1
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
2
|
Tokuyama H. Construction of N-Heterocycles Fused with a Highly Substituted Benzene Ring by a Benzyne-Mediated Cyclization/Functionalization Cascade Reaction and Its Application to the Total Synthesis of Marine Natural Products. Chem Pharm Bull (Tokyo) 2021; 69:707-716. [PMID: 34334514 DOI: 10.1248/cpb.c21-00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This account summarizes the development of a benzyne-mediated cyclization/functionalization protocol for the versatile construction of highly substituted benzene derivatives fused with an N-heterocyclic ring such as indolines, indoles, and related nitrogen-containing heterocycles. The protocol comprises sequential reactions initiated by generating a benzyne species and subsequent cyclization via addition of magnesium amide to the benzyne, followed by trapping of the resultant magnesium compound in situ with various electrophiles. The substituent scope was expanded by conducting a transmetalation on a copper species to introduce alkyl, aryl, and alkenyl substituents. The utility of the sequential reaction was demonstrated in the synthesis of a carbazole natural product (heptaphylline), pyrrolo[4,3,2-de]quinoline alkaloids (batzellines), and pyrrolo[2,3-c]carbazole alkaloids (dictyodendrines).
Collapse
|
3
|
Hidaka D, Onozawa M, Miyashita N, Yokoyama S, Nakagawa M, Hashimoto D, Teshima T. Short-term treatment with imetelstat sensitizes hematopoietic malignant cells to a genotoxic agent via suppression of the telomerase-mediated DNA repair process. Leuk Lymphoma 2020; 61:2722-2732. [PMID: 32571117 DOI: 10.1080/10428194.2020.1779256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imetelstat is a specific and competitive inhibitor of telomerase enzymatic activity. We demonstrated that imetelstat could interfere with the DNA repair process and enhance the effect of DNA damaging agents using hematological tumor cell lines. Short-term administration of imetelstat enhanced growth suppression by anticancer agents and radiation. It also upregulated γH2AX expression induced by irradiation. Immunofluorescence staining showed that both human telomerase reverse transcriptase (hTERT) and γH2AX were upregulated and co-localized in the nucleus of peripheral blood mononuclear cells after irradiation, suggesting that hTERT was involved in the DNA-DSB repair process. Imetelstat enhanced growth inhibitory effect of cytotoxic agents in short-term culture without shortening of telomeres, indicating that this effect was attributed by telomere length independent mechanism. Our results suggest that the combination of short-term treatment with imetelstat and cytotoxic agent is a promising strategy to treat a wide variety of hematopoietic malignancies.
Collapse
Affiliation(s)
- Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Naohiro Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Recent applications of magnesium- and Zinc-TMP amides in the synthesis of bioactive targets. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Ahmed S, Kaushik M, Chaudhary S, Kukreti S. Formation of G-wires, bimolecular and tetramolecular quadruplex: Cation-induced structural polymorphs of G-rich DNA sequence of human SYTX gene. Biopolymers 2018; 109:e23115. [PMID: 29672834 DOI: 10.1002/bip.23115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/18/2023]
Abstract
An exceptional property of auto-folding into a range of intra- as well as intermolecular quadruplexes by guanine-rich oligomers (GROs) of promoters, telomeres and various other genomic locations is still one of the most attractive areas of research at present times. The main reason for this attention is due to their established in vivo existence and biological relevance. Herein, the structural status of a 20-nt long G-rich sequence with two G5 stretches (SG20) is investigated using various biophysical and biochemical techniques. Bioinformatics analysis suggested the presence of a 17-nt stretch of this SG20 sequence in the intronic region of human SYTX (Synaptotagmin 10) gene. The SYTX gene helps in sensing out the Ca2+ ion, causing its intake in the pre-synaptic neuron. A range of various topologies like bimolecular, tetramolecular and guanine-wires (nano-wires) was exhibited by the studied sequence, as a function of cations (Na+ /K+ ) concentration. UV-thermal denaturation, gel electrophoresis, and circular dichroism (CD) spectroscopy showed correlations and established a cation-dependent structural switch. The G-wire formation, in the presence of K+ , may further be explored for its possible relevance in nano-biotechnological applications.
Collapse
Affiliation(s)
- Saami Ahmed
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Mahima Kaushik
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
6
|
Banne S, Prabhakar Reddy D, Li W, Wang C, Guo J, He Y. A Unified Modular Synthetic Strategy for Dictyodendrins F, H, I, and G. Org Lett 2017; 19:4996-4999. [DOI: 10.1021/acs.orglett.7b02511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sreenivas Banne
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| | - D. Prabhakar Reddy
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| | - Wenxi Li
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| | - Chenhui Wang
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| | - Jian Guo
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yun He
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
7
|
Gomez DLM, Armando RG, Cerrudo CS, Ghiringhelli PD, Gomez DE. Telomerase as a Cancer Target. Development of New Molecules. Curr Top Med Chem 2017; 16:2432-40. [PMID: 26873194 PMCID: PMC4997958 DOI: 10.2174/1568026616666160212122425] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/15/2015] [Accepted: 10/25/2015] [Indexed: 12/26/2022]
Abstract
Telomeres are the terminal part of the chromosome containing a long repetitive and non-codifying sequence that has as function protecting the chromosomes. In normal cells, telomeres lost part of such repetitive sequence in each mitosis, until telomeres reach a critical point, triggering at that time senescence and cell death. However, in most of tumor cells in each cell division a part of the telomere is lost, however the appearance of an enzyme called telomerase synthetize the segment that just has been lost, therefore conferring to tumor cells the immortality hallmark. Telomerase is significantly overexpressed in 80–95% of all malignant tumors, being present at low levels in few normal cells, mostly stem cells. Due to these characteristics, telomerase has become an attractive target for new and more effective anticancer agents. The capability of inhibiting telomerase in tumor cells should lead to telomere shortening, senescence and apoptosis. In this work, we analyze the different strategies for telomerase inhibition, either in development, preclinical or clinical stages taking into account their strong points and their caveats. We covered strategies such as nucleosides analogs, oligonucleotides, small molecule inhibitors, G-quadruplex stabilizers, immunotherapy, gene therapy, molecules that affect the telomere/telomerase associated proteins, agents from microbial sources, among others, providing a balanced evaluation of the status of the inhibitors of this powerful target together with an analysis of the challenges ahead.
Collapse
Affiliation(s)
| | | | | | | | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology. Quilmes National University, Bernal, Buenos Aires, Argentina. R. Saenz Peña 352, (1876) Buenos Aires, Argentina.
| |
Collapse
|
8
|
Alam MS, Lee DU. Synthesis, biological evaluation, drug-likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents. Arch Pharm Res 2015; 39:191-201. [DOI: 10.1007/s12272-015-0699-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023]
|
9
|
Carvajal-Miranda Y, Pérez-Salazar R, Varela JA. Synthesis of Dihydroindolo[2,3-c]carbazole as Potential Telomerase Inhibitor. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Jesús A. Varela
- Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS); Universidad de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
10
|
Total Synthesis of Dictyodendrins B and E, and Formal Synthesis of Dictyodendrin C. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402672] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells. Biochem Biophys Res Commun 2014; 450:274-82. [PMID: 24907467 DOI: 10.1016/j.bbrc.2014.05.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/27/2023]
Abstract
Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.
Collapse
|
12
|
Cui X, Zhang Q, Chen H, Zhou J, Yuan G. ESI mass spectrometric exploration of selective recognition of G-quadruplex in c-myb oncogene promoter using a novel flexible cyclic polyamide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:684-691. [PMID: 24452297 DOI: 10.1007/s13361-013-0802-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
In this research, electrospray ionization mass spectrometry (ESI-MS) was used to probe the binding selectivity of a flexible cyclic polyamide (cβ) to G-quadruplexes from the long G-rich sequences in the c-myb oncogene promoter. The results show that three G-rich sequences, including d[(GGA)3GGTCAC(GGA)4], d[(GGA)4GAA(GGA)4], and d[(GGA)3GGTCAC(GGA)4GAA(GGA)4] species in the c-myb promoter can form parallel G-quadruplexes, and cβ selectively binds towards these G-quadruplexes over both several other G-quadruplexes and the duplex DNA. These properties of cβ have profound implications on future studies of the regulation of c-myb oncogene expression.
Collapse
Affiliation(s)
- Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
13
|
Czerwinska I, Sato S, Juskowiak B, Takenaka S. Interactions of cyclic and non-cyclic naphthalene diimide derivatives with different nucleic acids. Bioorg Med Chem 2014; 22:2593-601. [PMID: 24726302 DOI: 10.1016/j.bmc.2014.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 12/11/2022]
Abstract
Recently, strategy based on stabilization of G-quadruplex telomeric DNA by small organic molecule has been realized by naphthalene diimide derivatives (NDIs). At the same time NDIs bind to DNA duplex as threading intercalators. Here we present cyclic derivative of naphthalene diimide (ligand 1) as DNA-binding ligand with ability to recognition of different structures of telomeric G-quadruplexes and ability to bis-intercalate to double-stranded helixes. The results have been compared to non-cyclic derivative (ligand 2) and revealed that preferential binding of ligands to nucleic acids strongly depends on their topology and structural features of ligands.
Collapse
Affiliation(s)
- Izabella Czerwinska
- Research Center for Bio-microsensing Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan.
| | - Shinobu Sato
- Research Center for Bio-microsensing Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan; Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Shigeori Takenaka
- Research Center for Bio-microsensing Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan; Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan
| |
Collapse
|
14
|
Synthesis, biological evaluation, and molecular docking studies of pyrazolyl-acylhydrazone derivatives as novel anticancer agents. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0909-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Affiliation(s)
- Jingjing Liang
- State Key
Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191,
China
| | - Weimin Hu
- State Key
Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191,
China
| | - Pengyu Tao
- State Key
Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191,
China
| | - Yanxing Jia
- State Key
Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191,
China
- State Key Laboratory
of Applied
Organic Chemistry, Lanzhou University,
Lanzhou 730000, China
| |
Collapse
|
16
|
Li H, Bu X, Lu J, Xu C, Wang X, Yang X. Interaction study of ciprofloxacin with human telomeric DNA by spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:227-234. [PMID: 23434548 DOI: 10.1016/j.saa.2013.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
The interaction of ciprofloxacin (CIP) with human telomeric DNA was studied in vitro using multi-spectroscopy and molecular modeling methods. The hypochromic effect with a red shift in ultraviolet (UV) absorption indicated the occurrence of the interaction between CIP and DNA. The fluorescence quenching of CIP was observed with the addition of DNA and was proved to be the static quenching. The binding constant was found to be 9.62×10(4) L mol(-1). Electrospray ionization mass spectrometry (ESI-MS) result further confirmed the formation of 1:1 non-covalent complex between DNA and CIP. Combined with the UV melting results, circular dichroism (CD) results confirmed the existence of groove binding mode, as well as conformational changes of DNA. Molecular docking studies illustrated the visual display of the CIP binding to the GC region in the minor groove of DNA. Specific hydrogen bonds and van der Waals forces were demonstrated as main acting forces between CIP and guanine bases of DNA.
Collapse
Affiliation(s)
- Huihui Li
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| | | | | | | | | | | |
Collapse
|
17
|
Gopinath P, Ramalingam K, Muraleedharan KM, Karunagaran D. Benzisothiazolones arrest the cell cycle at the G2/M phase and induce apoptosis in HeLa cells. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00034f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Czerwinska I, Juskowiak B. Photoisomerizable arylstilbazolium ligands recognize parallel and antiparallel structures of G-quadruplexes. Int J Biol Macromol 2012; 51:576-82. [DOI: 10.1016/j.ijbiomac.2012.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/26/2022]
|
19
|
Gomez DE, Armando RG, Alonso DF. AZT as a telomerase inhibitor. Front Oncol 2012; 2:113. [PMID: 22973556 PMCID: PMC3434370 DOI: 10.3389/fonc.2012.00113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/17/2012] [Indexed: 01/23/2023] Open
Abstract
Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.
Collapse
Affiliation(s)
- Daniel E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal Buenos Aires, Argentina
| | | | | |
Collapse
|
20
|
Tokuyama H, Okano K, Fujiwara H, Noji T, Fukuyama T. Total Synthesis of Dictyodendrins A-E. Chem Asian J 2010; 6:560-72. [DOI: 10.1002/asia.201000544] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Indexed: 11/11/2022]
|
21
|
Uziel O, Beery E, Dronichev V, Samocha K, Gryaznov S, Weiss L, Slavin S, Kushnir M, Nordenberg Y, Rabinowitz C, Rinkevich B, Zehavi T, Lahav M. Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms. PLoS One 2010; 5:e9132. [PMID: 20161752 PMCID: PMC2817744 DOI: 10.1371/journal.pone.0009132] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/06/2009] [Indexed: 12/17/2022] Open
Abstract
Background Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner. Methodology/Principal Findings In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening. Conclusions/Significance To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.
Collapse
Affiliation(s)
- Orit Uziel
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Beery
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vladimir Dronichev
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katty Samocha
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sergei Gryaznov
- Geron Corporation, Menlo Park, California, United States of America
| | - Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | - Shimon Slavin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | - Yardena Nordenberg
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Tania Zehavi
- Department of Pathology, Meir Medical Center, Kfar-Saba, Israel
| | - Meir Lahav
- Beilinson Hospital, Rabin Medical Center, Felsenstein Medical Research Center, Petah-Tikva, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
22
|
Temime-Smaali N, Guittat L, Sidibe A, Shin-ya K, Trentesaux C, Riou JF. The G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIalpha to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells. PLoS One 2009; 4:e6919. [PMID: 19742304 PMCID: PMC2732903 DOI: 10.1371/journal.pone.0006919] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022] Open
Abstract
In Alternative Lengthening of Telomeres (ALT) cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies) concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIalpha (Topo III) is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is modulated by G-quadruplex formation. Topo III binding to G-quadruplex-forming oligonucleotides was strongly inhibited by telomestatin, a potent and specific G-quadruplex ligand. In ALT cells, telomestatin treatment resulted in the depletion of the Topo III/BLM/TRF2 complex and the disruption of APBs and led to the segregation of PML, shelterin components and Topo III. Interestingly, a DNA damage response was observed at telomeres in telomestatin-treated cells. These data indicate the importance of G-quadruplex stabilization during telomere maintenance in ALT cells. The function of TRF2/Topo III/BLM in the resolution of replication intermediates at telomeres is discussed.
Collapse
Affiliation(s)
- Nassima Temime-Smaali
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Susanna Lynch
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546 (USA), Fax: (+1) 616-526-6501
| | - Heather Baker
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546 (USA), Fax: (+1) 616-526-6501
| | - Sarah G. Byker
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546 (USA), Fax: (+1) 616-526-6501
| | - Dejian Zhou
- School of Chemistry and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT (UK), Fax: (+44) 113-343-6565
| | - Kumar Sinniah
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546 (USA), Fax: (+1) 616-526-6501
| |
Collapse
|
24
|
Brassart B, Gomez D, De Cian A, Paterski R, Montagnac A, Qui KH, Temime-Smaali N, Trentesaux C, Mergny JL, Gueritte F, Riou JF. A new steroid derivative stabilizes g-quadruplexes and induces telomere uncapping in human tumor cells. Mol Pharmacol 2007; 72:631-40. [PMID: 17586599 DOI: 10.1124/mol.107.036574] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) with a 3' single-stranded extension (the G-overhang). The stabilization of G-quadruplexes in the human telomeric sequence by small-molecule ligands inhibits the activity of telomerase and results in telomere uncapping, leading to senescence or apoptosis of tumor cells. Therefore, the search for new and selective G-quadruplex ligands is of considerable interest because a selective ligand might provide a telomere-targeted therapeutic approach to treatment of cancer. We have screened a bank of derivatives from natural and synthetic origin using a temperature fluorescence assay and have identified two related compounds that induce G-quadruplex stabilization: malouetine and steroid FG. These steroid derivatives have nonplanar and nonaromatic structures, different from currently known G-quadruplex ligands. Malouetine is a natural product isolated from the leaves of Malouetia bequaaertiana E. Woodson and is known for its curarizing and DNA-binding properties. Steroid FG, a funtumine derivative substituted with a guanylhydrazone moiety, interacted selectively with the telomeric G-quadruplex in vitro. This derivative induced senescence and telomere shortening of HT1080 tumor cells at submicromolar concentrations, corresponding to the phenotypic inactivation of telomerase activity. In addition, steroid FG induced a rapid degradation of the telomeric G-overhang and the formation of anaphase bridges, characteristics of telomere uncapping. Finally, the expression of protection of telomere 1 (POT1) induced resistance to the growth effect of steroid FG. These results indicate that these steroid ligands represent a new class of telomere-targeted agents with potential as antitumor drugs.
Collapse
Affiliation(s)
- Bertrand Brassart
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51096 Reims, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou J, Yuan G. Specific recognition of human telomeric G-quadruplex DNA with small molecules and the conformational analysis by ESI mass spectrometry and circular dichroism spectropolarimetry. Chemistry 2007; 13:5018-23. [PMID: 17373004 DOI: 10.1002/chem.200601605] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the binding affinity and stoichiometry of small molecules with human telomeric G-quadruplex DNA. The binding-affinity order obtained for the (AGGGTT)(4) quadruplex was: Tel01>ImImImbetaDp>>PyPyPygammaImImImbetaDp. The specific binding of Tel01 and PyPyPygammaImImImbetaDp in one system consisting of human telomeric G-quadruplex and duplex DNA was observed directly for the first time. This revealed that PyPyPygammaImImImbetaDp has a binding specificity for the duplex DNA, whereas Tel01 selectively recognizes the G-quadruplex DNA. Moreover, both ESI-MS and circular dichroism (CD) spectra indicated that Tel01 favored the formation and stabilization of the antiparallel G-quadruplex, and a structural transition of the (AGGGTT)(4) sequence from a coexistence of parallel and antiparallel G-quadruplexes to a parallel G-quadruplex induced by annealing.
Collapse
Affiliation(s)
- Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
26
|
Nakao Y, Fusetani N. Enzyme inhibitors from marine invertebrates. JOURNAL OF NATURAL PRODUCTS 2007; 70:689-710. [PMID: 17362037 DOI: 10.1021/np060600x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Marine invertebrates are rich sources of small molecules with unique chemical skeletons and potent bioactivities. Historically, such compounds were discovered mainly through the use of assays for phenotype-oriented activities, such as cytotoxicity or antimicrobial effects. More recently, target-oriented searches for bioactive substances, as exemplified by enzyme inhibitors, have become much more common, given a growing need for small-molecule inhibitors essential for studies of complex processes at the interface of chemistry and biology. In this review, selected enzyme inhibitors from marine invertebrates are presented.
Collapse
Affiliation(s)
- Yoichi Nakao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | |
Collapse
|
27
|
Zhou J, Yuan G, Liu J, Zhan CG. Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chemistry 2007; 13:945-9. [PMID: 17036297 DOI: 10.1002/chem.200600424] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the formation and stability of G-quadruplexes. For the 15 6-nt oligonucleotides tested, ESI-MS indicated that formation of a parallel tetramer quadruplex requires at least four continuous guanines in the 6-nt sequence. In addition, the G-rich strands prefer to employ "self-association" in the formation of the G-quadruplex rather than hybridized integration, and the thermodynamic-stability order of these three G-quadruplexes is Q(2)>Q(1)>Q(3).
Collapse
Affiliation(s)
- Jiang Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
28
|
Bilsland AE, Merron A, Vassaux G, Keith WN. Modulation of telomerase promoter tumor selectivity in the context of oncolytic adenoviruses. Cancer Res 2007; 67:1299-307. [PMID: 17283167 DOI: 10.1158/0008-5472.can-06-3000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The telomerase RNA (hTR) and reverse transcriptase (hTERT) promoters are active in most cancer cells, but not in normal cells, and are useful for transcriptional targeting in gene therapy models. Telomerase-specific conditionally replicating adenoviruses (CRAd) are attractive vectors because they should selectively lyse tumor cells. Here, we compare CRAds, in which either the hTR or hTERT promoter controls expression of the adenovirus E1A gene. In replication-defective reporter adenoviruses, the hTR promoter was up to 57-fold stronger in cancer cells than normal cells and up to 49-fold stronger than hTERT. In normal cells, hTERT promoter activity was essentially absent. Doses of telomerase-specific CRAds between 1.8 and 28 infectious units per cell efficiently killed cancer cells, but normal cells required higher doses. However, CRAd DNA replication and E1A expression were detected in both cancer and normal cells. Overall, tumor specificity of the CRAds was limited compared with nonreplicating vectors. Surprisingly, both CRAds expressed similar E1A levels and functional behavior, despite known differentials between hTR and hTERT promoter activities, suggesting that the promoters are deregulated. Rapid amplification of cDNA ends analysis of hTR-/hTERT-E1A transcripts ruled out cryptic transcription from the vector backbone. Blocking E1A translation partially restored the hTR-/hTERT-E1A mRNA differential, evidencing feedback regulation by E1A.
Collapse
Affiliation(s)
- Alan E Bilsland
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | | | | | | |
Collapse
|
29
|
Gornall KC, Samosorn S, Talib J, Bremner JB, Beck JL. Selectivity of an indolyl berberine derivative for tetrameric G-quadruplex DNA. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1759-66. [PMID: 17486674 DOI: 10.1002/rcm.3019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Negative ion electrospray ionization mass spectrometry (ESI-MS) was used to compare the binding affinities and stoichiometries of the alkaloid berberine, a 13-substituted indolyl berberine derivative, SS14, and the chemotherapeutic agent, daunomycin, for 16-mer double-stranded (ds) DNA (D1 and D2) and for an 8-mer tetrameric quadruplex, Q1 (d(TTGGGGGT)(4)). Under the experimental conditions presented here, ESI mass spectra of Q1 showed that the major ions were from Q1 with three ammonium ions bound in the structure. Ions from Q1 with four ammonium ions were of lower abundance. In agreement with other work, there were multiple binding sites on the dsDNA and the quadruplex for daunomycin and berberine. The binding of SS14 to both dsDNA and Q1 was less extensive. Although the binding affinity of SS14 for Q1 was modest, this compound showed a clear preference for Q1 DNA over D1 or D2 DNA. Berberine and daunomycin bound with greater affinity to both types of DNA secondary structure, with the former showing a slight preference for Q1 over D1 while the latter showed a slight preference for D1 over Q1. While at least five berberine molecules bound to Q1, this quadruplex could accommodate only two SS14 molecules. These investigations show that SS14 is a promising lead compound for drugs that may selectively bind quadruplex over duplex DNA.
Collapse
Affiliation(s)
- Karina C Gornall
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | | | | | |
Collapse
|
30
|
Zhou J, Yuan G. Analysis of noncovalent complexes between human telomeric DNA and polyamides containing N-methylpyrrole and N-methylimidazole by using electrospray ionization mass spectrometry. Chemistry 2006; 11:1157-62. [PMID: 15624127 DOI: 10.1002/chem.200400803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate noncovalent complexes formed between four novel polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im), and human telomeric DNA. Of the four polyamides investigated, PyPyPygammaImImImbetaDp (3) had the highest binding affinity towards the duplex d(TTAGGGTTAGGG/CCCTAACCCTAA) (D1). Results of competition analysis showed that the polyamides had binding affinities with D1 in the order PyPyPygammaImImImbetaDp (3)>PyPyPyPygammaPyImImPybetaDp (4)>PyPyPybetaImImImbetaDp (2)>>ImImImbetaDp (1). MS/MS spectra confirmed that binding between D1 and the hairpin polyamides is more stable than that with the three-ring polyamides. By contrast, in the case of single-stranded d(TTAGGGTTAGGG)(D2), the binding order changes to ImImImbetaDp (1)>PyPyPygammaImImImbetaDp (3)>PyPyPybetaImImImbetaDp (2).
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Chemical Biology, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | | |
Collapse
|
31
|
Bilsland AE, Stevenson K, Atkinson S, Kolch W, Keith WN. Transcriptional Repression of Telomerase RNA Gene Expression by c-Jun-NH2-Kinase and Sp1/Sp3. Cancer Res 2006; 66:1363-70. [PMID: 16452190 DOI: 10.1158/0008-5472.can-05-1941] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomerase is essential for immortalization of most human cancer cells. Expression of the core telomerase RNA (hTR) and reverse transcriptase (hTERT) subunits is mainly regulated by transcription. However, hTR transcriptional regulation remains poorly understood. We previously showed that the core hTR promoter is activated by Sp1 and is repressed by Sp3. Here, we show that the mitogen-activated protein kinase kinase kinase 1 (MEKK1)/c-Jun-NH(2)-kinase (JNK) pathway represses hTR expression by a mechanism that involves Sp1 and Sp3. Promoter activity was induced by the JNK inhibitor SP600125 and was repressed by activated MEKK1. Repression by MEKK1 was blocked by SP600125 or enhanced by coexpression of wild-type but not phosphoacceptor mutated JNK. SP600125 treatment also increased levels of endogenous hTR. Mutations in the hTR promoter Sp1/Sp3 binding sites attenuated SP600125-mediated promoter induction, whereas coexpression of MEKK1 with Sp3 enhanced hTR promoter repression. Chromatin immunoprecipitation showed that levels of immunoreactive Sp1 associated with the hTR promoter were low in comparison with Sp3 in control cells but increased after JNK inhibition with a reciprocal decrease in Sp3 levels. No corresponding changes in Sp1/Sp3 protein levels were detected. Thus, JNK represses hTR promoter activity and expression, apparently by enhancing repression through Sp3.
Collapse
Affiliation(s)
- Alan E Bilsland
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
32
|
Riou JF, Morjani H, Trentesaux C. Télomères et télomérase, de nouvelles cibles pour la chimiothérapie anticancéreuse. ANNALES PHARMACEUTIQUES FRANÇAISES 2006; 64:97-105. [PMID: 16568010 DOI: 10.1016/s0003-4509(06)75301-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Telomeres are composed of single-strand DNA rich in guanine which can adopt particular structures such as T-loop or G-quadruples, a four-strand DAN structure formed by guanine repeats. Telomeric single-strand DNA is the substrate of telomerase, an enzyme necessary for telomeric replication which is suppressed in most cancer cells and which participates in tumor genesis. The formation of a telomeric G-quadruplex blocks telomerase activity and offers an original strategy for new anti-cancer agents. Using an original approach combining rational screening and synthesis, several series of compounds have been identified which specifically bind to the telomeric quadruplex. These derivatives, called "G-quadruplex DNA ligands", are able to block telomeric replication in cancer cells and provoke replicative senescence and/or apoptosis after a few cell cycles. Our team is working on characterizing the cellular and molecular mechanisms of action of these ligands. Using mutant cell models resistant to these ligands or expressing a protein cuff covering the telomere in tumor lines, we have demonstrated that the telomere is the principal intracellular target of action of these compounds and the implicit existence of the G-quadruplex structure. In collaboration with academic and industrial partners, optimization of these ligands to develop pharmacologically active products should enable in vivo validation of a new therapeutic concept.
Collapse
Affiliation(s)
- J-F Riou
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de pharmacie, Université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, F 51096 Reims.
| | | | | |
Collapse
|
33
|
Bilsland AE, Fletcher-Monaghan A, Keith WN. Properties of a telomerase-specific Cre/Lox switch for transcriptionally targeted cancer gene therapy. Neoplasia 2006; 7:1020-9. [PMID: 16331888 PMCID: PMC1502022 DOI: 10.1593/neo.05385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/18/2022]
Abstract
Telomerase expression represents a good target for cancer gene therapy. The promoters of the core telomerase catalytic [human telomerase reverse transcriptase (hTERT)] and RNA [human telomerase RNA (hTR)] subunits show selective activity in cancer cells but not in normal cells. This property can be harnessed to express therapeutic transgenes in a wide range of cancer cells. Unfortunately, weak hTR and hTERT promoter activities in some cancer cells could limit the target cell range. Therefore, strategies to enhance telomerase-specific gene therapy are of interest. We constructed a Cre/Lox reporter switch coupling telomerase promoter specificity with Cytomegalovirus (CMV) promoter activity, which is generally considered to be constitutively high. In this approach, a telomerase-specific vector expressing Cre recombinase directs excisive recombination on a second vector, removing a transcriptional blockade to CMV-dependent luciferase expression. We tested switch activation in cell lines over a wide range of telomerase promoter activities. However, Cre/Lox-dependent luciferase expression was not enhanced relative to expression using hTR or hTERT promoters directly. Cell-specific differences between telomerase and CMV promoter activities and incomplete sigmoid switch activation were limiting factors. Notably, CMV activity was not always significantly stronger than telomerase promoter activity. Our conclusions provide a general basis for a more rational design of novel recombinase switches in gene therapy.
Collapse
Affiliation(s)
- Alan E Bilsland
- Cancer Research UK Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, UK
| | | | | |
Collapse
|
34
|
Zhou J, Yuan G, Tang FL. Estimation of binding constants for complexes of polyamides and human telomeric DNA sequences by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2365-7. [PMID: 16835848 DOI: 10.1002/rcm.2597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
35
|
Eitsuka T, Nakagawa K, Suzuki T, Miyazawa T. Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: A dual mechanism approach. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:1-10. [PMID: 16216547 DOI: 10.1016/j.bbalip.2005.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 08/07/2005] [Accepted: 08/24/2005] [Indexed: 11/29/2022]
Abstract
As high telomerase activity is detected in most cancer cells, telomerase represents a promising cancer therapeutic target. We investigated the inhibitory effect of various fatty acids on telomerase, with particular emphasis on those with antitumor properties, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). To evaluate the direct effect of fatty acids on telomerase, cell lysates of DLD-1 human colorectal adenocarcinoma cells were mixed with sample fatty acids, and the telomerase activity was determined. Saturated fatty acids and trans-fatty acids showed very weak or no inhibition of telomerase. In contrast, cis-unsaturated fatty acids significantly inhibited the enzyme, and the inhibitory potency was elevated with an increase in the number of double bonds. Accordingly, polyunsaturated fatty acids (PUFAs), like EPA and DHA, appeared to be powerful telomerase inhibitors. To assess the transcriptional effect, DLD-1 cells were cultured in the presence of sample fatty acids, and telomerase activity and gene expression were subsequently evaluated. Culturing DLD-1 cells with either EPA or DHA resulted in a remarkable decrease in telomerase activity. EPA and DHA inhibited telomerase by down-regulating human telomerase reverse transcriptase (hTERT) and c-myc expression via protein kinase C inhibition. These results indicate that PUFAs can directly inhibit the enzymatic activity of telomerase as well as modulate the telomerase at the transcriptional level.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
36
|
Warabi K, Hamada T, Nakao Y, Matsunaga S, Hirota H, van Soest RWM, Fusetani N. Axinelloside A, an Unprecedented Highly Sulfated Lipopolysaccharide Inhibiting Telomerase, from the Marine Sponge, Axinella infundibula1. J Am Chem Soc 2005; 127:13262-70. [PMID: 16173756 DOI: 10.1021/ja052688r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axinelloside A was isolated from the lipophilic extract of the Japanese marine sponge Axinella infundibula as a strong human telomerase inhibitor (IC(50) 2.0 microg/mL). It has the molecular weight of 4780.4 as the monoisotopic mass of the 19 sodium salt. The chemical structure was elucidated mainly by spectroscopic methods (2D NMR and MS). Axinelloside A consists of twelve sugars, e.g., a scyllo-inositol, a D-arabinose, 5 D-galactoses, and 5 L-fucoses, together with an (R)-3-hydroxy-octadecanoic acid, 3 (E)-2-hexadecenoic acids, and 19 sulfates.
Collapse
Affiliation(s)
- Kaoru Warabi
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Douarre C, Gomez D, Morjani H, Zahm JM, O'Donohue MF, Eddabra L, Mailliet P, Riou JF, Trentesaux C. Overexpression of Bcl-2 is associated with apoptotic resistance to the G-quadruplex ligand 12459 but is not sufficient to confer resistance to long-term senescence. Nucleic Acids Res 2005; 33:2192-203. [PMID: 15831792 PMCID: PMC1079972 DOI: 10.1093/nar/gki514] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The triazine derivative 12459 is a potent G-quadruplex interacting agent that inhibits telomerase activity. This agent induces time- and dose-dependent telomere shortening, senescence-like growth arrest and apoptosis in the human A549 tumour cell line. We show here that 12459 induces a delayed apoptosis that activates the mitochondrial pathway. A549 cell lines selected for resistance to 12459 and previously characterized for an altered hTERT expression also showed Bcl-2 overexpression. Transfection of Bcl-2 into A549 cells induced a resistance to the short-term apoptotic effect triggered by 12459, suggesting that Bcl-2 is an important determinant for the activity of 12459. In sharp contrast, the Bcl-2 overexpression was not sufficient to confer resistance to the senescence-like growth arrest induced by prolonged treatment with 12459. We also show that 12459 provokes a rapid degradation of the telomeric G-overhang in conditions that paralleled the apoptosis induction. In contrast, the G-overhang degradation was not observed when apoptosis was induced by camptothecin. Bcl-2 overexpression did not modify the G-overhang degradation, suggesting that this event is an early process uncoupled from the final apoptotic pathway.
Collapse
Affiliation(s)
- Céline Douarre
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
| | - Dennis Gomez
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, USM503, INSERM U565, CNRS UMR 515343 rue Cuvier, 75231 Paris cedex 05, France
| | - Hamid Morjani
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
| | - Jean-Marie Zahm
- INSERM UMR 514, CHU Maison Blanche45 rue Cognacq-Jay, 51092 Reims, France
| | - Marie-Françoise O'Donohue
- CNRS UMR 6142, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096, Reims, France
| | - Lahcen Eddabra
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
| | - Patrick Mailliet
- Sanofi-Aventis SA, Département de Chimie, Centre de Recherche de Paris13 quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Jean-François Riou
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
- To whom correspondence should be addressed. Tel: +33 3 26 91 80 13; Fax: +33 3 26 91 89 26;
| | - Chantal Trentesaux
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne51 rue Cognacq-Jay, 51096 Reims, France
| |
Collapse
|
38
|
Keith WN, Bilsland A, Hardie M, Evans TRJ. Drug Insight: cancer cell immortality—telomerase as a target for novel cancer gene therapies. ACTA ACUST UNITED AC 2004; 1:88-96. [PMID: 16264826 DOI: 10.1038/ncponc0044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/20/2004] [Indexed: 11/08/2022]
Abstract
Rapid advances in our understanding of the molecular basis of cancer development and progression over the past three decades have led to the design of new potential cancer therapies. High throughput target validation and expression studies are expected to yield a powerful arsenal of new cancer treatments, but untangling the complex pathways underlying the major cancer phenotypes remains a significant challenge. A considerable body of evidence in recent years implicates deregulated expression of a single multi-component enzyme, telomerase, as a causative factor at the heart of immortalization in the vast majority of human tumors. This review highlights the potential of telomerase as a target for novel cancer therapies. The potential of exploiting the selectivity of the telomerase family of genes within cancer cells to develop gene therapy strategies is discussed, and the progress towards translating these novel therapeutics from the laboratory to the clinic is reviewed.
Collapse
Affiliation(s)
- W Nicol Keith
- Telomerase Therapeutics Program, CRUK Centre for Oncology and Applied Pharmacology, Glasgow, UK.
| | | | | | | |
Collapse
|
39
|
Breuzard G, Millot JM, Riou JF, Manfait M. Selective interactions of ethidiums with G-quadruplex DNA revealed by surface-enhanced Raman scattering. Anal Chem 2004; 75:4305-11. [PMID: 14632150 DOI: 10.1021/ac034123o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes formed between G-quadruplex (G4)-conformed oligonucleotides and four ethidium derivatives were studied by surface-enhanced Raman spectroscopy (SERS) to detail the topology of complexes that support a G4 stabilization. Ethidium bromide (EB), which presents a weak ability to stabilize oligonucleotides in G4 conformation, displayed no SERS intensity modification when bound to G4, as compared with the free EB. Three ethidium derivatives have been selected due to their higher ability to stabilize G4 than EB. Bound with G4-conformed oligonucleotides, SERS intensity of these three ethidiums decreased by factors of about 6, 3.5, and 15. The high SERS quenching was interpreted as a loss of accessibility of silver colloids for G4-bound ethidiums. This could represent a new selective parameter useful to identify G4-stabilizing molecules. To apraise the role of the oligonucleotide sequence on the interaction mode, complexes were formed with eight G4-conformed oligonucleotides in which the three loops were either 5'-TTA-3' or 5'-AAA-3'. Spectra of ethidiums were sensitive to both lateral loops, opposite to the 3' and 5' G4 ends. The sequence of these loops are believed to be selective in the interaction mode of ethidiums for G4.
Collapse
Affiliation(s)
- Gilles Breuzard
- Unité MéDIAN CNRS UMR 6142, IFR53, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
| | | | | | | |
Collapse
|
40
|
Soundararajan R, Rao AJ. Trophoblast 'pseudo-tumorigenesis': significance and contributory factors. Reprod Biol Endocrinol 2004; 2:15. [PMID: 15043753 PMCID: PMC407853 DOI: 10.1186/1477-7827-2-15] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/25/2004] [Indexed: 01/01/2023] Open
Abstract
Trophoblast cells of the human placenta proliferate, migrate, and invade the pregnant uterus and its vasculature in order to nourish the developing fetus, in a way that is imitated by malignant tumors. Many similarities exist between embryo implantation and the growth of cancer cells. We begin this article by reviewing decades of studies that have helped unearth the mechanisms that contribute to the tumor-like phenotype of human trophoblast cells. Interestingly, these attributes are only transient in nature, with stringent spatial and temporal confines. The importance of intrinsic molecular controls that effectively circumscribe the extent and duration of trophoblast incursion, becomes increasingly evident in abnormal pregnancies that are characterized by aberrant trophoblast proliferation/invasion. We summarize and discuss the significance of abnormalities in these regulatory mechanisms, and finally, speculate about the use of human trophoblastic cells as model systems for the study of a variety of cellular processes. While on one hand, human placental cells are bestowed with a capacity to proliferate indefinitely and invade extensively, on the other, these cells are also replete with mechanisms to regulate these tumor-like attributes and eventually progress to a senescent apoptotic state. This is therefore, a 'well-behaved' tumor. The comparison in the present review is between the invasive cytotrophoblastic cell type and the tumor cell type.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, India
| | - A Jagannadha Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, India
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore - 560 012, India
| |
Collapse
|
41
|
Dapić V, Abdomerović V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res 2003; 31:2097-107. [PMID: 12682360 PMCID: PMC153744 DOI: 10.1093/nar/gkg316] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Single-stranded guanosine-rich oligodeoxyribonucleotides (GROs) have a propensity to form quadruplex structures that are stabilized by G-quartets. In addition to intense speculation about the role of G-quartet formation in vivo, there is considerable interest in the therapeutic potential of quadruplex oligonucleotides as aptamers or non-antisense antiproliferative agents. We previously have described several GROs that inhibit proliferation and induce apoptosis in cancer cell lines. The activity of these GROs was related to their ability to bind to a specific cellular protein (GRO-binding protein, which has been tentatively identified as nucleolin). In this report, we describe the physical properties and biological activity of a group of 12 quadruplex oligonucleotides whose structures have been characterized previously. This group includes the thrombin-binding aptamer, an anti-HIV oligonucleotide, and several quadruplexes derived from telomere sequences. Thermal denaturation and circular dichroism (CD) spectropolarimetry were utilized to investigate the stability, reversibility and ion dependence of G-quartet formation. The ability of each oligonucleotide to inhibit the proliferation of cancer cells and to compete for binding to the GRO-binding protein was also examined. Our results confirm that G-quartet formation is essential for biological activity of GROs and show that, in some cases, quadruplex structures formed in the presence of potassium ions are significantly more active than those formed in the presence of sodium ions. However, not all quadruplex structures exhibit antiproliferative effects, and the most accurate factor in predicting biological activity was the ability to bind to the GRO-binding protein. Our data also indicate that the CD spectra of quadruplex oligonucleotides may be more complex than previously thought.
Collapse
Affiliation(s)
- Virna Dapić
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Warabi K, Matsunaga S, van Soest RWM, Fusetani N. Dictyodendrins A-E, the first telomerase-inhibitory marine natural products from the sponge Dictyodendrilla verongiformis. J Org Chem 2003; 68:2765-70. [PMID: 12662050 DOI: 10.1021/jo0267910] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Five new alkaloids, dictyodendrins A-E (1-5), were isolated from the Japanese marine sponge Dictyodendrilla verongiformis as telomerase inhibitors. Their structures were elucidated by spectroscopic and chemical methods. Dictyodendrins are tyramine-based pyrrolocarbazole derivatives containing three or four p-hydroxybenzene groups. They inhibited telomerase completely at a concentration of 50 microg/mL.
Collapse
Affiliation(s)
- Kaoru Warabi
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
43
|
Lu Q, Liu W, Ding J, Cai J, Duan W. Shikonin derivatives: synthesis and inhibition of human telomerase. Bioorg Med Chem Lett 2002; 12:1375-8. [PMID: 11992780 DOI: 10.1016/s0960-894x(02)00158-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We synthesized DL-shikonin, shikonin, alkanin, and their cyclo-derivatives and acyl-derivatives. These compounds have low cytotoxicity, as well as inhibitory activity against the telomerase enzyme, except cyclo-derivatives.
Collapse
Affiliation(s)
- Qun Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, SIBS, Chinese Academy of Science, 200031, Shanghai, PR China
| | | | | | | | | |
Collapse
|
44
|
Dapić V, Bates PJ, Trent JO, Rodger A, Thomas SD, Miller DM. Antiproliferative activity of G-quartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry 2002; 41:3676-85. [PMID: 11888284 DOI: 10.1021/bi0119520] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotide-based therapies have considerable potential in cancer, viral, and cardiovascular disease therapies. However, it is becoming clear that the biological effects of oligonucleotides are not solely due to the intended sequence-specific interactions with nucleic acids. Oligonucleotides are also capable of interacting with numerous cellular proteins owing to their polyanionic character or specific secondary structure. We have examined the antiproliferative activity, protein binding, and G-quartet formation of a series of guanosine-rich oligonucleotides, which are analogues of GRO29A, a G-quartet forming, growth-inhibitory oligonucleotide, whose effects we have previously described [Bates P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377]. The GRO29A analogues include phosphorothioate (PS29A), 2'-O-methyl RNA (MR29A), and mixed DNA/2'-O-methyl RNA (MRdG29A) oligonucleotides. We demonstrate by UV spectroscopy that all of the modified analogues form stable structures, which are consistent with G-quartet formation. We find that the phosphorothioate and mixed DNA/2'-O-methyl analogues are able to significantly inhibit proliferation in a number of tumor cell lines, while the 2'-O-methyl RNA has no significant effects. Similar to the original oligonucleotide, GRO29A, the growth inhibitory oligonucleotides were able to compete with the human telomere sequence oligonucleotide for binding to a specific cellular protein. The less active MR29A does not compete significantly for this protein. On the basis of molecular modeling of the oligonucleotide structures, it is likely that the inactivity of MR29A is due to the differences in the groove structure of the quadruplex formed by this oligonucleotide. Interestingly, all GRO29A analogues, including an unmodified DNA phosphodiester oligonucleotide, are remarkably resistant to nuclease degradation in the presence of serum-containing medium, indicating that secondary structure plays an important role in biological stability. The remarkable stability and strong antiproliferative activity of these oligonucleotides confirm their potential as therapeutic agents.
Collapse
Affiliation(s)
- Virna Dapić
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The ends of chromosomes (telomeres) consist of tandem repeats of guanine-rich sequences. In eukaryotics, telomeric DNA is single stranded for the final few hundred bases. These single-stranded sequences can fold into a variety of four-stranded structures (quadruplexes) held together by quartets of hydrogen-bonded guanine bases. The reverse transcriptase enzyme telomerase is responsible for maintaining telomeric DNA length in over 85% of cancer cells by catalyzing the synthesis of further telomeric repeats. Its substrate is the single-stranded 3'-telomeric end. Inhibition of telomere maintenance can be achieved by stabilization of a quadruplex structure for the telomere end. A variety of small molecules have been devised to achieve this, ranging from anthraquinones to porphyrins, acridines, and complex polycyclic systems. Structural and mechanistic aspects of these quadruplex complexes are reviewed here, together with a discussion of the issues of selectivity/potency for quadruplex DNAs vs duplex DNA.
Collapse
Affiliation(s)
- S Neidle
- CRC Biomolecular Structure Unit, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London SW3 6JB, United Kingdom.
| | | |
Collapse
|
46
|
Rosu F, Gabelica V, Houssier C, Colson P, Pauw ED. Triplex and quadruplex DNA structures studied by electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:1729-1736. [PMID: 12207360 DOI: 10.1002/rcm.778] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.
Collapse
Affiliation(s)
- Frédéric Rosu
- Laboratoire de Biospectroscopie, Institut de Chimie (Bat. B6c), Université de Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
47
|
Perry PJ, Arnold JR, Jenkins TC. Telomerase inhibitors for the treatment of cancer: the current perspective. Expert Opin Investig Drugs 2001; 10:2141-56. [PMID: 11772310 DOI: 10.1517/13543784.10.12.2141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomerase is a holoenzyme responsible for the maintenance of telomeres, the protein-nucleic acid complexes at the ends of eukaryotic chromosomes that serve to maintain chromosomal stability and integrity. Telomerase activity is essential for the sustained proliferation of most immortal cells, including cancer cells. Since the discovery that telomerase activity is detected in 85-90% of all human tumours and tumour-derived cell lines but not in most normal somatic cells, telomerase has become the focus of much attention as a novel and potentially highly-specific target for the development of new anticancer chemotherapeutics. Herein we review the current perspective for the development of telomerase inhibitors as cancer chemotherapeutics. These include antisense strategies, reverse transcriptase inhibitors and compounds capable of interacting with high-order telomeric DNA tetraplex ("G-quadruplex") structures, so as to prevent enzyme access to the necessary linear telomere substrate. Critical appraisal of each individual approach is provided together with highlighted areas of likely future development.
Collapse
Affiliation(s)
- P J Perry
- Yorkshire Cancer Research Laboratory of Drug Design, Cancer Research Group, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK.
| | | | | |
Collapse
|
48
|
Boyd M, Mairs RJ, Mairs SC, Wilson L, Livingstone A, Cunningham SH, Brown MM, Quigg M, Keith WN. Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill. Oncogene 2001; 20:7804-8. [PMID: 11753659 DOI: 10.1038/sj.onc.1204955] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 08/31/2001] [Accepted: 09/04/2001] [Indexed: 12/15/2022]
Abstract
One of the most effective ways to kill cancer cells is by treatment of tumours with radiation. However, the administered dose of radiation to the tumour is limited by normal tissue toxicity. Strategies which decrease normal tissue exposure relative to tumour dose are urgently sought. One such promising scheme involves gene transfer, leading to the introduction of transporters specific for pharmaceuticals which can be labelled with radionuclides. We have previously demonstrated in vitro, that transfer of the noradrenaline transporter (NAT) gene, under viral promoter control, induces in host cells the active accumulation of the radiopharmaceutical [131I]meta-iodobenzylguanidine ([131I]MIBG) which results in kill of clonogens. We now report 17-fold enhancement of [131I]MIBG uptake by UVW glioma cells transfected with the NAT gene whose expression is driven by the human telomerase RNA (hTR) promoter (70% the uptake achieved by the strong viral promoter). Multicellular spheroids composed of hTR-NAT-transfected UVW cells exhibited dose-dependent susceptibility to treatment with [131I]MIBG. This was demonstrated by decreased survival of clonogens and complete sterilization of clonogens derived from spheroids and also failure of spheroids to regrow after administration of 7 MBq/ml [131I]MIBG. These data suggest hTR regulated expression of NAT may be an effective gene therapy strategy.
Collapse
Affiliation(s)
- M Boyd
- Department of Radiation Oncology, University of Glasgow, CRC Beatson Laboratories, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Haq I, Chowdhry BZ, Jenkins TC. Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 2001; 340:109-49. [PMID: 11494846 DOI: 10.1016/s0076-6879(01)40420-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- I Haq
- Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
50
|
Kerwin SM, Sun D, Kern JT, Rangan A, Thomas PW. G-quadruplex DNA binding by a series of carbocyanine dyes. Bioorg Med Chem Lett 2001; 11:2411-4. [PMID: 11549435 DOI: 10.1016/s0960-894x(01)00490-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have examined a number of carbocyanine dyes for their ability to bind intramolecular G-quadruplex DNA structures (G4'-DNA) using a Taq polymerase stop assay. Of the five dyes examined, only one, N,N'-diethylthiacarbocyanine iodide (DTC), was found to bind to G4'-DNA. DTC was also the only dye found to inhibit human telomerase at 50 microM concentration.
Collapse
Affiliation(s)
- S M Kerwin
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, 78712, USA.
| | | | | | | | | |
Collapse
|