1
|
He S, Yu J, Cheng P, Liu J, Zhang C, Xu C, Pu K, Zhang Y. Differential Optical Imaging of Antigen Presentation Machinery Using Molecular Optical Reporters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420393. [PMID: 40370186 DOI: 10.1002/adma.202420393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Detection of antigen presentation is central to understanding immunological processes and developing therapeutics for cancer, infectious diseases, and allergies. However, methods with the ability to dynamically and noninvasively distinguish between major histocompatibility complex class I (MHC-I) and MHC-II antigen presentations remain lacking. Herein, we develop activatable molecular optical reporters (MORs) for real-time differential imaging of antigen presentations in lymph nodes (LNs). These MORs are engineered to passively target LNs and activated through proteolytic cleavage by key enzymes in the MHC-I and MHC-II pathways, the immunoproteasome (iP) and cathepsin S (CTSS), respectively, triggering their chemiluminescent or fluorescent signals. Coupled with minimized signal crosstalk and high sensitivity, MORs delineate the subtle differences in the antigen presentation machinery across various disease models, including cancer and bacterial or viral infection, a feat unattainable for existing imaging methods. After systemic administration, MORs also allow real-time visualization of antigen presentation in the tumor microenvironment. Besides, MORs are validated to have potential for preclinical application in immunotherapeutics screening and clinical application in tissue biopsy. Thus, our study not only presents the first example of real-time, in vivo differential imaging of antigen presentation pathways but also opens new avenues for optical probes in immune contexture analysis.
Collapse
Affiliation(s)
- Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Yu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Torrente D, Su EJ, Citalán-Madrid AF, Schielke GP, Magaoay D, Warnock M, Stevenson T, Mann K, Lesept F, Delétage N, Blanc M, Norris EH, Vivien D, Lawrence DA. The interaction of tPA with NMDAR1 drives neuroinflammation and neurodegeneration in α-synuclein-mediated neurotoxicity. J Neuroinflammation 2025; 22:8. [PMID: 39810216 PMCID: PMC11731172 DOI: 10.1186/s12974-025-03336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice. We further investigate tPA's potential role in SN pathology in an α-synuclein mouse model of Parkinson's disease (PD). To characterize the mechanism of tPA action in α-synuclein-mediated pathology in the SN and to identify possible therapeutic pathways, we performed RNA-seq analysis of the SN and used multiple transgenic mouse models. These included tPA deficient mice and two newly developed transgenic mice, a knock-in model expressing endogenous levels of proteolytically inactive tPA (tPA Ala-KI) and a second model overexpressing proteolytically inactive tPA (tPA Ala-BAC). Our findings show that striatal GABAergic neurons send tPA+ projections to dopaminergic (DA)-neurons in the SN and that tPA is released from SN-derived synaptosomes upon stimulation. We also found that tPA levels in the SN increased following α-synuclein overexpression. Importantly, tPA deficiency protects DA-neurons from degeneration, prevents behavioral deficits, and reduces microglia activation and T-cell infiltration induced by α-synuclein overexpression. RNA-seq analysis indicates that tPA in the SN is required for the upregulation of genes involved in the innate and adaptive immune responses induced by α-synuclein overexpression. Overexpression of α-synuclein in tPA Ala-KI mice, expressing only proteolytically inactive tPA, confirms that tPA-mediated neuroinflammation and neurodegeneration is independent of its proteolytic activity. Moreover, overexpression of proteolytically inactive tPA in tPA Ala-BAC mice leads to increased neuroinflammation and neurodegeneration compared to mice expressing normal levels of tPA, suggesting a tPA dose response. Finally, treatment of mice with glunomab, a neutralizing antibody that selectively blocks tPA binding to the N-methyl-D-aspartate receptor-1 (NMDAR1) without affecting NMDAR1 ion channel function, identifies the tPA interaction with NMDAR1 as necessary for tPA-mediated neuroinflammation and neurodegeneration in response to α-synuclein-mediated neurotoxicity. Thus, our data identifies a novel pathway that promotes DA-neuron degeneration and suggests a potential therapeutic intervention for PD targeting the tPA-NMDAR1 interaction.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Alí Francisco Citalán-Madrid
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Gerald P Schielke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Daniel Magaoay
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Tamara Stevenson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Kris Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA
| | - Flavie Lesept
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Nathalie Delétage
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Manuel Blanc
- Lys Therapeutics, Main offices: 56 rue Saint Jean de Dieu, Lyon, 69007, France
- Lys Therapeutics, HQ: Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Normandie Univ, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, Caen, France
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
3
|
Wang X, Feng B, Guo HY, Yao FF, Song HN, Wang XY, Sun XC, Wang K, Ge YC, Cui R. Roles of cathepsin S expression levels on the prognosis and tumour microenvironment in clear cell renal cell carcinoma. Discov Oncol 2024; 15:690. [PMID: 39570472 PMCID: PMC11582264 DOI: 10.1007/s12672-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a link between the enzyme cathepsin S (CTSS) and tumour development. However, the potential involvement and molecular functions of CTSS in clear cell renal cell carcinoma (ccRCC) remain unclear. METHODS We downloaded original data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated them using R. Kaplan-Meier plots of integrated expression scores were used to analyse survival outcomes. Additionally, we investigated mRNA expression, clinicopathological features, immune infiltrates, and single-cell sequencing analysis of CTSS in ccRCC. In vitro experiments were conducted with qRT-PCR and IHC staining. RESULTS CTSS transcriptomic and proteomic levels were higher in ccRCC than in para-cancerous tissues. Low CTSS expression was correlated with poor prognosis in patients with ccRCC. Our data demonstrated that the expression of CTSS was strongly correlated with immune cell infiltration levels and gene markers of immune cells, chemokines, and receptors. Single-cell sequencing analysis demonstrated that CTSS expression was detectable in monocytes/macrophages. Finally, certain chemicals were confirmed to affect CTSS expression. CONCLUSION Our findings indicate that CTSS offers promise as a prognostic biomarker and novel immune-related therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Nephrology, The First People's Hospital in Jinzhou, Dalian, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bei Feng
- Department of Nephrology, Jingzhou Central Hospital, Hubei, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Hai-Ying Guo
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fei-Fei Yao
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui-Nan Song
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-Yue Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Chen Sun
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yu-Chen Ge
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Rui Cui
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Ding Y, Luan X, Hou J. The critical involvement of monocytes/macrophages in the pathogenesis of primary Sjögren's syndrome: New evidence from Mendelian randomization and single-cell sequencing. Heliyon 2024; 10:e39130. [PMID: 39497977 PMCID: PMC11532255 DOI: 10.1016/j.heliyon.2024.e39130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Background Primary Sjögren's syndrome (pSS) stands as a chronic autoimmune disease characterized by an elusive pathogenesis. The synergy of single-cell RNA sequencing and Mendelian randomization (MR) analysis provides an opportunity to comprehensively unravel the contributory role of monocytes/macrophages in the intricate pathogenesis of pSS. Methods Differentially expressed genes (DEGs) of various types of immune cells were analyzed after annotating single-cell RNA sequencing (scRNA-seq) data. MR analysis of expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) was conducted to search for key pathogenic genes and proteins. Cellular localization of pathogenic genes was performed based on scRNA-seq data. Variations in signaling pathways between immune cells were further analyzed. Results A total of 1434 significant DEGs were identified. Among these, 60 genes exhibited strong relevance to the occurrence of pSS, of which 32 genes differentially expressed in monocytes/macrophages. CTSS was found to be a significant risk protein with a p-value of 0.001 and an odds ratio of 1.384 (1.147-1.669), showing pronounced expression in monocytes/macrophages. Furthermore, monocytes/macrophages displayed heightened expression levels of MXD1, AMPD2, TNFSF10, FTL, UBXN11, CSF3R, and LILRA5. The analysis of intercellular signaling revealed increased signal intensity in both incoming and outgoing signals in monocytes/macrophages. The signaling interactions between monocytes/macrophages, B cells, and T cells exhibited varying degrees of deviation. Conclusions This study highlights the significant involvement of monocytes/macrophages in the pathogenesis of pSS, as evidenced by MR analysis and scRNA-seq analysis. This suggests monocytes/macrophages as a focal point for pathogenesis research and potential therapeutic targeting in pSS.
Collapse
Affiliation(s)
- Yimei Ding
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Luan
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Hou
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
8
|
Preya UH, Sayed S, Nguyen NL, Kim JT. Potential role of CTSS in AMDImmune modulatory and anti-angiogenic effects of cathepsin S knockdown in ARPE-19 cells. Exp Eye Res 2024; 245:109981. [PMID: 38914301 DOI: 10.1016/j.exer.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
We aimed to determine the role of cathepsin S (CTSS) in modulating oxidative stress-induced immune and inflammatory reactions and angiogenesis in age-related macular degeneration. Human retinal pigment epithelium cells line ARPE-19 (immature) were maintained and treated with H2O2. The expression of CTSS, inflammatory cytokines, and complement factors induced by oxidative stress was compared between cells incubated without (control) and with CTSS knockdown (using small interfering ribonucleic acid; siRNA). To evaluate the role of CTSS in angiogenesis, we assayed tube formation using human umbilical vein endothelial cells and conditioned medium from ARPE-19 cells. We also used a mouse model of laser-induced choroidal neovascularization. CTSS levels were higher in ARPE-19 cells treated with H2O2 than in control cells. Oxidative stress-induced CTSS resulted in significantly elevated transcription of nuclear factor kappa B-dependent inflammatory cytokines, complement factors C3a and C5a, membrane attack complex (C5b-9), and C3a and C5a receptors. siRNA-mediated knockdown of CTSS reduced the number of inflammatory signals. Furthermore, oxidative stress-induced CTSS regulated the expression of peroxisome proliferator-activated receptor γ and vascular endothelial growth factor A/Akt serine/threonine kinase family signaling, which led to angiogenesis. Tube formation assays and mouse models of choroidal neovascularization revealed that CTSS knockdown ameliorated angiogenesis in vitro and in vivo. The present findings suggest that CTSS modulates the complement pathway, inflammatory reactions, and neovascularization, and that CTSS knockdown induces potent immunomodulatory effects. Hence, it could be a promising target for the prevention and treatment of early- and late-stage age-related macular degeneration.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Shithima Sayed
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Ngoc Lan Nguyen
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jee Taek Kim
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea; Chung-Ang University Hospital, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int J Mol Sci 2024; 25:4087. [PMID: 38612897 PMCID: PMC11012956 DOI: 10.3390/ijms25074087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.
Collapse
Affiliation(s)
- Maya V. Voronina
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Anastasia S. Frolova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Alessandro Parodi
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Hämälistö S, Del Valle Batalla F, Yuseff MI, Mattila PK. Endolysosomal vesicles at the center of B cell activation. J Cell Biol 2024; 223:e202307047. [PMID: 38305771 PMCID: PMC10837082 DOI: 10.1083/jcb.202307047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The endolysosomal system specializes in degrading cellular components and is crucial to maintaining homeostasis and adapting rapidly to metabolic and environmental cues. Cells of the immune system exploit this network to process antigens or promote cell death by secreting lysosome-related vesicles. In B lymphocytes, lysosomes are harnessed to facilitate the extraction of antigens and to promote their processing into peptides for presentation to T cells, critical steps to mount protective high-affinity antibody responses. Intriguingly, lysosomal vesicles are now considered important signaling units within cells and also display secretory functions by releasing their content to the extracellular space. In this review, we focus on how B cells use pathways involved in the intracellular trafficking, secretion, and function of endolysosomes to promote adaptive immune responses. A basic understanding of such mechanisms poses an interesting frontier for the development of therapeutic strategies in the context of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Saara Hämälistö
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Cancer Research Unit and FICAN West Cancer Centre Laboratory, Turku, Finland
| | - Felipe Del Valle Batalla
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2023. J Oral Biosci 2024; 66:1-4. [PMID: 38309695 DOI: 10.1016/j.job.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The Journal of Oral Biosciences is dedicated to advancing and disseminating fundamental knowledge with regard to every aspect of oral biosciences. This review features review articles in the fields of "bone regeneration," "periodontitis," "periodontal diseases," "salivary glands," "sleep bruxism," and "Sjögren's syndrome." HIGHLIGHT This review focuses on human demineralized dentin and cementum matrices for bone regeneration, oxidized low-density lipoprotein in periodontal disease and systemic conditions, the relationship between inflammatory mediators in migraine and periodontitis, phosphoinositide signaling molecules in the salivary glands, and the pathophysiologies of sleep bruxism and Sjögren's syndrome. CONCLUSION The review articles featured in the Journal of Oral Biosciences have broadened the knowledge of readers regarding various aspects of oral biosciences. The current editorial review discusses the findings and significance of these review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Wang HL, Narisawa M, Wu P, Meng X, Cheng XW. The many roles of cathepsins in restenosis. Heliyon 2024; 10:e24720. [PMID: 38333869 PMCID: PMC10850908 DOI: 10.1016/j.heliyon.2024.e24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.
Collapse
Affiliation(s)
- Hai Long Wang
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Pan Wu
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, PR China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, PR China
| |
Collapse
|
13
|
Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K, McNamara CA. Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol 2024; 14:1296668. [PMID: 38259450 PMCID: PMC10800418 DOI: 10.3389/fimmu.2023.1296668] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE-/- mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Brett Ransegnola
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Angela M. Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Yu PW, Kao G, Dai Z, Nasertorabi F, Zhang Y. Rational design of humanized antibody inhibitors for cathepsin S. Arch Biochem Biophys 2024; 751:109849. [PMID: 38061628 PMCID: PMC10872949 DOI: 10.1016/j.abb.2023.109849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Cathepsin S (CTSS) is involved in pathogenesis of many human diseases. Inhibitors blocking its protease activity hold therapeutic potential. In comparison to small-molecule inhibitors, monoclonal antibodies capable of inhibiting CTSS enzymatic activity may possess advantageous pharmacological properties. Here we designed and produced inhibitory antibodies targeting human CTSS by genetically fusing the propeptide of procathepsin S (proCTSS) with antibodies in clinic. The resulting antibody fusions in full-length or fragment antigen-binding format could be stably expressed and potently inhibit CTSS proteolytic activity in high specificity. These fusion antibodies not only demonstrate a new approach for facile synthesis of antibody inhibitors against CTSS, but also represent novel anti-CTSS therapeutic candidates.
Collapse
Affiliation(s)
- Po-Wen Yu
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guoyun Kao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
16
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
de Lavergne M, Maisonneuve L, Podsypanina K, Manoury B. The role of the antigen processing machinery in the regulation and trafficking of intracellular -Toll-like receptor molecules. Curr Opin Immunol 2023; 84:102375. [PMID: 37562076 DOI: 10.1016/j.coi.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Intracellular Toll-like receptors (TLRs) are key components of the innate immune system. Their expression in antigen-presenting cells (APCs), and in particular dendritic cells (DCs), makes them critical in the induction of the adaptive immune response. In DCs, they interact with the chaperone UNC93B1 that mediates their trafficking from the endoplasmic reticulum (ER) to endosomes where they are cleaved by proteases and activated. All these different steps are also shared by major histocompatibility complex class-II (MHCII) molecules. Here, we will discuss the tight relationship intracellular TLRs have with the antigen processing machinery in APCs for their trafficking and activation.
Collapse
Affiliation(s)
- Moïse de Lavergne
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Lucie Maisonneuve
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France.
| |
Collapse
|
18
|
Vergés C, Giménez-Capitán A, Ribas V, Salgado-Borges J, March de Ribot F, Mayo-de-Las-Casas C, Armiger-Borras N, Pedraz C, Molina-Vila MÁ. Gene expression signatures in conjunctival fornix aspirates of patients with dry eye disease associated with Meibomian gland dysfunction. A proof-of-concept study. Ocul Surf 2023; 30:42-50. [PMID: 37524297 DOI: 10.1016/j.jtos.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Meibomian gland dysfunction (MGD) is one of the most common conditions in ophthalmic practice and the most frequent cause of evaporative dry eye disease (DED). However, the immune mechanisms leading to this pathology are not fully understood and the diagnostic tests available are limited. Here, we used the nCounter technology to analyze immune gene expression in DED-MGD that can be used for developing diagnostic signatures for DED. METHODS Conjunctival cell samples were obtained by aspiration from patients with DED-MGD (n = 27) and asymptomatic controls (n = 22). RNA was purified, converted to cDNA, preamplified and analyzed using the Gene Expression Human Immune V2 panel (NanoString), which includes 579 target and 15 housekeeping genes. A machine learning (ML) algorithm was applied to design a signature associated with DED-MGD. RESULTS Forty-five immune genes were found upregulated in DED-MGD vs. controls, involved in eight signaling pathways, IFN I/II, MHC class I/II, immunometabolism, B cell receptor, T Cell receptor, and T helper-17 (Th-17) differentiation. Additionally, statistically significant correlations were found between 31 genes and clinical characteristics of the disease such as lid margin or tear osmolarity (Pearson's r < 0.05). ML analysis using a recursive feature elimination (RFE) algorithm selected a 4-gene mRNA signature that discriminated DED-MGD from control samples with an area under the ROC curve (AUC ROC) of 0.86 and an accuracy of 77.5%. CONCLUSIONS Multiplexed mRNA analysis of conjunctival cells can be used to analyze immune gene expression patterns in patients with DED-MGD and to generate diagnostic signatures.
Collapse
Affiliation(s)
- Carlos Vergés
- Department of Ophthalmology, Hospital Universitari Dexeus, Area Oftalmológica Avanzada, Universitat Politécnica de Catalunya, Barcelona, Spain.
| | - Ana Giménez-Capitán
- Pangaea Oncology, Laboratory of Oncology, Dexeus University Hospital, Barcelona, Spain
| | - Verónica Ribas
- Department of Ophthalmology, Hospital Universitari Dexeus, Area Oftalmológica Avanzada, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - José Salgado-Borges
- Department of Ophthalmology, Hospital Universitari Dexeus, Area Oftalmológica Avanzada, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Francesc March de Ribot
- Department of Ophthalmology, Hospital Universitari Dexeus, Area Oftalmológica Avanzada, Universitat Politécnica de Catalunya, Barcelona, Spain
| | | | - Noelia Armiger-Borras
- Pangaea Oncology, Laboratory of Oncology, Dexeus University Hospital, Barcelona, Spain
| | - Carlos Pedraz
- Pangaea Oncology, Laboratory of Oncology, Dexeus University Hospital, Barcelona, Spain
| | | |
Collapse
|
19
|
Zuo T, Xie Q, Liu J, Yang J, Shi J, Kong D, Wang Y, Zhang Z, Gao H, Zeng DB, Wang X, Tao P, Wei W, Wang J, Li Y, Long Q, Li C, Chang L, Ning H, Li Y, Cui C, Ge X, Wu J, Li G, Hong X, Yang X, Dai E, He F, Wu J, Ruan Y, Lu S, Xu P. Macrophage-Derived Cathepsin S Remodels the Extracellular Matrix to Promote Liver Fibrogenesis. Gastroenterology 2023; 165:746-761.e16. [PMID: 37263311 DOI: 10.1053/j.gastro.2023.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis is an intrinsic wound-healing response to chronic injury and the major cause of liver-related morbidity and mortality worldwide. However, no effective diagnostic or therapeutic strategies are available, owing to its poorly characterized molecular etiology. We aimed to elucidate the mechanisms underlying liver fibrogenesis. METHODS We performed a quantitative proteomic analysis of clinical fibrotic liver samples to identify dysregulated proteins. Further analyses were performed on the sera of 164 patients with liver fibrosis. Two fibrosis mouse models and several biochemical experiments were used to elucidate liver fibrogenesis. RESULTS We identified cathepsin S (CTSS) up-regulation as a central node for extracellular matrix remodeling in the human fibrotic liver by proteomic screening. Increased serum CTSS levels efficiently predicted liver fibrosis, even at an early stage. Secreted CTSS cleaved collagen 18A1 at its C-terminus, releasing endostatin peptide, which directly bound to and activated hepatic stellate cells via integrin α5β1 signaling, whereas genetic ablation of Ctss remarkably suppressed liver fibrogenesis via endostatin reduction in vivo. Further studies identified macrophages as the main source of hepatic CTSS, and splenectomy effectively attenuated macrophage infiltration and CTSS expression in the fibrotic liver. Pharmacologic inhibition of CTSS ameliorated liver fibrosis progression in the mouse models. CONCLUSIONS CTSS functions as a novel profibrotic factor by remodeling extracellular matrix proteins and may represent a promising target for the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Qi Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Degang Kong
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Huixia Gao
- Second Department of Internal Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, China
| | - Dao-Bing Zeng
- Bejing You-An Hospital, Capital Medical University, Beijing, China
| | - Xinxin Wang
- Bejing You-An Hospital, Capital Medical University, Beijing, China
| | - Ping Tao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; Bejing You-An Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Yuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Long
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Huimin Ning
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jushan Wu
- Bejing You-An Hospital, Capital Medical University, Beijing, China
| | - Guangming Li
- Bejing You-An Hospital, Capital Medical University, Beijing, China
| | - Xuechuan Hong
- TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Erhei Dai
- Second Department of Internal Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Junzhu Wu
- TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics and Research and Development of New Drug, Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guizhou University, School of Medicine, Guiyang, China.
| |
Collapse
|
20
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
21
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
22
|
Velazquez-Salinas L, Medina GN, Valdez F, Zarate S, Collinson S, Zhu JJ, Rodriguez LL. Exploring the Molecular Basis of Vesicular Stomatitis Virus Pathogenesis in Swine: Insights from Expression Profiling of Primary Macrophages Infected with M51R Mutant Virus. Pathogens 2023; 12:896. [PMID: 37513744 PMCID: PMC10384765 DOI: 10.3390/pathogens12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an emergent virus affecting livestock in the US. Previously, using a recombinant VSV carrying the M51R mutation in the matrix protein (rNJ0612NME6-M51R), we evaluated the pathogenesis of this virus in pigs. Our results indicated that rNJ0612NME6-M51R represented an attenuated phenotype in in-vivo and in ex-vivo in pig macrophages, resembling certain clinical features observed in field VSV isolates. In order to gain more insight into the molecular basis leading to the attenuation of rNJ0612NME6-M51R in pigs, we conducted a microarray analysis to assess the gene expression profiles of primary porcine macrophages infected with rNJ0612NME6-M51R compared to its parental virus (rNJ0612NME6). Our results showed an overall higher gene expression in macrophages infected with rNJ0612NME6-M51R. Specifically, we observed that the pathways related with immune cytokine signaling and interferon (IFN)-related responses (including activation, signaling, induction, and antiviral mechanisms) were the ones comprising most of the relevant genes identified during this study. Collectively, the results presented herein highlight the relevance of type I interferon during the pathogenesis of VSV in pigs. The information generated from this study may represent a framework for future studies intended to understand the molecular bases of the pathogenesis of field strains in livestock.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Federico Valdez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - Selene Zarate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico 04510, Mexico
| | - Shannon Collinson
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - James J Zhu
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Luis L Rodriguez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| |
Collapse
|
23
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
24
|
Fujiwara T, Zhang L, Chandler A, Sung S, Yakoub M, Linkov I, Hameed M, Healey JH. Cathepsin protease expression in infiltrative soft tissue sarcomas: cathepsin-K correlates with infiltrative tumor growth and clinical outcomes. Hum Pathol 2023; 134:30-44. [PMID: 36565726 PMCID: PMC10748737 DOI: 10.1016/j.humpath.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Cathepsin proteases, activated in the lysosomes, are upregulated in many cancers. Intraoperative detection systems of microscopic residual tumor using cathepsin-mediated release of fluorescent nanoparticles may guide surgical excisions to improve local control. We sought to define the genetic and proteomic expression of cathepsins and their clinicopathological correlates in myxofibrosarcoma and undifferentiated pleomorphic sarcoma (UPS)-soft tissue sarcomas with high rates of positive resection margins and local recurrence-and to establish a cellular justification for cathepsin-dependent systems to identify residual cancer in the resection bed. Real-time quantitative polymerase chain reaction analysis of 58 fresh-frozen tumor specimens revealed that 56 (97%) had elevated mRNA expression of ≥1 cathepsin, including cathepsin-B (79%), cathepsin-K (59%), cathepsin-L (71%), and -S (71%). Immunohistochemical analysis of these fresh-frozen specimens revealed that 98% of tumors were positive for one or more of cathepsin-B (85%), cathepsin-K (50%), cathepsin-L (63%), and -S (10%). Strong cathepsin-K expression was associated with greater risks of local recurrence (hazard ratio, 3.78; p = 0.044) and disease-specific mortality (hazard ratio, 3.70; p = 0.025). Immunohistochemical analysis of 33 formalin-fixed paraffin-embedded block samples revealed that 97% were positive for cathepsin-B (88%), cathepsin-K (76%), cathepsin-L (52%), or -S (52%) at the tumor periphery; cathepsin-K positivity correlated with a radiographic tail-like sign (p = 0.004) and microscopic infiltrative growth (p = 0.020). We conclude that cathepsins are broadly overexpressed in myxofibrosarcoma and UPS, and cathepsin-K may be an immunohistochemical marker of local infiltration and poorer prognosis that could be used to guide precision surgery.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, And Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Lingxin Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrew Chandler
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shijun Sung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mohamed Yakoub
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
25
|
The cathepsin-S/protease-activated receptor-(PAR)-2 axis drives chronic allograft vasculopathy and is a molecular target for therapeutic intervention. Transpl Immunol 2023; 77:101782. [PMID: 36608832 DOI: 10.1016/j.trim.2022.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cathepsin S (CatS) and proteinase-activated receptor (PAR)-2 are involved in the remodelling of vascular walls and neointima formation as well as in alloantigen presentation and T-cell priming. Therefore, we hypothesized that CatS/PAR-2 inhibition/deficiency would attenuate chronic allograft vasculopathy. METHODS Heterotopic aortic murine transplantation was performed from C57BL/6J donors to C57BL/6J recipients (syngeneic control group), Balb/c to C57BL/6J without treatment (allogenic control group), Balb/c to C57BL/6J with twice daily oral CatS inhibitor (allogenic treatment group) and Balb/c to Par2-/- C57BL/6J (allogenic knockout group). The recipients were sacrificed on day 28 and the grafts were harvested for histological analysis and RT-qPCR. RESULTS After 28 days, mice of the allogenic control group exhibited significant neointima formation and massive CD8 T-cell infiltration into the neointima while the syngeneic control group showed negligible allograft vasculopathy. The mRNA expression level of CatS in allografts was 5-fold of those in syngeneic grafts. Neointima formation and therefore intima/media-ratio were significantly decreased in the treatment and knockout group in comparison to the allogenic control group. Mice in treatment group also displayed significantly fewer CD8 T cells in the neointima compared with allogeneic controls. Additionally, treatment with the CatS inhibitor and PAR2-deficiency decreased mRNA-levels of interleukins and cytokines. CONCLUSION In conclusion, our data indicate that inhibiting CatS and PAR-2 deficiency led to a marked reduction of neointima formation and associated inflammation in a murine heterotopic model for allograft vasculopathy.
Collapse
|
26
|
Cathepsin S Knockdown Suppresses Endothelial Inflammation, Angiogenesis, and Complement Protein Activity under Hyperglycemic Conditions In Vitro by Inhibiting NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065428. [PMID: 36982499 PMCID: PMC10049538 DOI: 10.3390/ijms24065428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia plays a key role in the development of microvascular complications, endothelial dysfunction (ED), and inflammation. It has been demonstrated that cathepsin S (CTSS) is activated in hyperglycemia and is involved in inducing the release of inflammatory cytokines. We hypothesized that blocking CTSS might alleviate the inflammatory responses and reduce the microvascular complications and angiogenesis in hyperglycemic conditions. In this study, we treated human umbilical vein endothelial cells (HUVECs) with high glucose (HG; 30 mM) to induce hyperglycemia and measured the expression of inflammatory cytokines. When treated with glucose, hyperosmolarity could be linked to cathepsin S expression; however, many have mentioned the high expression of CTSS. Thus, we made an effort to concentrate on the immunomodulatory role of the CTSS knockdown in high glucose conditions. We validated that the HG treatment upregulated the expression of inflammatory cytokines and CTSS in HUVEC. Further, siRNA treatment significantly downregulated CTSS expression along with inflammatory marker levels by inhibiting the nuclear factor-kappa B (NF-κB) mediated signaling pathway. In addition, CTSS silencing led to the decreased expression of vascular endothelial markers and downregulated angiogenic activity in HUVECs, which was confirmed by a tube formation experiment. Concurrently, siRNA treatment reduced the activation of complement proteins C3a and C5a in HUVECs under hyperglycemic conditions. These findings show that CTSS silencing significantly reduces hyperglycemia-induced vascular inflammation. Hence, CTSS may be a novel target for preventing diabetes-induced microvascular complications.
Collapse
|
27
|
Scholand KK, Mack AF, Guzman GU, Maniskas ME, Sampige R, Govindarajan G, McCullough LD, de Paiva CS. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci 2023; 24:4897. [PMID: 36902330 PMCID: PMC10003158 DOI: 10.3390/ijms24054897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Alexis F. Mack
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gary U. Guzman
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael E. Maniskas
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritu Sampige
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Louise D. McCullough
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
28
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
29
|
Li QL, Tang J, Zhao L, Ruze A, Shan XF, Gao XM. The role of CD74 in cardiovascular disease. Front Cardiovasc Med 2023; 9:1049143. [PMID: 36712241 PMCID: PMC9877307 DOI: 10.3389/fcvm.2022.1049143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Leukocyte differentiation antigen 74 (CD74), also known as invariant chain, is a molecular chaperone of major histocompatibility complex class II (MHC II) molecules involved in antigen presentation. CD74 has recently been shown to be a receptor for the macrophage migration inhibitory factor family proteins (MIF/MIF2). Many studies have revealed that CD74 plays an important role in cardiovascular disease. In this review, we summarize the structure and main functions of CD74 and then focus on the recent research progress on the role of CD74 in cardiovascular diseases. In addition, we also discuss potential treatment strategies that target CD74. Our systematic review of the role of CD74 in cardiovascular disease will fill some knowledge gaps in the field.
Collapse
Affiliation(s)
- Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Clinical Medical Research Institute of Xinjiang Medical University, Ürümqi, China,*Correspondence: Xiao-Ming Gao,
| |
Collapse
|
30
|
Xie L, Zhang S, Huang L, Peng Z, Lu H, He Q, Chen R, Hu L, Wang B, Sun B, Yang Q, Xie Q. Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia-reperfusion injury. Brain Behav Immun 2023; 107:330-344. [PMID: 36371010 DOI: 10.1016/j.bbi.2022.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Stroke is a major cause of morbidity and mortality worldwide. After cerebral ischemia, peripheral immune cells infiltrate the brain and elicit an inflammatory response. However, it is not clear when and how these peripheral immune cells affect the central inflammatory response, and whether interventions that target these processes can alleviate ischemia-reperfusion (I/R) injury. METHODS Single-cell transcriptomic sequencing and bioinformatics analysis were performed on peripheral blood of mice at different times after I/R to analyze the key molecule of cell subsets. Then, the expression pattern of this molecule was determined through various biological experiments, including quantitative RT-PCR, western blot, ELISA, and in situ hybridization. Next, the function of this molecule was assessed using knockout mice and the corresponding inhibitor. RESULTS Single-cell transcriptomic sequencing revealed that peripheral monocyte subpopulations increased significantly after I/R. Cathepsin S (Ctss)was identified as a key molecule regulating monocyte activation by pseudotime trajectory analysis and gene function analysis. Next, Cathepsin S was confirmed to be expressed in monocytes with the highest expression level 3 days after I/R. Infarct size (p < 0.05), neurological function scores (p < 0.05), and apoptosis and vascular leakage rates were significantly reduced after Ctss knockout. In addition, CTSS destroyed the blood-brain barrier (BBB) by binding to junctional adhesion molecule (JAM) family proteins to cause their degradation. CONCLUSIONS Cathepsin S inhibition attenuated cerebral I/R injury; therefore, cathepsin S can be used as a novel target for drug intervention after stroke.
Collapse
Affiliation(s)
- Lexing Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shuang Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Li Huang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhouzhou Peng
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hui Lu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Qian He
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Ru Chen
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Linlin Hu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Bingqiao Wang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Baoliang Sun
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| | - Qi Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| |
Collapse
|
31
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Cui Z, Zeng C, Huang F, Yuan F, Yan J, Zhao Y, Zhou Y, Hankey W, Jin VX, Huang J, Staats HF, Everitt JI, Sempowski GD, Wang H, Dong Y, Liu SL, Wang Q. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat Chem Biol 2022; 18:1056-1064. [PMID: 35879545 PMCID: PMC10082993 DOI: 10.1038/s41589-022-01094-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 entry into cells requires specific host proteases; however, no successful in vivo applications of host protease inhibitors have yet been reported for treatment of SARS-CoV-2 pathogenesis. Here we describe a chemically engineered nanosystem encapsulating CRISPR-Cas13d, developed to specifically target lung protease cathepsin L (Ctsl) messenger RNA to block SARS-CoV-2 infection in mice. We show that this nanosystem decreases lung Ctsl expression in normal mice efficiently, specifically and safely. We further show that this approach extends survival of mice lethally infected with SARS-CoV-2, correlating with decreased lung virus burden, reduced expression of proinflammatory cytokines/chemokines and diminished severity of pulmonary interstitial inflammation. Postinfection treatment by this nanosystem dramatically lowers the lung virus burden and alleviates virus-induced pathological changes. Our results indicate that targeting lung protease mRNA by Cas13d nanosystem represents a unique strategy for controlling SARS-CoV-2 infection and demonstrate that CRISPR can be used as a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhifen Cui
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Cong Zeng
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Furong Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jingyue Yan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yufan Zhou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute and Regional Biocontainment Laboratory, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D Sempowski
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute and Regional Biocontainment Laboratory, Duke University School of Medicine, Durham, NC, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Shan-Lu Liu
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
33
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
34
|
Lu X, Zhang K, Jiang W, Li H, Huang Y, Du M, Wan J, Cao Y, Du L, Liu X, Pan W. Single-cell RNA sequencing combined with whole exome sequencing reveals the landscape of the immune pathogenic response to chronic mucocutaneous candidiasis with STAT1 GOF mutation. Front Immunol 2022; 13:988766. [PMID: 36225936 PMCID: PMC9549386 DOI: 10.3389/fimmu.2022.988766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections with Candida of the skin, nails, and mucous membranes (e.g., mouth, esophagus, and vagina). Compared with that of other infectious diseases, the immune pathogenic mechanism of CMC is still poorly understood. We identified a signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutation in a CMC patient. Single-cell transcriptional profiling on peripheral blood mononuclear cells from this patient revealed decreases in immature B cells and monocytes. Further analysis revealed several differentially expressed genes related to immune regulation, including RGS1, TNFAIP3, S100A8/A9, and CTSS. In our review of the literature on signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutations, we identified seven cases in total. The median age of onset for CMC (n=4, data lacking for three cases) was 10.5 years (range: birth to 11 years), with an average onset age of 8 years. There were no reports linking tumors to the c.Y289C mutation, and the incidence of pre-existing clinical disease in patients with the c.Y289C mutation was similar to previous data.
Collapse
Affiliation(s)
- Xiaodi Lu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Keming Zhang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Weiwei Jiang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- Department of Dermatology, 72nd Group Army Hospital of People’s Liberation Army (PLA), Huzhou, China
| | - Hang Li
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Yue Huang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Mingwei Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Jian Wan
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Pudong New Area People’s Hospital, Shanghai, China
| | - Lin Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Xiaogang Liu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| |
Collapse
|
35
|
Cathepsin S Levels and Survival Among Patients With Non-ST-Segment Elevation Acute Coronary Syndromes. J Am Coll Cardiol 2022; 80:998-1010. [PMID: 36049808 DOI: 10.1016/j.jacc.2022.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS) are at high residual risk for long-term cardiovascular (CV) mortality. Cathepsin S (CTSS) is a lysosomal cysteine protease with elastolytic and collagenolytic activity that has been involved in atherosclerotic plaque rupture. OBJECTIVES The purpose of this study was to determine the following: 1) the prognostic value of circulating CTSS measured at patient admission for long-term mortality in NSTE-ACS; and 2) its additive value over the GRACE (Global Registry of Acute Coronary Events) risk score. METHODS This was a single-center cohort study, consecutively recruiting patients with adjudicated NSTE-ACS (n = 1,112) from the emergency department of an academic hospital. CTSS was measured in serum using enzyme-linked immunosorbent assay. All-cause mortality at 8 years was the primary endpoint. CV death was the secondary endpoint. RESULTS In total, 367 (33.0%) deaths were recorded. CTSS was associated with increased risk of all-cause mortality (HR for highest vs lowest quarter of CTSS: 1.89; 95% CI: 1.34-2.66; P < 0.001) and CV death (HR: 2.58; 95% CI: 1.15-5.77; P = 0.021) after adjusting for traditional CV risk factors, high-sensitivity C-reactive protein, left ventricular ejection fraction, high-sensitivity troponin-T, revascularization and index diagnosis (unstable angina/ non-ST-segment elevation myocardial infarction). When CTSS was added to the GRACE score, it conferred significant discrimination and reclassification value for all-cause mortality (Delta Harrell's C: 0.03; 95% CI: 0.012-0.047; P = 0.001; and net reclassification improvement = 0.202; P = 0.003) and CV death (AUC: 0.056; 95% CI: 0.017-0.095; P = 0.005; and net reclassification improvement = 0.390; P = 0.001) even after additionally considering high-sensitivity troponin-T and left ventricular ejection fraction. CONCLUSIONS Circulating CTSS is a predictor of long-term mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score.
Collapse
|
36
|
Jusic A, Stellos K, Ferreira L, Baker AH, Devaux Y. (Epi)transcriptomics in cardiovascular and neurological complications of COVID-19. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100013. [PMID: 36164464 PMCID: PMC9330360 DOI: 10.1016/j.jmccpl.2022.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Although systemic inflammation and pulmonary complications increase the mortality rate in COVID-19, a broad spectrum of cardiovascular and neurological complications can also contribute to significant morbidity and mortality. The molecular mechanisms underlying cardiovascular and neurological complications during and after SARS-CoV-2 infection are incompletely understood. Recently reported perturbations of the epitranscriptome of COVID-19 patients indicate that mechanisms including those derived from RNA modifications and non-coding RNAs may play a contributing role in the pathogenesis of COVID-19. In this review paper, we gathered recently published studies investigating (epi)transcriptomic fluctuations upon SARS-CoV-2 infection, focusing on the brain-heart axis since neurological and cardiovascular events and their sequelae are of utmost prevalence and importance in this disease.
Collapse
Affiliation(s)
- Amela Jusic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Faculty of Medicine, University Coimbra, 3000-548 Coimbra, Portugal
| | - Andrew H. Baker
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- CARIM Institute, University of Maastricht, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| |
Collapse
|
37
|
Gros M, Segura E, Rookhuizen DC, Baudon B, Heurtebise-Chrétien S, Burgdorf N, Maurin M, Kapp EA, Simpson RJ, Kozik P, Villadangos JA, Bertrand MJM, Burbage M, Amigorena S. Endocytic membrane repair by ESCRT-III controls antigen export to the cytosol during antigen cross-presentation. Cell Rep 2022; 40:111205. [PMID: 35977488 PMCID: PMC9396532 DOI: 10.1016/j.celrep.2022.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022] Open
Abstract
Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.
Collapse
Affiliation(s)
- Marine Gros
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Elodie Segura
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Derek C Rookhuizen
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Blandine Baudon
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | | | - Nina Burgdorf
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Eugene A Kapp
- Walter & Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC 3086, Australia
| | - Patrycja Kozik
- Protein & Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mathieu J M Bertrand
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium; VIB Center for Inflammation Research, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium
| | - Marianne Burbage
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Sebastian Amigorena
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| |
Collapse
|
38
|
Blancá B, Hayes JA, Surmann K, Hugo V, Hentschker C, Lamberti Y, Völker U, Rodriguez ME. Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages. Pathog Dis 2022; 80:6655986. [PMID: 35927587 DOI: 10.1093/femspd/ftac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.
Collapse
Affiliation(s)
- Bruno Blancá
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Valdez Hugo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| |
Collapse
|
39
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
40
|
Stutte S, Ishikawa-Ankerhold H, Lynch L, Eickhoff S, Nasiscionyte S, Guo C, van den Heuvel D, Setzensack D, Colonna M, Maier-Begandt D, Weckbach L, Brocker T, Schulz C, Walzog B, von Andrian U. High-Fat Diet Rapidly Modifies Trafficking, Phenotype, and Function of Plasmacytoid Dendritic Cells in Adipose Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1445-1455. [PMID: 35181637 PMCID: PMC8919350 DOI: 10.4049/jimmunol.2100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) display an increased abundance in visceral adipose tissue (VAT) of humans with obesity. In the current study, we set out to decipher the molecular mechanisms of their recruitment to VAT and the functional relevance of this process. We observed increased pDC numbers in murine blood, liver, spleen, and VAT after feeding a high-fat diet (HFD) for 3 wk when compared with a standard diet. pDCs were enriched in fat-associated lymphoid clusters representing highly specific lymphoid regions within VAT. HFD led to an enlargement of fat-associated lymphoid clusters with an increased density and migratory speed of pDCs as shown by intravital multiphoton microscopy. For their recruitment into VAT, pDCs employed P-selectin with E-selectin and L-selectin being only critical in response to HFD, indicating that the molecular cues underlying pDC trafficking were dependent on the nutritional state. Subsequent recruitment steps required α4β1 and α4β7 integrins and engagement of CCR7. Application of fingolimod (FTY720) abrogated egress of pDCs from VAT, indicating the involvement of sphingosine-1-phosphate in this process. Furthermore, HFD altered pDC functions by promoting their activation and type 1 IFN expression. Blocking pDC infiltration into VAT prevented weight gain and improved glucose tolerance during HFD. In summary, a HFD fundamentally alters pDC biology by promoting their trafficking, retention, and activation in VAT, which in turn seems to regulate metabolism.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Hellen Ishikawa-Ankerhold
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lydia Lynch
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Simona Nasiscionyte
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chenglong Guo
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominic van den Heuvel
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Setzensack
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St. Louis, MO; and
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ludwig Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| |
Collapse
|
41
|
Adams RC, Carter-Cusack D, Shaikh SN, Llanes GT, Johnston RL, Quaife-Ryan G, Boyle G, Koufariotis LT, Möller A, Blazar BR, Vukovic J, MacDonald KPA. Donor bone marrow-derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice. Blood 2022; 139:1389-1408. [PMID: 34570880 PMCID: PMC8900272 DOI: 10.1182/blood.2021011671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.
Collapse
Affiliation(s)
- Rachael C Adams
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Dylan Carter-Cusack
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Samreen N Shaikh
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Genesis T Llanes
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca L Johnston
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregory Quaife-Ryan
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen Boyle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Möller
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce R Blazar
- Masonic Cancer Center and
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN; and
| | - Jana Vukovic
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
42
|
|
43
|
Wang H, Jiang H, Cheng XW. Cathepsin S are involved in human carotid atherosclerotic disease progression, mainly by mediating phagosomes: bioinformatics and in vivo and vitro experiments. PeerJ 2022; 10:e12846. [PMID: 35186462 PMCID: PMC8833225 DOI: 10.7717/peerj.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Atherosclerosis emerges as a result of multiple dynamic cell processes including endothelial damage, inflammatory and immune cell infiltration, foam cell formation, plaque rupture, and thrombosis. Animal experiments have indicated that cathepsins (CTSs) mediate the antigen transmission and inflammatory response involved in the atherosclerosis process, but the specific signal pathways and target cells of the CTSs involved in atherosclerosis are unknown. METHODS We used the GEO query package to download the dataset GSE28829 from the Gene Expression Omnibus (GEO) and filtered the data to check the standardization of the samples through the box chart. We then used the 'limma' package to analyze between-group differences and selected the corresponding differentially expressed genes of CTSs from the protein-protein interaction (PPI) network constructed with the STRING database, and then visualized the CTS-target genes. The best matching pathway and target cells were verified by a male mouse ligation experiment, single-sample GSEA (ssGSEA) analysis, and vitro experiment. RESULTS There were 275 differentially expressed genes (DEGs) selected from the GSE28829 dataset, and the DEGs were identified mainly in the PPI network; 58 core genes (APOE, CD74, CP, AIF1, etc.) target three selected CTS family members (CTSS, CTSB, and CTSC). After the enriched analysis, 15 CTS-target genes were markedly enriched in the phagosome signaling pathway. The mouse experiment results revealed that the percentages and numbers of monocytes and neutrophils and the number of CD68+ cells in CTSS deficiency (CatS-/-) group were lower than those in the wildtype (CatS+/+) group. CTSS mediating phagosome via macrophage were further verified by ssGSEA analysis and vitro experiment. CONCLUSIONS CTSS are the main target molecules in the CTS family that are involved in atherosclerosis. The molecule participate in the progression of atherosclerosis by mediating the phagosome via macrophage.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, China,Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haiying Jiang
- Department of Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, Zhejiang, China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, China,Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
44
|
Kawato Y, Fukahori H, Nakamura K, Kanno A, Kubo K, Hiramitsu M, Matsuda T, Hanada Y, Furukawa T, Nakajima Y, Kinugasa F, Morokata T. Potential benefit of the cathepsin S inhibitor, ASP1617, as a treatment for systemic lupus erythematosus. Eur J Pharmacol 2022; 919:174826. [DOI: 10.1016/j.ejphar.2022.174826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/03/2022]
|
45
|
Sage J, Renault J, Domain R, Bojarski K, Chazeirat T, Saidi A, Leblanc E, Nizard C, Samsonov S, Kurfurst R, Lalmanach G, Lecaille F. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biol 2022; 107:97-112. [DOI: 10.1016/j.matbio.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
|
46
|
GILT Expression in Human Melanoma Cells Enhances Generation of Antigenic Peptides for HLA Class II-Mediated Immune Recognition. Int J Mol Sci 2022; 23:ijms23031066. [PMID: 35162988 PMCID: PMC8835040 DOI: 10.3390/ijms23031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.
Collapse
|
47
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Peptides for T cell selection in the thymus. Peptides 2021; 146:170671. [PMID: 34624431 DOI: 10.1016/j.peptides.2021.170671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex (MHC)-associated peptides generated and displayed by antigen-presenting cells in the thymus are essential for the generation of functional and self-tolerant T cells that protect our body from various pathogens. The peptides displayed by cortical thymic epithelial cells (cTECs) are generated by unique enzymatic machineries including the thymoproteasomes, and are involved in the positive selection of self-protective T cells. On the other hand, the peptides displayed by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs) are involved in further selection to establish self-tolerance in T cells. Although the biochemical nature of the peptide repertoire displayed in the thymus remains unclear, many studies have suggested a thymus-specific mechanism for the generation of MHC-associated peptides in the thymus. In this review, we summarize basic knowledge and recent advances in MHC-associated thymic peptides, focusing on the generation and function of thymoproteasome-dependent peptides specifically displayed by cTECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan.
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
48
|
Lapazio L, Braun M, Grandien K. H2-M and H2-O as Targeting Vehicles for the MHC Class II Processing Compartment Promote Antigen-Specific CD4+ T Cell Activation. Vaccines (Basel) 2021; 9:vaccines9101053. [PMID: 34696161 PMCID: PMC8540253 DOI: 10.3390/vaccines9101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
CD8 and CD4 T cell activation are both required for a strong and long-lasting T cell immune response. Endogenously expressed proteins are readily processed by the MHC class I antigen presentation pathway, enabling activation of CD8+ T cells. However, the MHC class II antigen presentation pathway, necessary for CD4+ T cell activation, is generally not sufficiently accessible to endogenously expressed proteins, limiting the efficiency of mRNA- or DNA-based vaccines. In the current study, we have evaluated the feasibility of using antigen sequences fused to sequences derived from the H2-M and H2-O proteins, two complexes known to participate in MHC class II antigen processing, for the enhancement of CD4 T-cell activation. We analyzed T cell activation after genetic immunization with mRNA-encoding fusion proteins with the model antigen ovalbumin and sequences derived from H2-M or H2-O. Our results show that H2-M- or H2-O-derived sequences robustly improve antigen-specific CD4 T-cell activation when fused to the antigen of interest and suggest that the approach could be used to improve the efficiency of mRNA- or DNA-based vaccines.
Collapse
Affiliation(s)
- Lucia Lapazio
- Sanofi-Aventis Deutschland GmbH, R&D, Biologics Research, Industriepark Hoechst, 65926 Frankfurt am Main, Germany; (M.B.); (K.G.)
- Correspondence: ; Tel.: +49-69-305-28073
| | - Monika Braun
- Sanofi-Aventis Deutschland GmbH, R&D, Biologics Research, Industriepark Hoechst, 65926 Frankfurt am Main, Germany; (M.B.); (K.G.)
- Medigene, Lochhamer Str. 11, Martinsried, 82152 Planegg, Germany
| | - Kaj Grandien
- Sanofi-Aventis Deutschland GmbH, R&D, Biologics Research, Industriepark Hoechst, 65926 Frankfurt am Main, Germany; (M.B.); (K.G.)
| |
Collapse
|
49
|
Cheng SM, Shieh MC, Lin TY, Cheung CHA. The "Dark Side" of autophagy on the maintenance of genome stability: Does it really exist during excessive activation? J Cell Physiol 2021; 237:178-188. [PMID: 34406646 DOI: 10.1002/jcp.30555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Dysregulation of DNA damage response/repair and genomic instability promote tumorigenesis and the development of various neurological diseases. Autophagy is a dynamic catabolic process used for removing unnecessary or dysfunctional proteins and organelles in cells. Despite the consensus in the field that upregulation of autophagy promotes the initiation of the DNA damage response and assists the process of homologous recombination upon genotoxic stress, a few studies showed that upregulation of autophagy (or excessive autophagy), under certain circumstances, triggers caspase/apoptosis-independent DNA damage and promotes genomic instability in cells. As the cytoprotective and the DNA repairing roles of autophagy have been discussed extensively in different reviews, here, we mainly focus on describing the latest studies which reported the "opposite" roles of autophagy (or excessive autophagy). We will discuss whether the "dark side" (i.e., the opposite/unconventional effect) of autophagy on the maintenance of DNA integrity and genomic stability really does exist in cells and if it does, will it be one of the yet-to-be-identified causes of cancer, in this review.
Collapse
Affiliation(s)
- Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Min-Chieh Shieh
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Tzu-Yu Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
50
|
Gramlich OW, Godwin CR, Wadkins D, Elwood BW, Kuehn MH. Early Functional Impairment in Experimental Glaucoma Is Accompanied by Disruption of the GABAergic System and Inceptive Neuroinflammation. Int J Mol Sci 2021; 22:7581. [PMID: 34299211 PMCID: PMC8306430 DOI: 10.3390/ijms22147581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | - Cheyanne R. Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|