1
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
2
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Wang G, Zhang Z, Tao M, Wei X, Zhou L. Identification of potential crucial genes and mechanisms associated with metastasis of medulloblastoma based on gene expression profile. Neurol Res 2023; 45:260-267. [PMID: 36215435 DOI: 10.1080/01616412.2022.2132457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Medulloblastoma is the most common malignant brain tumor in childhood. Although metastasis constitutes one of the poorest prognostic indicators in this disease, the mechanisms that drive metastasis have received less attention. The aim of our study is to provide valid biological information for the metastasis mechanism of medulloblastoma. METHODS Gene expression profile of GSE468 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on PANTHER database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software. RESULTS Nine upregulated genes and 34 downregulated genes were selected as DEGs. The upregulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus respectively. A total of 120 enriched GO terms and 40 KEGG pathways were identified. The main enriched GO terms were the biological process such as apoptosis and MAPK activity. Besides, the enriched KEGG pathways also included MAPK signaling pathway. A PPI network was obtained, and JUN was identified as a hub gene. Also, we firstly investigated the role and regulatory mechanism of JUN in the metastasis of medulloblastoma. CONCLUSIONS Through the bioinformatics analysis of the gene microarray in GEO, we found some crucial genes and pathways associated with the metastasis of medulloblastoma.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengying Tao
- Department of Ophthalmology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xin Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| |
Collapse
|
4
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Bondy GS, Curran IHA. Genomic analysis of Fisher F344 rat kidneys from a reproductive study following dietary ochratoxin A exposure. Food Chem Toxicol 2022; 167:113302. [PMID: 35843423 DOI: 10.1016/j.fct.2022.113302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of Penicillium and Aspergillus, and is found in many commodities including cereal grains, nuts, and coffee. OTA is a renal carcinogen and nephrotoxin at high concentrations, targeting the proximal tubules. This study uses transcriptomics and the previously reported apical data (Bondy et al., 2021) to infer mode-of-action of OTA toxicity in male and female rats exposed to low doses of OTA in utero and throughout development. Our findings support a male-specific activation of the innate and adaptive immune responses in F1 pups to OTA exposure. This was not found in the female F1 pups, and may be due to female-specific increased p38 activity and VDR signaling. Differentially expressed genes related to karyomegaly, MAPK activity, and immune activation appears to develop from in utero exposure to OTA whereas those related to decreased kidney and liver function, and changes to reproductive pathways occur in both rat generations. Together, these transcriptional results confirm that dietary exposure to OTA causes renal toxicity as well as alterations to hepatic and reproductive pathways in rats. In utero exposure of rats to OTA results in sex-specific alterations in immune response pathways, VDR signaling, and p38 activity.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
5
|
Maik-Rachline G, Wortzel I, Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021; 10:cells10123466. [PMID: 34943973 PMCID: PMC8699841 DOI: 10.3390/cells10123466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.
Collapse
|
6
|
Tung CL, Chen JC, Ko JC, Liu LL, Chien CC, Huang IH, Tsao YC, Cheng HH, Chen TY, Yen TC, Lin YW. Capsaicin Acts Through Reducing P38 MAPK-Dependent Thymidylate Synthase Expression to Enhance 5-Fluorouracil-Induced Cytotoxicity in Human Lung Cancer Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21993335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Capsaicin, an ingredient of green and red bell peppers, shows anticancer activity in several malignant cell lines. Thymidylate synthase (TS) is a well-validated anticancer drug target in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and 5-fluorouracil (5-FU) induce synergistic cytotoxicity in NSCLC cells by regulating TS expression is unclear. This study investigated the cytotoxicity of capsaicin and 5-FU co-treatment on two hoursuman lung adenocarcinoma cell lines, H520 and H1703, and the underlying mechanisms. Capsaicin decreased TS expression in a p38 mitogen-activated protein kinase (MAPK) inactivation–dependent manner in H520 and H1703 cells. Enhancement of p38 MAPK activity by transfection with constitutive active mitogen-activated protein kinase kinase six vectors increased TS expression and cell survival. In addition, capsaicin and 5-FU co-treatment enhanced synergistic cytotoxicity and inhibited cell growth associated with TS downregulation and p38 MAPK inactivation in H520 and H1703 cells. Capsaicin and 5-FU co-treatment did not affect the cellular content of capsaicin. These results show that capsaicin may be combined with 5-FU to treat NSCLC.
Collapse
Affiliation(s)
- Chun-Liang Tung
- Department of Health and Nutrition Biotechnology, Asia University, Taichung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi
| | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch
| | - Li-Ling Liu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Chin-Cheng Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - I-Hsiang Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yong-Cing Tsao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Hsiang-Hung Cheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| |
Collapse
|
7
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
8
|
Xu W, Wang Z, Li K, Jin R. Huai Qi Huang Potentiates Dexamethasone-Mediated Lethality in Acute Lymphoblastic Leukemia Cells by Upregulating Glucocorticoid Receptor α. Med Sci Monit 2020; 26:e921649. [PMID: 32065117 PMCID: PMC7043341 DOI: 10.12659/msm.921649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Glucocorticoids are important components of a number of chemotherapeutic regimens used to treat pediatric acute lymphoblastic leukemia (ALL). A primary cause of treatment failure of ALL is acquired resistance to glucocorticoids. Recently, traditional Chinese medicines were effectively used to treat solid tumors. Thus, the aim of this study was to investigate whether Huai Qi Huang (HQH), a traditional Chinese medicine, increased the efficacy of glucocorticoids in the treatment of ALL, and if so, to determine the underlying mechanism. Material/Methods Various concentrations of HQH were used to treat Jurkat and Nalm-6 cells for 24 to 72 hours. Subsequently, cells were co-treated with HQH and the glucocorticoid receptor agonist, dexamethasone (DEX), or a MEK inhibitor (PD98059) to verify the synergistic effects on apoptosis in Jurkat and Nalm-6 cells for 24 hours. Cell Counting Kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. Protein and mRNA expression levels were assessed using western blotting and quantitative polymerase chain reaction. Results The results revealed that cell survival was reduced and apoptosis was increased as the HQH concentration was increased, and this was accompanied with increases in the levels of BAX, cleaved-caspase-3 and glucocorticoid receptor α (GRα) and decreases in the levels of Bcl-2 and phospho-ERK (pERK). Glucocorticoid receptor β (GRβ) and total ERK (t-ERK) had no significant changes. Combined treatment with HQH and DEX or PD98059 increased apoptosis in Jurkat and Nalm-6 cells, and concurrently increased BAX, cleaved-caspase-3, GILZ, NFKBIA, and GRα and decreased Bcl-2 and pERK. Conclusions HQH enhanced the sensitivity of ALL cells to glucocorticoids by increasing the expression of GRα and inhibiting the MEK/ERK pathway, thus providing a rational foundation for the treatment of ALL with HQH.
Collapse
Affiliation(s)
- Wenfu Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
9
|
Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Cells 2020; 9:cells9010129. [PMID: 31935908 PMCID: PMC7016714 DOI: 10.3390/cells9010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unique characteristics distinguish extracellular signal-regulated kinases (Erks) from other eukaryotic protein kinases (ePKs). Unlike most ePKs, Erks do not autoactivate and they manifest no basal activity; they become catalysts only when dually phosphorylated on neighboring Thr and Tyr residues and they possess unique structural motifs. Erks function as the sole targets of the receptor tyrosine kinases (RTKs)-Ras-Raf-MEK signaling cascade, which controls numerous physiological processes and is mutated in most cancers. Erks are therefore the executers of the pathway’s biology and pathology. As oncogenic mutations have not been identified in Erks themselves, combined with the tight regulation of their activity, Erks have been considered immune against mutations that would render them intrinsically active. Nevertheless, several such mutations have been generated on the basis of structure-function analysis, understanding of ePK evolution and, mostly, via genetic screens in lower eukaryotes. One of the mutations conferred oncogenic properties on Erk1. The number of interesting mutations in Erks has dramatically increased following the development of Erk-specific pharmacological inhibitors and identification of mutations that cause resistance to these compounds. Several mutations have been recently identified in cancer patients. Here we summarize the mutations identified in Erks so far, describe their properties and discuss their possible mechanism of action.
Collapse
|
10
|
Liu K, Zhang C, Li B, Xie W, Zhang J, Nie X, Tan P, Zheng L, Wu S, Qin Y, Cui J, Zhi F. Mutual Stabilization between TRIM9 Short Isoform and MKK6 Potentiates p38 Signaling to Synergistically Suppress Glioblastoma Progression. Cell Rep 2019; 23:838-851. [PMID: 29669288 DOI: 10.1016/j.celrep.2018.03.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
p38 signaling is broadly involved in controlling inflammation and stress-induced cell death; however, the mechanisms controlling its activity have seldom been studied. Here, we report that TRIM9 short isoform (TRIM9s) potentiates p38 signaling by stabilizing MKK6. Mechanistic studies revealed that TRIM9s promotes the K63-linked ubiquitination of MKK6 at Lys82, thus inhibiting the degradative K48-linked ubiquitination of MKK6 at the same lysine. MKK6 could also stabilize TRIM9s by promoting the phosphorylation of TRIM9s at Ser76/80 via p38, thereby blocking the ubiquitin-proteasome pathway. Further functional analyses showed that p38 signaling plays a critical role in suppressing glioblastoma progression. Co-reduction of MKK6 and TRIM9s is significantly associated with overall poor survival of glioblastoma patients. We identify a positive feedback loop in p38 signaling generated by MKK6-TRIM9s, which suppresses glioblastoma progression, and we provide insights into the mechanisms by which TRIM9s and MKK6 potentiate p38 signaling through mutual stabilization.
Collapse
Affiliation(s)
- Kunpeng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chuanxia Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Bowen Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China; Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jindong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xichen Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Peng Tan
- Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA
| | - Limin Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Song Wu
- Department of Urology Institute of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen 518000, China.
| | - Yunfei Qin
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Liver Disease, Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Department of Urology Institute of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen 518000, China.
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China; Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
11
|
Kumar N, Reddi S, Devi S, Mada SB, Kapila R, Kapila S. Nrf2 dependent antiaging effect of milk-derived bioactive peptide in old fibroblasts. J Cell Biochem 2019; 120:9677-9691. [PMID: 30592315 DOI: 10.1002/jcb.28246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Prolonged passaging of primary fibroblast cells totally shapes the natural biological phenomena and leads to the appearance of features related to senescence. As a result, it is a good natural tool to delineate the molecular mechanism of cellular aging. The present investigation revealed the antiaging effect of milk-derived novel bioactive peptide (VLPVPQK). The peptide played an important role in downregulating apoptosis-related markers in late passages of cultured fibroblast cells. The peptide treatment to aged fibroblasts caused enhancement in cell migration, DNA integrity, and decrease in the lipid peroxidation, reactive oxygen species, nitric oxide production as well as pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the peptide decreased the expression of apoptotic caspases, Bax, and senescence-associated β-galactosidase (SA-β-gal) proteins. The peptide pretreatment also enhanced the extracellular collagen protein and antiapoptotic, Bcl-xL. In addition, the peptide treatment reversed the senescence-related activity in fibroblasts by stimulating Nrf2 mediated antioxidative defense system and inhibiting the action of NFkB/p38MAPK signaling, similar to the commercially available inhibitor (SB203580) of p38MAPK. Thus, the peptide exhibits the antiaging effect in dermal fibroblast cells.
Collapse
Affiliation(s)
- Naveen Kumar
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Srinu Reddi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Savita Devi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sanusi Bello Mada
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Schwartz M, Böckmann S, Borchert P, Hinz B. SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget 2018; 9:23149-23163. [PMID: 29796178 PMCID: PMC5955409 DOI: 10.18632/oncotarget.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in various detrimental events finally leading to endothelial dysfunction. The present study therefore investigates the impact of the p38 MAPK inhibitor SB202190 on the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) as well as metabolic activity, apoptosis and autophagy of endothelial cells. Using human umbilical vein endothelial cells (HUVEC) SB202190 was found to cause a time- and concentration-dependent induction of HO-1 protein. Induction of HO-1 protein expression was mimicked by SB203580, another p38 MAPK inhibitor, but not by SB202474, an inactive structural analogue of p38 MAPK inhibitors. HO-1 induction by both SB202190 and SB203580 was also demonstrated by analysis of mRNA expression. On the functional level, SB202190 was shown to increase metabolic activity and autophagy of HUVEC along with diminishing basal apoptosis. Treatment of cells with tin protoporphyrin IX (SnPPIX), a well-characterised HO-1 enzymatic inhibitor, or HO-1 siRNA left SB202190-modulated metabolic activity and autophagy virtually unaltered but caused a significant reversal of the anti-apoptotic action of SB202190. Conversely, however, HO-1 expression by SB202190 became completely suppressed by the autophagy inhibitor bafilomycin A1. Bafilomycin A1 likewise fully reversed effects of SB202190 on metabolic activity and apoptosis, albeit significantly inducing apoptosis per se. Collectively, this work demonstrates SB202190 to confer upstream induction of autophagy followed by HO-1 induction resulting in potential protective effects against apoptosis. On the other hand, our data oppose HO-1 to contribute to SB202190-mediated increases in metabolic activity and autophagy, respectively.
Collapse
Affiliation(s)
- Margit Schwartz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Borchert
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Qi MY, Song JW, Zhang Z, Huang S, Jing Q. P38 activation induces the dissociation of tristetraprolin from Argonaute 2 to increase ARE-mRNA stabilization. Mol Biol Cell 2018; 29:988-1002. [PMID: 29444957 PMCID: PMC5896936 DOI: 10.1091/mbc.e17-02-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ARE-mRNAs are actively degraded with tristetraprolin (TTP) in resting cells while they turn into stable messengers in activated cells. P38 plays a crucial role in stabilizing ARE-mRNA. Here we reveal that P38 activation represses the interaction between TTP and Ago2, thus restraining TTP from being targeted into processing bodies and stabilizing ARE-mRNA.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
14
|
Cakmak H, Seval-Celik Y, Arlier S, Guzeloglu-Kayisli O, Schatz F, Arici A, Kayisli UA. p38 Mitogen-Activated Protein Kinase is Involved in the Pathogenesis of Endometriosis by Modulating Inflammation, but not Cell Survival. Reprod Sci 2017; 25:587-597. [PMID: 28845752 DOI: 10.1177/1933719117725828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Local pro-inflammatory environment and enhanced cell survival contribute to the endometriosis development. A serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) mediates intracellular signaling of cytokine production, cell proliferation, and apoptosis in different cell types. The current study compares p38 MAPK activity in normal endometrium and endometriosis, and assesses role(s) of p38 MAPK on cytokine production and cell survival in endometriosis. METHODS Immunohistochemical levels of total and phosphorylated (active) p38 MAPK as well as its correlation with interleukin 8 (IL-8) expression, and cell proliferation and apoptosis were compared in normal human endometrium and endometriosis. The action of p38 MAPK on pro-inflammatory cytokine-induced IL-8 and monocyte chemotactic protein (MCP)-1 expression in endometriotic cells were assessed by enzyme-linked immunosorbent assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell survival, 5-bromo-2'-deoxyuridine incorporation, and Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assays were used to determine the function of p38 MAPK in cultured human endometriotic stromal cell proliferation and apoptosis. RESULTS p38 MAPK activity was significantly higher in both eutopic and ectopic endometria compared to normal endometria during late proliferative and early secretory phases ( P < .05). Increased p38 MAPK activity in endometriotic cells correlated with IL-8 expression (Pearson correlation coefficient r = 0.83, P < .01), but not with apoptosis in vivo. The pro-inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α induced activation of p38 MAPK. Inhibition of p38 MAPK activity blocked IL-1β and TNF-α-induced IL-8 and MCP-1 secretion in cultured endometriotic stromal cells ( P < .05), but did not impact on endometriotic cell survival. CONCLUSIONS These results suggest that rather than modulating cell survival, increased p38 MAPK activity in endometriotic cells contributes to the pathogenesis of endometriosis by promoting the local inflammatory milieu.
Collapse
Affiliation(s)
- Hakan Cakmak
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,2 Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yasemin Seval-Celik
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,3 Department of Histology and Embryology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Sefa Arlier
- 4 Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ozlem Guzeloglu-Kayisli
- 4 Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Frederick Schatz
- 4 Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aydin Arici
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Umit A Kayisli
- 4 Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
15
|
Koike A, Shibano M, Mori H, Kohama K, Fujimori K, Amano F. Simultaneous Addition of Shikonin and Its Derivatives with Lipopolysaccharide Induces Rapid Macrophage Death. Biol Pharm Bull 2017; 39:969-76. [PMID: 27251498 DOI: 10.1248/bpb.b15-00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages play pivotal roles in inflammatory responses. Previous studies showed that various natural products exert antiinflammatory effects by regulating macrophage activation. Recent studies have shown that shikonin (SHK) and its derivatives (β-hydroxyisovalerylshikonin, acetylshikonin, and isobutylshikonin), which are 1,4-naphthoquinone pigments extracted from the roots of Lithospermum erythrorhizon, have various pharmacological, including antiinflammatory and antitumor, effects. Even though there have been many studies on the antiinflammatory activities of SHK derivatives, only a few have described their direct effects on macrophages. We investigated the effects of SHK derivatives on lipopolysaccharide (LPS)-treated macrophages. Low doses of SHK derivatives induced significant macrophage cytotoxicity (mouse macrophage-like J774.1/JA-4 cells and mouse peritoneal macrophages) in the presence of LPS. SHK activated caspases-3 and -7, which led to DNA fragmentation, but this cytotoxicity was prevented through a pan-caspase inhibitor in LPS-treated JA-4 cells. Maximal cytotoxic effects were achieved when SHK was added immediately before LPS addition. These results indicate that SHK derivatives induce caspase-dependent apoptotic cell death of LPS-treated macrophages and suggest that SHK acts during an early stage of LPS signaling.
Collapse
Affiliation(s)
- Atsushi Koike
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | | | | | | | | | | |
Collapse
|
16
|
Korb K, Katsikogianni E, Zingler S, Daum E, Lux CJ, Hohenstein A, Erber R. Inhibition of AXUD1 attenuates compression-dependent apoptosis of cementoblasts. Clin Oral Investig 2016; 20:2333-2341. [DOI: 10.1007/s00784-016-1740-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
|
17
|
Liao H, Kang JL, Jiang WY, Deng C, Yuan J, Shuai R. Delivery of Constitutively Active Mutant MKK6(E) With TAT-OSBP Induces Apoptosis in Human Ovarian Carcinoma HO8910 Cells. Int J Gynecol Cancer 2015; 25:1548-56. [PMID: 26495757 DOI: 10.1097/igc.0000000000000538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Biologically active peptides and proteins are novel agents that show promise in the development of anticancer drugs. Their relatively low cell permeability and poor tumor selectivity, however, impede their widespread applicability. In this study, we evaluated the tumor selectivity, cellular internalization, and biological activity of a cell-permeable ovarian cancer cell-specific therapeutic protein consisting of TAT-OSBP and constitutively active MKK6(E), an upstream kinase of the p38 signaling pathway that mediates cellular apoptosis. OSBP, a 7-amino-acid peptide with high affinity for human ovarian cancer HO8910 cells, was conjugated to the cell-penetrating peptide (TAT) to form a tumor-selective peptide (TAT-OSBP), which was further conjugated with EGFP or MKK6(E). Flow cytometry and fluorescent microscopy were performed to evaluate the tumor-targeted penetration of TAT-OSBP-EGFP. The inhibitory effects of TAT-OSBP-MKK6(E) were determined by cell proliferation and apoptosis assays. The internalization efficiency of TAT-OSBP-EGFP was significantly higher than that of TAT-EGFP. TAT-OSBP-EGFP selectively penetrated HO8910 cells. TAT-OSBP-MKK6(E) fusion protein inhibited cancer cell growth to varying degrees, with the highest level of inhibition in HO8910 cells. Moreover, TAT-OSBP-MKK6(E) significantly induced apoptosis of HO8910 cells. However, there was no significant difference in apoptosis in the normal ovarian epithelial cells treated with either TAT-OSBP-MKK6(E) or TAT-MKK6(E). Our results demonstrate that TAT-OSBP-MKK6(E) is a novel artificially designed molecule, which induces apoptosis and selectively targets human ovarian carcinoma HO8910 cells. Our study provides novel insights that may aid in the development of a new generation of anticancer drugs.
Collapse
Affiliation(s)
- Hua Liao
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, Li L, Dong L, Guo L, Wang S. Autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell Death Dis 2015; 6:e1859. [PMID: 26291313 PMCID: PMC4558514 DOI: 10.1038/cddis.2015.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
The origin of rhabdomyosarcoma (RMS) remains controversial. However, specific microRNAs (miRNAs) are downregulated in RMS and it is possible that re-expression of these miRNAs may lead to differentiation. Transforming growth factor-β1 (TGF-β1) is known to block differentiation of RMS. We therefore analyzed miRNA microarrays of RMS cell lines with or without TGF-β1 knockdown and identified a novel anti-oncogene miR-411-5p. Re-expression of miR-411-5p inhibited RMS cell proliferation in vitro and tumorigenicity in vivo. Using a luciferase reporting system and sequence analysis, the potential target of miR-411-5p was identified as sprouty homolog 4 (SPRY4), which inhibits protein kinase Cα-mediated activation of mitogen-activated protein kinases (MAPKs), especially p38MAPK phosphorylation. These results revealed an inverse correlation between TGF-β1/SPRY4 and miR-411-5p levels. SPRY4 small interfering RNA and miR-411-5p both activated p38MAPK phosphorylation and also promoted apoptosis and myogenic differentiation, indicated by increased caspase-3, myosin heavy chain, and myosin expression. SPRY4 and miR-411 mRNA levels correlated with TGF-β1 expression levels in RMS tissues, which was confirmed by immunohistochemical staining for TGF-β1, SPRY4, and phosphorylated p38MAPK proteins. Overall, these results indicate that miR-411-5p acts as an RMS differentiation-inducing miRNA prompting p38MAPK activation via directly downregulating SPRY4. These results establish an autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK in RMS, which governs the switch between proliferation and differentiation.
Collapse
Affiliation(s)
- M Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - F Huang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - D Yu
- Department of Plastic Surgery, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Y Zhang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - H Xu
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Zhang
- Department of Surgery, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Li
- Department of Osteology, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - L Dong
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - L Guo
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - S Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
19
|
Wang XF, Zhou QM, Lu YY, Zhang H, Huang S, Su SB. Glycyrrhetinic acid potently suppresses breast cancer invasion and metastasis by impairing the p38 MAPK-AP1 signaling axis. Expert Opin Ther Targets 2015; 19:577-87. [PMID: 25828376 DOI: 10.1517/14728222.2015.1012156] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Radix Glycyrrhiza has been used in China for thousand years to treat cancer. However, focus on its tumor-suppressing mechanism has been concentrated on its effect on tumor cell growth and apoptosis. OBJECTIVES With the aid of a panel of human breast cancer cell lines, we reveal that glycyrrhetinic acid (GA), a major component of Radix Glycyrrhiza, is actually a significantly more potent agent to suppress invasion than cell survival. RESULTS GA effectively inhibits breast cancer cell MMP-2/MMP-9 expression; GA-induced reduction in the MMP-2/9 expression is apparently mediated by GA's ability to specifically inhibit the p38 MAPK activity and its downstream AP1 activation. Moreover, we show that GA down regulates the levels of Fra-1 and c-Jun, two main components of AP1 transcription complex in invasive breast cancer cells and that AP1-specific inhibitor abrogates breast cancer cell invasion. These results suggest that GA impairs the p38 MAPK-AP1 signaling axis, leading to the repression of breast cancer cell invasion. Finally, we demonstrate that GA effectively suppresses breast tumor outgrowth and pulmonary metastasis without causing animal weight loss or eliciting liver/kidney toxicity to the recipient animals. CONCLUSION This study indicates that GA represents a good candidate compound for the potential development of therapeutic drug.
Collapse
Affiliation(s)
- Xiu-Feng Wang
- Shanghai University of Traditional Chinese Medicine, Research Center for Traditional Chinese Medicine Complexity System , Shanghai 201203 , China +86 215 132 3013 ;
| | | | | | | | | | | |
Collapse
|
20
|
Zhong J, Kang J, Wang X, Jiang W, Liao H, Yuan J. TAT-OSBP-1-MKK6(E), a novel TAT-fusion protein with high selectivity for human ovarian cancer, exhibits anti-tumor activity. Med Oncol 2015; 32:118. [PMID: 25782870 DOI: 10.1007/s12032-015-0495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
To improve the selectivity of TAT-fusion proteins for targeted cancer therapy, we developed a novel TAT-based target-specific fusion protein, TAT-OSBP-1-MKK6(E), and evaluated its selectivity and anti-tumor activity in vitro and in vivo. The fusion protein containing TAT-OSBP-1-MKK6(E) has three functional domains: (1) the protein transduction domain of TAT, (2) the human ovarian cancer HO8910 cell-specific binding peptide (OSBP-1) and (3) the potential anti-tumor effector domain of MKK6(E). The transduction efficiency, selectivity, cytotoxicity and apoptotic effect of TAT-OSBP-1-MKK6(E) were examined using immunofluorescence, CCK8 assay and flow cytometry. The in vivo anti-tumor efficacy and target specificity of the fusion protein were evaluated using a nude mouse model with subcutaneous xenografts of human ovarian cancer HO8910 cells. Tumor-bearing mice were divided into three treatment groups that received tail vein injections of TAT-OSBP-1-MKK6(E), TAT-OSBP-1 or normal saline. Tumor growth inhibition was determined by tumor volume, weight and morphology. The distribution and apoptotic effect of TAT-OSBP-1-MKK6(E) were assessed by immunohistochemical staining and TUNEL assays. TAT-OSBP-1-MKK6(E) can be selectively internalized into human ovarian cancer HO8910 cells, rather than normal ovarian OSE cells. In vivo, the fusion protein was mainly expressed in the tumor xenograft, but not in ovary or liver tissues. As a result, TAT-OSBP-1-MKK6(E) significantly induced growth inhibition and apoptosis of tumor cells in vitro and in vivo, with limited effects in normal cells and tissues. TAT-OSBP-1-MKK6(E) treatment can selectively target HO8910 cells in vitro and in vivo, leading to growth inhibition and apoptosis of tumor cells. As such, TAT-OSBP-1-MKK6(E) may be a potential approach for ovarian cancer target therapy.
Collapse
Affiliation(s)
- Jiali Zhong
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Iida N, Fujita M, Miyazawa K, Kobayashi M, Hattori S. Proteomic identification of p38 MAP kinase substrates using in vitro phosphorylation. Electrophoresis 2013; 35:554-62. [PMID: 24288278 DOI: 10.1002/elps.201300392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/19/2023]
Abstract
Protein phosphorylation is a major mechanism that regulates many basic cellular processes. Identification and characterization of substrates for a given protein kinase can lead to a better understanding of signal transduction pathways. However, it is still difficult to efficiently identify substrates for protein kinases. Here, we propose an integrated proteomic approach consisting of in vitro dephosphorylation and phosphorylation, phosphoprotein enrichment, and 2D-DIGE. Phosphatase treatment significantly reduced the complexity of the phosphoproteome, which enabled us to efficiently identify the substrates. We employed p38 mitogen-activated protein kinase (p38 MAP kinase) as a model kinase and identified 23 novel candidate substrates for this kinase. Seven selected candidates were phosphorylated by p38 MAP kinase in vitro and in p38 MAP kinase-activated cells. This proteomic approach can be applied to any protein kinase, allowing global identification of novel substrates.
Collapse
Affiliation(s)
- Naoyuki Iida
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Taylor AW. Alpha-melanocyte stimulating hormone (α-MSH) is a post-caspase suppressor of apoptosis in RAW 264.7 macrophages. PLoS One 2013; 8:e74488. [PMID: 24009773 PMCID: PMC3757010 DOI: 10.1371/journal.pone.0074488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023] Open
Abstract
The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is an important regulator of immune cell activity within the immunosuppressive ocular microenvironment. Its constitutive presence not only suppresses macrophage inflammatory activity, it also participates in retinal pigment epithelial cell (RPE) mediated activation of macrophages to function similar to myeloid suppressor cells. In addition, α-MSH promotes survival of the alternatively activated macrophages where without α-MSH RPE induce apoptosis in the macrophages, which is seen as increased TUNEL stained cells. Since there is little know about α-MSH as an anti-apoptotic factor, the effects of α-MSH on caspase activity, mitochondrial membrane potential, Bcl2 to BAX expression, along with TUNEL staining, and Annexin V binding were examined in RAW 264.7 macrophages under serum-starved conditions that trigger apoptosis. There was no effect of α-MSH on activated Caspase 9 and Caspase 3 while there was suppression of Caspase 8 activity. In addition, α-MSH did not improve mitochondrial membrane potential, change the ratio between Bcl-2 and BAX, nor reduce Annexin V binding. These results demonstrate that the diminution in TUNEL staining by α-MSH is through α-MSH mediating suppression of the apoptotic pathway that is post-Caspase 3, but before DNA fragmentation. Therefore, as α-MSH promotes the alternative activation of macrophages it also provides a survival signal, and the potential for the caspases to participate in non-apoptotic activities that can contribute to an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2) is linked to poor prognosis in patients with malignant gliomas. Amplification/overexpression of epidermal growth factor receptor (EGFR) is commonly seen in these tumors. EGFR signaling, through activation of the p38-MAPK/PKC-δ/Sp1 cascade, plays an essential role in the regulation of COX-2 expression in glioma cells. Here, we report that Src kinase contributes upstream to this signaling cascade. In addition, more detailed analysis revealed the involvement of FOXM1, a member of the forkhead box family of transcriptional activators, in EGF-dependent COX-2 induction. FOXM1 protein increased after stimulation with EGF, although its role in modulating COX-2 expression does not depend on this increase. While a conventional FOXM1 responsive element resides in a distal region (-2872/-2539 relative to the transcriptional start site) of the COX-2 promoter, this is not required for EGF-dependent induction of COX-2. Instead, FOXM1 forms a cooperative interaction with Sp1 at the Sp1-binding site (-245/-240 relative to the start site) of the COX-2 promoter to mediate EGF-induced COX-2 expression. Definition of this novel interaction provides a clearer understanding of the mechanistic basis for EGF induction of COX-2. IMPLICATIONS These data provide a guide for the evaluation of potential newer therapeutic targets that have relevance in this disease.
Collapse
Affiliation(s)
- Kaiming Xu
- Department of Radiation Oncology, Emory University, 1365 Clifton Road, NE, Suite CT-104, Atlanta, GA 30322, USA
| | | |
Collapse
|
24
|
Zhang G, Lin RK, Kwon YT, Li YP. Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2. FASEB J 2013; 27:2893-901. [PMID: 23568773 DOI: 10.1096/fj.12-222711] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The N-end rule pathway contributes significantly to accelerated muscle proteolysis mediated by the ubiquitin-proteasome pathway in various catabolic conditions. UBR2 (aka E3α-II) is the only known E3 ubiquitin ligase of the N-end rule pathway that is up-regulated by cachectic stimuli including proinflammatory cytokines and tumors. However, the signaling mechanism through which UBR2 is up-regulated remains undetermined. Here we identify a signaling pathway that mediates tumor cell-induced up-regulation of UBR2. UBR2 expression in C2C12 myotubes was up-regulated by conditioned medium from Lewis lung carcinoma cells or C26 colon adenocarcinoma cells, which was blocked by a pharmacological inhibitor of p38α/β mitogen-activated protein kinase (MAPK), SB202190. Similarly, SB202190 administration (i.p.) abolished UBR2 up-regulation in the tibialis anterior of LLC tumor-bearing mice. Genetic gain and loss of function assays in C2C12 myotubes indicated that tumor-induced activation of the p38β isoform is sufficient and necessary for UBR2 up-regulation. In addition, UBR2 up-regulation required p38β-mediated phosphorylation of CCAAT/enhancer binding protein (C/EBP)-β Thr-188, which was critical to C/EBPβ binding to the UBR2 promoter. Furthermore, luciferase reporter assay revealed that the C/EBPβ binding motif in the UBR2 promoter is a functional C/EBPβ-responsive cis-element that enhances the promoter activity on activation by p38β. Finally, genetic ablation of C/EBPβ blocked UBR2 up-regulation in LLC tumor-bearing mice. These results suggest that UBR2 up-regulation in cachectic muscle is mediated by the p38β-C/EBPβ signaling pathway responsible for the bulk of tumor-induced muscle proteolysis.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Kułdo J, Ásgeirsdóttir S, Zwiers P, Bellu A, Rots M, Schalk J, Ogawara K, Trautwein C, Banas B, Haisma H, Molema G, Kamps J. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. J Control Release 2013; 166:57-65. [DOI: 10.1016/j.jconrel.2012.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023]
|
26
|
Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 2012; 27:538-51. [PMID: 22072425 PMCID: PMC4285380 DOI: 10.1002/jbmr.561] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RUNX2, a key transcription factor for osteoblast differentiation, is regulated by ERK1/2 and p38 MAP kinase-mediated phosphorylation. However, the specific contribution of each kinase to RUNX2-dependent transcription is not known. Here we investigate ERK and p38 regulation of RUNX2 using a unique P-RUNX2-specific antibody. Both MAP kinases stimulated RUNX2 Ser319 phosphorylation and transcriptional activity. However, a clear preference for ERK1 versus p38α/β was found when the ability of these MAPKs to phosphorylate and activate RUNX2 was compared. Similarly, ERK1 preferentially bound to a consensus MAPK binding site on RUNX2 that was essential for the activity of either kinase. To assess the relative contribution of ERK1/2 and p38 to osteoblast gene expression, MC3T3-E1 preosteoblast cells were grown in control or ascorbic acid (AA)-containing medium ± BMP2/7. AA-induced gene expression, which requires collagen matrix synthesis, was associated with parallel increases in P-ERK and RUNX2-S319-P in the absence of any changes in P-p38. This response was blocked by ERK, but not p38, inhibition. Significantly, in the presence of AA, BMP2/7 synergistically stimulated RUNX2 S319 phosphorylation and transcriptional activity without affecting total RUNX2 and this response was totally dependent on ERK/MAPK activity. In contrast, although p38 inhibition partially blocked BMP-dependent transcription, it did not affect RUNX2 S319 phosphorylation, suggesting the involvement of other phosphorylation sites and/or transcription factors in this response. Based on this work, we conclude that extracellular matrix and BMP regulation of RUNX2 phosphorylation and transcriptional activity in osteoblasts is predominantly mediated by ERK rather than p38 MAPKs.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Qian Yang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Guisheng Zhao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Hong Yu
- Department of Craniofacial Biology and the Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keith L. Kirkwood
- Department of Craniofacial Biology and the Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| |
Collapse
|
27
|
Lee DU, Jessen B. Off-target immune cell toxicity caused by AG-012986, a pan-CDK inhibitor, is associated with inhibition of p38 MAPK phosphorylation. J Biochem Mol Toxicol 2011; 26:101-8. [PMID: 22095879 DOI: 10.1002/jbt.20415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/25/2011] [Indexed: 11/08/2022]
Abstract
AG-012986 is a pan-CDK (cyclin-dependent kinase) inhibitor that has in vitro and in vivo antitumor properties but was stopped in development due in part to rapid bone-marrow-independent white blood cell toxicity in preclinical studies and the potential for acute and delayed immunosuppression in humans. Because peripheral lymphocytes are largely nonproliferating, it was hypothesized the toxicity of AG-012986 was due to an off-target mechanism and not driven by the intended pharmacology. We show the toxicity mechanism in primary human immune cells is caspase driven. T-cells treated with AG-012986 and acutely stimulated through the T-cell receptor exhibited decreased toxicity while still maintaining cell division inhibition. This indicated that the pharmacology of AG-012986 functioned as expected but the toxicity had now been decoupled through activation. Induced phosphorylation of p38 and IL-2 production was impaired with AG-012986. Thus, AG-012986 could cause apoptosis of T-cells by targeting upstream kinases in the p38 Mitogen-activated protein kinase (MAPK) pathway and impairing cellular survival.
Collapse
Affiliation(s)
- Dong U Lee
- Pfizer Global Research and Development, Drug Safety Department, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
28
|
Markovics JA, Araya J, Cambier S, Somanath S, Gline S, Jablons D, Hill A, Wolters PJ, Nishimura SL. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem 2011; 286:36864-74. [PMID: 21878622 DOI: 10.1074/jbc.m111.276790] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The integrin αvβ8 is a cell surface receptor for the latent domain (LAP) of the multifunctional cytokine TGF-β. Through its association with LAP, TGF-β is maintained in a latent form that must be activated to function. Binding to the integrin αvβ8 with subsequent metalloproteolytic cleavage of LAP represents a major mechanism of TGF-β activation in vivo. Altered expression of the integrin β8 subunit (ITGB8) is found in human chronic obstructive pulmonary disease, cancers, and brain vascular malformations. We have previously shown that the proinflammatory cytokine interleukin-1β (IL-1β) increases ITGB8 expression on lung fibroblasts, which increases αvβ8-mediated TGF-β activation in fibrosis and pathologic inflammation. Here we report the mechanism of increased ITGB8 expression by IL-1β. Our data support a model where the chromatin architecture of the ITGB8 core promoter is altered by nucleosomal repositioning that enhances the interaction of an AP1 complex (containing c-Jun and ATF2). This repositioning is caused by the dissociation of HDAC2 with the ITGB8 core promoter, leading to increased histone H4 acetylation and a loosening of nucleosomal-DNA interactions allowing "opening" of the chromatin structure and increased association of c-Jun and ATF-2. These changes are mediated through NFκB- and p38-dependent pathways. Ultimately, these events culminate in increasing ITGB8 transcription, αvβ8 surface expression, and αvβ8-mediated TGFβ activation.
Collapse
Affiliation(s)
- Jennifer A Markovics
- Department Pathology, School of Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
C/EBPβ mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J 2011; 30:4323-35. [PMID: 21847090 DOI: 10.1038/emboj.2011.292] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/22/2011] [Indexed: 11/09/2022] Open
Abstract
Upregulation of ubiquitin ligase atrogin1/MAFbx and muscle wasting are hallmarks of cancer cachexia; however, the underlying mechanism is undefined. Here, we describe a novel signalling pathway through which Lewis lung carcinoma (LLC) induces atrogin1/MAFbx upregulation and muscle wasting. C2C12 myotubes treated with LLC-conditioned medium (LCM) rapidly activates p38 MAPK and AKT while inactivating FoxO1/3, resulting in atrogin1/MAFbx upregulation, myosin heavy chain loss, and myotube atrophy. The p38α/β MAPK inhibitor SB202190 blocks the catabolic effects. Upon activation, p38 associates with C/EBPβ resulting in its phosphorylation and binding to a C/EBPβ-responsive cis-element in the atrogin1/MAFbx gene promoter. The promoter activity is stimulated by LCM via p38β-mediated activation of the C/EBPβ-responsive cis-element, independent of the adjacent FoxO1/3-responsive cis-elements in the promoter. In addition, p38 activation is observed in the muscle of LLC tumour-bearing mice, and SB202190 administration blocks atrogin1/MAFbx upregulation and muscle protein loss. Furthermore, C/EBPβ(-/-) mice are resistant to LLC tumour-induced atrogin1/MAFbx upregulation and muscle wasting. Therefore, activation of the p38β MAPK-C/EBPβ signalling pathway appears a key component of the pathogenesis of LLC tumour-induced cachexia.
Collapse
|
30
|
Maranto J, Rappaport J, Datta PK. Role of C/EBP-β, p38 MAPK, and MKK6 in IL-1β-mediated C3 gene regulation in astrocytes. J Cell Biochem 2011; 112:1168-75. [PMID: 21308746 DOI: 10.1002/jcb.23032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.
Collapse
Affiliation(s)
- Jeffrey Maranto
- Department of Neuroscience, Temple University School of Medicine, 3500, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
31
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Wu XN, Wang XK, Wu SQ, Lu J, Zheng M, Wang YH, Zhou H, Zhang H, Han J. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J Biol Chem 2011; 286:31501-11. [PMID: 21757713 DOI: 10.1074/jbc.m111.233122] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A critical step for JNK activation: isomerization by the prolyl isomerase Pin1. Cell Death Differ 2011; 19:153-61. [PMID: 21660049 DOI: 10.1038/cdd.2011.82] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by dual phosphorylation of both threonine and tyrosine residues in the phosphorylation loop of the protein in response to several stress factors. However, the precise molecular mechanisms for activation after phosphorylation remain elusive. Here we show that Pin1, a peptidyl-prolyl isomerase, has a key role in the JNK1 activation process by modulating a phospho-Thr-Pro motif in the phosphorylation loop. Pin1 overexpression in human breast cancer cell lines correlates with increased JNK activity. In addition, small interfering RNA (siRNA) analyses showed that knockdown of Pin1 in a human breast cancer cell line decreased JNK1 activity. Pin1 associates with JNK1, and then catalyzes prolyl isomerization of the phospho-Thr-Pro motif in JNK1 from trans- to cis-conformation. Furthermore, Pin1 enhances the association of JNK1 with its substrates. As a result, Pin1(-/-) cells are defective in JNK activation and resistant to oxidative stress. These results provide novel insights that, following stress-induced phosphorylation of Thr in the Thr-Pro motif of JNK1, JNK1 associates with Pin1 and undergoes conformational changes to promote the binding of JNK1 to its substrates, resulting in cellular responses from extracellular signals.
Collapse
|
34
|
Hemi R, Yochananov Y, Barhod E, Kasher-Meron M, Karasik A, Tirosh A, Kanety H. p38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: a novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance. Diabetes 2011; 60:1134-45. [PMID: 21386087 PMCID: PMC3064087 DOI: 10.2337/db09-1323] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Stress stimuli such as tumor necrosis factor (TNF) have been shown to induce insulin receptor substrate (IRS)-1 serine phosphorylation and insulin resistance by transactivation of ErbB receptors. We aimed at elucidating the potential role of p38 mitogen-activated protein kinase (p38MAPK) in mediating stress-induced ErbB receptors activation. RESEARCH DESIGN AND METHODS p38MAPK effect on ErbBs transactivation and insulin signaling was assessed in Fao or HepG2 cells, exposed to stress stimuli, and on metabolic parameters in ob/ob and C57/BL6 mice. RESULTS High-fat diet-fed mice and ob/ob mice exhibited elevated hepatic p38MAPK activation associated with glucose intolerance and hyperinsulinemia. Liver expression of dominant-negative (DN)-p38MAPKα in ob/ob mice reduced fasting insulin levels and improved glucose tolerance, whereas C57/BL6 mice overexpressing wild-type p38MAPKα exhibited enhanced IRS-1 serine phosphorylation and reduced insulin-stimulated IRS-1 tyrosine phosphorylation. Fao or HepG2 cells exposed to TNF, anisomycin, or sphingomyelinase demonstrated rapid transactivation of ErbB receptors leading to PI3-kinase/Akt activation and IRS-1 serine phosphorylation. p38MAPK inhibition either by SB203580, by small interfering RNA, or by DN-p38MAPKα decreased ErbB receptors transactivation and IRS-1 serine phosphorylation and partially restored insulin-stimulated IRS-1 tyrosine phosphorylation. When cells were incubated with specific ErbB receptors antagonists or in cells lacking ErbB receptors, anisomycin- and TNF-induced IRS-1 serine phosphorylation was attenuated, despite intact p38MAPK activation. The stress-induced p38MAPK activation leading to ErbB receptors transactivation was associated with intracellular reactive oxygen species generation and was attenuated by treatment with antioxidants. CONCLUSIONS Hepatic p38MAPK is activated following various stress stimuli. This event is upstream to ErbB receptors transactivation and plays an important role in stress-induced IRS-1 serine phosphorylation and insulin resistance.
Collapse
Affiliation(s)
- Rina Hemi
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yafit Yochananov
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Barhod
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Kasher-Meron
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Karasik
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Tirosh
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Hannah Kanety
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Corresponding author: Hannah Kanety,
| |
Collapse
|
35
|
Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 2010; 28:1132-42. [PMID: 20506541 DOI: 10.1002/stem.441] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence points to reactive oxygen species (ROS) as important signaling molecules for cardiomyocyte differentiation in embryonic stem (ES) cells. Given that ES cells are normally maintained and differentiated in medium containing supraphysiological levels of glucose (25 mM), a condition which is known to result in enhanced cellular ROS formation, we questioned whether this high glucose concentration was necessary for cardiomyocyte lineage potential. We show here that ES cells cultured in physiological glucose (5 mM), maintained their general stemness qualities but displayed an altered mitochondrial metabolism, which resulted in decreased ROS production. Furthermore, ES and induced pluripotent stem (iPS) cells differentiated in lower glucose concentrations failed to generate cardiomyocyte structures; an effect mimicked with antioxidant treatments using catalase, N-acetyl cysteine and mitoubiquinone, under high glucose conditions in ES cells. Molecular analysis revealed that ES cells differentiated in 5 mM glucose had reduced expression of the pro-cardiac NOX4 gene and diminished phosphorylation of p38 mitogen-activated protein kinase (MAPK), together with specific changes in the cardiac transcriptional network. These outcomes could be reversed by supplementation of low glucose cultures with ascorbic acid, paradoxically acting as a pro-oxidant. Furthermore, forced expression of an upstream p38 MAPK kinase (MKK6) could bypass the requirement for ROS during differentiation to cardiomyocytes under low glucose conditions, illustrating a key role for p38 in the cardiac differentiation program. Together these data demonstrate that endogenous ROS control is important for cardiomyocyte formation from ES cells, and furthermore that supraphysiological glucose, by supplying ROS, is absolutely required.
Collapse
Affiliation(s)
- Francisco Luna Crespo
- Laboratory of Cellular Signaling, Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, (CNIC) Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 2010; 25:99-110. [PMID: 20826541 DOI: 10.1096/fj.10-164152] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.
Collapse
Affiliation(s)
- Alexander Doyle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Liu H, Pedram A, Kim JK. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β. Cardiovasc Res 2010; 89:119-28. [PMID: 20724307 DOI: 10.1093/cvr/cvq265] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS we have previously shown that 17-β-estradiol (E2) protects cardiomyocytes exposed to simulated ischaemia-reperfusion (I/R) by differentially regulating pro-apoptotic p38α mitogen-activated protein kinase (p38α MAPK) and pro-survival p38β. However, little is known about how E2 modulation of these kinases alters apoptotic signalling. An attractive downstream target is p53, a well-known mediator of apoptosis and a substrate of p38α MAPK. The aim of this study was to determine whether the cytoprotective actions of oestrogen involve regulation of p53 via cardiac p38 MAPKs. METHODS AND RESULTS cultured rat cardiomyocytes underwent hypoxia followed by reoxygenation (H/R) to simulate I/R. We found that inhibiting p53 significantly reduced apoptosis. Phosphorylation of p53 at serine 15 [p-p53(S15)] increased after H/R in a p38α MAPK- and reactive oxygen species (ROS)-dependent manner. E2 at 10 nM effectively inhibited p-p53(S15) and mitochondrial translocation of p53. Blocking p53 led to augmented p38β activity and attenuated ROS, suggesting suppression of this antioxidant kinase by p53. The use of a specific agonist for each oestrogen receptor (ER) isoform, ERα and ERβ, demonstrated that both isoforms participate in preventing cell death by inhibiting p53 in the mitochondria-centred apoptotic processes. CONCLUSION our results demonstrate that during H/R stress, cardiomyocytes undergo p53-dependent apoptosis following phosphorylation of p53 by p38α MAPK, leading to p38β suppression. E2 protects cardiomyocytes by inhibiting p38α-p53 signalling in apoptosis.
Collapse
Affiliation(s)
- Han Liu
- Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
38
|
Hayashi Y, Arakaki R, Ishimaru N. Salivary gland and autoimmunity. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 56 Suppl:185-91. [PMID: 20224179 DOI: 10.2152/jmi.56.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent evidences suggest that the apoptotic pathway plays a central role in tolerazing T cells to tissue-specific self antigen, and may drive the autoimmune phenomenon in the salivary glands. We found that retinoblastoma-associated protein RbAp48 overexpression induces p53-mediated apoptosis in the salivary glands caused by estrogen deficiency. We demonstrated that transgenic (Tg) expression of RbAp48 resulted in the development of autoimmune exocrinopathy resembling Sjögren's syndrome (SS). CD4(+)T cell-mediated autoimmune lesions in the salivary glands were aggravated with age, in association with autoantibody productions. We obtained evidences that salivary epithelial cells can produce interferon-gamma (IFN-gamma) besides interleukin (IL)-18, which activates interferon regulatory factor-1 (IRF-1), and class II transactivator (CIITA). Indeed, the autoimmune lesions into Rag2(-/-) mice were induced by the adoptive transfer of lymph node cells from RbAp48-Tg mice. These results indicate a novel immunocompetent role of epithelial cells that can produce IFN-gamma, resulting in loss of local tolerance prior to developing gender-based autoimmunity. The studies reviewed the molecular mechanisms on the development of salivary gland autoimmunity, and gender-related differences in SS.
Collapse
Affiliation(s)
- Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | |
Collapse
|
39
|
Markovics JA, Araya J, Cambier S, Jablons D, Hill A, Wolters PJ, Nishimura SL. Transcription of the transforming growth factor beta activating integrin beta8 subunit is regulated by SP3, AP-1, and the p38 pathway. J Biol Chem 2010; 285:24695-706. [PMID: 20519498 DOI: 10.1074/jbc.m110.113977] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrin alphavbeta8 is a critical regulator of transforming growth factor beta activation in vasculogenesis during development, immune regulation, and endothelial/epithelial-mesenchymal homeostasis. Recent studies have suggested roles for integrin beta8 in the pathogenesis of chronic obstructive pulmonary disease, brain arteriovenous malformations, and select cancers (Araya, J., Cambier, S., Markovics, J. A., Wolters, P., Jablons, D., Hill, A., Finkbeiner, W., Jones, K., Broaddus, V. C., Sheppard, D., Barzcak, A., Xiao, Y., Erle, D. J., and Nishimura, S. L. (2007) J. Clin. Invest. 117, 3551-3562; Su, H., Kim, H., Pawlikowska, L., Kitamura, H., Shen, F., Cambier, S., Markovics, J., Lawton, M. T., Sidney, S., Bollen, A. W., Kwok, P. Y., Reichardt, L., Young, W. L., Yang, G. Y., and Nishimura, S. L. (2010) Am. J. Pathol. 176, 1018-1027; Culhane, A. C., and Quackenbush, J. (2009) Cancer Res. 69, 7480-7485; Cambier, S., Mu, D. Z., O'Connell, D., Boylen, K., Travis, W., Liu, W. H., Broaddus, V. C., and Nishimura, S. L. (2000) Cancer Res. 60, 7084-7093). Here we report the first identification and characterization of the promoter for ITGB8. We show that a SP binding site and a cyclic AMP response element (CRE) in the ITGB8 core promoter are required for its expression and that Sp1, Sp3, and several AP-1 transcription factors form a complex that binds to these sites in a p38-dependent manner. Furthermore, we demonstrate the requirement for Sp3, ATF-2, and p38 for the transcription and protein expression of integrin beta8. Additionally, reduction of SP3 or inhibition of p38 blocks alphavbeta8-mediated transforming growth factor beta activation. These results place integrin beta8 expression and activity under the control of ubiquitous transcription factors in a stress-activated and pro-inflammatory pathway.
Collapse
Affiliation(s)
- Jennifer A Markovics
- Department of Pathology, Pulmonary Division, School of Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Huang HM, Li YC, Chung MH. Activin A induction of erythroid differentiation through MKK6-p38alpha/p38beta pathway is inhibited by follistatin. J Cell Physiol 2010; 223:687-94. [PMID: 20162623 DOI: 10.1002/jcp.22074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activin A is a member of the transforming growth factor (TGF)-beta superfamily that regulates cell proliferation and differentiation. Using the p38 inhibitor SB203580, our previous studies demonstrated that p38 was involved in activin A-mediated hemoglobin (Hb) synthesis in K562 cells. SB203580 is an inhibitor of p38alpha and p38beta isoforms. In this study, we show that p38alpha and p38beta mRNA were expressed in K562 cells and that activin A activated the kinase activities of these isoforms. To investigate the roles of p38alpha and p38beta isoforms in activin A-mediated erythroid differentiation, we generated stable clones that over-expressed the dominant negative p38 isoforms p38alpha(AF) and p38beta(AF) in K562 cells. The expressions of either p38alpha(AF) or p38beta(AF) reduced activin A-induced p38 activation, Hb synthesis, and zeta-globin promoter activity. Similarly, down-regulation of either p38alpha or p38beta by isoform-specific siRNAs also reduced activin A-induced zeta-globin promoter activity. Co-expressions of p38alpha(AF) and p38beta(AF), together, greatly inhibited the transcription activity of the zeta-globin promoter. Conversely, expression of mitogen-activated protein kinase kinase (MKK) 6b(E), a constitutive activator of p38, significantly activated zeta-globin promoter. Co-expressions of either p38alpha or p38beta with MKK6b had a similar activation of zeta-globin promoter. Activin A induction of erythroid differentiation was inhibited by follistatin. Activin A-induced phosphorylation of MKK6 and p38 was also inhibited by follistatin. Moreover, over-expression of MKK6b(E) reverted follistatin inhibition of activin A-induced zeta-globin promoter activity. These results demonstrate that activin A induces erythroid differentiation of K562 cells through activation of MKK6-p38alpha/p38beta pathway and follistatin inhibits those effects.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
41
|
Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 2010; 37:551-66. [PMID: 20188673 DOI: 10.1016/j.molcel.2010.01.034] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 11/12/2009] [Accepted: 01/23/2010] [Indexed: 12/25/2022]
Abstract
Inflammatory stimuli activate ectodomain shedding of TNF-alpha, L-selectin, and other transmembrane proteins. We show that p38 MAP kinase, which is activated in response to inflammatory or stress signals, directly activates TACE, a membrane-associated metalloprotease that is also known as ADAM17 and effects shedding in response to growth factors and Erk MAP kinase activation. p38alpha MAP kinase interacts with the cytoplasmic domain of TACE and phosphorylates it on Thr(735), which is required for TACE-mediated ectodomain shedding. Activation of TACE by p38 MAP kinase results in the release of TGF-alpha family ligands, which activate EGF receptor signaling, leading to enhanced cell proliferation. Conversely, depletion of p38alpha MAP kinase activity suppresses EGF receptor signaling and downstream Erk MAP kinase signaling, as well as autocrine EGF receptor-dependent proliferation. Autocrine EGF receptor activation through TACE-mediated ectodomain shedding intimately links inflammation and cancer progression and may play a role in stress and conditions that relate to p38 MAP kinase activation.
Collapse
|
42
|
Shaik SS, Soltau TD, Chaturvedi G, Totapally B, Hagood JS, Andrews WW, Athar M, Voitenok NN, Killingsworth CR, Patel RP, Fallon MB, Maheshwari A. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway. J Biol Chem 2008; 284:5945-55. [PMID: 19117939 DOI: 10.1074/jbc.m807205200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.
Collapse
Affiliation(s)
- Sadiq S Shaik
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Levin-Salomon V, Kogan K, Ahn NG, Livnah O, Engelberg D. Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases. J Biol Chem 2008; 283:34500-10. [PMID: 18829462 PMCID: PMC3259889 DOI: 10.1074/jbc.m806443200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
MAPKs are key components of cell signaling pathways with a unique activation mechanism: i.e. dual phosphorylation of neighboring threonine and tyrosine residues. The ERK enzymes form a subfamily of MAPKs involved in proliferation, differentiation, development, learning, and memory. The exact role of each Erk molecule in these processes is not clear. An efficient strategy for addressing this question is to activate individually each molecule, for example, by expressing intrinsically active variants of them. However, such molecules were not produced so far. Here, we report on the isolation, via a specifically designed genetic screen, of six variants (each carries a point mutation) of the yeast MAPK Mpk1/Erk that are active, independent of upstream phosphorylation. One of the activating mutations, R68S, occurred in a residue conserved in the mammalian Erk1 (Arg-84) and Erk2 (Arg-65) and in the Drosophila ERK Rolled (Arg-80). Replacing this conserved Arg with Ser rendered these MAPKs intrinsically active to very high levels when tested in vitro as recombinant proteins. Combination of the Arg to Ser mutation with the sevenmaker mutation (producing Erk2(R65S+D319N) and Rolled(R80S+D334N)) resulted in even higher activity (45 and 70%, respectively, in reference to fully active dually phosphorylated Erk2 or Rolled). Erk2(R65S) and Erk2(R65S+D319N) were found to be spontaneously active also when expressed in human HEK293 cells. We further revealed the mechanism of action of the mutants and show that it involves acquisition of autophosphorylation activity. Thus, a first generation of Erk molecules that are spontaneously active in vitro and in vivo has been obtained.
Collapse
Affiliation(s)
- Vered Levin-Salomon
- The Department of Biological Chemistry,
The Alexander Silberman Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel, The Wolfson
Centre for Applied Structural Biology, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel, and the Department of
Chemistry and Biochemistry, Howard Hughes Medical Institute, University of
Colorado, Boulder, Colorado 80309
| | - Konstantin Kogan
- The Department of Biological Chemistry,
The Alexander Silberman Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel, The Wolfson
Centre for Applied Structural Biology, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel, and the Department of
Chemistry and Biochemistry, Howard Hughes Medical Institute, University of
Colorado, Boulder, Colorado 80309
| | - Natalie G. Ahn
- The Department of Biological Chemistry,
The Alexander Silberman Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel, The Wolfson
Centre for Applied Structural Biology, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel, and the Department of
Chemistry and Biochemistry, Howard Hughes Medical Institute, University of
Colorado, Boulder, Colorado 80309
| | - Oded Livnah
- The Department of Biological Chemistry,
The Alexander Silberman Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel, The Wolfson
Centre for Applied Structural Biology, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel, and the Department of
Chemistry and Biochemistry, Howard Hughes Medical Institute, University of
Colorado, Boulder, Colorado 80309
| | - David Engelberg
- The Department of Biological Chemistry,
The Alexander Silberman Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel, The Wolfson
Centre for Applied Structural Biology, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel, and the Department of
Chemistry and Biochemistry, Howard Hughes Medical Institute, University of
Colorado, Boulder, Colorado 80309
| |
Collapse
|
44
|
Chopra P, Kanoje V, Semwal A, Ray A. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs 2008; 17:1411-25. [PMID: 18808304 DOI: 10.1517/13543784.17.10.1411] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Over the past two decades, p38 MAPK (mitogen-activated protein kinase) has been the subject of intense multidisciplinary research. p38 MAPK inhibitors have been shown to be efficacious in several disease models, including rheumatoid arthritis, psoriasis, Crohn's disease, and stroke. Recent studies support a role for p38 MAPK in the development, maintenance, and/or exacerbation of a number of pulmonary diseases, such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). OBJECTIVE Many previous attempts to develop p38 MAPK inhibitors have failed as a result of unacceptable safety profiles. These toxicities have been varied and are believed to derive from different off-target effects. METHOD The above concerns can be overcome by delivering the compound locally to minimize whole-body burden, resulting in low exposure to the gastrointestinal, liver, and CNS. This review discusses the role of p38 MAPK in various inflammatory diseases, followed by the toxicity concerns associated with p38 MAPK inhibition. It also highlights the possible beneficial effect of delivering drugs via the inhalation route. CONCLUSION We present proof-of-principle confirming the therapeutic potential of inhaled p38 inhibitors for asthma and other inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Puneet Chopra
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, Plot No-20, Sector-18, Gurgaon-122001-Haryana, India.
| | | | | | | |
Collapse
|
45
|
Rydén M, Arner P. Tumour necrosis factor-alpha in human adipose tissue -- from signalling mechanisms to clinical implications. J Intern Med 2007; 262:431-8. [PMID: 17875179 DOI: 10.1111/j.1365-2796.2007.01854.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From its initial implication in the development of cachexia in the early 1980s, it is now almost 15 years ago that tumour necrosis factor-alpha (TNF-alpha) was first shown to be involved in the development of insulin resistance in obesity. Since the original findings in mice, a wealth of data has been obtained in a variety of settings and species. This intensive research has demonstrated both similarities and differences between rodents and humans regarding the molecular mechanisms and metabolic consequences of TNF-alpha overexpression. This review will focus on the role of TNF-alpha in human white adipose tissue with particular emphasis on its regulation of lipolysis - an important pathway in adipocytes which is linked to insulin-resistant phenotypes in obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- M Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital at Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
46
|
Li H, Sui C, Kong F, Zhang H, Liu J, Dong M. Expression of HSP70 and JNK-related proteins in human liver cancer: Potential effects on clinical outcome. Dig Liver Dis 2007; 39:663-70. [PMID: 17531560 DOI: 10.1016/j.dld.2007.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/23/2007] [Accepted: 03/31/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND Activation of stress-activated protein kinase/c-Jun N-terminal kinase was inhibited in cells, in which heat shock protein70 was induced to a high level, indicating that heat shock protein70 might be anti-apoptosis protein. AIM We examined the expression of heat shock protein70 and c-Jun N-terminal kinase signal transduction pathway in human liver carcinoma to explore their relationship and clinical parameters. PATIENTS AND METHODS The expression of heat shock protein70, c-Jun N-terminal kinase1, c-Jun N-terminal kinase2 and c-Jun were detected immunohistochemically in 62 samples of liver cancer. Western blot was used to confirm immunostaining results. RESULTS Heat shock protein70 expression showed a positive correlation with the malignant differentiation in liver carcinoma (r=0.449, P<0.0005). The expression of c-Jun N-terminal kinase1, c-Jun N-terminal kinase2, and c-Jun showed a negative correlation with the malignant differentiation in liver carcinoma (r=-0.351, P=0.005; r=-0.303, P=0.017; r=-0.302, P=0.017). Heat shock protein70 expression was correlated with c-Jun N-terminal kinase1 (r=-0.385, P=0.002), c-Jun N-terminal kinase2 (r=-0.309, P=0.015) and c-Jun (r=-0.302, P=0.017). Expression of heat shock protein70, as well as c-Jun N-terminal kinase1, was correlated with recurrence-free survival after the resection. Heat shock protein70 was associated with prognosis (P=0.004). CONCLUSION Expression of heat shock protein70 and c-Jun N-terminal kinase-related proteins might be an indicator of malignant potential in liver carcinoma. The balance between heat shock protein70 and c-Jun N-terminal kinase-related protein may increase the stability of liver cancer cells in stress. Negative expression of heat shock protein70 might be a protective factor of recurrence of liver carcinoma.
Collapse
Affiliation(s)
- H Li
- Department of Second Minimal-Invasive and Biliary Tract Surgery, Second Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
47
|
Xu K, Shu HKG. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res 2007; 67:6121-9. [PMID: 17616668 DOI: 10.1158/0008-5472.can-07-0141] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of cyclooxygenase-2 (COX-2) has been linked to many cancers and may contribute to malignant phenotypes, including enhanced proliferation, angiogenesis, and resistance to cytotoxic therapies. Malignant gliomas are highly aggressive brain tumors that display many of these characteristics. One prominent molecular abnormality discovered in these astrocytic brain tumors is alteration of epidermal growth factor (EGF) receptor (EGFR) through gene amplification and/or mutation resulting in excessive signaling from this receptor. We found that EGF-mediated stimulation of EGFR tyrosine kinase in human glioma cell lines induces expression of both COX-2 mRNA and protein. The p38 mitogen-activated protein kinase (p38-MAPK) pathway was a strong downstream factor in this activation with inhibition of this pathway leading to strong suppression of COX-2 induction. The p38-MAPK pathway can activate the Sp1/Sp3 transcription factors and this seems necessary for EGFR-dependent transactivation of the COX-2 promoter. Analysis of COX-2 promoter/luciferase constructs revealed that transcriptional activation of the COX-2 promoter by EGFR requires the Sp1 binding site located at -245/-240. Furthermore, Sp1/Sp3 binding to this site in the promoter is enhanced by EGFR activation both in vitro and in vivo. Enhanced DNA binding by Sp1/Sp3 requires p38-MAPK activity and correlates with increased phosphorylation of the Sp1 transcription factor. Thus, EGFR activation in malignant gliomas can transcriptionally activate COX-2 expression in a process that requires p38-MAPK and Sp1/Sp3. Finally, treatment of glioma cell lines with prostaglandin E2, the predominant product of COX-2 activity, results in increased vascular endothelial growth factor expression, thus potentially linking elevations in COX-2 expression with tumor angiogenesis in malignant gliomas.
Collapse
Affiliation(s)
- Kaiming Xu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
48
|
Hao F, Tan M, Xu X, Han J, Miller DD, Tigyi G, Cui MZ. Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA(1), p42 and p38alpha. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:883-92. [PMID: 17531530 PMCID: PMC3446792 DOI: 10.1016/j.bbalip.2007.04.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/29/2007] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.
Collapse
Affiliation(s)
- Feng Hao
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mingqi Tan
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xuemin Xu
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, CA 92037, USA
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gabor Tigyi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mei-Zhen Cui
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author. Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA. Tel.: +1 865 974 8212; fax: +1 865 974 5616. (M.-Z. Cui)
| |
Collapse
|
49
|
Mahanivong C, Yu J, Huang S. Elevated urokinase-specific surface receptor expression is maintained through its interaction with urokinase plasminogen activator. Mol Carcinog 2007; 46:165-75. [PMID: 17186542 DOI: 10.1002/mc.20249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Urokinase plasminogen activator (uPA) and its receptor (uPAR) are overexpressed in various neoplasms, and play a key role in tumor progression and metastasis. In this study, we examined uPA and uPAR expression in a variety of human breast cancer cell lines and found that lines with elevated uPA expression also exhibited high uPAR expression, suggesting the possibility that uPA and uPAR are regulated in concert. To test this possibility, we introduced antisense uPA RNA and antisense uPAR RNA in MDA-MB-231 and BT-549 lines that express high levels of uPA and uPAR. Antisense uPA RNA not only downregulated uPA expression, but also greatly reduced uPAR expression in both lines. However, antisense uPAR RNA-reduced uPAR expression with no apparent inhibitory effect on the levels of uPA. These results indicate that expression of uPAR requires uPA but not vice versa. With a panel of uPA and uPAR monoclonal antibodies (mAbs), we observed that the mAbs disrupting uPA and uPAR interaction, rather than mAb inhibiting uPA protease activity, reduced uPAR expression. Moreover, adding soluble single chain uPA (scuPA) to MDA-MB-231 or BT-549 cells expressing antisense uPA mRNA-restored uPAR expression. These findings suggest that uPA dictates uPAR expression and that uPA binding to uPAR transmits signals for uPAR expression. Finally, we provided evidence that Fyn, a Src family kinase, is involved in uPA-induced uPAR expression.
Collapse
Affiliation(s)
- Chitladda Mahanivong
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
50
|
Chen SE, Jin B, Li YP. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 2006; 292:C1660-71. [PMID: 17151142 PMCID: PMC3099536 DOI: 10.1152/ajpcell.00486.2006] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF-alpha receptor double-knockout (p55(-/-)p75(-/-)) mice. To fully evaluate the role of TNF-alpha in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-alpha, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55(-/-)p75(-/-) soleus. We observed an increase of TNF-alpha release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF-alpha-neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF-alpha added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55(-/-)p75(-/-) mice. Increased TNF-alpha release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55(-/-)p75(-/-) soleus. These results indicate that TNF-alpha regulates myogenesis and muscle regeneration as a key activator of p38.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Cell Differentiation
- Cell Line
- Cobra Cardiotoxin Proteins
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Activation
- MAP Kinase Kinase 6/metabolism
- Mice
- Mice, Knockout
- Muscle Development/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/chemically induced
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Myoblasts/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Regeneration/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Shuen-Ei Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|