accelerate Skin Wound Healing. J Biol Chem 2006; 281:21225-21235. [PMID: 16714291 DOI: 10.1074/jbc.m601007200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The skin is our primary defense against noxious environmental agents. Upon injury, keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, essential for wound repair and restoration of barrier integrity. Keratinocytes express a high level of beta2-adrenergic receptors (beta2-ARs) that appear to play a role in cutaneous homeostasis as aberrations in either keratinocyte beta2-AR function or density are associated with various skin diseases. Here we report the novel finding that beta-AR antagonists promote wound re-epithelialization in a "chronic" human skin wound-healing model. beta-AR antagonists increase ERK phosphorylation, the rate of keratinocyte migration, electric field-directed migration, and ultimately accelerate human skin wound re-epithelialization. We demonstrate that keratinocytes express two key enzymes required for catecholamine (beta-AR agonist) synthesis, tyrosine hydroxylase and phenylethanolamine-N-methyl transferase, both localized within keratinocyte cytoplasmic vesicles. Finally, we confirm the synthesis of epinephrine by measuring the endogenously synthesized catecholamine in keratinocyte extracts. Previously, we have demonstrated that beta-AR agonists delay wound re-epithelialization. Here we report that the mechanism for the beta-AR antagonist-mediated augmentation of wound repair is due to beta2-AR blockade, preventing the binding of endogenously synthesized epinephrine. Our work describes an endogenous beta-AR mediator network in the skin that can temporally regulate skin wound repair. Further investigation of this network will improve our understanding of both the skin repair process and the multiple modes of action of one of the most frequently prescribed class of drugs, hopefully resulting in a new treatment for chronic wounds.
Collapse
Affiliation(s)
- Christine E Pullar
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616.
| | - Amilcar Rizzo
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616
| | - R Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616; Dermatology Service, Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655
| |
Collapse
|
27
|
Abstract
Keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, necessary for wound closure and restoration of barrier function. They solely express the beta2-adrenergic receptor (beta2-AR) subtype of beta-ARs and can also synthesize beta-AR agonists generating a hormonal mediator network in the skin. Emerging studies from our laboratory demonstrate that beta-AR agonists decrease keratinocyte migration via a protein phosphatase (PP) 2A-dependent mechanism. Here we have extended our investigations to observe the effects of beta2-AR activation on keratinocyte polarization, migration, and ERK phosphorylation at the wound edge, cytoskeletal organization, phospho-ERK intracellular localization, proliferation, human skin wound re-epithelialization, wound-induced ERK phosphorylation, and murine skin wound healing. We demonstrate that in keratinocytes, beta2-AR activation is anti-motogenic and anti-mitogenic with both mechanisms being PP2A dependent. beta2-AR activation dramatically alters the organization of the actin cytoskeleton and prevents localization of phospho-ERK to the lamellipodial edge and its colocalization with vinculin. Finally, we demonstrate a beta2-AR-mediated delay in re-epithelialization and decrease in wound-induced epidermal ERK phosphorylation in human skin wounds and a delay in re-epithelialization in murine tail-clip wounds. Our work uncovers novel keratinocyte biology and a previously unrecognized role for the adrenergic hormonal mediator network in the wound repair process.
Collapse
Affiliation(s)
- Christine E Pullar
- Department of Dermatology, University of California Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
28
|
Boura C, Muller S, Vautier D, Dumas D, Schaaf P, Claude Voegel J, François Stoltz J, Menu P. Endothelial cell—interactions with polyelectrolyte multilayer films. Biomaterials 2005; 26:4568-75. [PMID: 15722126 DOI: 10.1016/j.biomaterials.2004.11.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 11/13/2004] [Indexed: 01/01/2023]
Abstract
The seeding of endothelial cells (ECs) on biomaterial surfaces became a major challenge, allowing to improve the non-thrombogenic properties of these surfaces. Recently, the use of polyelectrolyte films has been suggested as a new versatile technique of surface modification aimed at tissue engineering. In this study, we evaluate the adhesion properties of ECs on two types of polyelectrolyte films ending either by poly(D-lysine) (PDL), or poly(allylamine hydrochloride) (PAH), and compared them to data obtained on PDL or PAH monolayers, glass and fibronectin (Fn)-coated glass. ECs seeded on polyelectrolyte films showed a good morphology, allowing ECs to resist physiological shear stress better compared to ECs seeded on glass or Fn. The expression of beta1 integrins was slightly lower on polyelectrolyte films than on control surfaces. However, the phosphorylation of focal adhesion kinase, involved in the transduction of adhesion signal, was not modified on PAH ending films compared to control surfaces; whereas it became lower on PDL ending films. Finally, PAH ending films improve strongly ECs adhesion without disturbing the adhesion mechanism, necessary for the development of a new endothelium. These types of films or similar build-ups could thus be used in the future as a way to modify surfaces for vascular tissue engineering.
Collapse
Affiliation(s)
- Cédric Boura
- Laboratoire de Mécanique et Ingénierie Cellulaire et Tissulaire, LEMTA-UMR CNRS 7563, Faculté de Médecine, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Levinson H, Moyer KE, Saggers GC, Ehrlich HP. Calmodulin-myosin light chain kinase inhibition changes fibroblast-populated collagen lattice contraction, cell migration, focal adhesion formation, and wound contraction. Wound Repair Regen 2005; 12:505-11. [PMID: 15453832 DOI: 10.1111/j.1067-1927.2004.012502.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wound healing requires fibroblast migration, synthesis of new extracellular matrix, and organization of that matrix, all of which depend upon myosin ATPase activation and subsequent cytoplasmic actin-myosin contraction. Myosin ATPase activity is optimized by phosphorylation of myosin light chain at serine 19. Several different signaling pathways can perform that phosphorylation, the focus here is calcium saturated calmodulin dependent -myosin light chain kinase (CaM-MLCK). It is proposed that CaM-MLCK phosphorylation of myosin light chain and subsequent myosin ATPase activation affects granulation tissue fibroblast behavior and contributes to wound contraction. Myosin ATPase activity generates actin-myosin contraction within fibroblasts. Myosin ATPase activity is involved in ATP-induced cell contraction, the generation of focal adhesions, fibroblast migration, fibroblast populated collagen lattice (FPCL) contraction, and wound contraction. The MLCK inhibitors ML-9 and ML-7 inhibited ATP-induced cell contraction, fibroblast migration, FA formation, and FPCL contraction. The calmodulin inhibitors W7 and fluphenazine blocked rat open wound contraction. In addition, fluphenazine delayed re-epithelialization. These findings support the idea that fibroblast CaM-MLCK activity is essential for tissue repair. We speculate that inhibition of CaM-MLCK may reduce or prevent detrimental fibrotic contracture.
Collapse
Affiliation(s)
- Howard Levinson
- Division of Plastic Surgery, MS Hershey Medical Center, Hershey, PA, USA.
| | | | | | | |
Collapse
|
30
|
Pidgeon GP, Tang K, Rice RL, Zacharek A, Li L, Taylor JD, Honn KV. Overexpression of leukocyte-type 12-lipoxygenase promotes W256 tumor cell survival by enhancing alphavbeta5 expression. Int J Cancer 2003; 105:459-71. [PMID: 12712435 DOI: 10.1002/ijc.11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolism of arachidonic acid (AA) leads to the generation of biologically active metabolites that have been implicated in cell growth and proliferation, as well as survival and apoptosis. We have previously demonstrated that rat Walker 256 (W256) carcinosarcoma cells express the platelet-type 12-lipoxygenase (12-LOX) and synthesize 12(S)- and 15(S)-HETE as their major LOX metabolites. Here we show that Walker 256 cells also express leukocyte-type 12-LOX and that its overexpression in these cells significantly extends their survival and delays apoptosis when cells are cultured under serum-free conditions. Under serum-free conditions, the expression of leukocyte-type 12-LOX is upregulated. 12-LOX-transfected W256 cells had a more spread morphology in culture compared with wild-type or mock-transfected cells. Examination of W256 cells showed that the cells expressed a number of integrins on their surface. Overexpression of 12-LOX enhanced the surface expression and focal adhesion localization of integrin alphavbeta5, while not affecting other integrins. Also, the 12-LOX-transfected W256 cells exhibited higher levels of microfilament content. Treatment of cells with monoclonal antibody to alphavbeta5 or cytochalasin B (a microfilament-disrupting agent), but not antibodies to other integrin receptors, resulted in significant apoptosis, characterized by rapid rounding up and detachment from the substratum. These results show that the 12-LOX pathway is a regulator of cell survival and apoptosis, by affecting the expression and localization of the alphavbeta5 integrin and actin microfilaments in Walker 256 cells.
Collapse
Affiliation(s)
- Graham P Pidgeon
- Department of Radiation Oncology, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Crean JKG, Finlay D, Murphy M, Moss C, Godson C, Martin F, Brady HR. The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J Biol Chem 2002; 277:44187-94. [PMID: 12218048 DOI: 10.1074/jbc.m203715200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinate complex biological processes during differentiation and tissue repair. Here we describe the role of CTGF in integrin-mediated adhesive signaling and the production of extracellular matrix components in human mesangial cells. The addition of CTGF to primary mesangial cells induced fibronectin production, cell migration, and cytoskeletal rearrangement. These functional responses were associated with recruitment of Src and phosphorylation of p42/44 MAPK and protein kinase B. The inhibition of CTGF-induced p42/44 MAPK or phosphatidylinositol 3-kinase (PI3K)/protein kinase B pathway activities abrogated the induction of fibronectin expression. In addition, anti-beta(3) integrin antibodies attenuated the activation of both the p42/44 MAPK and protein kinase B and the increase in fibronectin levels. CTGF also induced mesangial cell migration via a beta(3) integrin-dependent mechanism that was similarly sensitive to the inhibition of the p42/44 MAPK and PI3K pathways, and it promoted the adhesion of the mesangial cells to type I collagen via up-regulation of alpha(1) integrin. Transient actin cytoskeletal disassembly was observed following treatment with the ligand over the course of a 24-h period. CTGF induced the loss of focal adhesions from the mesangial cell as evidenced by the loss of punctate vinculin. However, these processes are p42/44 MAPK and PI3K pathway-independent. Our data support the hypothesis that CTGF mediates a number of its biological effects by the induction of signaling processes via beta(3) integrin. However, others such as actin cytoskeleton disassembly are modulated in a beta(3) integrin/MAPK/PI3K-independent manner, indicating that CTGF is a complex pleiotropic factor with the potential to amplify primary pathophysiological responses.
Collapse
Affiliation(s)
- John K G Crean
- Department of Medicine and Therapeutics, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tilghman RW, Hoover RL. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J 2002; 16:1257-9. [PMID: 12060669 DOI: 10.1096/fj.01-0969fje] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adhesion molecules such as E-selectin and intercellular adhesion molecule-1 (ICAM-1) expressed on endothelial cells (ECs) at sites of inflammation play an important role in the recruitment of leukocytes from the bloodstream into extravascular tissue. However, little is known about the signaling pathways that are initiated in ECs following adhesion molecule engagement. Here, we report that an 85-kDa protein becomes tyrosine phosphorylated in human ECs following leukocyte adhesion or upon antibody-induced clustering of E-selectin or ICAM-1. Through immunoprecipitation experiments, this protein was identified as cortactin, a cytoskeleton-binding molecule and prominent src substrate involved in cell adhesion. Following adhesion molecule clustering, cortactin phosphorylation was inhibited by the src family kinase inhibitor PP2. Both src and tyrosine-phosphorylated cortactin were found to be associated with E-selectin and ICAM-1 following adhesion of antibody-coated beads to ECs. PP2 did not inhibit the association of cortactin with E-selectin and ICAM-1; however, PP2 inhibited adhesion between paraformaldehyde-fixed THP-1 cells and ECs. This decrease in adhesion correlated with inhibition of adhesion molecule clustering on PP2-treated ECs at sites of THP-1 attachment. These findings implicate src and cortactin as mediators of leukocyte/EC interactions at sites of inflammation by regulating adhesion molecule clustering on ECs.
Collapse
Affiliation(s)
- Robert W Tilghman
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
33
|
Chay KO, Park SS, Mushinski JF. Linkage of caspase-mediated degradation of paxillin to apoptosis in Ba/F3 murine pro-B lymphocytes. J Biol Chem 2002; 277:14521-9. [PMID: 11825902 DOI: 10.1074/jbc.m111639200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned the complete cDNA from mouse paxillin, a 68-kDa adapter protein found in focal adhesions. We found that paxillin was degraded by caspases in Ba/F3 cell apoptosis induced by withdrawal of interleukin-3 (IL-3), a survival factor for this cell, and by ionizing radiation. Also, paxillin was degraded in vitro by incubation with recombinant caspase-3. Western blot analyses of degradation products of overexpressed green fluorescence protein-tagged paxillin and site-specific mutants demonstrated that Asp-102 and Asp-301 were early caspase cleavage sites, and Asp-5, Asp-146, Asp-165, and Asp-222 were late cleavage sites. Overexpression of paxillin delayed apoptosis of Ba/F3 after IL-3 withdrawal. Furthermore, this anti-apoptotic effect of paxillin was augmented by a triple mutation in aspartic acids at caspase cleavage sites. These results suggest that paxillin plays a critical role in cell survival signaling and that the cleavage of paxillin by caspases might be an important event for focal adhesion disassembly during cell apoptosis, contributing to detachment, rounding, and death.
Collapse
Affiliation(s)
- Kee-Oh Chay
- Laboratory of Genetics, NCI, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | |
Collapse
|
34
|
Terfera DR, Brown MC, Turner CE. Epidermal growth factor stimulates serine/threonine phosphorylation of the focal adhesion protein paxillin in a MEK-dependent manner in normal rat kidney cells. J Cell Physiol 2002; 191:82-94. [PMID: 11920684 DOI: 10.1002/jcp.10082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.
Collapse
Affiliation(s)
- David R Terfera
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
35
|
Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 2002; 99:3546-51. [PMID: 11891289 PMCID: PMC122560 DOI: 10.1073/pnas.052018099] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The migration of vascular endothelial cells (ECs) is critical in vascular remodeling. We showed that fluid shear stress enhanced EC migration in flow direction and called this "mechanotaxis." To visualize the molecular dynamics of focal adhesion kinase (FAK) at focal adhesions (FAs), FAK tagged with green fluorescence protein (GFP) was expressed in ECs. Within 10 min of shear stress application, lamellipodial protrusion was induced at cell periphery in the flow direction, with the recruitment of FAK at FAs. ECs under flow migrated with polarized formation of new FAs in flow direction, and these newly formed FAs subsequently disassembled after the rear of the cell moved over them. The cells migrating under flow had a decreased number of FAs. In contrast to shear stress, serum did not significantly affect the speed of cell migration. Serum induced lamellipodia and FAK recruitment at FAs without directional preference. FAK(Y397) phosphorylation colocalized with GFP-FAK at FAs in both shear stress and serum experiments. The total level of FAK(Y397) phosphorylation after shear stress was lower than that after serum treatment, suggesting that the polarized change at cell periphery rather than the total level of FAK(Y397) phosphorylation is important for directional migration. Our results demonstrate the dynamics of FAK at FAs during the directional migration of EC in response to mechanical force, and suggest that mechanotaxis is an important mechanism controlling EC migration.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093-0427, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mehta D, Tiruppathi C, Sandoval R, Minshall RD, Holinstat M, Malik AB. Modulatory role of focal adhesion kinase in regulating human pulmonary arterial endothelial barrier function. J Physiol 2002; 539:779-89. [PMID: 11897849 PMCID: PMC2290187 DOI: 10.1113/jphysiol.2001.013289] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The adhesive force generated by the interaction of integrin receptors with extracellular matrix (ECM) at the focal adhesion complex may regulate endothelial cell shape, and thereby the endothelial barrier function. We studied the role of focal adhesion kinase (FAK) activated by integrin signalling in regulating cell shape using cultured human pulmonary artery endothelial cells. We used FAK antisense oligonucleotide (targeted to the 3'-untranslated region of FAK mRNA (5'-CTCTGGTTGATGGGATTG-3') to determine the role of FAK in the mechanism of thrombin-induced increase in endothelial permeability. Reduction in FAK expression by the antisense augmented the thrombin-induced decrease in transendothelial electrical resistance (decrease in mock transfected cells of -43 +/- 1 % and in sense-transfected cells of -40 +/- 4 %, compared to the decrease in antisense-transfected cells of -60 +/- 3 %). Reduction in FAK expression also prolonged the drop in electrical resistance and prevented the recovery seen in control endothelial cells. Thus, the thrombin-induced increase in permeability is both greater and attenuated in the absence of FAK expression. Inhibition of actin polymerization with latrunculin-A prevented the translocation of FAK to focal adhesion sites and tyrosine phosphorylation of FAK and paxillin, and concomitantly reduced the thrombin-induced decrease in electrical resistance by approximately 50 %. Thus, the modulatory role of FAK on endothelial barrier function is dependent on actin polymerization. FAK translocation to focal adhesion complex in endothelial cells guided by actin cables and the consequent activation of FAK-associated proteins serve to reverse the decrease in endothelial barrier function caused by inflammatory mediators such as thrombin.
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology, College of Medicine, The University of Illinois, 835 S Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R. Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 2001; 276:10952-62. [PMID: 11278329 DOI: 10.1074/jbc.m007027200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first prototype of the protease activated receptor (PAR) family, the thrombin receptor PAR1, plays a central role both in the malignant invasion process of breast carcinoma metastasis and in the physiological process of placental implantation. The molecular mechanism underlying PAR1 involvement in tumor invasion and metastasis, however, is poorly defined. Here we show that PAR1 increases the invasive properties of tumor cells primarily by increased adhesion to extracellular matrix components. This preferential adhesion is accompanied by the cytoskeletal reorganization of F-actin toward migration-favoring morphology as detected by phalloidin staining. Activation of PAR1 increased the phosphorylation of focal adhesion kinase and paxillin, and the induced formation of focal contact complexes. PAR1 activation affected integrin cell-surface distribution without altering their level of expression. The specific recruitment of alpha(v)beta(5) to focal contact sites, but not of alpha(v)beta(3) or alpha(5)beta(1), was observed by immunofluorescent microscopy. PAR1 overexpressing cells showed selective reciprocal co-precipitation with alpha(v)beta(5) and paxillin but not with alpha(v)beta(3) that remained evenly distributed under these conditions. This co-immunoprecipitation failed to occur in cells containing the truncated form of PAR1 that lacked the entire cytoplasmic portion of the receptor. Thus, the PAR1 cytoplasmic tail is essential for conveying the cross-talk and recruiting the alpha(v)beta(5) integrin. While PAR1 overexpressing cells were invasive in vitro, as reflected by their migration through a Matrigel barrier, invasion was further enhanced by ligand activation of PAR1. Moreover, the application of anti-alpha(v)beta(5) antibodies specifically attenuated this PAR1 induced invasion. We propose that the activation of PAR1 may lead to a novel cooperation with the alpha(v)beta(5) integrin that supports tumor cell invasion.
Collapse
Affiliation(s)
- S C Even-Ram
- Departments of Oncology and Pharmacology at the Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel, the Department of Hematology, Medical Center, Tel Aviv 64239, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hai CM. Mechanosensitive modulation of receptor-mediated crossbridge activation and cytoskeletal organization in airway smooth muscle. Arch Pharm Res 2000; 23:535-47. [PMID: 11156171 DOI: 10.1007/bf02975237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for controlling airway resistance in airway diseases.
Collapse
Affiliation(s)
- C M Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology School of Medicine, Brown University, Providence, RI 02912, USA. Chi-Ming
| |
Collapse
|
39
|
Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage. J Biomech 2000. [DOI: 10.1016/s0021-9290(00)00105-6] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Abstract
The acquisition of a motile and invasive phenotype is an important step in the development of tumors and ultimately metastasis. This step requires the abrogation of cell-cell contacts, the remodeling of the extracellular matrix and of cell-matrix interactions, and finally the movement of the cell mediated by the actin cytoskeleton. Evidence for participation of Rho GTPases in migration and invasion is addressed in this review with emphasis on epithelial cells and the contribution of Rho GTPases toward tumor invasion. The Rho GTPases, including Rac, Cdc42, and Rho, have been implicated in the establishment of cell-cell contacts and of cell-matrix interactions crucial to attaining a fully polarized epithelial state, and they are known for their regulation of the actin cytoskeleton and transcriptional activation. Under aberrant conditions, however, they have been implicated in motility, invasion, and some aspects of metastasis. It is well known that Rho GTPases are activated by different classes of transmembrane receptors and that they transmit these signals to their effector proteins. These downstream targets include not only adaptor proteins and kinases which affect the actin cytoskeleton, but also transcription factors leading to expression of genes necessary for the drastic morphological changes which accompany these processes.
Collapse
Affiliation(s)
- A A Schmitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | | | | |
Collapse
|
41
|
Trickey WR, Lee GM, Guilak F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res 2000; 18:891-8. [PMID: 11192248 DOI: 10.1002/jor.1100180607] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The deformation behavior and mechanical properties of articular chondrocytes are believed to play an important role in their response to mechanical loading of the extracellular matrix. This study utilized the micropipette aspiration test to measure the viscoelastic properties of chondrocytes isolated from macroscopically normal or end-stage osteoarthritic cartilage. A three-parameter standard linear solid was used to model the viscoelastic behavior of the cells. Significant differences were found between the mechanical properties of chondrocytes isolated from normal and osteoarthritic cartilage. Specifically, osteoarthritic chondrocytes exhibited a significantly higher equilibrium modulus (0.33 +/- 0.23 compared with 0.24 +/- 0.11 kPa), instantaneous modulus (0.63 +/- 0.51 compared with 0.41 +/- 0.17 kPa), and apparent viscosity (5.8 +/- 6.5 compared with 3.0 +/- 1.8 kPa-s) compared with chondrocytes isolated from macroscopically normal, nonosteoarthritic cartilage. The elastic moduli and relaxation time constant determined experimentally in this study were used to estimate the apparent biphasic properties of the chondrocyte on the basis of the equation for the gel relaxation time of a biphasic material. The differences in viscoelastic properties may reflect alterations in the structure and composition of the chondrocyte cytoskeleton that have previously been associated with osteoarthritic cartilage. Coupled with earlier theoretical models of cell-matrix interactions in articular cartilage, the increased elastic and viscous properties suggest that the mechanical environment of the chondrocyte may be altered in osteoarthritic cartilage.
Collapse
Affiliation(s)
- W R Trickey
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
42
|
Parast MM, Otey CA. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 2000; 150:643-56. [PMID: 10931874 PMCID: PMC2175193 DOI: 10.1083/jcb.150.3.643] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 06/22/2000] [Indexed: 11/28/2022] Open
Abstract
Here, we describe the identification of a novel phosphoprotein named palladin, which colocalizes with alpha-actinin in the stress fibers, focal adhesions, cell-cell junctions, and embryonic Z-lines. Palladin is expressed as a 90-92-kD doublet in fibroblasts and coimmunoprecipitates in a complex with alpha-actinin in fibroblast lysates. A cDNA encoding palladin was isolated by screening a mouse embryo library with mAbs. Palladin has a proline-rich region in the NH(2)-terminal half of the molecule and three tandem Ig C2 domains in the COOH-terminal half. In Northern and Western blots of chick and mouse tissues, multiple isoforms of palladin were detected. Palladin expression is ubiquitous in embryonic tissues, and is downregulated in certain adult tissues in the mouse. To probe the function of palladin in cultured cells, the Rcho-1 trophoblast model was used. Palladin expression was observed to increase in Rcho-1 cells when they began to assemble stress fibers. Antisense constructs were used to attenuate expression of palladin in Rcho-1 cells and fibroblasts, and disruption of the cytoskeleton was observed in both cell types. At longer times after antisense treatment, fibroblasts became fully rounded. These results suggest that palladin is required for the normal organization of the actin cytoskeleton and focal adhesions.
Collapse
Affiliation(s)
- Mana M. Parast
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Carol A. Otey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
43
|
Trusolino L, Cavassa S, Angelini P, Andò M, Bertotti A, Comoglio PM, Boccaccio C. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J 2000. [DOI: 10.1096/fj.99-0844com] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Livio Trusolino
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Silvia Cavassa
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Paola Angelini
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Margherita Andò
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Andrea Bertotti
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Paolo M. Comoglio
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| | - Carla Boccaccio
- Institute for Cancer Research and TreatmentUniversity of Torino Medical School10060Candiolo‐TorinoItaly
| |
Collapse
|
44
|
Bowen JA, Hunt JS. The role of integrins in reproduction. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:331-43. [PMID: 10721002 DOI: 10.1046/j.1525-1373.2000.22348.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertilization, implantation, and placentation are dynamic cellular events that require not only synchrony between the maternal environment and the embryo, but also complex cell-to-cell communication. This communication involves integrins, a large family of proteins involved in the attachment, migration, invasion, and control of cellular function. Over the past decade, investigators have learned that integrins participate in multiple reproductive events including fertilization, implantation, and placentation in many species. This review will describe: (i) the expression of integrins on gametes and during the establishment and development of the placenta; (ii) regulatory pathways for controlling expression of integrins in the uterus and developing placenta; (iii) the function of integrins as determined by null-mutations; and (iv) reproductive dysfunction in women related to inappropriate integrin expression in the uterus and/or placenta.
Collapse
Affiliation(s)
- J A Bowen
- Department of Anatomy and Cell Biology and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160-7400, USA
| | | |
Collapse
|
45
|
Katz BZ, Zamir E, Bershadsky A, Kam Z, Yamada KM, Geiger B. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 2000; 11:1047-60. [PMID: 10712519 PMCID: PMC14830 DOI: 10.1091/mbc.11.3.1047] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, alpha(5)beta(1) integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These "fibrillar adhesions" are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, alpha(5)beta(1) integrin forms highly tyrosine-phosphorylated, "classical" focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin-alpha(5)beta(1) integrin-tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.
Collapse
Affiliation(s)
- B Z Katz
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
46
|
Johnson RP, Craig SW. Actin activates a cryptic dimerization potential of the vinculin tail domain. J Biol Chem 2000; 275:95-105. [PMID: 10617591 DOI: 10.1074/jbc.275.1.95] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tail domain of vinculin (V(t)) is an actin binding module containing two regions that interact with F-actin. Although intact V(t) purified from a bacterial expression system is a globular monomer, each actin binding region dimerizes when expressed individually, suggesting the presence of cryptic self-association sites whose exposure is regulated. We show that actin modulates V(t) self-association by inducing or stabilizing a conformational change in V(t) that allows dimerization. Chemical cross-linking studies implicate one of the actin binding regions in mediating dimerization in the presence of actin. Actin-induced V(t) dimers may play a role in the filament cross-linking activity of this protein. The V(t) dimers induced by actin are biochemically distinct from the V(t) dimers and higher oligomers induced by acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate, suggesting structural differences in V(t) bound to these two ligands that may provide a mechanistic basis for inhibition of F-actin binding by phosphatidylinositol 4,5-bisphosphate. The ability of actin to regulate the dimerization state of an actin binding protein suggests that, rather than serving a passive structural role, actin filaments may directly participate in signal transduction and other cellular events that are known to depend on cytoskeletal integrity.
Collapse
Affiliation(s)
- R P Johnson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Teti A, Migliaccio S, Taranta A, Bernardini S, De Rossi G, Luciani M, Iacobini M, De Felice L, Boldrini R, Bosman C, Corsi A, Bianco P. Mechanisms of osteoclast dysfunction in human osteopetrosis: abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures. J Bone Miner Res 1999; 14:2107-17. [PMID: 10620070 DOI: 10.1359/jbmr.1999.14.12.2107] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteoclasts from a patient affected by osteopetrosis were examined in vivo and in vitro. Iliac crest biopsy revealed an osteosclerotic pattern, with prominent numbers of osteoclasts noted for hypernuclearity and incomplete adherence to the bone surface. A population comprising tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated and mononuclear cells, and alkaline phosphatase-positive stromal fibroblasts was obtained in vitro from bone marrow. Mononuclear TRAP-positive precursors spontaneously fused in culture to form giant osteoclast-like cells. These cells expressed the osteoclast marker MMP-9 and calcitonin receptor, and lacked the macrophage marker, Fc receptor. Expression and distribution of c-src, c-fms, and CD68, and response to steroid hormones relevant to osteoclast differentiation and function were apparently normal, whereas cell retraction in response to calcitonin was impaired. TRAP-positive multinucleated cells did not form osteoclast-specific adhesion structures (clear zone, podosomes, or actin rings). Bone resorption rate was severely reduced in vitro. Focal adhesions and stress fibers were observed en lieu of podosomes and actin rings. Adhesion structures contained low levels of immunoreactive vitronectin receptor, most of this integrin being retained in cytoplasmic vesicles. These data provide the first characterization of abnormal differentiation and function of human osteopetrotic osteoclast-like cells.
Collapse
Affiliation(s)
- A Teti
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Menager C, Vassy J, Doliger C, Legrand Y, Karniguian A. Subcellular localization of RhoA and ezrin at membrane ruffles of human endothelial cells: differential role of collagen and fibronectin. Exp Cell Res 1999; 249:221-30. [PMID: 10366421 DOI: 10.1006/excr.1999.4481] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells and the regulation of their migration are of prime importance in many physiological and pathological processes such as angiogenesis. RhoA, an important Rho family member known to trigger actin reorganization, has been shown to mediate the formation of focal adhesions and stress fibers in quiescent fibroblasts. However, recent studies have emphasized its functional diversity and its implication in migration or metastatic processes in different cell types other than fibroblasts. Its role in endothelial cells is little known. In this study, we were interested by analyzing in human endothelial cells the subcellular redistribution of endogenous RhoA and the reorganization of cytoskeletal actin induced by two important extracellular matrix proteins, collagen and fibronectin. This paper shows a translocation of RhoA and its association with cortical actin in focal contact domains at membrane ruffles and at lamellipodia of spread or migrating endothelial cells, in the absence of any soluble mitogen stimulation. Furthermore, RhoA was found colocalized with ezrin, a member of the ERM family proteins newly described as important membrane-actin cytoskeleton linkers, at early membrane ruffles of endothelial cells spread on collagen but not on fibronectin. The present study points out that extracellular matrix, depending on the nature of its components, may promote distinct assemblies of focal contact constitutive proteins and strongly suggests that endothelial RhoA, like Rac1, may be an important mediator of matrix signaling pathway regulating endothelial cell adhesiveness and motility, independently of growth factor stimulation.
Collapse
Affiliation(s)
- C Menager
- Institut National de la Santé et de la Recherche Medicale U353, Laboratoire d'Analyse d'Images en Pathologie Cellulaire, Service d'Imagerie Cellulaire et Moleculaire, Hôpital St-Louis, 1, Avenue Claude Vellefaux, Paris, 75010, France
| | | | | | | | | |
Collapse
|
49
|
Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. J Cell Sci 1999; 112 ( Pt 11):1655-69. [PMID: 10318759 DOI: 10.1242/jcs.112.11.1655] [Citation(s) in RCA: 331] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study we have examined for molecular heterogeneity of cell-matrix adhesions and the involvement of actomyosin contractility in the selective recruitment of different plaque proteins. For this purpose, we have developed a novel microscopic approach for molecular morphometry, based on automatic identification of matrix adhesions, followed by quantitative immunofluorescence and morphometric analysis. Particularly informative was fluorescence ratio imaging, comparing the local labeling intensities of different plaque molecules, including vinculin, paxillin, tensin and phosphotyrosine-containing proteins. Ratio imaging revealed considerable molecular heterogeneity between and within adhesion sites. Most striking were the differences between focal contacts, which are vinculin- and paxillin-rich and contain high levels of phosphotyrosine, and fibrillar adhesions, which are tensin-rich and contain little or no phosphotyrosine. Ratio imaging also revealed considerable variability in the molecular substructure of individual focal contacts, pointing to a non-uniform distribution of phosphotyrosine and the different plaque constituents. Studying the quantitative relationships between the various components of the submembrane plaque indicated that the levels of vinculin, paxillin and phosphotyrosine in adhesion sites are positively correlated with each other and negatively correlated with the levels of tensin. Tyrosine phosphorylation of focal contacts was highly sensitive to cellular contractility, and was diminished within 5 minutes after treatment with the kinase inhibitor H-7, an inhibitor of actomyosin contractility. This was followed by the loss of paxillin and vinculin from the focal adhesions. Tensin-rich fibrillar adhesions were relatively insensitive to H-7 treatment. These findings suggest a role for contractility in the generation of matrix adhesion diversity.
Collapse
Affiliation(s)
- E Zamir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Dogic D, Eckes B, Aumailley M. Extracellular matrix, integrins and focal adhesions. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1999; 93:75-85. [PMID: 10339900 DOI: 10.1007/978-3-642-58456-5_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- D Dogic
- Institut de Biologie et Chimie des Protéines, CNRS-UPR 412, Lyon, France
| | | | | |
Collapse
|