1
|
Tian J, Jia K, Wang T, Guo L, Xuan Z, Michaelis EK, Swerdlow RH, Du H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer's disease. Transl Psychiatry 2024; 14:250. [PMID: 38858380 PMCID: PMC11164935 DOI: 10.1038/s41398-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Elias K Michaelis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Chappell S, Patel T, Guetta-Baranes T, Sang F, Francis PT, Morgan K, Brookes KJ. Observations of extensive gene expression differences in the cerebellum and potential relevance to Alzheimer's disease. BMC Res Notes 2018; 11:646. [PMID: 30180886 PMCID: PMC6123947 DOI: 10.1186/s13104-018-3732-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives In order to determine how gene expression is altered in disease it is of fundamental importance that the global distribution of gene expression levels across the disease-free brain are understood and how differences between tissue types might inform tissue choice for investigation of altered expression in disease state. The aim of this pilot project was to use RNA-sequencing to investigate gene expression differences between five general areas of post-mortem human brain (frontal, temporal, occipital, parietal and cerebellum), and in particular changes in gene expression in the cerebellum compared to cortex regions for genes relevant to Alzheimer’s disease, as the cerebellum is largely preserved from disease pathology and could be an area of interest for neuroprotective pathways. Results General gene expression profiles were found to be similar between cortical regions of the brain, however the cerebellum presented a distinct expression profile. Focused exploration of gene expression for genes associated with Alzheimer’s disease suggest that those involved in the immunity pathway show little expression in the brain. Furthermore some Alzheimer’s disease associated genes display significantly different expression in the cerebellum compared with other brain regions, which might indicate potential neuroprotective measures.
Collapse
Affiliation(s)
- Sally Chappell
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tulsi Patel
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tamar Guetta-Baranes
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fei Sang
- DeepSeq Facility, University of Nottingham, Nottingham, UK
| | - Paul T Francis
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Keeley J Brookes
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Abstract
BACKGROUND Psychiatric disorders are multigenic diseases with complex etiology that contribute significantly to human morbidity and mortality. Although clinically distinct, several disorders share many symptoms, suggesting common underlying molecular changes exist that may implicate important regulators of pathogenesis and provide new therapeutic targets. METHODS We performed RNA sequencing on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar disorder, or major depressive disorder, and from 24 control subjects. We identified differentially expressed genes and validated the results in an independent cohort. Anterior cingulate cortex samples were also subjected to metabolomic analysis. ChIP-seq data were used to characterize binding of the transcription factor EGR1. RESULTS We compared molecular signatures across the three brain regions and disorders in the transcriptomes of post-mortem human brain samples. The most significant disease-related differences were in the anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional changes were assessed in an independent cohort, revealing the transcription factor EGR1 as significantly down-regulated in both cohorts and as a potential regulator of broader transcription changes observed in schizophrenia patients. Additionally, broad down-regulation of genes specific to neurons and concordant up-regulation of genes specific to astrocytes was observed in schizophrenia and bipolar disorder patients relative to controls. Metabolomic profiling identified disruption of GABA levels in schizophrenia patients. CONCLUSIONS We provide a comprehensive post-mortem transcriptome profile of three psychiatric disorders across three brain regions. We highlight a high-confidence set of independently validated genes differentially expressed between schizophrenia and control patients in the anterior cingulate cortex and integrate transcriptional changes with untargeted metabolite profiling.
Collapse
|
4
|
Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, Barchas JD, Jones EG, Bunney WE, Myers RM, Akil H, Watson SJ, Thompson RC. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res 2016; 82:58-67. [PMID: 27468165 PMCID: PMC5026930 DOI: 10.1016/j.jpsychires.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs acting as post-transcriptional regulators of gene expression. Though implicated in multiple CNS disorders, miRNAs have not been examined in any psychiatric disease state in anterior cingulate cortex (AnCg), a brain region centrally involved in regulating mood. We performed qPCR analyses of 29 miRNAs previously implicated in psychiatric illness (major depressive disorder (MDD), bipolar disorder (BP) and/or schizophrenia (SZ)) in AnCg of patients with MDD and BP versus controls. miR-132, miR-133a and miR-212 were initially identified as differentially expressed in BP, miR-184 in MDD and miR-34a in both MDD and BP (although none survived multiple correction testing and must be considered preliminary). In silico target prediction algorithms identified putative targets of differentially expressed miRNAs. Nuclear Co-Activator 1 (NCOA1), Nuclear Co-Repressor 2 (NCOR2) and Phosphodiesterase 4B (PDE4B) were selected based upon predicted targeting by miR-34a (with NCOR2 and PDE4B both targeted by miR-184) and published relevance to psychiatric illness. Luciferase assays identified PDE4B as a target of miR-34a and miR-184, while NCOA1 and NCOR2 were targeted by miR-34a and 184, respectively. qPCR analyses were performed to determine whether changes in miRNA levels correlated with mRNA levels of validated targets. NCOA1 showed an inverse correlation with miR-34a in BP, while NCOR2 demonstrated a positive correlation. In sum, this is the first study to demonstrate miRNA changes in AnCg in psychiatric illness and validate miR-34a as differentially expressed in CNS in MDD. These findings support a mechanistic role for miRNAs in the regulation of stress-responsive genes disrupted in psychiatric illness.
Collapse
Affiliation(s)
- Joshua A Azevedo
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Bradley S Carter
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Neuroscience Program, Oberlin College, Science Center A261, 119 Woodland St., Oberlin, OH, 44074, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - David L Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, 5301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Manhong Dai
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Alan F Schatzberg
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Rd, Stanford, CA, 94305, USA
| | - Jack D Barchas
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, Weill Cornell Medical College, 525 East 68th Street, New York, NY, 10065, USA
| | - Edward G Jones
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Center for Neuroscience, University of California - Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - William E Bunney
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Psychiatry and Human Behavior, University of California - Irvine, 101 The City Dr S, Orange, CA, 92868, USA
| | - Richard M Myers
- Pritzker Neuropsychiatric Disorders Research Consortium, USA; Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Robert C Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building (USB), 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA; Pritzker Neuropsychiatric Disorders Research Consortium, USA; Department of Psychiatry, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R. Lipidomics of human brain aging and Alzheimer's disease pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:133-89. [PMID: 26358893 DOI: 10.1016/bs.irn.2015.05.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Hugo Gonzalo
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain.
| |
Collapse
|
6
|
Wang X, Cairns MJ. Understanding complex transcriptome dynamics in schizophrenia and other neurological diseases using RNA sequencing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 116:127-52. [PMID: 25172474 DOI: 10.1016/b978-0-12-801105-8.00006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
How the human brain develops and adapts with its trillions of functionally integrated synapses remains one of the greatest mysteries of life. With tremendous advances in neuroscience, genetics, and molecular biology, we are beginning to appreciate the scope of this complexity and define some of the parameters of the systems that make it possible. These same tools are also leading to advances in our understanding of the pathophysiology of neurocognitive and neuropsychiatric disorders. Like the substrate for these problems, the etiology is usually complex-involving an array of genetic and environmental influences. To resolve these influences and derive better interventions, we need to reveal every aspect of this complexity and model their interactions and define the systems and their regulatory structure. This is particularly important at the tissue-specific molecular interface between the underlying genetic and environmental influence defined by the transcriptome. Recent advances in transcriptome analysis facilitated by RNA sequencing (RNA-Seq) can provide unprecedented insight into the functional genomics of neurological disorders. In this review, we outline the advantages of this approach and highlight some early application of this technology in the investigation of the neuropathology of schizophrenia. Recent progress of RNA-Seq studies in schizophrenia has shown that there is extraordinary transcriptome dynamics with significant levels of alternative splicing. These studies only scratch the surface of this complexity and therefore future studies with greater depth and samples size will be vital to fully explore transcriptional diversity and its underlying influences in schizophrenia and provide the basis for new biomarkers and improved treatments.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; The Schizophrenia Research Institute, Sydney, Australia.
| |
Collapse
|
7
|
Woldehawariat G, Martinez PE, Hauser P, Hoover DM, Drevets WWC, McMahon FJ. Corpus callosum size is highly heritable in humans, and may reflect distinct genetic influences on ventral and rostral regions. PLoS One 2014; 9:e99980. [PMID: 24968245 PMCID: PMC4072678 DOI: 10.1371/journal.pone.0099980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 05/21/2014] [Indexed: 01/17/2023] Open
Abstract
Anatomical differences in the corpus callosum have been found in various psychiatric disorders, but data on the genetic contributions to these differences have been limited. The current study used morphometric MRI data to assess the heritability of corpus callosum size and the genetic correlations among anatomical sub-regions of the corpus callosum among individuals with and without mood disorders. The corpus callosum (CC) was manually segmented at the mid-sagittal plane in 42 women (healthy, n = 14; major depressive disorder, n = 15; bipolar disorder, n = 13) and their 86 child or adolescent offspring. Four anatomical sub-regions (CC-genu, CC2, CC3 and CC-splenium) and total CC were measured and analyzed. Heritability and genetic correlations were estimated using a variance components method, with adjustment for age, sex, diagnosis, and diagnosis x age, where appropriate. Significant heritability was found for several CC sub-regions (P<0.01), with estimated values ranging from 48% (splenium) to 67% (total CC). There were strong and significant genetic correlations among most sub regions. Correlations between the genu and mid-body, between the genu and total corpus callosum, and between anterior and mid body were all >90%, but no significant genetic correlations were detected between ventral and rostral regions in this sample. Genetic factors play an important role in corpus callosum size among individuals. Distinct genetic factors seem to be involved in caudal and rostral regions, consistent with the divergent functional specialization of these brain areas.
Collapse
Affiliation(s)
- Girma Woldehawariat
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, United States of America
| | - Pedro E. Martinez
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, Unites States of America
| | - Peter Hauser
- VISN 22 Network Office, Long Beach, California, United States of America
| | - David M. Hoover
- Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wayne W. C. Drevets
- Laureate Institute for Brain Research and the University of Oklahoma College of Medicine, Tulsa, Oklahoma, United States of America
| | - Francis J. McMahon
- Genetic Basis of Mood & Anxiety Disorders Section, Human Genetics Branch, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Kadakkuzha BM, Akhmedov K, Capo TR, Carvalloza AC, Fallahi M, Puthanveettil SV. Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia. BMC Genomics 2013; 14:880. [PMID: 24330282 PMCID: PMC3909179 DOI: 10.1186/1471-2164-14-880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. Results We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. Conclusions We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.
Collapse
|
9
|
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A 2013; 110:9950-5. [PMID: 23671070 DOI: 10.1073/pnas.1305814110] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A cardinal symptom of major depressive disorder (MDD) is the disruption of circadian patterns. However, to date, there is no direct evidence of circadian clock dysregulation in the brains of patients who have MDD. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain were difficult to characterize. Here, we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-h cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ("controls") and 34 patients with MDD. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, nucleus accumbens, and cerebellum. Several hundred transcripts in each region showed 24-h cyclic patterns in controls, and >100 transcripts exhibited consistent rhythmicity and phase synchrony across regions. Among the top-ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in the brains of patients with MDD due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This transcriptome-wide analysis of the human brain demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggests potentially important molecular targets for treatment of mood disorders.
Collapse
|
10
|
Schindler J, Ye J, Jensen ON, Nothwang HG. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. J Neurosci Methods 2012; 213:153-64. [PMID: 23246975 DOI: 10.1016/j.jneumeth.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane proteins are major targets of the signalling cascades, we developed a protocol to monitor their phosphorylation state starting from a single mouse cerebellum. An aqueous polymer two-phase system was used to enrich for plasma membrane proteins. Subsequently, calcium phosphate precipitation, immobilized metal affinity chromatography, and TiO(2) were combined to a sequential extraction procedure prior to mass spectrometric analyses. This strategy resulted in the identification of 1501 different native phosphorylation sites in 507 different proteins. 765 (51%) of these phosphorylation sites were localized with a confidence level of 99% or higher. 41.4% of the identified proteins were allocated to the plasma membrane and about half of the phosphorylation sites have not been reported previously. A bioinformatic screen for 12 consensus sequences identified putative kinases for 642 phosphorylation sites. In summary, the protocol deployed here identified several hundred novel phosphorylation sites of cerebellar proteins. Furthermore, it provides a valuable tool to monitor the plasma membrane proteome from any small brain samples of interest under differing physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Jens Schindler
- Neurogenetics Group, University of Oldenburg, Oldenburg, Germany.
| | | | | | | |
Collapse
|
11
|
Evans SJ, Watson SJ, Akil H. Evaluation of sensitivity, performance and reproducibility of microarray technology in neuronal tissue. Integr Comp Biol 2012; 43:780-5. [PMID: 21680476 DOI: 10.1093/icb/43.6.780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microarray technology is a powerful technique that allows the simultaneous study of thousands of gene transcripts. During the past two years there has been an explosion of publications describing experiments utilizing microarray technology that range from original research findings from biological paradigms to mathematically modeled systems. However, neuroscientists using microarray technology face significant challenges due to high tissue complexity, low abundance transcripts, and small magnitude changes in transcript levels that have significant biological impact. This manuscript describes a series of studies designed to address issues regarding microarray sensitivity, ability of microarrays to detect subtle changes, and reproducibility of microarray experiments, all in the context of neuronal tissue. From the presentation of these studies, the authors argue that although microarray technology is limited with regards to sensitivity, the outcome of these experiments, if approached with appropriate skepticism, can be fruitful in the generation of hypotheses and seeding of future experiments.
Collapse
Affiliation(s)
- S J Evans
- Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
12
|
Wang X, Michaelis ML, Michaelis EK. Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability. Curr Genomics 2011; 11:618-33. [PMID: 21629439 PMCID: PMC3078686 DOI: 10.2174/138920210793360943] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 01/02/2023] Open
Abstract
Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer’s disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center and Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
13
|
Yamamori T. Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol 2011; 94:201-22. [PMID: 21621585 DOI: 10.1016/j.pneurobio.2011.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 01/17/2023]
Abstract
The neocortex, which is characteristic of mammals, has evolved to play important roles in cognitive and perceptual functions. The localization of different functions in different regions of the neocortex was well established within the last century. Studies on the formation of the neocortex have advanced at the molecular level, thus clarifying the mechanisms that control neural or glial cell differentiation and sensory projections. However, mechanisms that underlie cortical area specialization remain unsolved. To address this problem, our approach has been to isolate and characterize the genes that are selectively expressed in particular subsets of neocortical areas in primates; these areas are most distinctive among mammals. By differential display and restriction landmark cDNA scanning (RLCS) methods, we have identified two major classes of genes that are specifically expressed in the adult macaque monkey neocortical areas: one is expressed in the primary sensory areas, particularly, in the primary visual cortex (V1) and the other is expressed in the association areas. The genes that show these specific expression patterns are limited to only several gene families among our large-scale screening. In this review, I first describe the isolation and characterization of these genes, along with another class of genes specifically expressed in motor areas. Then, I discuss their functional significance in the primate neocortex. Finally, I discuss the implication of these gene expression patterns in neocortical specialization in primates and possible future research directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Brain Biology, National Institute for Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
14
|
Ciborowski P. Biomarkers of HIV-1-associated neurocognitive disorders: challenges of proteomic approaches. Biomark Med 2009; 3:771-85. [PMID: 20477714 PMCID: PMC3544489 DOI: 10.2217/bmm.09.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HIV-1 enters the brain shortly after infection, which may lead to neurological complications and in the most severe cases to encephalitis, dementia and death. The introduction of antiretroviral therapy reduced the incidence of the most severe conditions, nevertheless, approximately half of those infected with this virus will suffer to various degrees from HIV-1-associated neurocognitive disorders. Despite many years of research, there are no biomarkers that can objectively measure and, more importantly, predict the onset and the tempo of HIV-1-associated neurocognitive disorders. Here we review biomarker candidates of neurocognitive impairment due to HIV infection of the brain that have been proposed during the last two decades, and discuss perspectives and limitations of proteomic approaches in the search for new, more sensitive and specific biomarkers.
Collapse
Affiliation(s)
- Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
15
|
Arimatsu Y, Nihonmatsu I, Hatanaka Y. Localization of latexin-immunoreactive neurons in the adult cat cerebral cortex and claustrum/endopiriform formation. Neuroscience 2009; 162:1398-410. [PMID: 19486926 DOI: 10.1016/j.neuroscience.2009.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 01/12/2023]
Abstract
The distribution of neurons that are immunoreactive to latexin, which is an endogenous inhibitor of the A/B subfamily of metallocarboxypeptidases, was investigated in the adult cat telencephalon. Latexin-immunoreactive neurons were distributed in the lower layers of the neocortex and adjacent ventral mesocortex, as well as in the claustrum/endopiriform formation. There were marked regional and laminar differences in density and distribution of latexin-immunoreactive neurons in the cerebral cortex. The density followed a roughly lateral-to-medial decreasing gradient: it was high in lateral cortical regions, which included the insular, second somatosensory, and anterior sylvian areas, and in the temporal auditory field; moderate in laterodorsal cortical regions, which included the primary and second auditory fields; and low in dorsal cortical regions, which included visual areas 18 and 19. Latexin-immunoreactive neurons were absent in medial cortical regions, which included the motor, premotor, prefrontal, prelimbic, cingulate, and retrosplenial areas. The lateral-to-medial gradient was apparent even within a single cytoarchitectonic area in certain cortical regions. The allocortex was devoid of latexin-immunoreactive neurons, with the exception of the anteroventral part of the dentate gyrus. The majority of cortical latexin-immunoreactive neurons were localized in layers V and VI and appeared to correspond to the "modified pyramidal cells in the infragranular layers." The remaining latexin-immunoreactive neurons were localized in layer IV, as well as in lower layer III and in the white matter. There were no latexin-immunoreactive neurons from layer I through upper layer III. Latexin-immunoreactive neurons were present in telencephalic structures outside the cerebral cortex, with particularly high density in the claustrum/endopiriform formation. All these features, with the exception of that detected in the archicortex, are compatible with the features observed previously in the rat telencephalon. The similar pattern of distribution of latexin-immunoreactive neurons in several mammalian species from different orders suggests that latexin plays an important role in a specific cortical network.
Collapse
Affiliation(s)
- Y Arimatsu
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan.
| | | | | |
Collapse
|
16
|
Takaji M, Komatsu Y, Watakabe A, Hashikawa T, Yamamori T. Paraneoplastic antigen-like 5 gene (PNMA5) is preferentially expressed in the association areas in a primate specific manner. ACTA ACUST UNITED AC 2009; 19:2865-79. [PMID: 19366867 PMCID: PMC2774394 DOI: 10.1093/cercor/bhp062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution.
Collapse
Affiliation(s)
- Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
18
|
Bernard R, Kerman IA, Meng F, Evans SJ, Amrein I, Jones EG, Bunney WE, Akil H, Watson SJ, Thompson RC. Gene expression profiling of neurochemically defined regions of the human brain by in situ hybridization-guided laser capture microdissection. J Neurosci Methods 2008; 178:46-54. [PMID: 19070632 DOI: 10.1016/j.jneumeth.2008.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/29/2022]
Abstract
Laser capture microdissection (LCM) permits isolation of specific cell types and cell groups based upon morphology, anatomical landmarks and histochemical properties. This powerful technique can be used for region-specific dissection if the target structure is clearly delineated. However, it is difficult to visualize anatomical boundaries in an unstained specimen, while histological staining can complicate the microdissection process and compromise downstream processing and analysis. We now introduce a novel method in which in situ hybridization (ISH) signal is used to guide LCM on adjacent unstained sections to collect tissue from neurochemically defined regions of the human postmortem brain to minimize sample manipulation prior to analysis. This approach was validated in nuclei that provide monoaminergic inputs to the forebrain, and likely contribute to the pathophysiology of mood disorders. This method was used successfully to carry out gene expression profiling and quantitative real-time PCR (qPCR) confirmation from the dissected material. When compared to traditional micropunch dissections, our ISH-guided LCM method provided enhanced signal intensity for mRNAs of specific monoaminergic marker genes as measured by genome-wide gene expression microarrays. Enriched expression of specific monoaminergic genes (as determined by microarrays and qPCR) was detected within appropriate anatomical locations validating the accuracy of microdissection. Together these results support the conclusion that ISH-guided LCM permits acquisition of enriched nucleus-specific RNA that can be successfully used for downstream gene expression investigations. Future studies will utilize this approach for gene expression profiling of neurochemically defined regions of postmortem brains collected from mood disorder patients.
Collapse
Affiliation(s)
- René Bernard
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, Luo S, Zhang L, van Velkinburgh JC, Farmer AD, Lewis S, Beavis WD, Schilkey FD, Virk SM, Black CF, Myers MK, Mader LC, Langley RJ, Utsey JP, Kim RW, Roberts RC, Khalsa SK, Garcia M, Ambriz-Griffith V, Harlan R, Czika W, Martin S, Wolfinger RD, Perrone-Bizzozero NI, Schroth GP, Kingsmore SF. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 2008; 3:e3625. [PMID: 18985160 PMCID: PMC2576459 DOI: 10.1371/journal.pone.0003625] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/10/2008] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.
Collapse
Affiliation(s)
- Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Neil A. Miller
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | | | - Ingrid E. Lindquist
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gregory D. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jim J. Huntley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Shujun Luo
- Illumina Inc., Hayward, California, United States of America
| | - Lu Zhang
- Illumina Inc., Hayward, California, United States of America
| | | | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Sharon Lewis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - William D. Beavis
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Selene M. Virk
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - C. Forrest Black
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - M. Kathy Myers
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Lar C. Mader
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ray J. Langley
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - John P. Utsey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Ryan W. Kim
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Rosalinda C. Roberts
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sat Kirpal Khalsa
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Meredith Garcia
- Northern New Mexico College, Española, New Mexico, United States of America
| | | | - Richard Harlan
- Northern New Mexico College, Española, New Mexico, United States of America
| | - Wendy Czika
- SAS Institute, Cary, North Carolina, United States of America
| | - Stanton Martin
- SAS Institute, Cary, North Carolina, United States of America
| | | | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gary P. Schroth
- Illumina Inc., Hayward, California, United States of America
| | - Stephen F. Kingsmore
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Development of functional genomics tools has made it possible to define the aging process by performing genome-wide scans for transcriptional differences between the young and the old. Global screens for age regulation have been performed for worms and flies, as well as many tissues in mice and humans. Recent work has begun to analyze the similarities and differences in transcriptional changes in aging among different species. Most age-related expression changes are specific for a given species, but genes in one pathway (the electron transport chain pathway) show common age regulation in species from worms to humans. Evolutionary theories of aging provide a basis to understand how age regulation of a genetic pathway might be preserved between distantly related species.
Collapse
Affiliation(s)
- Stuart K Kim
- Department of Developmental Biology and Genetics, Stanford University Medical Center, Stanford, CA 94305-5329, USA.
| |
Collapse
|
21
|
Karssen AM, Her S, Li JZ, Patel PD, Meng F, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Stress-induced changes in primate prefrontal profiles of gene expression. Mol Psychiatry 2007; 12:1089-102. [PMID: 17893703 DOI: 10.1038/sj.mp.4002095] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
Collapse
Affiliation(s)
- A M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lachance PED, Chaudhuri A. Gene profiling of pooled single neuronal cell bodies from laser capture microdissected vervet monkey lateral geniculate nucleus hybridized to the Rhesus Macaque Genome Array. Brain Res 2007; 1185:33-44. [PMID: 17996221 DOI: 10.1016/j.brainres.2007.09.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 08/27/2007] [Accepted: 09/23/2007] [Indexed: 12/12/2022]
Abstract
This report is based on an ongoing study to examine gene expression differences in monkey lateral geniculate nucleus (LGN). Here, samples from an Old World species, the vervet monkey (Cercopithecus aethiops), were cross-hybridized to the Rhesus Macaque Genome Array (Affymetrix). Microarray analysis was performed using laser capture microdissected populations of individual neuronal cell bodies isolated from the LGN compared to heterogeneous samples from whole lamina. Our results indicated that cross-species hybridization of microdissected brain tissue samples from vervet monkeys to the Rhesus array produced reliable and biologically relevant data sets. We present the first list of genes enriched in the large neuronal cell bodies of the LGN. We found that these cell bodies are concentrated with genes involved in metabolic processes and protein synthesis, whereas signaling molecules including chemokines and integrins were expressed at higher levels within heterogeneous samples. Our data set also provides support for a contribution of Wnt signaling in adult monkey LGN.
Collapse
Affiliation(s)
- Pascal E D Lachance
- Department of Psychology, McGill University, 1205 Ave. Dr. Penfield, Montreal, QC, Canada H3A1B1.
| | | |
Collapse
|
23
|
Mühlfriedel S, Kirsch F, Gruss P, Chowdhury K, Stoykova A. Novel genes differentially expressed in cortical regions during late neurogenesis. Eur J Neurosci 2007; 26:33-50. [PMID: 17614941 DOI: 10.1111/j.1460-9568.2007.05639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential gene expression across the embryonic cerebral cortex is assumed to play a role in the subdivision of the cortex into distinct areas with specific morphology, physiology and function. In a search for genes that may be involved in the cortical regionalization during late neurogenesis in mouse, we performed an extensive in-situ expression analysis at embryonic day (E)16 and E18. The examined candidate genes were selected beforehand by a microarray screen by virtue of their preferential expression in the anlagen of the motor, somatosensory, visual and cingulate cortices or hippocampus. We present new information about graded or regionally enriched expression of 25 genes (nine of which are novel genes) across the mouse embryonic cortex, in progenitor cells as well as in the cortical plate. The established differential expression of most of these genes is persistent at both stages studied, suggesting that their expression is regulated by an intrinsic programme. For some of the genes, the concept of intrinsic regulation is further substantiated by the high similarity of the reported expression patterns at E16 and E18 and published data from earlier stages. Few genes with robust expression in the E16 caudal cortex showed a more restricted pattern at E18, possibly because of their response to extrinsic cues. In addition, several genes appeared to be suitable novel markers for amygdalar and diencephalic nuclei. Taken together, our findings reveal novel molecular partitions of the late mouse cortex that are in accordance with the model of a leading role of intrinsic mechanisms in cortical arealization.
Collapse
Affiliation(s)
- Sven Mühlfriedel
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Mishra M, Paunesku T, Woloschak GE, Siddique T, Zhu LJ, Lin S, Greco K, Bigio EH. Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 2007; 114:81-94. [PMID: 17569064 DOI: 10.1007/s00401-007-0240-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders share a process of aggregation of insoluble protein. Frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) is characterized by the presence of ubiquitin and TDP-43 positive aggregates which are likely related to specific gene expression profiles. We carried out gene expression microarray analysis on post-mortem brain tissue from FTLD-U, FTLD-MND, and controls. Using total RNA from carefully dissected frontal cortical layer II, we obtained gene expression profiles showing that FTLD-U and controls differ in over 100 networks, including those involved in synapse formation, the ubiquitin-proteasome system, endosomal sorting, and apoptosis. We performed qRT-PCR validation for three genes, representative of three different networks. Dynein axonemal light intermediate chain 1 (DNALI1) (microtubule/cytoskeleton network associated) expression was 3-fold higher and myeloid differentiation primary response gene 88 (MYD88) (signal transduction network) was 3.3 times higher in FTLD-U than FTLD-MND and controls; annexin A2 (ANXA2) (endosomal sorting) expression was 11.3-fold higher in FTLD-U than FTLD-MND and 2.3-fold higher than controls. The identification of progranulin (PGRN) gene mutations and TDP-43 as the major protein component of the ubiquitinated inclusions, are two recent landmark discoveries in the field of FTLD-U. We found 1.5-fold increase in TDP-43 in both FTLD-MND and FTLD-U while progranulin showed no gene expression differences between controls and FTLD-MND. However, one of the FTLD-U cases tested by Affymetrix microarray showed "absence call" of this transcript, suggesting absent or decreased gene expression. Our findings point to specific gene-linked-pathways which may be influenced by neurodegenerative disease process and may be targeted for further exploration.
Collapse
Affiliation(s)
- Manjari Mishra
- Cognitive Neurology and Alzheimer Disease Center, Northwestern University, Feinberg School of Medicine, 320 East Superior St, Chicago, IL, 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chu TT, Fink MY, Mong JA, John G, Auger AP, Ge Y, Sealfon SC. Effective use of microarrays in neuroendocrine research. J Neuroendocrinol 2007; 19:145-61. [PMID: 17280588 DOI: 10.1111/j.1365-2826.2006.01523.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of microarray technology makes it possible to simultaneously assay the expression level of hundreds to tens of thousands of mRNA transcripts in one experiment. Genome-wide transcriptional analysis has increasing importance for many areas of neuroendocrinology research. The expense and technical complexity of microarray experiments can make it difficult to navigate the terrain of rival platforms and technologies. In this review, we provide a practical view and comparison of various microarray technologies. Affymetrix arrays, high-density cDNA arrays, membrane arrays and experimental design and data analysis are all discussed by researchers currently using these techniques to study gene regulation in neuroendocrine tissues.
Collapse
Affiliation(s)
- T T Chu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mirnics K, Levitt P, Lewis DA. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 2006; 60:163-76. [PMID: 16616896 DOI: 10.1016/j.biopsych.2006.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 02/08/2006] [Indexed: 11/30/2022]
Abstract
Transcriptome profiling using DNA microarrays are data-driven approaches with the potential to uncover unanticipated relationships between gene expression alterations and psychiatric disorders. Studies to date have yielded both convergent and divergent findings. Differences may be explained, at least in part, by the use of a variety of microarray platforms and analytical approaches. Consistent findings across studies suggest, however, that important relationships may exist between altered gene expression and genetic susceptibility to psychiatric disorders. For example, GAD67, RGS4, DTNBP1, NRG1, and GABRAB2 show expression alterations in the postmortem brain of subjects with schizophrenia, and these genes have been also implicated as putative, heritable schizophrenia susceptibility genes. Thus, we propose that for some genes, altered expression in the postmortem human brain may have a dual origin: polymorphisms in the candidate genes themselves or upstream genetic-environmental factors that converge to alter their expression level. We hypothesize that certain gene products, which function as "molecular hubs," commonly show altered expression in psychiatric disorders and confer genetic susceptibility for one or more diseases. Microarray gene expression studies are ideally suited to reveal these putative disease-associated molecular hubs and to identify promising candidates for genetic association studies.
Collapse
Affiliation(s)
- Károly Mirnics
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. karoly+@pitt.edu
| | | | | |
Collapse
|
27
|
Abstract
The cellular complexity of the brain is a major issue in the planning, execution and interpretation of microarray studies. Recent technical advances allow for high-throughput study of specific cell populations and circuits. Here we review representative examples of currently available methods that allow high resolution and specificity in brain microarray studies, while maintaining the goal of comprehensive, high-throughput analysis.
Collapse
Affiliation(s)
- Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- John Quackenbush
- Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, USA.
| |
Collapse
|
29
|
Yamamori T, Rockland KS. Neocortical areas, layers, connections, and gene expression. Neurosci Res 2006; 55:11-27. [PMID: 16546282 DOI: 10.1016/j.neures.2006.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 02/05/2006] [Accepted: 02/09/2006] [Indexed: 11/23/2022]
Abstract
Cortical patterns of gene expression provide a new approach to long standing issues of lamination, and area identity and formation. In this review, we summarize recent findings where molecular biological techniques have revealed a small number of area-specific genes in the nonhuman primate cortex. One of these (occ1) is strongly expressed in primary visual cortex and is associated with thalamocortical connections. Another gene, RBP, is more strongly expressed in association areas. It is not clear whether RBP might be linked with any particular connectional system, but several possibilities are raised. We also discuss possible roles of area-specific genes in postnatal development, and conclude with a brief sketch of future directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan.
| | | |
Collapse
|
30
|
Franz H, Ullmann C, Becker A, Ryan M, Bahn S, Arendt T, Simon M, Pääbo S, Khaitovich P. Systematic analysis of gene expression in human brains before and after death. Genome Biol 2005; 6:R112. [PMID: 16420671 PMCID: PMC1414111 DOI: 10.1186/gb-2005-6-13-r112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 08/23/2005] [Accepted: 12/06/2005] [Indexed: 12/02/2022] Open
Abstract
Comparison of the gene expression profiles of pre- and post-mortem human brains suggests that post-mortem human brain samples are suitable for investigating general gene-expression patterns. Background Numerous studies have employed microarray techniques to study changes in gene expression in connection with human disease, aging and evolution. The vast majority of human samples available for research are obtained from deceased individuals. This raises questions about how well gene expression patterns in such samples reflect those of living individuals. Results Here, we compare gene expression patterns in two human brain regions in postmortem samples and in material collected during surgical intervention. We find that death induces significant expression changes in more than 10% of all expressed genes. These changes are non-randomly distributed with respect to their function. Moreover, we observe similar expression changes due to death in two distinct brain regions. Consequently, the pattern of gene expression differences between the two brain regions is largely unaffected by death, although the magnitude of differences is reduced by 50% in postmortem samples. Furthermore, death-induced changes do not contribute significantly to gene expression variation among postmortem human brain samples. Conclusion We conclude that postmortem human brain samples are suitable for investigating gene expression patterns in humans, but that caution is warranted in interpreting results for individual genes.
Collapse
Affiliation(s)
- Henriette Franz
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, D-04103 Leipzig, Germany
| | - Claudia Ullmann
- Department of Neuropathology and National Brain Tumor Reference Center, University of Bonn Medical Center, Sigmund-Freud-Strasse, D-53105 Bonn, Germany
| | - Albert Becker
- Department of Neuropathology and National Brain Tumor Reference Center, University of Bonn Medical Center, Sigmund-Freud-Strasse, D-53105 Bonn, Germany
| | - Margaret Ryan
- Cambridge Centre for Neuropsychiatric Research, Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Sabine Bahn
- Cambridge Centre for Neuropsychiatric Research, Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee, D-04109 Leipzig, Germany
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Strasse, D-53105 Bonn, Germany
| | - Svante Pääbo
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, D-04103 Leipzig, Germany
| | - Philipp Khaitovich
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, D-04103 Leipzig, Germany
| |
Collapse
|
31
|
Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 2005; 9:99-107. [PMID: 16369481 DOI: 10.1038/nn1618] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/22/2005] [Indexed: 12/18/2022]
Abstract
Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.
Collapse
Affiliation(s)
- Ken Sugino
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE, Akil H, Watson SJ, Jones EG. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 2005; 102:15653-8. [PMID: 16230605 PMCID: PMC1257393 DOI: 10.1073/pnas.0507901102] [Citation(s) in RCA: 494] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abnormalities in L-glutamic acid (glutamate) and GABA signal transmission have been postulated to play a role in depression, but little is known about the underlying molecular determinants and neural mechanisms. Microarray analysis of specific areas of cerebral cortex from individuals who had suffered from major depressive disorder demonstrated significant down-regulation of SLC1A2 and SLC1A3, two key members of the glutamate/neutral amino acid transporter protein family, SLC1. Similarly, expression of L-glutamate-ammonia ligase, the enzyme that converts glutamate to nontoxic glutamine was significantly decreased. Together, these changes could elevate levels of extracellular glutamate considerably, which is potentially neurotoxic and can affect the efficiency of glutamate signaling. The astroglial distribution of the two glutamate transporters and L-glutamate-ammonia ligase strongly links glia to the pathophysiology of depression and challenges the conventional notion that depression is solely a neuronal disorder. The same cortical areas displayed concomitant up-regulation of several glutamate and GABA(A) receptor subunits, of which GABA(A)alpha1 and GABA(A)beta3 showed selectivity for individuals who had died by suicide, indicating their potential utility as biomarkers of suicidality. These findings point to previously undiscovered molecular underpinnings of the pathophysiology of major depression and offer potentially new pharmacological targets for treating depression.
Collapse
Affiliation(s)
- P V Choudary
- Center for Neuroscience and Department of Psychiatry and Behavioral Sciences, University of California-Davis, 1544 Newton Court, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fraser HB, Khaitovich P, Plotkin JB, Pääbo S, Eisen MB. Aging and gene expression in the primate brain. PLoS Biol 2005; 3:e274. [PMID: 16048372 PMCID: PMC1181540 DOI: 10.1371/journal.pbio.0030274] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 06/07/2005] [Indexed: 01/24/2023] Open
Abstract
It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases. Transcriptional profiles in human and chimpanzee reveal a diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| | | | | | | | | |
Collapse
|
34
|
Sanna PP, King AR, van der Stap LD, Repunte-Canonigo V. Gene profiling of laser-microdissected brain regions and sub-regions. ACTA ACUST UNITED AC 2005; 15:66-74. [PMID: 15946894 DOI: 10.1016/j.brainresprot.2005.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/29/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The application of transcriptomics and proteomics approaches to accurately dissected anatomically-defined brain regions and sub-regions remains a central focus of current neurobiological investigations as well as a necessary step towards single-neuron neurogenomics and neuroproteomics. A protocol is described for the simple, rapid, and reproducible laser microdissection of brain regions and sub-regions for microarray-based gene expression analyses from individual rats or mice using two rounds of in vitro transcription (IVT). The results presented also demonstrate that the current Affymetrix GeneChip arrays are well suited for this experimental design with high reproducibility and limited effects of the shortening of target RNA caused by the double IVT approach.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
35
|
Katsel PL, Davis KL, Haroutunian V. Large-Scale Microarray Studies of Gene Expression in Multiple Regions of the Brain in Schizophrenia and Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:41-82. [PMID: 15797465 DOI: 10.1016/s0074-7742(05)63003-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pavel L Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine New York, New York 10029 USA
| | | | | |
Collapse
|
36
|
Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, Walsh DM, Myers RM, Bunney WE, Watson SJ, Jones EG, Akil H. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A 2004; 101:15506-11. [PMID: 15483108 PMCID: PMC523463 DOI: 10.1073/pnas.0406788101] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this report we describe findings that imply dysregulation of several fibroblast growth factor (FGF) system transcripts in frontal cortical regions of brains from human subjects with major depressive disorder (MDD). This altered gene expression was discovered by microarray analysis of frontal cortical tissue from MDD, bipolar, and nonpsychiatric control subjects and was verified by quantitative real-time PCR analysis and, importantly, in a separate cohort of MDD subjects. Furthermore, we show, through a separate analysis of specific serotonin reuptake inhibitor (SSRI)-treated and non-SSRI-treated MDD subjects that the observed changes in expression of FGF transcripts are not secondary to drug treatment. Rather, changes in specific FGF transcripts are attenuated by SSRIs and may thus be partially responsible for the mechanism of action of these drugs. We also make available the gene-expression profile of all of the other growth factors and growth factor receptors detected in these postmortem samples.
Collapse
Affiliation(s)
- S J Evans
- Department of Psychiatry and Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mirnics K, Pevsner J. Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 2004; 7:434-9. [PMID: 15114354 DOI: 10.1038/nn1230] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The diverse functions of the brain are mediated by neurons and glia whose phenotype is defined by a dynamically maintained set of gene transcripts, or 'transcriptome'. Large-scale analysis of gene expression in postmortem brain using microarray technology has the potential to elucidate molecular changes that occur in disease states. There are unique challenges associated with studies of postmortem brain, including limited sample sizes and variable clinical phenotypes that are typical of complex disorders. Nevertheless, recent microarray-based studies have implicated both individual dysregulated genes and abnormal patterns of gene expression in brain disorders.
Collapse
Affiliation(s)
- Károly Mirnics
- Department of Psychiatry, University of Pittsburgh, School of Medicine, E1453 Biomedical Science, Pittsburgh, Pennsylvania 15261, USA. karoly+@pitt.edu
| | | |
Collapse
|