1
|
Solovieva T, Bronner ME. Congenital heart defects differ following left versus right avian cardiac neural crest ablation. Dev Biol 2025; 519:30-37. [PMID: 39667652 PMCID: PMC11768310 DOI: 10.1016/j.ydbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The cardiac neural crest is critical for the normal development of the heart, as its surgical ablation in the chick recapitulates common human congenital heart defects such as 'Common Arterial Trunk' and 'Double Outlet Right Ventricle' (DORV). While left-right asymmetry is known to be important for heart development, little is known about potential asymmetric differences between right and left cardiac neural folds with respect to heart development. Here, through surgical ablation of either left or right cardiac neural crest, we find that right ablation results in more varied and more severe heart defects. Embryos with Common Arterial Trunk and with missing arteries occurred in right-ablated embryos but were not observed in left-ablated embryos; moreover, embryos with DORV and with misalignment of the arteries were more prevalent following right versus left cardiac crest ablation. In addition, survival of right-ablated embryos was lower than left-ablated embryos. Together, these data raise the intriguing possibility that there may be differences in left versus right cardiac neural crest during heart development.
Collapse
|
2
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Solovieva T, Bronner ME. Congenital heart defects differ following left versus right avian cardiac neural crest ablation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598133. [PMID: 38915725 PMCID: PMC11195056 DOI: 10.1101/2024.06.10.598133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The cardiac neural crest is critical for the normal development of the heart, as its surgical ablation in the chick recapitulates common human congenital heart defects such as 'Common Arterial Trunk' and 'Double Outlet Right Ventricle' (DORV). While left-right asymmetry is known to be important for heart development, little is known about potential asymmetric differences between right and left cardiac neural folds with respect to heart development. Here, through surgical ablation of either left or right cardiac neural crest, we find that right ablation results in more varied and more severe heart defects. Embryos with Common Arterial Trunk and with missing arteries occurred in right-ablated embryos but were not observed in left-ablated embryos; moreover, embryos with DORV and with misalignment of the arteries were more prevalent following right versus left cardiac crest ablation. In addition, survival of right-ablated embryos was lower than left-ablated embryos. Together, these data raise the intriguing possibility that there may be differences in left versus right cardiac neural crest during heart development.
Collapse
|
4
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
5
|
Liu L, Lei I, Wang Z. Improving cardiac reprogramming for heart regeneration. Curr Opin Organ Transplant 2017; 21:588-594. [PMID: 27755167 DOI: 10.1097/mot.0000000000000363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is the leading cause of death in the world today, and the death rate has remained virtually unchanged in the last 20 years (American Heart Association). This severe life-threatening disease underscores a critical need for developing novel therapeutic strategies to effectively treat this devastating disease. Cell-based therapy represents an extremely promising approach. Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers an attractive novel strategy for in-situ heart regeneration. Major challenges of iCM reprogramming include the low conversion rate and heterogeneity of the iCMs. This review will summarize the major advancements in improving the iCM reprogramming efficiency and iCM maturation. RECENT FINDINGS Numerous studies have been published in the past 18 months to describe various strategies for achieving more efficient iCM reprogramming. These strategies are based on our understanding of the molecular mechanisms of cardiogenesis, which include transcriptional networks, signaling pathways and epigenetic cell fate change. SUMMARY Novel strategies for highly efficient iCM reprogramming will be required for applying iCM reprogramming to patients. Creative and combined methods based on our understanding of cardiogenesis will continue to contribute heavily in the advancement of iCM reprogramming. We are highly optimistic that iCM reprogramming-based heart therapy will restore the pumping function of damaged patient hearts.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
6
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
7
|
Xia Z, Tong X, Liang F, Zhang Y, Kuok C, Zhang Y, Liu X, Zhu Z, Lin S, Zhang B. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish. Dev Biol 2013; 381:83-96. [PMID: 23791820 DOI: 10.1016/j.ydbio.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhidan Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Insufficient versican cleavage and Smad2 phosphorylation results in bicuspid aortic and pulmonary valves. J Mol Cell Cardiol 2013; 60:50-9. [PMID: 23531444 DOI: 10.1016/j.yjmcc.2013.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 12/29/2022]
Abstract
Bicuspid or bifoliate aortic valve (BAV) results in two rather than three cusps and occurs in 1-2% of the population placing them at higher risk of developing progressive aortic valve disease. Only NOTCH-1 has been linked to human BAV, and genetically modified mouse models of BAV are limited by low penetrance and additional malformations. Here we report that in the Adamts5(-/-) valves, collagen I, collagen III, and elastin were disrupted in the malformed hinge region that anchors the mature semilunar cusps and where the ADAMTS5 proteoglycan substrate versican, accumulates. ADAMTS5 deficient prevalvular mesenchyme also exhibited a reduction of α-smooth muscle actin and filamin A suggesting versican cleavage may be involved in TGFβ signaling. Subsequent evaluation showed a significant decrease of pSmad2 in regions of prevalvular mesenchyme in Adamts5(-/-) valves. To test the hypothesis that ADAMTS5 versican cleavage is required, in part, to elicit Smad2 phosphorylation we further reduced Smad2 in Adamts5(-/-) mice through intergenetic cross. The Adamts5(-/-);Smad2(+/-) mice had highly penetrant BAV and bicuspid pulmonary valve (BPV) malformations as well as increased cusp and hinge size compared to the Adamts5(-/-) and control littermates. These studies demonstrate that semilunar cusp malformations (BAV and BPV) can arise from a failure to remodel the proteoglycan-rich provisional ECM. Specifically, faulty versican clearance due to ADAMTS5 deficiency blocks the initiation of pSmad2 signaling, which is required for excavation of endocardial cushions during aortic and pulmonary valve development. Further studies using the Adamts5(-/-); Smad2(+/-) mice with highly penetrant and isolated BAV, may lead to new pharmacological treatments for valve disease.
Collapse
|
9
|
Abstract
The heart holds the monumental yet monotonous task of maintaining circulation. Although cardiac function is critical to other organs and to life itself, mammals are not equipped with significant natural capacity to replace heart muscle that has been lost by injury. This deficiency plays a role in leaving millions worldwide vulnerable to heart failure each year. By contrast, certain other vertebrate species such as zebrafish are strikingly good at heart regeneration. A cellular and molecular understanding of endogenous regenerative mechanisms and advances in methodology to transplant cells together project a future in which cardiac muscle regeneration can be therapeutically stimulated in injured human hearts. This review focuses on what has been discovered recently about cardiac regenerative capacity and how natural mechanisms of heart regeneration in model systems are stimulated and maintained.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.
| | | |
Collapse
|
10
|
Exploitation of chick embryo environments to reprogram MYCN-amplified neuroblastoma cells to a benign phenotype, lacking detectable MYCN expression. Oncogenesis 2012; 1:e24. [PMID: 23552815 PMCID: PMC3503288 DOI: 10.1038/oncsis.2012.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuroblastoma is a paediatric cancer that arises from the sympathetic ganglia (SG) or adrenal gland. Tumours that occur in patients under 18 months of age have a particularly good prognosis and frequently undergo spontaneous regression. This led to the hypothesis that developmental cues in the youngest patients may prompt belated differentiation and/or apoptosis of the tumour cells. To test our hypothesis, we have injected MYCN-amplified neuroblastoma cells into the extra embryonic veins of chick embryos at embryonic day 3 (E3) and E6 and analysed the response of these Kelly cells at E10 and E14. Amplification of the MYCN gene occurs in up to 30% of tumours and is normally associated with a very poor prognosis. Kelly cells injected at E3 follow neural crest pathways and integrate into neural locations such as SG and the enteric nervous system although never into the adrenal gland. Additionally they migrate to non-neural locations such as the heart, meninges, jaw regions and tail. The cells respond to their respective microenvironments and in SG, some cells differentiate, they show reduced cell division and crucially all cells have undetectable MYCN expression by E10. In non-neural locations, cells form more rapidly dividing clumps and continue to express MYCN. The downregulation of MYCN is dependent on continuous and direct interaction with the sympathetic ganglion environment. We propose that the MYCN-amplicon in the Kelly cells retains the ability to correctly interpret the environmental cues leading to downregulation of MYCN.
Collapse
|
11
|
Abstract
The heart is electrically and mechanically controlled as a syncytium by the autonomic nervous system. The cardiac nervous system comprises the sympathetic, parasympathetic, and sensory nervous systems that together regulate heart function on demand. Sympathetic electric activation was initially considered the main regulator of cardiac function; however, modern molecular biotechnological approaches have provided a new dimension to our understanding of the mechanisms controlling the cardiac nervous system. The heart is extensively innervated, although the innervation density is not uniform within the heart, being high in the subepicardium and the special conduction system. We and others showed previously that the balance between neural chemoattractants and chemorepellents determine cardiac nervous development, with both factors expressed in heart. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this well-organized molecular balance and innervation density can induce sudden cardiac death due to lethal arrhythmias. In diseased hearts, various causes and mechanisms underlie cardiac sympathetic abnormalities, although their detailed pathology and significance remain contentious. We reported that cardiac sympathetic rejuvenation occurs in cardiac hypertrophy and, moreover, interleukin-6 cytokines secreted from the failing myocardium induce cholinergic transdifferentiation of the cardiac sympathetic system via a gp130 signaling pathway, affecting cardiac performance and prognosis. In this review, we summarize the molecular mechanisms involved in sympathetic development, maturation, and transdifferentiation, and propose their investigation as new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Kensuke Kimura
- Division of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
12
|
Sizarov A, Lamers WH, Mohun TJ, Brown NA, Anderson RH, Moorman AFM. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat 2012; 220:336-49. [PMID: 22296102 DOI: 10.1111/j.1469-7580.2012.01474.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Labeling experiments in chicken and mouse embryos have revealed important roles for different cell lineages in the development of the cardiac arterial pole. These data can only fully be exploited when integrated into the continuously changing morphological context and compared with the patterns of gene expression. As yet, studies on the formation of separate ventricular outlets and arterial trunks in the human heart are exclusively based on histologically stained sections. So as to expand these studies, we performed immunohistochemical analyses of serially sectioned human embryos, along with three-dimensional reconstructions. The development of the cardiac arterial pole involves several parallel and independent processes of formation and fusion of outflow tract cushions, remodeling of the aortic sac and closure of an initial aortopulmonary foramen through formation of a transient aortopulmonary septum. Expression patterns of the transcription factors ISL1, SOX9 and AP2α show that, in addition to fusion of the SOX9-positive endocardial cushions, intrapericardial protrusion of pharyngeal mesenchyme derived from the neural crest contributes to the separation of the developing ascending aorta from the pulmonary trunk. The non-adjacent walls of the intrapericardial arterial trunks are formed through addition of ISL1-positive cells to the distal outflow tract, while the facing parts of the walls form from the protruding mesenchyme. The morphogenetic steps, along with the gene expression patterns reported in this study, are comparable to those observed in the mouse. They confirm the involvement of mesenchymal tissues derived from endocardium, mesoderm and migrating neural crest cells in the process of initial septation of the distal part of the outflow tract, and its subsequent separation into discrete intrapericardial arterial trunks.
Collapse
Affiliation(s)
- Aleksander Sizarov
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The past few years have witnessed remarkable advances in stem cell biology and human genetics, and we have arrived at an era in which patient-specific cell and tissue models are now practical. The recent identification of cardiovascular progenitor cells, as well as the identification of genetic variants underlying congenital heart disorders and adult disease, opens the door to the development of human models of human cardiovascular disease. We review the current understanding of the contribution of progenitor cells to cardiogenesis and outline how pluripotent stem cells can be applied to the modeling of cardiovascular disorders of genetic origin. A key challenge will be to implement these models in an efficient manner to develop a molecular understanding of how genes lead to disease and to screen for genes and drugs that modify the disease process.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
14
|
Abstract
Insight into the mechanisms underlying congenital heart defects and the use of stem cells for cardiac repair are major research goals in cardiovascular biology. In the early embryo, progenitor cells in pharyngeal mesoderm contribute to the rapid growth of the heart tube during looping morphogenesis. These progenitor cells constitute the second heart field (SHF) and were first identified in 2001. Direct or indirect perturbation of SHF addition to the heart results in congenital heart defects, including arterial pole alignment defects. Over the last 3 years, a number of studies have identified key intercellular signaling pathways that control the proliferation and deployment of SHF progenitor cells. Here, we review data concerning Wnt, fibroblast growth factor, bone morphogenetic protein, Hedgehog, and retinoic acid signaling that have begun to identify the ligand sources and responding cell types controlling SHF development. These studies have revealed the importance of signals from pharyngeal mesoderm itself, as well as critical inputs from adjacent pharyngeal epithelia and neural crest cells. Proliferation is emerging as a central checkpoint in the regulation of SHF development. Together, these studies contribute to defining the niche of cardiac progenitor cells in the early embryo, and we discuss the implications of these findings for the regulation of resident stem cell populations in the fetal and postnatal heart. Characterization of signals that maintain, expand, and regulate the differentiation of cardiac progenitor cells is essential for understanding both the etiology of congenital heart defects and the biomedical application of stem cell populations for cardiac repair.
Collapse
Affiliation(s)
- Francesca Rochais
- Developmental Biology Institute of Marseilles-Luminy, UMR 6216 Centre National de la Recherche Scientifique-Université de laMéditerranée, Campus de Luminy, Marseille, France
| | | | | |
Collapse
|
15
|
Savolainen SM, Foley JF, Elmore SA. Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol Pathol 2009; 37:395-414. [PMID: 19359541 DOI: 10.1177/0192623309335060] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In humans, congenital heart diseases are common. Since the rapid progression of transgenic technologies, the mouse has become the major animal model of defective cardiovascular development. Moreover, genetically modified mice frequently die in utero, commonly due to abnormal cardiovascular development. A variety of publications address specific developmental stages or structures of the mouse heart, but a single reference reviewing and describing the anatomy and histology of cardiac developmental events, stage by stage, has not been available. The aim of this color atlas, which demonstrates embryonic/fetal heart development, is to provide a tool for pathologists and biomedical scientists to use for detailed histological evaluation of hematoxylin and eosin (H&E)-stained sections of the developing mouse heart with emphasis on embryonic days (E) 11.5-18.5. The selected images illustrate the main structures and developmental events at each stage and serve as reference material for the confirmation of the chronological age of the embryo/early fetus and assist in the identification of any abnormalities. An extensive review of the literature covering cardiac development pre-E11.5 is summarized in the introduction. Although the focus of this atlas is on the descriptive anatomic and histological development of the normal mouse heart from E11.5 to E18.5, potential embryonic cardiac lesions are discussed with a list of the most common transgenic pre- and perinatal heart defects. Representative images of hearts at E11.5-15.5 and E18.5 are provided in Figures 2-4, 6, 8, and 9. A complete set of labeled images (Figures E11.5-18.5) is available on the CD enclosed in this issue of Toxicologic Pathology. All digital images can be viewed online at https://niehsimages.epl-inc.com with the username "ToxPath" and the password "embryohearts."
Collapse
Affiliation(s)
- Saija M Savolainen
- NIEHS, Cellular and Molecular Pathology Branch, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
16
|
Brown CB, Baldwin HS. Neural crest contribution to the cardiovascular system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:134-54. [PMID: 17076279 DOI: 10.1007/978-0-387-46954-6_8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Normal cardiovascular development requires complex remodeling of the outflow tract and pharyngeal arch arteries to create the separate pulmonic and systemic circulations. During remodeling, the outflow tract is septated to form the ascending aorta and the pulmonary trunk. The initially symmetrical pharyngeal arch arteries are remodeled to form the aortic arch, subclavian and carotid arteries. Remodeling is mediated by a population of neural crest cells arising between the mid-otic placode and somite four called the cardiac neural crest. Cardiac neural crest cells form smooth muscle and pericytes in the great arteries, and the neurons of cardiac innervation. In addition to the physical contribution of smooth muscle to the cardiovascular system, cardiac neural crest cells also provide signals required for the maintenance and differentiation of the other cell layers in the pharyngeal apparatus. Reciprocal signaling between the cardiac neural crest cells and cardiogenic mesoderm of the secondary heart field is required for elaboration of the conotruncus and disruption in this signaling results in primary myocardial dysfunction. Cardiovascular defects attributed to the cardiac neural crest cells may reflect either cell autonomous defects in the neural crest or defects in signaling between the neural crest and adjacent cell layers.
Collapse
Affiliation(s)
- Christopher B Brown
- Department of Pediatrics, Vanderbilt University Medical Center, B3301 MCN, Nashville, Tennessee 37232-2495, USA.
| | | |
Collapse
|
17
|
Rosenquist TH, Bennett GD, Brauer PR, Stewart ML, Chaudoin TR, Finnell RH. Microarray analysis of homocysteine-responsive genes in cardiac neural crest cells in vitro. Dev Dyn 2007; 236:1044-54. [PMID: 17326132 DOI: 10.1002/dvdy.21101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The amino acid homocysteine increases in the serum when there is insufficient folic acid or vitamin B(12), or with certain mutations in enzymes important in methionine metabolism. Elevated homocysteine is related to increased risk for cardiovascular and other diseases in adults and elevated maternal homocysteine increases the risk for certain congenital defects, especially those that result from abnormal development of the neural crest and neural tube. Experiments with the avian embryo model have shown that elevated homocysteine perturbs neural crest/neural tube migration in vitro and in vivo. Whereas there have been numerous studies of homocysteine-induced changes in gene expression in adult cells, there is no previous report of a homocysteine-responsive transcriptome in the embryonic neural crest. We treated neural crest cells in vitro with exogenous homocysteine in a protocol that induces significant changes in neural crest cell migration. We used microarray analysis and expression profiling to identify 65 transcripts of genes of known function that were altered by homocysteine. The largest set of effected genes (19) included those with a role in cell migration and adhesion. Other major groups were genes involved in metabolism (13); DNA/RNA interaction (11); cell proliferation/apoptosis (10); and transporter/receptor (6). Although the genes identified in this experiment were consistent with prior observations of the effect of homocysteine upon neural crest cell function, none had been identified previously as response to homocysteine in adult cells.
Collapse
Affiliation(s)
- T H Rosenquist
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-7878, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Gurjarpadhye A, Hewett KW, Justus C, Wen X, Stadt H, Kirby ML, Sedmera D, Gourdie RG. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 2007; 292:H1291-300. [PMID: 17172273 DOI: 10.1152/ajpheart.01017.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retroviral and transgenic lineage-tracing studies have shown that neural crest cells associate with the developing bundles of the ventricular conduction system. Whereas this migration of cells does not provide progenitors for the myocardial cells of the conduction system, the question of whether neural crest affects the differentiation and/or function of cardiac specialized tissues continues to be of interest. Using optical mapping of voltage-sensitive dye, we determined that ventricles from chick embryos in which the cardiac neural crest had been laser ablated did not progress to apex-to-base activation by the expected stage [i.e., Hamburger and Hamilton (HH) 35] but instead maintained basal breakthroughs of epicardial activation consistent with immature function of the conduction system. In direct studies of activation, waves of depolarization originating from the His bundle were found to be uncommon in control hearts from HH34 and HH35 embryos. However, activations propagating from septal base, at or near the His bundle, occurred frequently in hearts from HH34 and HH35 neural crest-ablated embryos. Consistent with His bundle cells maintaining electrical connections with adjacent working myocytes, histological analyses of hearts from neural crest-ablated embryos revealed His bundles that had not differentiated a lamellar organization or undergone a process of compaction and separation from surrounding myocardium observed in controls. Furthermore, measurements on histological sections from optically mapped hearts indicated that, whereas His bundle diameter in control embryos thinned by almost one-half between HH30 and HH34, the His bundle in ablated embryos underwent no such compaction in diameter, maintaining a thickness at HH30, HH32, and HH34 similar to that observed in HH30 controls. We conclude that the cardiac neural crest is required in a novel function involving lamellar compaction and electrical isolation of the basally located His bundle from surrounding myocardium.
Collapse
|
19
|
|
20
|
Sweetman D, Münsterberg A. The vertebrate spalt genes in development and disease. Dev Biol 2006; 293:285-93. [PMID: 16545361 DOI: 10.1016/j.ydbio.2006.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/01/2006] [Accepted: 02/05/2006] [Indexed: 02/02/2023]
Abstract
The spalt proteins are encoded by a family of evolutionarily conserved genes found in species as diverse as Drosophila, C. elegans and vertebrates. In humans, mutations in some of these genes are associated with several congenital disorders which underscores the importance of spalt gene function in embryonic development. Recent studies have begun to cast light on the functions of this family of proteins with increasing understanding of the developmental processes regulated and the molecular mechanisms used. Here we review what is currently known about the role of spalt genes in vertebrate development and human disease.
Collapse
Affiliation(s)
- Dylan Sweetman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
21
|
Martinsen BJ, Neumann AN, Frasier AJ, Baker CVH, Krull CE, Lohr JL. PINCH-1 expression during early avian embryogenesis: implications for neural crest and heart development. Dev Dyn 2006; 235:152-62. [PMID: 16258920 DOI: 10.1002/dvdy.20616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent OFT septation are critical events during vertebrate heart development. We previously had performed four modified differential display (DD) screens in the chick embryo to identify genes that may be involved in CNC and heart development. Full-length sequence of one of the DD clones has been obtained and identified as chick PINCH-1. This particularly interesting new cysteine-histidine-rich protein contains five protein-binding LIM domains (five double zinc fingers), a nuclear localization signal, and a nuclear export signal, allowing it to participate in integrin and growth factor signaling and possibly act as a transcription factor. We show here for the first time that chick PINCH-1 is expressed in neural crest cells, both in the neural fold and cardiac OFT, and is also expressed in mesoderm derived-structures, including the myocardium, during avian embryogenesis. The normal expression pattern and overexpression in neural crest cell explants suggest that PINCH-1 may be a regulator of neural crest cell adhesion and migration.
Collapse
Affiliation(s)
- Brad J Martinsen
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Balmer CW, LaMantia AS. Noses and neurons: induction, morphogenesis, and neuronal differentiation in the peripheral olfactory pathway. Dev Dyn 2006; 234:464-81. [PMID: 16193510 DOI: 10.1002/dvdy.20582] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Non-axial mesenchymal/epithelial (M/E) induction guides peripheral olfactory pathway differentiation using cellular and molecular mechanisms similar to those in the developing limbs, aortic arches, and branchial arches. At each of these bilaterally symmetric sites off the midline axis, a thickened ectodermal epithelium is apposed to a specialized mesenchyme derived largely, but not exclusively, from the neural crest. The capacity of M/E interaction in the olfactory primordia (the combined olfactory placodal epithelium and adjacent mesenchyme) to induce a distinct class of sensory receptor neurons-olfactory receptor neurons-suggests that this mechanism has been modified to accommodate neurogenesis, neurite outgrowth, and axon guidance, in addition to musculoskeletal differentiation, chondrogenesis, and vasculogenesis. Accordingly, although the olfactory primordia share signaling molecules and transcriptional regulators with other bilaterally symmetric, non-axial sites such as limb buds, their activity may be adapted to mediate distinct aspects of cellular differentiation and process outgrowth during the initial assembly of a sensory pathway-the primary olfactory pathway-during early forebrain development.
Collapse
Affiliation(s)
- Curtis W Balmer
- Department of Cell and Molecular Physiology and UNC Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
23
|
Ward C, Stadt H, Hutson M, Kirby ML. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 2005; 284:72-83. [PMID: 15950213 DOI: 10.1016/j.ydbio.2005.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/22/2005] [Accepted: 05/04/2005] [Indexed: 11/23/2022]
Abstract
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.
Collapse
Affiliation(s)
- Cary Ward
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Cardiac progenitors of the splanchnic mesoderm (primary and secondary heart field), cardiac neural crest, and the proepicardium are the major embryonic contributors to chick heart development. Their contribution to cardiac development occurs with precise timing and regulation during such processes as primary heart tube fusion, cardiac looping and accretion, cardiac septation, and the development of the coronary vasculature. Heart development is even more complex if one follows the development of the cardiac innervation, cardiac pacemaking and conduction system, endocardial cushions, valves, and even the importance of apoptosis for proper cardiac formation. This review is meant to provide a reference guide (Table 1) on the developmental timing according to the staging of Hamburger and Hamilton (1951) (HH) of these important topics in heart development for those individuals new to a chick heart research laboratory. Even individuals outside of the heart field, who are working on a gene that is also expressed in the heart, will gain information on what to look for during chick heart development. This reference guide provides complete and easy reference to the stages involved in heart development, as well as a global perspective of how these cardiac developmental events overlap temporally and spatially, making it a good bench top companion to the many recently written in-depth cardiac reviews of the molecular aspects of cardiac development.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, Division of Pediatric Cardiology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Dettlaff-Swiercz DA, Wettschureck N, Moers A, Huber K, Offermanns S. Characteristic defects in neural crest cell-specific Galphaq/Galpha11- and Galpha12/Galpha13-deficient mice. Dev Biol 2005; 282:174-82. [PMID: 15936338 DOI: 10.1016/j.ydbio.2005.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/08/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
The endothelin/endothelin receptor system plays a critical role in the differentiation and terminal migration of particular neural crest cell subpopulations. Targeted deletion of the G-protein-coupled endothelin receptors ET(A) and ET(B) was shown to result in characteristic developmental defects of derivatives of cephalic and cardiac neural crest and of neural crest-derived melanocytes and enteric neurons, respectively. Since both endothelin receptors are coupled to G-proteins of the G(q)/G(11)- and G(12)/G(13)-families, we generated mouse lines lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13) in neural crest cells to study their roles in neural crest development. Mice lacking Galpha(q)/Galpha(11) in a neural crest cell-specific manner had craniofacial defects similar to those observed in mice lacking the ET(A) receptor or endothelin-1 (ET-1). However, in contrast to ET-1/ET(A) mutant animals, cardiac outflow tract morphology was intact. Surprisingly, neither Galpha(q)/Galpha(11)- nor Galpha(12)/Galpha(13)-deficient mice showed developmental defects seen in animals lacking either the ET(B) receptor or its ligand endothelin-3 (ET-3). Interestingly, Galpha(12)/Galpha(13) deficiency in neural crest cell-derived cardiac cells resulted in characteristic cardiac malformations. Our data show that G(q)/G(11)- but not G(12)/G(13)-mediated signaling processes mediate ET-1/ET(A)-dependent development of the cephalic neural crest. In contrast, ET-3/ET(B)-mediated development of neural crest-derived melanocytes and enteric neurons appears to involve G-proteins different from G(q)/G(11)/G(12)/G(13).
Collapse
|
27
|
Ecker PM, Lin CC, Powers J, Kobilka BK, Dubin AM, Bernstein D. Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability. Am J Physiol Heart Circ Physiol 2005; 290:H192-9. [PMID: 16113068 DOI: 10.1152/ajpheart.00032.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-adrenergic receptors (beta-ARs) play a major role in regulating heart rate (HR) and contractility in the intact cardiovascular system. Three subtypes (beta1, beta2, and beta3) are expressed in heart tissue, and the role of each subtype in regulating cardiac function has previously been determined by using both pharmacological and gene-targeting approaches. However, previous studies have only examined the role of beta-ARs in the macrolevel regulation of HR. We employed three knockout (KO) mouse lines, beta1-KO, beta2-KO, and beta1/beta2 double KO (DL-KO), to examine the role that beta-AR subtypes play in HR variability (HRV) and in the sympathetic and parasympathetic inputs into HR control. Fast Fourier transformation (FFT) in frequency domain methods of ECG spectral analysis was used to resolve HRV into high- and low-frequency (HF and LF) powers. Resting HR (in beats/min) was decreased in beta1-KO [488 (SD 27)] and DL-KO [495 (SD 12)] mice compared with wild-type [WT; 638 (SD 30)] or beta2-KO [656 (SD 51)] (P < 0.0005) mice. Mice lacking beta1-ARs (beta1-KO and DL-KO) had increased HRV (as illustrated by the standard deviation of normal R-R intervals) and increased normalized HF and LF powers compared with mice with intact beta1-ARs (WT and beta2-KO). These results demonstrate the differential role of beta-AR subtypes in regulating autonomic signaling.
Collapse
Affiliation(s)
- Phillip M Ecker
- Dept. of Pediatrics, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Neural crest cells (NCCs) contribute to many organs and tissues during embryonic development. Amongst these, the cardiovascular system represents a fascinating example. In this review, recent advances in our understanding of the developmental biology and molecular genetics regulating cardiac NCC maturation will be summarized. While the existence of a significant neural crest (NC) contribution to the developing heart has been appreciated for more than 20 years, only in the last few years have molecular pathways regulating this process been elucidated and the significant contribution of these mechanisms to the etiology of congenital heart disease in man become apparent. Emerging data suggest that ongoing studies will reveal complex inductive interactions between cardiac NC and a series of other cell types contributing to the developing cardiovascular system.
Collapse
Affiliation(s)
- Jason Z Stoller
- Division of Neonatology, Children's Hospital of Philadelphia and Cardiovascular Division, Department of Medicine, University of Pennsylvania School of Medicine, 954 BRB II, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 2004; 131:3481-90. [PMID: 15226263 DOI: 10.1242/dev.01214] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac neural crest cells are multipotent migratory cells that contribute to the formation of the cardiac outflow tract and pharyngeal arch arteries. Neural crest-related developmental defects account for a large proportion of congenital heart disorders. Recently, the genetic bases for some of these disorders have been elucidated, and signaling pathways required for induction,migration and differentiation of cardiac neural crest have emerged. Bone morphogenetic proteins comprise a family of secreted ligands implicated in numerous aspects of organogenesis, including heart and neural crest development. However, it has remained generally unclear whether BMP ligands act directly on neural crest or cardiac myocytes during cardiac morphogenesis,or function indirectly by activating other cell types. Studies on BMP receptor signaling during organogenesis have been hampered by the fact that receptor knockouts often lead to early embryonic lethality. We have used a Cre/loxP system for neural crest-specific deletion of the type I receptor, ALK2, in mouse embryos. Mutant mice display cardiovascular defects, including persistent truncus arteriosus, and abnormal maturation of the aortic arch reminiscent of common forms of human congenital heart disease. Migration of mutant neural crest cells to the outflow tract is impaired, and differentiation to smooth muscle around aortic arch arteries is deficient. Moreover, in Alk2 mutants, the distal outflow tract fails to express Msx1, one of the major effectors of BMP signaling. Thus, the type I BMP receptor ALK2 plays an essential cell-autonomous role in the development of the cardiac outflow tract and aortic arch derivatives.
Collapse
Affiliation(s)
- Vesa Kaartinen
- Developmental Biology Program, The Saban Research Institute of Childrens' Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The heart is the first organ to form in the embryo, and all subsequent events in the life of the organism depend on its function. Inherited mutations in cardiac regulatory genes give rise to congenital heart disease, the most common form of human birth defects, and abnormalities of the adult heart represent the most prevalent cause of morbidity and mortality in the industrialized world. The past decade has marked a transition from physiological and functional studies of the heart toward a deeper understanding of cardiac function (and dysfunction) at genetic and molecular levels. These discoveries have provided new therapeutic approaches for prevention and palliation of cardiac disease and have raised new questions, challenges and opportunities for the future.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-9148, USA.
| |
Collapse
|
31
|
Stottmann RW, Choi M, Mishina Y, Meyers EN, Klingensmith J. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development 2004; 131:2205-18. [PMID: 15073157 PMCID: PMC3004289 DOI: 10.1242/dev.01086] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium.
Collapse
Affiliation(s)
- Rolf W. Stottmann
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Murim Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuji Mishina
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Erik N. Meyers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - John Klingensmith
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Author for correspondence ()
| |
Collapse
|
32
|
Abstract
Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for cardiomyocyte proliferation probably contributes to the irreversibility of heart failure. Knowledge of the molecular mechanisms that underly formation of heart muscle cells might provide opportunities to repair the diseased heart by induction of (trans) differentiation of endogenous or exogenous cells into heart muscle cells. We briefly review the molecular mechanisms involved in early development of the linear heart tube by differentiation of mesodermal cells into heart muscle cells. Because the initial heart tube does not comprise all the cardiac compartments present in the adult heart, heart muscle cells are added to the distal borders of the tube and within the tube. At both distal borders, mesodermal cell are recruited into the cardiac lineage and, within the heart tube, muscular septa are formed. In this review, the relative late additions of heart muscle cells to the linear heart tube are described and the potential underlying molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Maurice J B van den Hoff
- Molecular and Experimental Cardiology Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Shiraishi I, Yamagishi M, Toiyama K, Osawa Y, Nakagawa M, Takahashi A, Shuntoh K, Hamaoka K. Coronary artery obstruction due to membranous ridge of the right sinus valsalva associated with Tetralogy of Fallot: syncope mimics anoxic spell. Ann Thorac Surg 2004; 77:321-2. [PMID: 14726090 DOI: 10.1016/s0003-4975(03)00751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report an infant with Tetralogy of Fallot who had suffered from repetitive attacks of syncope without obvious cyanosis. Careful observation by means of echocardiography and angiography revealed that the attacks resulted from acute coronary artery obstruction due to membranous ridge covering the sinus Valsalva. Surgical resection of the abnormal ridge and repair of Tetralogy of Fallot successfully improved the patient's symptoms. Syncope in children should be extensively investigated to exclude obstruction of the coronary arteries.
Collapse
Affiliation(s)
- Isao Shiraishi
- Department of Pediatrics, Children's Research Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev 2003; 83:1223-67. [PMID: 14506305 DOI: 10.1152/physrev.00006.2003] [Citation(s) in RCA: 478] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Concepts of cardiac development have greatly influenced the description of the formation of the four-chambered vertebrate heart. Traditionally, the embryonic tubular heart is considered to be a composite of serially arranged segments representing adult cardiac compartments. Conversion of such a serial arrangement into the parallel arrangement of the mammalian heart is difficult to understand. Logical integration of the development of the cardiac conduction system into the serial concept has remained puzzling as well. Therefore, the current description needed reconsideration, and we decided to evaluate the essentialities of cardiac design, its evolutionary and embryonic development, and the molecular pathways recruited to make the four-chambered mammalian heart. The three principal notions taken into consideration are as follows. 1) Both the ancestor chordate heart and the embryonic tubular heart of higher vertebrates consist of poorly developed and poorly coupled "pacemaker-like" cardiac muscle cells with the highest pacemaker activity at the venous pole, causing unidirectional peristaltic contraction waves. 2) From this heart tube, ventricular chambers differentiate ventrally and atrial chambers dorsally. The developing chambers display high proliferative activity and consist of structurally well-developed and well-coupled muscle cells with low pacemaker activity, which permits fast conduction of the impulse and efficacious contraction. The forming chambers remain flanked by slowly proliferating pacemaker-like myocardium that is temporally prevented from differentiating into chamber myocardium. 3) The trabecular myocardium proliferates slowly, consists of structurally poorly developed, but well-coupled, cells and contributes to the ventricular conduction system. The atrial and ventricular chambers of the formed heart are activated and interconnected by derivatives of embryonic myocardium. The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart. This view on the development of cardiac design unfolds fascinating possibilities for future research.
Collapse
Affiliation(s)
- Antoon F M Moorman
- Department of Anatomy & Embryology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Yelbuz TM, Waldo KL, Zhang X, Zdanowicz M, Parker J, Creazzo TL, Johnson GA, Kirby ML. Myocardial volume and organization are changed by failure of addition of secondary heart field myocardium to the cardiac outflow tract. Dev Dyn 2003; 228:152-60. [PMID: 14517987 DOI: 10.1002/dvdy.10364] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac neural crest ablation results in primary myocardial dysfunction and failure of the secondary heart field to add the definitive myocardium to the cardiac outflow tract. The current study was undertaken to understand the changes in myocardial characteristics in the heart tube, including volume, proliferation, and cell size when the myocardium from the secondary heart field fails to be added to the primary heart tube. We used magnetic resonance and confocal microscopy to determine that the volume of myocardium in the looped heart was dramatically reduced and the compact layer of myocardium was thinner after neural crest ablation, especially in the outflow tract and ventricular regions. Proliferation measured by 5-bromo-2'-deoxyuridine incorporation was elevated at only one stage during looping, cell death was normal and myocardial cell size was increased. Taken together, these results indicate that there are fewer myocytes in the heart. By incubation day 8 when the heart would have normally completed septation, the anterior (ventral) wall of the right ventricle and right ventricular outflow tract was significantly thinner in the neural crest-ablated embryos than normal, but the thickness of the compact myocardium was normal in all other regions of the heart. The decreased volume and number of myocardial cells in the heart tube after neural crest ablation most likely reflects the amount of myocardium added by the secondary heart field.
Collapse
Affiliation(s)
- T Mesud Yelbuz
- Neonatal Perinatal Research Institute, Division of Neonatology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The issue of postnatal neurogenesis has gained great importance over the last few years and the recent amazing scientific advancements, changing our viewpoint on the long-lasting "no new neurons" dogma, have opened promising new perspectives on the treatment of the damaged nervous system. While most of the researchers have focused on the central nervous system, the peripheral nervous system has received little attention so far with respect to postnatal histogenesis. To attract scientific attention on this issue, the present article was written with the aim of reviewing the body of literature on postnatal histogenesis in the various districts of the peripheral nervous system, from the historical roots to the most recent reports.
Collapse
Affiliation(s)
- Stefano Geuna
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| | | | | |
Collapse
|
37
|
Abstract
Building a vertebrate heart is a complex task and involves several tissues, including the myocardium, endocardium, neural crest, and epicardium. Interactions between these tissues result in the changes in function and morphology (and also in the extracellular matrix, which serves as a substrate for morphological change) that are requisite for development of the heart. Some of the signaling pathways that mediate these changes have now been identified and several investigators are now filling in the missing pieces in these pathways in hopes of ultimately understanding the molecular mechanisms that govern healthy heart development. In addition, transcription factors that regulate various aspects of heart development have been identified. Transcription factors of the GATA and Nkx2 families are of particular importance for early specification of the heart field and for regulating expression of genes that encode proteins of the contractile apparatus. This chapter highlights some of the most significant discoveries made in the rapidly expanding field of heart development.
Collapse
Affiliation(s)
- M J Farrell
- Developmental Biology Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
38
|
Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001; 27:293-8. [PMID: 11242111 DOI: 10.1038/85855] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heterozygous deletions within human chromosome 22q11 are the genetic basis of DiGeorge/velocardiofacial syndrome (DGS/VCFS), the most common deletion syndrome (1 in 4,000 live births) in humans. CRKL maps within the common deletion region for DGS/VCFS (ref. 2) and encodes an SH2-SH3-SH3 adapter protein closely related to the Crk gene products. Here we report that mice homozygous for a targeted null mutation at the CrkL locus (gene symbol Crkol for mice) exhibit defects in multiple cranial and cardiac neural crest derivatives including the cranial ganglia, aortic arch arteries, cardiac outflow tract, thymus, parathyroid glands and craniofacial structures. We show that the migration and early expansion of neural crest cells is unaffected in Crkol-/- embryos. These results therefore indicate an essential stage- and tissue-specific role for Crkol in the function, differentiation, and/or survival of neural crest cells during development. The similarity between the Crkol-/- phenotype and the clinical manifestations of DGS/VCFS implicate defects in CRKL-mediated signaling pathways as part of the molecular mechanism underlying this syndrome.
Collapse
Affiliation(s)
- D L Guris
- The Ben May Institute for Cancer Research and Center for Molecular Oncology, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|