1
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
2
|
Halma J, Pierce S, McLennan R, Bradley T, Fischer R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance? Clin Transl Sci 2021; 15:1091-1103. [PMID: 34866338 PMCID: PMC9099129 DOI: 10.1111/cts.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022] Open
Abstract
The roles that natural killer (NK) cells play in liver disease and transplantation remain ill‐defined. Reports on the matter are often contradictory, and the mechanisms elucidated are complex and dependent on the context of the model tested. Moreover, NK cell attributes, such as receptor protein expression and function differ among species, make study of primate or rodent transplant models challenging. Recent insights into NK function and NK‐mediated therapy in the context of cancer therapy may prove applicable to transplantation. Of specific interest are immune checkpoint molecules and the mechanisms by which they modulate NK cells in the tumor micro‐environment. In this review, we summarize NK cell populations in the peripheral blood and liver, and we explore the data regarding the expression and function of immune checkpoint molecules on NK cells. We also hypothesize about the roles they could play in liver transplantation and discuss how they might be harnessed therapeutically in transplant sciences.
Collapse
Affiliation(s)
- Jennifer Halma
- Pediatric Gastroenterology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Stephen Pierce
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ryan Fischer
- Pediatric Gastroenterology, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
3
|
Zhong MC, Lu Y, Qian J, Zhu Y, Dong L, Zahn A, Di Noia JM, Karo-Atar D, King IL, Veillette A. SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. J Exp Med 2021; 218:e20200756. [PMID: 33237304 PMCID: PMC7694575 DOI: 10.1084/jem.20200756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yingzi Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Astrid Zahn
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Javier M. Di Noia
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Abstract
Clinical trials have demonstrated that an increased number of effector cells, especially tumor-specific T cells, is positively linked with patients’ prognosis. Although the discovery of checkpoint inhibitors (CPIs) has led to encouraging progress in cancer immunotherapy, the lack of either T cells or targets for CPIs is a limitation for patients with poor prognosis. Since interleukin (IL)-2 and IL-7 are cytokines that target many aspects of T-cell responses, they have been used to treat cancers. In this review, we focus on the basic biology of how these cytokines regulate T-cell response and on the clinical trials using the cytokines against cancer. Further, we introduce several recent studies that aim to improve cytokines’ biological activities and find the strategy for combination with other therapeutics.
Collapse
Affiliation(s)
- Ji-Hae Kim
- Department of Life Sciences, Pohang University of Science and Technology(POSTECH), Pohang 37673, Korea
| | - Kun-Joo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology(POSTECH), Pohang 37673, Korea
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology(POSTECH), Pohang 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology(POSTECH), Pohang 37673, Korea
| |
Collapse
|
5
|
Ramos CV, Ballesteros-Arias L, Silva JG, Paiva RA, Nogueira MF, Carneiro J, Gjini E, Martins VC. Cell Competition, the Kinetics of Thymopoiesis, and Thymus Cellularity Are Regulated by Double-Negative 2 to 3 Early Thymocytes. Cell Rep 2020; 32:107910. [DOI: 10.1016/j.celrep.2020.107910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
|
6
|
Lu Y, Zhong MC, Qian J, Calderon V, Cruz Tleugabulova M, Mallevaey T, Veillette A. SLAM receptors foster iNKT cell development by reducing TCR signal strength after positive selection. Nat Immunol 2019; 20:447-457. [DOI: 10.1038/s41590-019-0334-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
|
7
|
Klein F, von Muenchow L, Capoferri G, Heiler S, Alberti-Servera L, Rolink H, Engdahl C, Rolink M, Mitrovic M, Cvijetic G, Andersson J, Ceredig R, Tsapogas P, Rolink A. Accumulation of Multipotent Hematopoietic Progenitors in Peripheral Lymphoid Organs of Mice Over-expressing Interleukin-7 and Flt3-Ligand. Front Immunol 2018; 9:2258. [PMID: 30364182 PMCID: PMC6191501 DOI: 10.3389/fimmu.2018.02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage−, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.
Collapse
Affiliation(s)
- Fabian Klein
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Stefan Heiler
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Corinne Engdahl
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Michael Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Grozdan Cvijetic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Jan Andersson
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine & Nursing Health Science, National University of Ireland, Galway, Ireland
| | - Panagiotis Tsapogas
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. Int J Mol Sci 2018; 19:ijms19072122. [PMID: 30037064 PMCID: PMC6073875 DOI: 10.3390/ijms19072122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.
Collapse
|
9
|
Sigvardsson M. Molecular Regulation of Differentiation in Early B-Lymphocyte Development. Int J Mol Sci 2018; 19:ijms19071928. [PMID: 29966360 PMCID: PMC6073616 DOI: 10.3390/ijms19071928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
B-lymphocyte differentiation is one of the best understood developmental pathways in the hematopoietic system. Our understanding of the developmental trajectories linking the multipotent hematopoietic stem cell to the mature functional B-lymphocyte is extensive as a result of efforts to identify and prospectively isolate progenitors at defined maturation stages. The identification of defined progenitor compartments has been instrumental for the resolution of the molecular features that defines given developmental stages as well as for our understanding of the mechanisms that drive the progressive maturation process. Over the last years it has become increasingly clear that the regulatory networks that control normal B-cell differentiation are targeted by mutations in human B-lineage malignancies. This generates a most interesting link between development and disease that can be explored to improve diagnosis and treatment protocols in lymphoid malignancies. The aim of this review is to provide an overview of our current understanding of molecular regulation in normal and malignant B-cell development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden.
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
10
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
11
|
Savino AM, Izraeli S. Interleukin-7 signaling as a therapeutic target in acute lymphoblastic leukemia. Expert Rev Hematol 2017; 10:183-185. [PMID: 28162019 DOI: 10.1080/17474086.2017.1292121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Angela Maria Savino
- a Safra Children's Hospital, Sheba Medical Center, Tel Hashomer , Ramat Gan , Israel
| | - Shai Izraeli
- b Sackler Faculty of Medicine , Tel Aviv University , Ramat Aviv , Israel
| |
Collapse
|
12
|
Permissive roles of cytokines interleukin-7 and Flt3 ligand in mouse B-cell lineage commitment. Proc Natl Acad Sci U S A 2016; 113:E8122-E8130. [PMID: 27911806 DOI: 10.1073/pnas.1613316113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic cells are continuously generated throughout life from hematopoietic stem cells, thus making hematopoiesis a favorable system to study developmental cell lineage commitment. The main factors incorporating environmental signals to developing hematopoietic cells are cytokines, which regulate commitment of hematopoietic progenitors to the different blood lineages by acting either in an instructive or a permissive manner. Fms-like tyrosine kinase-3 (Flt3) ligand (FL) and Interleukin-7 (IL-7) are cytokines pivotal for B-cell development, as manifested by the severely compromised B-cell development in their absence. However, their precise role in regulating B-cell commitment has been the subject of debate. In the present study we assessed the rescue of B-cell commitment in mice lacking IL-7 but simultaneously overexpressing FL. Results obtained demonstrate that FL overexpression in IL-7-deficient mice rescues B-cell commitment, resulting in significant Ebf1 and Pax5 expression in Ly6D+CD135+CD127+CD19- precursors and subsequent generation of normal numbers of CD19+ B-cell progenitors, therefore indicating that IL-7 can be dispensable for commitment to the B-cell lineage. Further analysis of Ly6D+CD135+CD127+CD19- progenitors in IL-7- or FL-deficient mice overexpressing Bcl2, as well as in IL-7 transgenic mice suggests that both FL and IL-7 regulate B-cell commitment in a permissive manner: FL by inducing proliferation of Ly6D+CD135+CD127+CD19- progenitors and IL-7 by providing survival signals to these progenitors.
Collapse
|
13
|
Protein kinase D regulates positive selection of CD4 + thymocytes through phosphorylation of SHP-1. Nat Commun 2016; 7:12756. [PMID: 27670070 PMCID: PMC5052653 DOI: 10.1038/ncomms12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. The three isoforms of protein kinase D (PKD) have important but often redundant roles in cell signalling. Here the authors show, by generating PKD2/3 double-deficient mice, that PKD is essential for TCR signalling in thymocytes, and identify SHP-1 as a PKD target critical for development of CD4+ T cells.
Collapse
|
14
|
Thapa P, Chen MW, McWilliams DC, Belmonte P, Constans M, Sant'Angelo DB, Shapiro VS. NKAP Regulates Invariant NKT Cell Proliferation and Differentiation into ROR-γt-Expressing NKT17 Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4987-98. [PMID: 27183586 DOI: 10.4049/jimmunol.1501653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
Abstract
Invariant NKT (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and they recognize glycolipids presented by an MHC class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2, and NKT17 functional subsets that preferentially produce cytokines IFN-γ, IL-4, and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific deletion of NKAP in the iNKT cell lineage, leading to severe reductions in thymic and peripheral iNKT cell numbers. The decreased cell number is not due to defective homeostasis or increased apoptosis, and it is not rescued by Bcl-xL overexpression. NKAP is also required for differentiation into NKT17 cells, but NKT1 and NKT2 cell development and function are unaffected. This failure in NKT17 development is rescued by transgenic expression of promyelocytic leukemia zinc finger; however, the promyelocytic leukemia zinc finger transgene does not restore iNKT cell numbers or the block in positive selection into the iNKT cell lineage in CD4-cre NKAP conditional knockout mice. Therefore, NKAP regulates multiple steps in iNKT cell development and differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | | | - Paul Belmonte
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Megan Constans
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Derek B Sant'Angelo
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901
| | | |
Collapse
|
15
|
Wang Z, Bunting KD. STAT5 activation in B-cell acute lymphoblastic leukemia: damned if you do, damned if you don't. ACTA ACUST UNITED AC 2016; 3. [PMID: 26973852 PMCID: PMC4786082 DOI: 10.14800/ccm.1186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant role of the microenvironment in leukemogenesis is beginning to emerge. The leukemia cell microenvironment consists of not only the stromal and endothelial cell components but also the normal hematopoietic cells. Signal transducer and activator of transcription 5 (STAT5) is a latent transcription factor that is normally transiently activated by phosphorylation in response to microenvironmental signals. In hematopoietic cells, persistently activated STAT5 via aberrant receptor signaling, Janus kinases (JAKs), or intracellular tyrosine kinases is a bona fide driver of leukemogenesis. However, active IL-7/STAT5 signaling also protects the early B-cell genome by suppressing error-prone recombination and vulnerability to transformation. Along these lines, we have reported that lymphocyte development from transplanted STAT5-deficient fetal liver cells was blocked at the pre-pro-B-cell stage but when combined with transgenic Myc and Bcl-2 promoted faster initiation of B-ALL. Furthermore, inflammatory responses may also be involved in leukemia initiation in both pediatric and adult patients which are associated with decreased phosphorylation of STAT5. Likewise, additional targeted agents continue to be developed for precision medicine that prominently suppress signaling pathways. A common theme of all of these perturbations is potential risk for dysregulating hematopoiesis through general transcriptional modulation. Here we discuss the potential for STAT5 inhibition as a double edged sword in certain hematologic disorders, such as early B-cell lymphoblastic leukemias. Considering the rapid pace of understanding of the pre-leukemic decrease in poly-clonality that precedes leukemia, the functional changes associated with microenvironmental influences are thus of potential clinical significance.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin D Bunting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
Thiant S, Moutuou MM, Leboeuf D, Guimond M. Homeostatic cytokines in immune reconstitution and graft-versus-host disease. Cytokine 2016; 82:24-32. [PMID: 26795458 DOI: 10.1016/j.cyto.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
For numerous patients, allogeneic stem cell transplantation (SCT) is the only therapeutic option that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic SCT, acute graft-versus-host disease (aGVHD) remains the second cause of death after disease recurrence. aGVHD is highly immunosuppressive and the adverse effect of allogeneic SCT on T cell regeneration is typically more important than the levels of immunosuppression normally seen after autologous SCT. In these patients, immune reconstitution often takes several years to occur and restoring immunocompetence after allogeneic SCT represents an important challenge, principally because clinical options are limited and current methods used to accelerate immune reconstitution are associated with increased GVHD. Interleukin-7 and IL-15 are both under clinical investigation and demonstrate the greatest potential on peripheral T cells regeneration in mice and humans. However, awareness has been raised about the use of IL-7 and IL-15 after allogeneic SCT with regards to potential adverse effects on aGVHD. In this review, we will discuss about recent progress made in lymphocyte regeneration, the critical role played by IL-7 and IL-15 in T cell homeostasis and how these cytokines could be used to improve immune reconstitution after allogeneic SCT.
Collapse
Affiliation(s)
- Stéphanie Thiant
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Moutuaata M Moutuou
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Leboeuf
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Martin Guimond
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Waickman AT, Park JY, Park JH. The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 2016; 73:253-69. [PMID: 26468051 PMCID: PMC6315299 DOI: 10.1007/s00018-015-2062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rβ to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik K, Lamb L, Goldman F, Townes T. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep 2015; 12:1668-77. [DOI: 10.1016/j.celrep.2015.08.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
|
19
|
Dolence JJ, Gwin KA, Shapiro MB, Medina KL. Flt3 signaling regulates the proliferation, survival, and maintenance of multipotent hematopoietic progenitors that generate B cell precursors. Exp Hematol 2014; 42:380-393.e3. [PMID: 24444745 PMCID: PMC4089881 DOI: 10.1016/j.exphem.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Flt3 signaling plays a crucial role in regulating the survival and differentiation of lymphoid progenitors into B cell precursors (BCPs) in bone marrow. To define further the role of Flt3 signaling in lymphoid progenitor survival, mice deficient in Flt3 ligand that also expressed a Bcl2 transgene (Eμ-bcl2tg flt3l(-/-)) were generated. Intracellular flow cytometry established transgene expression in primitive hematopoietic progenitors, including lineage-negative Sca-1(+) c-kit(+) (LSK(+)) CD27(-) cells enriched for functional hematopoietic stem cells. Compared with flt3l(-/-) mice, Eμ-bcl2tg flt3l(-/-) mice had significantly increased multipotential progenitors (MPPs), IL-7R(+) common lymphoid progenitors, and B cell precursors. To determine whether forced expression of Bcl2 was sufficient to restore lymphoid priming in the absence of Flt3 signaling Eμ-bcl2tg flt3l(-/-)rag1-gfp(+) mice were generated. Analysis of Eμ-bcl2tg flt3l(-/-)rag1-gfp(+) mice revealed that the Bcl2 transgene had no effect on lymphoid priming before CD19 expression. Thus, forced expression of a survival gene can bypass the requirement for threshold levels of Flt3 signaling requisite for lymphoid priming. Temporal Flt3 ligand (FL) replacement therapy in flt3l(-/-) mice revealed specific requirements for Flt3 signaling in the expansion and maintenance of Flt3(+hi) MPP and Flt3(+) all lymphoid progenitors, but not Flt3(+) B lymphoid progenitors (BLPs), the immediate precursors of BCPs. BCPs were restored after temporal in vivo FL treatment, albeit with delayed kinetics. Together, these results show that Flt3 regulates the proliferation, survival, and maintenance of developmental stage-specific hematopoietic progenitors that give rise to BCPs.
Collapse
Affiliation(s)
- Joseph J Dolence
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mariya B Shapiro
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
20
|
Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 2013; 14:69-80. [PMID: 24378843 DOI: 10.1038/nri3570] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of B cells is dependent on the sequential DNA rearrangement of immunoglobulin loci that encode subunits of the B cell receptor. The pathway navigates a crucial checkpoint that ensures expression of a signalling-competent immunoglobulin heavy chain before commitment to rearrangement and expression of an immunoglobulin light chain. The checkpoint segregates proliferation of pre-B cells from immunoglobulin light chain recombination and their differentiation into B cells. Recent advances have revealed the molecular circuitry that controls two rival signalling systems, namely the interleukin-7 (IL-7) receptor and the pre-B cell receptor, to ensure that proliferation and immunoglobulin recombination are mutually exclusive, thereby maintaining genomic integrity during B cell development.
Collapse
|
21
|
Kosan C, Ginter T, Heinzel T, Krämer OH. STAT5 acetylation: Mechanisms and consequences for immunological control and leukemogenesis. JAKSTAT 2013; 2:e26102. [PMID: 24416653 PMCID: PMC3876427 DOI: 10.4161/jkst.26102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders.
Collapse
Affiliation(s)
- Christian Kosan
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Torsten Ginter
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Oliver H Krämer
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany ; Institute of Toxicology; Medical Center of the University Mainz; Mainz, Germany
| |
Collapse
|
22
|
Liang CC, You LR, Yen JJY, Liao NS, Yang-Yen HF, Chen CM. Thymic epithelial β-catenin is required for adult thymic homeostasis and function. Immunol Cell Biol 2013; 91:511-23. [PMID: 23856765 DOI: 10.1038/icb.2013.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/10/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
The role of β-catenin in thymocyte development has been extensively studied, however, the function of β-catenin in thymic epithelial cells (TECs) remains largely unclear. Here, we demonstrate a requirement for β-catenin in keratin 5 (K5)-expressing TECs, which comprise the majority of medullary TECs (mTECs) and a progenitor subset for cortical TECs (cTECs) in the young adult thymus. We found that conditionally ablated β-catenin in K5(+)-TECs and their progeny cells resulted in thymic atrophy. The composition of TECs was also aberrantly affected. Percentages of K5(hi)K8(+)-TECs, K5(+)K8(-)-TECs and UEA1(+)-mTECs were significantly decreased and the percentage of K5(lo)K8(+)-TECs and Ly51(+)-cTECs were increased in β-catenin-deficient thymi compared with that in the control thymi. We also observed that β-catenin-deficient TEC lineage could give rise to K8(+)-cTECs more efficiently than wild-type TECs using lineage-tracing approach. Importantly, the expression levels of several transcription factors (p63, FoxN1 and Aire), which are essential for TEC differentiation, were altered in β-catenin-deficient thymi. Under the aberrant differentiation of TECs, development of all thymocytes in β-catenin-deficient thymi was impaired. Interleukin-7 (IL-7) and chemokines (Ccl19, Ccl25 and Cxcl12) levels were also downregulated in the thymic stromal cells in the mutants. Finally, introducing a BCL2 transgene in lymphoid lineages, which has been shown to rescue IL-7-deficient thymopoiesis, partially rescued the thymic atrophy and thymocyte development defects caused by induced ablation of β-catenin in K5(+)-TECs. Collectively, these findings suggest that β-catenin is required for the differentiation of TECs, thereby contributing to thymocyte development in the postnatal thymus.
Collapse
Affiliation(s)
- Chih-Chia Liang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Linowes BA, Ligons DL, Nam AS, Hong C, Keller HR, Tai X, Luckey MA, Park JH. Pim1 permits generation and survival of CD4+ T cells in the absence of γc cytokine receptor signaling. Eur J Immunol 2013; 43:2283-94. [PMID: 23712827 DOI: 10.1002/eji.201242686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 01/02/2023]
Abstract
γ-Chain (γc) cytokine receptor signaling is required for the development of all lymphocytes. Why γc signaling plays such an essential role is not fully understood, but induction of the serine/threonine kinase Pim1 is considered a major downstream event of γc as Pim1 prevents apoptosis and increases metabolic activity. Consequently, we asked whether Pim1 overexpression would suffice to restore lymphocyte development in γc-deficient mice. By analyzing Pim1-transgenic γc-deficient mice (Pim1(Tg) γc(KO) ), we show that Pim1 promoted T-cell development and survival in the absence of γc. Interestingly, such effects were largely limited to CD4(+) lineage αβ T cells as CD4(+) T-cell numbers improved to near normal levels but CD8(+) T cells remained severely lymphopenic. Notably, Pim1 over-expression failed to promote development and survival of any T-lineage cells other than αβ T cells, as we observed complete lack of γδ, NKT, FoxP3(+) T regulatory cells and TCR-β(+) CD8αα IELs in Pim1(Tg) γc(KO) mice. Collectively, these results uncover distinct requirements for γc signaling between CD4(+) αβ T cells and all other T-lineage cells, and they identify Pim1 as a novel effector molecule sufficient to drive CD4(+) αβ T-cell development and survival in the absence of γc cytokine receptor signaling.
Collapse
Affiliation(s)
- Brett A Linowes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu X, Satpathy AT, KC W, Liu P, Murphy TL, Murphy KM. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS One 2013; 8:e64800. [PMID: 23741395 PMCID: PMC3669380 DOI: 10.1371/journal.pone.0064800] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/17/2013] [Indexed: 12/14/2022] Open
Abstract
Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a−/− mice. We found that Bcl11a was required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a−/− fetal livers and in the bone marrow of Bcl11a−/− fetal liver chimeras. Moreover, Bcl11a−/− cells showed severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a−/− fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a−/− fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ansuman T. Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wumesh KC
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
The thymic cortex provides a microenvironment that supports the generation and T cell antigen receptor (TCR)-mediated selection of CD4(+)CD8(+)TCRαβ(+) thymocytes. Cortical thymic epithelial cells (cTECs) are the essential component that forms the architecture of the thymic cortex and induces the generation as well as the selection of newly generated T cells. Here we summarize current knowledge on the development, function, and heterogeneity of cTECs, focusing on the expression and function of β5t, a cTEC-specific subunit of the thymoproteasome.
Collapse
|
26
|
An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat Immunol 2012; 14:127-35. [DOI: 10.1038/ni.2507] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023]
|
27
|
Ceredig R, Rolink AG. The key role of IL-7 in lymphopoiesis. Semin Immunol 2012; 24:159-64. [DOI: 10.1016/j.smim.2012.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 02/03/2023]
|
28
|
Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol 2012; 24:198-208. [PMID: 22421572 DOI: 10.1016/j.smim.2012.02.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/07/2012] [Accepted: 02/15/2012] [Indexed: 01/21/2023]
Abstract
Interleukin-7 (IL-7) plays several important roles during B cell development including aiding in; the specification and commitment of cells to the B lineage, the proliferation and survival of B cell progenitors; and maturation during the pro-B to pre-B cell transition. Regulation and modulation of IL-7 receptor (IL-7R) signaling is critical during B lymphopoiesis, because excessive or deficient IL-7R signaling leads to abnormal or inhibited B cell development. IL-7 works together with E2A, EBF, Pax-5 and other transcription factors to regulate B cell commitment, while also functions to regulate Ig rearrangement by modulating FoxO protein activation and Rag enhancer activity. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine activation and, in B cells, function to fine tune IL-7R signaling; ensuring that appropriate IL-7 signals are transmitted to allow for efficient B cell commitment and development.
Collapse
Affiliation(s)
- Steven A Corfe
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Ave., Toronto, Ontario, Canada.
| | | |
Collapse
|
29
|
Khandanpour C, Kosan C, Gaudreau MC, Dührsen U, Hébert J, Zeng H, Möröy T. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29:376-85. [PMID: 21732494 DOI: 10.1002/stem.575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulation of gene transcription is elementary for the function of hematopoietic stem cells (HSCs). The transcriptional repressor growth factor independence 1 (Gfi1) restricts HSC proliferation and is essential to maintain their self-renewal capacity and multipotency after transplantation. In addition, Gfi1(-/-) HSCs are severely compromised in their ability to compete with wild-type (wt) HSCs after transplantation. We now report that Gfi1 protects HSCs against stress-induced apoptosis, probably, by repressing the proapoptotic target gene Bax, since irradiated Gfi1(-/-) HSCs display higher expression of Bax and show a higher rate of apoptosis than wt HSCs. This protective function of Gfi1 appears to be functionally relevant since Gfi1(-/-) HSCs that express Bcl-2, which antagonizes the effects of Bax, regain their ability to self renew and to initiate multilineage differentiation after transplantation. Surprisingly, Gfi1(-/-) xBcl-2 transgenic mice also show a strong, systemic expansion of Mac-1(+) Gr-1(-) myeloid cells in bone marrow and peripheral lymphoid organs. These cells express high levels of the proleukemogenic transcription factor Hoxa9 and, in older mice, appear as atypical monocytoid-blastoid cells in the peripheral blood. As a result of this massive expansion of myeloid cells, all Gfi1(-/-) xBcl-2 mice eventually succumb to a myeloproliferative-like disease resembling a preleukemic state. In summary, our data demonstrate that Gfi1's ability to protect against apoptosis is essential for HSC function. In addition, our finding show that Gfi1 prevents the development of myeloproliferative diseases and provides evidence how Gfi1 deficiency could be linked to myeloid leukemia.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal (IRCM), Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Möröy T, Saba I, Kosan C. The role of the transcription factor Miz-1 in lymphocyte development and lymphomagenesis-Binding Myc makes the difference. Semin Immunol 2011; 23:379-87. [PMID: 22000024 DOI: 10.1016/j.smim.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Myc interacting zinc finger protein 1 (Miz-1) is a BTB/POZ domain containing transcription factor that can function as an activator or repressor depending on its binding partners. In a complex with co-factors such as nuclophosmin or p300, Miz-1 stimulates transcription of genes that encode regulators of cell cycle progression such as p21(Cip1) or p15(Ink4b) or inhibitors of apoptosis such as Bcl-2. In contrast, Miz-1 becomes a transcriptional repressor when it binds to c-Myc or Bcl-6, which replace nucleophosmin or p300. During lymphocyte development, Miz-1 functions as a regulator of the IL-7 signaling pathway at very early steps in the bone marrow and thymus. When the IL-7 receptor (IL-7R) recognizes its cognate cytokine, a cascade of events is initiated that involves the recruitment of janus kinases (JAK) to the cytoplasmic part of the IL-7R, the phosphorylation of Stat5, its dimerization and relocation to the nucleus, enabling a transcriptional programming that governs commitment, survival and proliferation of lymphoid lineage cells. Miz-1 is critical in this signal transduction pathway, since it controls the expression of Socs1, an inhibitor of JAKs and thus of Stat5 activation and Bcl-2 expression. A lack of Miz-1 blocks IL-7 mediated signaling, which is detrimental for early B- and T-lymphoid development. These functions of Miz-1 during early lymphocyte development are c-Myc-independent. In contrast, when c-Myc is constitutively over-expressed, for instance during c-Myc induced lymphomagenesis, the interaction between Miz-1 and c-Myc becomes important and critical for the initiation and maintenance of c-Myc-dependent lymphoid malignancies.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| | | | | |
Collapse
|
31
|
Abstract
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.
Collapse
|
32
|
Gui J, Morales AJ, Maxey SE, Bessette KA, Ratcliffe NR, Kelly JA, Craig RW. MCL1 increases primitive thymocyte viability in female mice and promotes thymic expansion into adulthood. Int Immunol 2011; 23:647-59. [PMID: 21937457 DOI: 10.1093/intimm/dxr073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing the pool of cells at early T-cell developmental stages enhances thymopoiesis and is especially beneficial when T-cell production is compromised by radiation or aging. Within the immature double-negative (DN; CD4(-)CD8(-)) thymocyte subpopulation, the DN1 subset contains the most primitive cells including the rare early T-cell progenitors (ETPs). In the present study, a human MCL1 transgene, under the control of its endogenous promoter, resulted in enlargement of an undistorted thymus in C57/BL6 mice. Enlargement occurred in females but not males, being seen at 1 month of age and maintained during progression into adulthood as the thymus underwent involution. The small DN1 subset was expanded disproportionally (ETPs increasing from ∼0.016 to 0.03% of thymocytes), while more mature thymocytes were increased proportionally (1.5-fold) along with the stroma. DN1 cells from transgenic females exhibited increased viability with maintained proliferation, and their survival in primary culture was extended. Exposure of transgenic females to γ-irradiation also revealed an expanded pool of radioresistant DN1 cells exhibiting increased viability. While the viability of DN1 cells from transgenic males was equivalent to that of their non-transgenic counterparts directly after harvest, it was enhanced in culture-suggesting that the effect of the transgene was suppressed in the in vivo environment of the male. Viability was increased in ETPs from transgenic females, but unchanged in more mature thymocytes, indicating that primitive cells were affected selectively. The MCL1 transgene thus increases the viability and pool size of primitive ETP/DN1 cells, promoting thymopoiesis and radioresistance in peripubescent females and into adulthood.
Collapse
Affiliation(s)
- Jingang Gui
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Saba I, Kosan C, Vassen L, Klein-Hitpass L, Möröy T. Miz-1 is required to coordinate the expression of TCRbeta and p53 effector genes at the pre-TCR "beta-selection" checkpoint. THE JOURNAL OF IMMUNOLOGY 2011; 187:2982-92. [PMID: 21841135 DOI: 10.4049/jimmunol.1101451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Miz-1 is a Broad-complex, Tramtrack and Bric-à-brac/pox virus zinc finger domain (BTB/POZ)-containing protein expressed in lymphoid precursors that can activate or repress transcription. We report in this article that mice expressing a nonfunctional Miz-1 protein lacking the BTB/POZ domain (Miz-1(ΔPOZ)) have a severe differentiation block at the pre-T cell "β-selection" checkpoint, evident by a drastic reduction of CD4(-)CD8(-) double-negative-3 (DN3) and DN4 cell numbers. T cell-specific genes including Rag-1, Rag-2, CD3ε, pTα, and TCRβ are expressed in Miz-1-deficient cells and V(D)J recombination is intact, but few DN3/DN4 cells express a surface pre-TCR. Miz-1-deficient DN3 cells are highly apoptotic and do not divide, which is consistent with enhanced expression of p53 target genes such as Cdkn1a, PUMA, and Noxa. However, neither coexpression of the antiapoptotic protein Bcl2 nor the deletion of p21(CIP1) nor the combination of both relieved Miz-1-deficient DN3/DN4 cells from their differentiation block. Only the coexpression of rearranged TCRαβ and Bcl2 fully rescued Miz-1-deficient DN3/DN4 cell numbers and enabled them to differentiate into DN4TCRβ(+) and double-positive cells. We propose that Miz-1 is a critical factor for the β-selection checkpoint and is required for both the regulation of p53 target genes and proper expression of the pre-TCR to support the proliferative burst of DN3 cells during T cell development.
Collapse
Affiliation(s)
- Ingrid Saba
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
Abstract
Deficiencies in the IL-7 signaling pathway result in severe disruptions of lymphoid development in adult mice. To understand more about how IL-7 deficiency impacts early lymphoid development, we have investigated lineage restriction events within the common lymphoid progenitor (CLP) compartment in IL-7 knockout mice. This revealed that although IL-7 deficiency had a minor impact on the development of LY6D− multipotent CLPs, the formation of the lineage restricted LY6D+ CLP population was dramatically reduced. This was reflected in a low-level transcription of B-lineage genes as well as in a loss of functional B-cell commitment. The few Ly6D+ CLPs developed in the absence of IL-7 displayed increased lineage plasticity and low expression of Ebf-1. Absence of Ebf-1 could be linked to increased plasticity because even though Ly6D+ cells develop in Ebf-1–deficient mice, these cells retain both natural killer and dendritic cell potential. This reveals that IL-7 is essential for normal development of Ly6D+ CLPs and that Ebf-1 is crucial for lineage restriction in early lymphoid progenitors.
Collapse
|
35
|
Signaling proteins and transcription factors in normal and malignant early B cell development. BONE MARROW RESEARCH 2011; 2011:502751. [PMID: 22046564 PMCID: PMC3200079 DOI: 10.1155/2011/502751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
Abstract
B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.
Collapse
|
36
|
Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev 2011; 238:37-46. [PMID: 20969583 DOI: 10.1111/j.1600-065x.2010.00963.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all classes of blood cells through a series of lineage restriction steps that results in the progressive loss of differentiation potential to other cell lineages. This review focuses on the recent advances in understanding one of the earliest differentiation steps in HSC maturation, which involves the diversification of the lymphoid and myeloid cell lineages, the two major branches of hematopoietic cells. We discuss progress in the identification and characterization of progenitor populations downstream of HSCs, which has been a key to understanding the sequential biological events that take place along the course of differentiation into a certain hematopoietic cell type. We also discuss the importance of bone marrow microenvironment in lymphoid and myeloid lineage choice.
Collapse
Affiliation(s)
- Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity 2011; 33:917-28. [PMID: 21167753 DOI: 10.1016/j.immuni.2010.11.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 08/10/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023]
Abstract
B cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc finger) domain of the transcription factor Miz-1 (Zbtb17(ΔPOZ/ΔPOZ)) almost entirely lacked follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 pathway and to upregulate the antiapoptotic gene Bcl2 upon IL-7 stimulation. We show that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and by activating Bcl2 expression. Zbtb17(ΔPOZ/ΔPOZ) (Miz-1-deficient) B cell progenitors had low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 (Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl2 and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19(+) B cells.
Collapse
|
38
|
Heltemes-Harris LM, Willette MJL, Vang KB, Farrar MA. The role of STAT5 in the development, function, and transformation of B and T lymphocytes. Ann N Y Acad Sci 2011; 1217:18-31. [PMID: 21276004 DOI: 10.1111/j.1749-6632.2010.05907.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor signal transducer and activator of transcription 5 (STAT5) is activated by a number of cytokine and growth hormone receptors and plays a key role in the development and function of many organ systems. In this review, we focus on recent discoveries about the role of STAT5 in the development and function of B and T lymphocytes. Of particular interest is the growing appreciation for the function of STAT5 as a transcriptional repressor. Finally, we discuss recent discoveries about the role of STAT5 in transformation of B and T lymphocytes.
Collapse
|
39
|
Hernandez JB, Newton RH, Walsh CM. Life and death in the thymus--cell death signaling during T cell development. Curr Opin Cell Biol 2011; 22:865-71. [PMID: 20810263 DOI: 10.1016/j.ceb.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 07/31/2010] [Accepted: 08/05/2010] [Indexed: 12/27/2022]
Abstract
The thymus is an organ vital to proper T cell development, and the regulation of cell survival and death contributes significantly to its efficient function. Vital to many of the developmental processes that occur in the thymus, control over cell survival and death is orchestrated by several signaling processes. In this review, we focus on the regulation of death in early thymocytes known as CD4/CD8 double negative cells, including the roles of interleukin-7 and Bcl-2 family members in this developmental stage. We next consider the survival and death of later thymocytes that express both CD4 and CD8, the 'double-positive' thymocytes. These findings are discussed within the context of recent studies demonstrating the existence of caspase-independent cell death pathways.
Collapse
Affiliation(s)
- Jeniffer B Hernandez
- The Institute for Immunology and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
40
|
IL-7R-dependent survival and differentiation of early T-lineage progenitors is regulated by the BTB/POZ domain transcription factor Miz-1. Blood 2011; 117:3370-81. [PMID: 21258009 DOI: 10.1182/blood-2010-09-310680] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells originate from early T lineage precursors that have entered the thymus and differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a CD4(-)CD8(-) to CD4(+)CD8(+) block causing a strong reduction in thymic cellularity. Miz-1(ΔPOZ) pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high expression levels of SOCS1 found in Miz-1(ΔPOZ) cells probably cause these alterations. Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by monitoring the expression levels of SOCS1.
Collapse
|
41
|
Kurtulus S, Tripathi P, Opferman JT, Hildeman DA. Contracting the 'mus cells'--does down-sizing suit us for diving into the memory pool? Immunol Rev 2010; 236:54-67. [PMID: 20636808 PMCID: PMC2907539 DOI: 10.1111/j.1600-065x.2010.00920.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of T-cell homeostasis is critical for normal functioning of the immune system. After thymocyte selection, T cells enter the peripheral lymphoid organs, where they are maintained as naive cells. Transient disruption of homeostasis occurs when naive T cells undergo antigen-driven expansion and acquire effector functions. Effector T cells then either undergo apoptosis (i.e. contraction at the population level) or survive to become memory cells. This apoptotic process is crucial: it resets T-cell homeostasis, promotes protective immunity, and limits autoimmunity. Although initial studies using in vitro models supported a role for death receptor signaling, more recent in vivo studies have implicated Bcl-2 family members as being critical for the culling of T-cell responses. While several Bcl-2 family members likely contribute to T-cell contraction, the pro-apoptotic molecule Bim and its anti-apoptotic antagonist Bcl-2 are essential regulators of the process. This review discusses the progress made in our understanding of the mechanisms underlying contraction of T-cell responses and how some cells avoid this cell death and become memory T cells.
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pulak Tripathi
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph T. Opferman
- Department of Biochemistry at St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A. Hildeman
- Division of Immunobiology in the Department of Pediatrics at the University of Cincinnati and Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
43
|
Jimi E, Strickland I, Voll RE, Long M, Ghosh S. Differential role of the transcription factor NF-kappaB in selection and survival of CD4+ and CD8+ thymocytes. Immunity 2008; 29:523-37. [PMID: 18957265 DOI: 10.1016/j.immuni.2008.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 03/12/2008] [Accepted: 08/11/2008] [Indexed: 01/30/2023]
Abstract
Inhibition of the transcription factor nuclear factor (NF)-kappaB activity leads to a reduction in numbers of CD8(+) single-positive (SP) thymocytes, suggesting a selective role for NF-kappaB in these cells. To further explore the role of NF-kappaB in SP thymocytes, we utilized transgenic models that allowed either inhibition or activation of NF-kappaB. We showed that activation of NF-kappaB played an important role in the selection of major histocompatibility complex (MHC) class I-restricted CD8(+) T cells. Surprisingly, NF-kappaB was not activated in positively selected CD4(+) thymocytes, and inhibition of NF-kappaB did not perturb positive or negative selection of CD4(+) cells. However, enforced activation of NF-kappaB via a constitutively active inhibitor of kappaB (IkappaB) kinase transgene led to a nearly complete deletion of CD4 cells by pushing positively selecting CD4(+) cells into negative selection. These studies therefore revealed a surprising difference of NF-kappaB activation in CD4(+) and CD8(+) thymocytes and suggested that NF-kappaB contributes to the establishment of thresholds of signaling that determine positive or negative selection of thymocytes.
Collapse
Affiliation(s)
- Eijiro Jimi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
44
|
Kikuchi K, Kasai H, Watanabe A, Lai AY, Kondo M. IL-7 specifies B cell fate at the common lymphoid progenitor to pre-proB transition stage by maintaining early B cell factor expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:383-92. [PMID: 18566404 DOI: 10.4049/jimmunol.181.1.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IL-7 plays a critical role in B cell fate decision by regulating early B cell factor (EBF) expression. However, it was not clear when IL-7 stimulation is necessary in hemato-/lymphopoiesis in adult mice. Here we show that pre-proB cells derived from IL-7-/- mice have lost B cell potential, despite up-regulation of EBF expression following IL-7 stimulation. Pre-proB cells from wild-type mice can give rise to proB cells in the absence of IL-7. In this case, EBF up-regulation during the transition from the pre-proB to proB stages occurs normally. In contrast, EBF expression by IL-7-/- pre-proB cells after IL-7 stimulation is approximately 20 times lower than wild-type pre-proB cells. In addition, only multipotent progenitors with higher levels of ectopic EBF can give rise to proB cells in the absence of IL-7. Therefore, the primary function of IL-7 before the pre-proB stage in B cell development is to maintain the EBF expression level above a certain threshold, which is necessary for pre-proB cells to further transit to the proB stage.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
45
|
Wang Y, Zheng X, Wei H, Sun R, Tian Z. Different roles of IL-15 from IL-2 in differentiation and activation of human CD3+CD56+ NKT-like cells from cord blood in long term culture. Int Immunopharmacol 2008; 8:927-34. [DOI: 10.1016/j.intimp.2008.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/28/2008] [Accepted: 02/14/2008] [Indexed: 01/06/2023]
|
46
|
Pilbeam K, Basse P, Brossay L, Vujanovic N, Gerstein R, Vallejo AN, Borghesi L. The ontogeny and fate of NK cells marked by permanent DNA rearrangements. THE JOURNAL OF IMMUNOLOGY 2008; 180:1432-41. [PMID: 18209038 DOI: 10.4049/jimmunol.180.3.1432] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A subset of NK cells bears incomplete V(D)J rearrangements, but neither the consequence to cell activities nor the precise developmental stages in which recombination occurs is known. These are important issues, as recombination errors cause cancers of the B and T lineages. Using transgenic recombination reporter mice to examine NK cell dynamics in vivo, we show that recombination(+) NK cells have distinct developmental patterns in the BM, including reduced homeostatic proliferation and diminished Stat5 phosphorylation. In the periphery, both recombination(+) and recombination(-) NK cells mediate robust functional responses including IFN-gamma production, cytolysis, and tumor homing, suggesting that NK cells with distinct developmental histories can be found together in the periphery. We also show that V(D)J rearrangement marks both human cytolytic (CD56(dim)) and immunoregulatory (CD56(bright)) populations, demonstrating the distribution of permanent DNA rearrangements across major NK cell subsets in man. Finally, direct quantification of rag transcripts throughout NK cell differentiation in both mouse and man establishes the specific developmental stages that are susceptible to V(D)J rearrangement. Together, these data demonstrate that multipotent progenitors rather than lineage-specified NK progenitors are targets of V(D)J recombination and that NK cells bearing the relics of earlier V(D)J rearrangements have different developmental dynamics but robust biological capabilities in vivo.
Collapse
Affiliation(s)
- Kristy Pilbeam
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Jensen CT, Böiers C, Kharazi S, Lübking A, Rydén T, Sigvardsson M, Sitnicka E, Jacobsen SEW. Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development. Blood 2008; 111:2083-90. [PMID: 18039955 DOI: 10.1182/blood-2007-08-108563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis.
Collapse
Affiliation(s)
- Christina T Jensen
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang H, Pierce LJ, Spangrude GJ. Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol 2007; 34:1730-40. [PMID: 17157170 PMCID: PMC1762031 DOI: 10.1016/j.exphem.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/08/2006] [Accepted: 08/02/2006] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The OP9-DL1 culture system is an in vitro model for T-cell development in which activation of the Notch pathway by Delta-like 1 promotes differentiation of mature T cells from progenitors. The roles of specific cytokines in this culture system have not been well defined, and controversy regarding the role of IL-7 has recently emerged. We examined the roles played by IL-7, Flt3 ligand, and stem cell factor (SCF) in differentiation of adult bone marrow cells in the OP9-DL1 culture system. METHODS Hematopoietic progenitor cells isolated from mouse bone marrow were cultured with OP9 or OP9-DL1 stromal cells and evaluated for T and B lymphocyte differentiation using immunofluorescent staining. RESULTS IL-7 provided both survival/proliferation and differentiation signals in a dose-dependent manner. T-cell development from the CD4/CD8 double-negative (DN) stage to the CD4/CD8 double-positive (DP) stage required IL-7 provided by the stromal cells, while differentiation from the DP to the CD8 single-positive (SP) stage required addition of exogenous IL-7. SCF favored the proliferation of DN lymphoid progenitors and inhibited differentiation to the DP stage in a dose-dependent manner. Conversely, blocking the function of SCF expressed endogenously by OP9-DL1 cells inhibited proliferation of lymphoid progenitors and accelerated T-lineage differentiation. Flt3 ligand promoted proliferation without affecting differentiation. CONCLUSION These results validate the OP9-DL1 model for the analysis of T-cell development from bone marrow-derived progenitor cells, and demonstrate specific roles of SCF, IL-7, and Flt3L in promoting efficient T-lineage differentiation.
Collapse
Affiliation(s)
| | - L. Jeanne Pierce
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | - Gerald J. Spangrude
- Department of Pathology
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
- Corresponding author: Gerald J. Spangrude, Ph.D., University of Utah, Division of Hematology Rm 4C416, 30 N 1900 East, Salt Lake City, UT 84132-2022, voice: (801)-585-5544
| |
Collapse
|
49
|
Masse GX, Corcuff E, Decaluwe H, Bommhardt U, Lantz O, Buer J, Di Santo JP. gamma(c) cytokines provide multiple homeostatic signals to naive CD4(+) T cells. Eur J Immunol 2007; 37:2606-16. [PMID: 17683114 DOI: 10.1002/eji.200737234] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytokines signaling through receptors sharing the common gamma chain (gamma(c)), including IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are critical for the generation and peripheral homeostasis of B, T and NK cells. To identify unique or redundant roles for gamma(c) cytokines in naive CD4(+) T cells, we compared monoclonal populations of CD4(+) T cells from TCR-Tg mice that were gamma(c) (+), gamma(c) (-), CD127(-/-) or CD122(-/-). We found that gamma(c) (-) naive CD4(+) T cells failed to accumulate in the peripheral lymphoid organs and the few remaining cells were characterized by small size, decreased expression of MHC class I and enhanced apoptosis. By over-expressing human Bcl-2, peripheral naive CD4(+) T cells that lack gamma(c) could be rescued. Bcl-2(+) gamma(c) (-) CD4(+) T cells demonstrated enhanced survival characteristics in vivo and in vitro, and could proliferate normally in vitro in response to antigen. Nevertheless, Bcl-2(+) gamma(c) (-) CD4(+) T cells remained small in size, and this phenotype was not corrected by enforced expression of an activated protein kinase B. We conclude that gamma(c) cytokines (primarily but not exclusively IL-7) provide Bcl-2-dependent as well as Bcl-2-independent signals to maintain the phenotype and homeostasis of the peripheral naive CD4(+) T cell pool.
Collapse
Affiliation(s)
- Guillemette X Masse
- Cytokines and Lymphoid Development Unit, Immunology Department, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Egawa T, Tillman RE, Naoe Y, Taniuchi I, Littman DR. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. ACTA ACUST UNITED AC 2007; 204:1945-57. [PMID: 17646406 PMCID: PMC2118679 DOI: 10.1084/jem.20070133] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Members of the Runx family of transcriptional regulators are required for the appropriate expression of CD4 and CD8 at discrete stages of T cell development. The roles of these factors in other aspects of T cell development are unknown. We used a strategy to conditionally inactivate the genes encoding Runx1 or Runx3 at different stages of thymocyte development, demonstrating that Runx1 regulates the transitions of developing thymocytes from the CD4−CD8− double-negative stage to the CD4+CD8+ double-positive (DP) stage and from the DP stage to the mature single-positive stage. Runx1 and Runx3 deficiencies caused marked reductions in mature thymocytes and T cells of the CD4+ helper and CD8+ cytotoxic T cell lineages, respectively. Runx1-deficient CD4+ T cells had markedly reduced expression of the interleukin 7 receptor and exhibited shorter survival. In addition, inactivation of both Runx1 and Runx3 at the DP stages resulted in a severe block in development of CD8+ mature thymocytes. These results indicate that Runx proteins have important roles at multiple stages of T cell development and in the homeostasis of mature T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|