1
|
Toulmin SA, Bhadiadra C, Paris AJ, Lin JH, Katzen J, Basil MC, Morrisey EE, Worthen GS, Eisenlohr LC. Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nat Commun 2021; 12:3993. [PMID: 34183650 PMCID: PMC8239023 DOI: 10.1038/s41467-021-23619-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.
Collapse
Affiliation(s)
- Sushila A. Toulmin
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Chaitali Bhadiadra
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Andrew J. Paris
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeffrey H. Lin
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Katzen
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Maria C. Basil
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Edward E. Morrisey
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - G. Scott Worthen
- grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurence C. Eisenlohr
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
2
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Dembic Z. On integrity in immunity during ontogeny or how thymic regulatory T cells work. Scand J Immunol 2019; 90:e12806. [PMID: 31276223 DOI: 10.1111/sji.12806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
The Standard model of T cell recognition asserts that T cell receptor (TCR) specificities are positively and negatively selected during ontogeny in the thymus and that peripheral T cell repertoire has mild self-major histocompatibility complex (MHC) reactivity, known as MHC restriction of foreign antigen. Thus, the TCR must bind both a restrictive molecule (MHC allele) and a peptide reclining in its groove (pMHC ligand) in order to transmit signal into a T cell. The Standard and Cohn's Tritope models suggest contradictory roles for complementarity-determining regions (CDRs) of the TCRs. Here, I discuss both concepts and propose a different solution to ontogenetic mechanism for TCR-MHC-conserved interaction. I suggest that double (CD4+ CD8+ )-positive (DP) developing thymocytes compete with their αβTCRs for binding to self-pMHC on cortical thymic epithelial cells (cTECs) that present a selected set of tissue-restricted antigens. The competition between DPs involves TCR editing and secondary rearrangements, similar to germinal-centre B cell somatic hypermutation. These processes would generate cells with higher TCR affinity for self-pMHC, facilitating sufficiently long binding to cTECs to become thymic T regulatory cells (tTregs). Furthermore, CD4+ Foxp3+ tTregs can be generated by mTECs via Aire-dependent and Aire-independent pathways, and additionally on thymic bone marrow-derived APCs including thymic Aire-expressing B cells. Thymic Tregs differ from the induced peripheral Tregs, which comprise the negative feedback loop to restrain immune responses. The implication of thymocytes' competition for the highest binding to self-pMHC is the co-evolution of species-specific αβTCR V regions with MHC alleles.
Collapse
Affiliation(s)
- Zlatko Dembic
- Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 2018; 115:E7369-E7378. [PMID: 30021852 DOI: 10.1073/pnas.1802746115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ μM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 μM) and high-affinity (Kd ∼ μM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.
Collapse
|
5
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
7
|
Effects of thymic selection on T cell recognition of foreign and tumor antigenic peptides. Proc Natl Acad Sci U S A 2017; 114:E7875-E7881. [PMID: 28874554 DOI: 10.1073/pnas.1708573114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The advent of cancer immunotherapy has generated renewed hope for the treatment of many malignancies by introducing a number of novel strategies that exploit various properties of the immune system. These therapies are based on the idea that cytotoxic T lymphocytes (CTLs) directly recognize and respond to tumor-associated neoantigens (TANs) in much the same way as they would to foreign peptides presented on cell surfaces. To date, however, nearly all attempts to optimize immunotherapeutic strategies have been empirical. Here, we develop a model of T cell selection based on the assumption of random interaction strengths between a self-peptide and the various T cell receptors. The model enables the analytical study of the effects of selection on the CTL recognition of TANs and completely foreign peptides and can estimate the number of CTLs that can detect donor-matched transplants. We show that negative selection thresholds chosen to reflect experimentally observed thymic survival rates result in near-optimal production of T cells that are capable of surviving selection and recognizing foreign antigen. These analytical results are confirmed by simulation.
Collapse
|
8
|
McDonald BD, Bunker JJ, Erickson SA, Oh-Hora M, Bendelac A. Crossreactive αβ T Cell Receptors Are the Predominant Targets of Thymocyte Negative Selection. Immunity 2015; 43:859-69. [PMID: 26522985 PMCID: PMC4654978 DOI: 10.1016/j.immuni.2015.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/28/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
The precise impact of thymic positive and negative selection on the T cell receptor (TCR) repertoire remains controversial. Here, we used unbiased, high-throughput cloning and retroviral expression of individual pre-selection TCRs to provide a direct assessment of these processes at the clonal level in vivo. We found that 15% of random TCRs induced signaling and directed positive (7.5%) or negative (7.5%) selection, depending on strength of signal, whereas the remaining 85% failed to induce signaling or selection. Most negatively selected TCRs exhibited promiscuous crossreactivity toward multiple other major histocompatibility complex (MHC) haplotypes. In contrast, TCRs that were positively selected or non-selected were minimally crossreactive. Negative selection of crossreactive TCRs led to clonal deletion but also recycling into intestinal CD4(-)CD8β(-) intraepithelial lymphocytes (iIELs). Thus, broadly crossreactive TCRs arise at low frequency in the pre-selection repertoire but constitute the primary drivers of thymic negative selection and iIEL lineage differentiation.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Steven A Erickson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
10
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Fortin JS, Genève L, Gauthier C, Shoukry NH, Azar GA, Younes S, Yassine-Diab B, Sékaly RP, Fremont DH, Thibodeau J. MMTV superantigens coerce an unconventional topology between the TCR and MHC class II. THE JOURNAL OF IMMUNOLOGY 2014; 192:1896-906. [PMID: 24453254 DOI: 10.4049/jimmunol.1203130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse mammary tumor virus superantigens (vSAGs) are notorious for defying structural characterization, and a consensus has yet to be reached regarding their ability to bridge the TCR to MHC class II (MHCII). In this study, we determined the topology of the T cell signaling complex by examining the respective relation of vSAG7 with the MHCII molecule, MHCII-associated peptide, and TCR. We used covalently linked peptide/MHCII complexes to demonstrate that vSAG presentation is tolerant to variation in the protruding side chains of the peptide, but can be sensitive to the nature of the protruding N-terminal extension. An original approach in which vSAG was covalently linked to either MHCII chain confirmed that vSAG binds outside the peptide binding groove. Also, whereas the C-terminal vSAG segment binds to the MHCII α-chain in a conformation-sensitive manner, the membrane-proximal N-terminal domain binds the β-chain. Because both moieties of the mature vSAG remain noncovalently associated after processing, our results suggest that vSAG crosslinks MHCII molecules. Comparing different T cell hybridomas, we identified key residues on the MHCII α-chain that are differentially recognized by the CDR3β when engaged by vSAG. Finally, we show that the highly conserved tyrosine residue found in the vSAg TGXY motif is required for T cell activation. Our results reveal a novel SAG/MHCII/TCR architecture in which vSAGs coerce a near-canonical docking between MHCII and TCR that allows eschewing of traditional CDR3 binding with the associated peptide in favor of MHCII α-chain binding. Our findings highlight the plasticity of the TCR CDRs.
Collapse
Affiliation(s)
- Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec HC3 3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The peripheral T cell repertoire is sculpted from prototypic T cells in the thymus bearing randomly generated T cell receptors (TCR) and by a series of developmental and selection steps that remove cells that are unresponsive or overly reactive to self-peptide–MHC complexes. The challenge of understanding how the kinetics of T cell development and the statistics of the selection processes combine to provide a diverse but self-tolerant T cell repertoire has invited quantitative modeling approaches, which are reviewed here.
Collapse
Affiliation(s)
- Andrew J Yates
- Departments of Systems and Computational Biology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| |
Collapse
|
13
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
14
|
Daley SR, Hu DY, Goodnow CC. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. J Exp Med 2013; 210:269-85. [PMID: 23337809 PMCID: PMC3570102 DOI: 10.1084/jem.20121458] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022] Open
Abstract
Acquisition of self-tolerance in the thymus requires T cells to discriminate strong versus weak T cell receptor binding by self-peptide-MHC complexes. We find this discrimination is reported by expression of the transcription factor Helios, which is induced during negative selection but decreases during positive selection. Helios and the proapoptotic protein Bim were coinduced in 55% of nascent CCR7(-) CD4(+) CD69(+) thymocytes. These were short-lived cells that up-regulated PD-1 and down-regulated CD4 and CD8 during Bim-dependent apoptosis. Helios and Bim were also coinduced at the subsequent CCR7(+) CD4(+) CD69(+) CD8(-) stage, and this second wave of Bim-dependent negative selection involved 20% of nascent cells. Unlike CCR7(-) counterparts, Helios(+) CCR7(+) CD4(+) cells mount a concurrent Card11- and c-Rel-dependent activation response that opposes Bim-mediated apoptosis. This "hollow" activation response consists of many NF-κB target genes but lacks key growth mediators like IL-2 and Myc, and the thymocytes were not induced to proliferate. These findings identify Helios as the first marker known to diverge during positive and negative selection of thymocytes and reveal the extent, stage, and molecular nature of two distinct waves of clonal deletion in the normal thymus.
Collapse
Affiliation(s)
- Stephen R. Daley
- Department of Immunology, The John Curtin School of Medical Research and Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Daniel Y. Hu
- Department of Immunology, The John Curtin School of Medical Research and Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Christopher C. Goodnow
- Department of Immunology, The John Curtin School of Medical Research and Australian Phenomics Facility, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
15
|
Human invariant chain isoform p35 restores thymic selection and antigen presentation in CD74-deficient mice. Immunol Cell Biol 2012; 90:896-902. [PMID: 22689013 DOI: 10.1038/icb.2012.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The invariant chain (Ii) has pleiotropic functions and is a key factor in antigen presentation. Ii associates with major histocompatibility complex class II molecules in the endoplasmic reticulum (ER) and targets the complex in the endocytic pathway to allow antigenic peptide loading. The human Iip35 isoform includes a cytoplasmic extension containing a di-arginine motif causing ER retention. This minor isoform does not exist in mice and its function in humans has not been thoroughly investigated. We have recently generated transgenic mice expressing Iip35 and these were crossed with Ii-deficient mice to generate animals (Tgp35/mIiKO) expressing exclusively the human isoform. In these mice, we show that Iip35 is expressed in antigen presenting cells and is inducible by interferon gamma (IFN-γ). Despite the low constitutive expression of the protein and some minor differences in the Vβ repertoire of Tgp35/mIiKO mice, Iip35 restored thymic selection of CD4(+) T cells and of invariant natural killer T cells. In vitro functional assays using purified primary macrophages treated with IFN-γ showed that Iip35 allows presentation of an Ii-dependent ovalbumin T-cell epitope. Altogether, our results suggest that Iip35 is functional and does not require co-expression of other isoforms for antigen presentation.
Collapse
|
16
|
Legoux F, Debeaupuis E, Echasserieau K, De La Salle H, Saulquin X, Bonneville M. Impact of TCR reactivity and HLA phenotype on naive CD8 T cell frequency in humans. THE JOURNAL OF IMMUNOLOGY 2010; 184:6731-8. [PMID: 20483723 DOI: 10.4049/jimmunol.1000295] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The impact of MHC phenotype on the shaping of the peripheral naive T cell repertoire in humans remains unknown. To address this, we compared the frequency and antigenic avidity of naive T cells specific for immunodominant self-, viral, and tumor Ags presented by a human MHC class I allele (HLA-A*02, referred to as A2) in individuals expressing or not this allele. Naive T cell frequencies varied from one Ag specificity to another but were restrained for a given specificity. Although A2-restricted T cells showed similar repertoire features and antigenic avidities in A2+ and A2- donors, A2 expression had either a positive, neutral, or negative impact on the frequency of A2-restricted naive CD8 T cells, depending on their fine specificity. We also identified in all donors CD4 T cells specific for A2/peptide complexes, whose frequencies were not affected by MHC class I expression, but nevertheless correlated with those of their naive CD8 T cell counterparts. Therefore, both selection by self-MHC and inherent TCR reactivity regulate the frequency of human naive T cell precursors. Moreover this study also suggests that T cell repertoire shaping by a given self-MHC allele is dispensable for generation of immunodominant T cell responses restricted by this particular allele.
Collapse
Affiliation(s)
- François Legoux
- Institut National de la Santé et de la Recherche Médicale Unité 892, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
17
|
Harding CV, Ramachandra L. Presenting exogenous antigen to T cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 16:16.2.1-16.2.18. [PMID: 20143316 DOI: 10.1002/0471142735.im1602s88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antigen processing and presentation experiments can be done with a wide variety of antigen-presenting cells (APCs). Most experiments will use one of the "professional" APC types: dendritic cells (DCs), macrophages, and B lymphocytes. Other types of cells may be used for antigen presentation in some circumstances. Each type of professional APC has an important antigen-presentation function, but the different APC types contribute to different aspects of the immune response. Therefore, selection of an APC type for study must include consideration of the stage or aspect of immune response that is to be modeled in the experiment. An important technical distinction for some types of experiments is whether the APCs are adherent or nonadherent, since this dictates the procedures that must be used to wash the cells as the medium is changed.
Collapse
|
18
|
Wang B, Primeau TM, Myers N, Rohrs HW, Gross ML, Lybarger L, Hansen TH, Connolly JM. A single peptide-MHC complex positively selects a diverse and specific CD8 T cell repertoire. Science 2009; 326:871-4. [PMID: 19892989 DOI: 10.1126/science.1177627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogen recognition by T cells is dependent on their exquisite specificity for self-major histocompatibility complex (MHC) molecules presenting a bound peptide. Although this specificity results from positive and negative selection of developing T cells in the thymus, the relative contribution of these two processes remains controversial. To address the relation between the selecting peptide-MHC complex and the specificity of mature T cells, we generated transgenic mice that express a single peptide-MHC class I complex. We demonstrate that positive selection of CD8 T cells in these mice results in an MHC-specific repertoire. Although selection on a single complex is peptide promiscuous, mature T cells are highly peptide specific. Thus, positive selection imparts MHC and peptide specificity on the peripheral CD8 T cell repertoire.
Collapse
Affiliation(s)
- Baomei Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008; 455:396-400. [PMID: 18701890 DOI: 10.1038/nature07208] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 06/26/2008] [Indexed: 11/09/2022]
Abstract
Recognition of self-antigen-derived epitopes presented by major histocompatibility complex class II (MHC II) molecules on thymic epithelial cells (TECs) is critical for the generation of a functional and self-tolerant CD4 T-cell repertoire. Whereas haematopoietic antigen-presenting cells generate MHC-II-peptide complexes predominantly through the processing of endocytosed polypeptides, it remains unknown if and how TECs use unconventional pathways of antigen presentation. Here we address the role of macroautophagy, a process that has recently been shown to allow for endogenous MHC II loading, in T-cell repertoire selection in the mouse thymus. In contrast to most other tissues, TECs had a high constitutive level of autophagy. Genetic interference with autophagy specifically in TECs led to altered selection of certain MHC-II-restricted T-cell specificities and resulted in severe colitis and multi-organ inflammation. Our findings indicate that autophagy focuses the MHC-II-peptide repertoire of TECs on their intracellular milieu, which notably comprises a wide array of otherwise strictly 'tissue-specific' self antigens. In doing so, it contributes to T-cell selection and is essential for the generation of a self-tolerant T-cell repertoire.
Collapse
Affiliation(s)
- Jelena Nedjic
- Research Institute of Molecular Pathology, Doktor Bohr Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Chidgey AR, Boyd RL. Thymic stromal cells and positive selection. APMIS 2008. [DOI: 10.1111/j.1600-0463.2001.907801.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Menges PR, Jenks SA, Bikoff EK, Friedmann DR, Knowlden ZAG, Sant AJ. An MHC class II restriction bias in CD4 T cell responses toward I-A is altered to I-E in DM-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:1619-33. [PMID: 18209058 DOI: 10.4049/jimmunol.180.3.1619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC-encoded cofactor DM catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we used wild-type (WT) or DM-deficient (DM(-/-)) mice of the H-2(d) MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM(-/-) mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, whereas DM(-/-) mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition.
Collapse
Affiliation(s)
- Paula R Menges
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:7032-41. [PMID: 17513752 DOI: 10.4049/jimmunol.178.11.7032] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Currently, it is not understood how the specificity of the TCR guides CD4(+) T cells into the conventional lineage (Tconv) vs directing them to become regulatory (Treg) cells defined by the Foxp3 transcription factor. To address this question, we made use of the "Limited" (LTD) mouse, which has a restricted TCR repertoire with a fixed TCRbeta chain and a TCRalpha chain minilocus. The TCR repertoires of Tconv and Treg cells were equally broad, were distinct, yet overlapped significantly, representing a less strict partition than previously seen between CD4 and CD8 T cells. As a group, the CDR3alpha motifs showed a significant trend to higher positive charge in Treg than in Tconv cells. The Tconv and Treg repertoires were both reshaped between thymus and periphery. Reducing the array of peptides presented by MHC class II molecules by introducing the H2-DM(o/o) mutation into the LTD mouse led to parallel shifts in the repertoires of Tconv and Treg cells. In both cases, the CDR3alpha elements were entirely different and strikingly shortened, relative to normal LTD mice. These peculiar sequences conferred reactivity to wild-type MHC class II complexes and were excluded from the normal repertoire, even among Treg cells, indicating that some forms of self-reactivity are incompatible with selection into the Treg lineage. In conclusion, the Treg repertoire is broad, with distinct composition and characteristics, yet significantly overlapping and sharing structural constraints with the repertoire of conventional CD4(+) T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Jamie Wong
- Section on Immunology and Immunogenetics, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chao DL, Davenport MP, Forrest S, Perelson AS. The effects of thymic selection on the range of T cell cross-reactivity. Eur J Immunol 2006; 35:3452-9. [PMID: 16285012 PMCID: PMC1857316 DOI: 10.1002/eji.200535098] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Based on the results of a computational model of thymic selection, we propose a mechanism that produces the observed wide range of T cell cross-reactivity. The model suggests that the cross-reactivity of a T cell that survives thymic selection is correlated with its affinity for self peptides. In order to survive thymic selection, a T cell with low affinity for all self peptides expressed in the thymus must have high affinity for major histocompatibility complex (MHC), which makes it highly cross-reactive. A T cell with high affinity for any self peptide must have low MHC affinity to survive selection, which makes it highly specific for its cognate peptide. Our model predicts that (1) positive selection reduces by only 17% the number of T cells that can detect any given foreign peptide, even though it eliminates over 95% of pre-selection cells; (2) negative selection decreases the average cross-reactivity of the pre-selection repertoire by fivefold; and (3) T cells responding to foreign peptides similar to self peptides will have a lower average cross-reactivity than cells responding to epitopes dissimilar to self.
Collapse
Affiliation(s)
- Dennis L Chao
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | |
Collapse
|
26
|
Cascalho M, Platt JL. B cells and B cell products-helping to restore cellular immunity? Transfus Med Hemother 2006; 33:45-49. [PMID: 16755301 PMCID: PMC1473962 DOI: 10.1159/000090196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T cells that provide vital protection against tumors, viruses and intracellular bacteria are thought to develop independently of B cells. However, recent discoveries suggest that development of T cells depends on B cells. One way B cells promote T cell development is by providing diverse peptides that may promote positive selection of thymocytes. Diverse peptides and B cells help in diversification of the T cell receptor repertoire and may decrease cross-reactivity in the mature T cell compartment. These new insights may provide the basis for the design of novel therapeutics.
Collapse
Affiliation(s)
- Marilia Cascalho
- Transplantation Biology Program and the Departments Surgery, Immunology and Pediatrics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
27
|
Rubin RL, Hermanson TM. Plasticity in the positive selection of T cells: affinity of the selecting antigen and IL-7 affect T cell responsiveness. Int Immunol 2005; 17:959-71. [PMID: 15994177 DOI: 10.1093/intimm/dxh277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The current study examines how responsiveness of T cells is affected by the avidity of the peptide/MHC engaged during positive selection of their thymocyte precursors. We used a thymus reaggregate culture system in which CD4(+)CD8(+) thymocytes from AND TCR transgenic mice were induced to undergo positive selection by pigeon cytochrome c (PCC) peptide or its analogs presented by I-E(k) class II MHC on a thymic epithelial cell line. When low-affinity peptide analogs drove positive selection, up to 100 microM was needed to produce >50% CD4(+) T cells, and these cells were highly responsive to PCC. In contrast, <0.2 microM high-affinity peptides was required to achieve similar selection efficiency, but the resultant cells failed to respond to PCC. However, these cells were not dead based on dye exclusion and capacity to respond to phorbal ester and to agonist if IL-2 was also present, supporting the view that non-responsiveness of cells selected on high-affinity peptides is a form of central T cell tolerance distinct from deletion. Cells selected on intermediate-affinity peptides showed variable responsiveness which was suppressed 5- to 10-fold by addition during reaggregate culture of antibody to the IL-7R. Similarly, supplementary IL-7 in the reaggregate culture produced CD4(+) T cells that were promiscuously responsive. Overall, this study demonstrates that the responsiveness of T cells is not rigidly controlled and that the presence of IL-7 during T cell development has the potential to negate central T cell tolerance and produce autoreactive T cells.
Collapse
Affiliation(s)
- Robert L Rubin
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico Medical School, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
28
|
Cheunsuk S, Lian ZX, Yang GX, Gershwin ME, Gruen JR, Bowlus CL. Prss16 is not required for T-cell development. Mol Cell Biol 2005; 25:789-96. [PMID: 15632078 PMCID: PMC543420 DOI: 10.1128/mcb.25.2.789-796.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PRSS16 is a serine protease expressed exclusively in cortical thymic epithelial cells (cTEC) of the thymus, suggesting that it plays a role in the processing of peptide antigens during the positive selection of T cells. Moreover, the human PRSS16 gene is encoded in a region near the class I major histocompatibility complex (MHC) that has been linked to type 1 diabetes mellitus susceptibility. The mouse orthologue Prss16 is conserved in genetic structure, sequence, and pattern of expression. To study the role of Prss16 in thymic development, we generated a deletion mutant of Prss16 and characterized T-lymphocyte populations and MHC class II expression on cortical thymic epithelial cells. Prss16-deficient mice develop normally, are fertile, and show normal thymic morphology, cellularity, and anatomy. The total numbers and frequencies of thymocytes and splenic T-cell populations did not differ from those of wild-type controls. Surface expression of MHC class II on cTEC was also similar in homozygous mutant and wild-type animals, and invariant chain degradation was not impaired by deletion of Prss16. These findings suggest that Prss16 is not required for quantitatively normal T-cell development.
Collapse
Affiliation(s)
- Saijai Cheunsuk
- Division of Gastroenterology, Department of Internal Medicine, UC Davis Medical Center, 4150 V St., PSSB 3500, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kao H, Allen PM. An antagonist peptide mediates positive selection and CD4 lineage commitment of MHC class II-restricted T cells in the absence of CD4. ACTA ACUST UNITED AC 2005; 201:149-58. [PMID: 15630142 PMCID: PMC2212763 DOI: 10.1084/jem.20041574] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The CD4 coreceptor works together with the T cell receptor (TCR) to deliver signals to the developing thymocyte, yet its specific contribution to positive selection and CD4 lineage commitment remains unclear. To resolve this, we used N3.L2 TCR transgenic, RAG-, and CD4-deficient mice, which are severely impaired in positive selection, and asked whether altered peptide ligands can replace CD4 function in vivo. Remarkably, in the presence of antagonist ligands that normally deleted CD4+ T cells in wild-type mice, we induced positive selection of functional CD4 lineage T cells in mice deficient in CD4. We show that the kinetic threshold for positive and negative selection was lowered in the absence of CD4, with no evident skewing toward the CD8 lineage with weaker ligands. These results suggest that CD4 is dispensable as long as the affinity threshold for positive selection is sustained, and strongly argue that CD4 does not deliver a unique instructional signal for lineage commitment.
Collapse
Affiliation(s)
- Henry Kao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
30
|
Sinha P, Chi HH, Kim HR, Clausen BE, Pederson B, Sercarz EE, Forster I, Moudgil KD. Mouse lysozyme-M knockout mice reveal how the self-determinant hierarchy shapes the T cell repertoire against this circulating self antigen in wild-type mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:1763-71. [PMID: 15265906 DOI: 10.4049/jimmunol.173.3.1763] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have studied T cell tolerance to defined determinants within ML-M using wild-type (WT; ML-M(+/+)) and LysMcre (ML-M(-/-)) C3H (H-2(k)) mice to determine the relative contribution of ML-M-derived epitopes vs those from other self Ags in selection of the ML-M-specific T cell repertoire. ML-M was totally nonimmunogenic in WT mice, but was rendered immunogenic in LysMcre mice. Most of the response to ML-M in LysMcre mice was directed to the immunodominant determinant region 105-119. This determinant is spontaneously displayed (without adding exogenous ML-M) by macrophages of WT, but not LysMcre, mice and is stimulatory for peptide 105-119 (p105-119)-primed T cells. Moreover, neonatal tolerization of LysMcre mice with p105-119 or ML-M abrogated the T cell response to subsequent challenge with ML-M or p105-119. Furthermore, p95-109 and p110-125 of ML-M were immunogenic in LysMcre mice, but not in WT mice, thereby representing subdominant, tolerance-inducing epitopes of ML-M. As expected, the T cell repertoire to cryptic ML determinants in WT mice was also intact in LysMcre mice. Furthermore, the pattern of response to the related homologue of ML-M, hen eggwhite lysozyme, was similar in these two groups of mice. Thus, several codominant T cell determinants within ML-M contribute significantly to tolerance induction, and the anti-cryptic T cell repertoire to ML-M was positively selected on non-ML-M self ligands. These results reveal that the induction of self tolerance to a multideterminant protein follows the quantitative hierarchy of self-determinant expression and are of relevance in understanding the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Pratima Sinha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The establishment and maintenance of immunological tolerance entails both central and peripheral mechanisms. The latter have been highlighted in the past several years, mostly because of great interest in the activities of regulatory T cells. However, an important role for central tolerance mechanisms has been reemphasized by recent results on human autoimmune diseases, including APECED and type 1 diabetes.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215 USA
| | | |
Collapse
|
32
|
Huseby ES, Crawford F, White J, Kappler J, Marrack P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc Natl Acad Sci U S A 2003; 100:11565-70. [PMID: 14504410 PMCID: PMC208798 DOI: 10.1073/pnas.1934636100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The T cell alphabeta receptor (TCR) recognizes foreign peptide antigens bound to proteins encoded in the MHC. The MHC portion of this complex contributes much to the footprint of the TCR on the ligand, yet T cells are usually very specific for individual foreign peptides. Here, we show that the development of peptide-specific T cells is not intrinsic to thymocytes that undergo thymic-positive selection but is an outcome of eliminating, through negative selection, thymocytes bearing TCRs with extensive peptide cross-reactivity. Hence, thymic-negative selection imposes peptide specificity on the mature T cell repertoire.
Collapse
Affiliation(s)
- Eric S Huseby
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
34
|
Rajagopalan G, Smart MK, Cheng S, Krco CJ, Johnson KL, David CS. Expression and function of HLA-DR3 and DQ8 in transgenic mice lacking functional H2-M. TISSUE ANTIGENS 2003; 62:149-61. [PMID: 12889995 DOI: 10.1034/j.1399-0039.2003.00088.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
H2-M or HLA-DM are non-classical class II molecules encoded by the MHC and play an important role during antigen presentation. They catalyze exchange of CLIP (Class II-associated invariant chain peptide) or other low-affinity peptides bound to class II molecules for peptides capable of more efficient binding. The phenotype of mice lacking H2-M is determined by the allotype of the MHC class II molecules expressed. In general, H2-M deficiency does not affect the surface expression of mature class II molecules. The class II molecules in such cases predominantly contain CLIP in their peptide-binding groove. In some mice strains, H2-M deficiency results in defective CD4+ T-cell development accompanied by defective responses to conventional antigens and superantigens. Even though the HLA class II molecules show similar dependency for HLA-DM for presenting antigens in vitro, their interaction in vivo is not known. By using transgenic approach we show here that DQ8 and DR3 are expressed at normal levels in H2-M-deficient mice and the CD4+ T-cell development is unaltered. However, the ability of DQ8 molecules to present peptide antigens is compromised in a H2-M-deficient state. Presentation of exogenous bacterial superantigens by both DQ8 and DR3 is unaffected in H2-M-deficient mice. Unexpectedly, Staphylococcal Enterotoxin B-induced systemic IFN-gamma production was significantly higher in H2-M-deficient DQ8/DR3 transgenic mice and these mice were susceptible to SEB-induced toxic shock at doses that are non-lethal to H2-M-sufficient counterparts.
Collapse
Affiliation(s)
- G Rajagopalan
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
35
|
Langlois MA, El Fakhry Y, Mourad W. Zinc-binding sites in the N terminus of Mycoplasma arthritidis-derived mitogen permit the dimer formation required for high affinity binding to HLA-DR and for T cell activation. J Biol Chem 2003; 278:22309-15. [PMID: 12676930 DOI: 10.1074/jbc.m300823200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc-dependent superantigens can be divided into two subfamilies based on how they use zinc ions for interactions with major histocompatibility complex (MHC) class II molecules. Members of the first subfamily use zinc ions for interactions with histidine 81 on the beta-chain of MHC class II molecules, whereas members of the second subfamily use zinc ions for dimer formation. The zinc-binding motif is located in the C terminus of the molecule in both subfamilies. While our recent studies with Mycoplasma arthritidis-derived mitogen (MAM) have provided the first direct evidence demonstrating the binding to MHC class II molecules in a zinc-dependent manner, it still not known how zinc coordinates the interaction. Data presented here show that the zinc ion is mainly required to induce MAM/MAM dimer formation. Residues in the N terminus of MAM are involved in dimer formation and MHC class II binding, while histidine 14 and aspartic acid 31 of the MAM sequence are the major residues mediating MAM/MAM dimerization. Zinc-induced dimer formation is necessary for MAM binding, MHC class II-induced cell-cell adhesion, and efficient T cell activation. Together these results depict the unique mode of interaction of MAM in comparison with other superantigens.
Collapse
Affiliation(s)
- Marc-André Langlois
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier de l'université Laval, Faculté de Médecine, Université Laval, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
36
|
Viret C, He X, Janeway CA. Altered positive selection due to corecognition of floppy peptide/MHC II conformers supports an integrative model of thymic selection. Proc Natl Acad Sci U S A 2003; 100:5354-9. [PMID: 12700352 PMCID: PMC154349 DOI: 10.1073/pnas.0831129100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymocytes bearing the E alpha 52-68/I-A(b) complex-specific 1H3.1 alpha beta T cell antigen receptor are positively selected in Ab-Ep [Ab-Ep transgenic, invariant chain (Ii)(-/-), I-A beta(b-/-)] mice, where I-A(b) molecules present only E alpha 52-68. Although Ii reintroduction led to deletion, I-A beta(b) reintroduction disrupted positive selection. T cell antigen receptor transgenic Ab-Ep I-A beta(b+) mice had a large thymus with an increased absolute number of CD4(+)CD8(+) cells and no overt signs of deletion. Unlike Ab-Ep Ii(+) antigen-presenting cells, Ab-Ep I-A beta(b+) antigen-presenting cells did not activate 1H3.1 T cells. However, their capacity to present E alpha 52-68 was intact. Thus, positive selection of 1H3.1 thymocytes on the tight compact E alpha 52-68/I-A(b) complex is neutralized by the corecognition of loose compact self-peptide/I-A(b) conformers that do not interfere with the cognate activation of mature 1H3.1 T cells. The data support the notion that the integration of distinct signals generated by the simultaneous recognition of multiple self-peptide/MHC complexes directs intrathymic selection of T cells.
Collapse
Affiliation(s)
- Christophe Viret
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
37
|
Chalermskulrat W, Neuringer IP, Brickey WJ, Felix NJ, Randell SH, Ting JP, Aris RM. Hierarchical contributions of allorecognition pathways in chronic lung rejection. Am J Respir Crit Care Med 2003; 167:999-1007. [PMID: 12446274 DOI: 10.1164/rccm.200209-1099oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of allorecognition in initiating lung graft rejection is not clearly defined. Using the heterotopic tracheal transplantation model, we examined the contributions of the indirect and direct allorecognition pathways in chronic airway rejection. Fully mismatched, wild-type grafts were transplanted into major histocompatibility complex (MHC) II-/-, class II-like accessory molecule (H2-DMalpha)-/- using MHC I-/- and wild-type allorecipients as control subjects. Similarly, MHC I-/-, MHC II-/-, or MHC I/II-/- allografts were transplanted into wild-type mice with appropriate control subjects. Grafts from nonimmunosuppressed recipients were evaluated at Weeks 2, 4, and 6. Grafts transplanted into MHC II-/- and H2-DMalpha-/- allorecipients showed a more intact epithelium and reduced lumen obliteration compared with grafts transplanted into wild-type or MHC I-/- allorecipients (p < 0.05 for each). These grafts exhibited abundant CD4+ and CD8+ cell infiltrates similar to control allografts. MHC I-/- and MHC I/II-/- but not MHC II-/- allografts placed in wild-type animals demonstrated less severe rejection compared with allograft control subjects (p < 0.05 for each). Although the indirect allorecognition pathway has the strongest influence on rejection, the direct pathway is sufficient to ultimately cause chronic airway rejection. In addition, these results suggest that MHC class I molecules are the principal alloantigens in the mouse heterotopic tracheal model of obliterative bronchiolitis.
Collapse
Affiliation(s)
- Worakij Chalermskulrat
- Division of Pulmonary Disease and Critical Care Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Santori FR, Kieper WC, Brown SM, Lu Y, Neubert TA, Johnson KL, Naylor S, Vukmanović S, Hogquist KA, Jameson SC. Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 2002; 17:131-42. [PMID: 12196285 DOI: 10.1016/s1074-7613(02)00361-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although it is clear that positive selection of T cells involves recognition of specific self-peptide/MHC complexes, the nature of these self-ligands and their relationship to the cognate antigen are controversial. Here we used two complementary strategies to identify naturally occurring self-peptides able to induce positive selection of T cells bearing a specific T cell receptor, OT-I. Both the bioassay- and bioinformatics-based strategies identified the same self-peptides, derived from F-actin capping protein and beta-catenin. These peptides displayed charge conservation at two key TCR contact residues. The biological activity of 43 other self-peptides and of complex peptide libraries directly correlated to the extent of conservation at TCR contact residues. These results demonstrate that selecting self-peptides are rare and can be identified by homology-based search strategies.
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, 550 First Avenue, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barton GM, Beers C, deRoos P, Eastman SR, Gomez ME, Forbush KA, Rudensky AY. Positive selection of self-MHC-reactive T cells by individual peptide-MHC class II complexes. Proc Natl Acad Sci U S A 2002; 99:6937-42. [PMID: 12011451 PMCID: PMC124507 DOI: 10.1073/pnas.102645699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If T cells require specific interactions with MHC-bound peptides during positive selection, then the specificities of T cells selected by one peptide should be distinct from those selected by another. We have examined positive selection of CD4 T cells in four strains of mice, each overexpressing a different peptide-1-A(b)(A(b)) complex. We show that a subset of CD4 T cells is selected by the overexpressed peptide and that the specificities of the CD4 T cells, as measured by reactivity to wild-type antigen-presenting cells, vary greatly depending on which peptide is overexpressed. These differences in specificity are mediated through positive selection not negative selection. Each of the four peptide-A(b) complexes appears to adopt a different conformation, and these differences correlate with the differences in reactivity. Our results suggest that individual peptide-MHC complexes positively select different subsets of self-MHC-reactive T cells and that the conformation of the peptide-MHC complex may contribute to this process.
Collapse
Affiliation(s)
- Gregory M Barton
- Molecular and Cellular Biology Program, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Helper T lymphocytes play a critical role in immune system activation following recognition of MHC class II-bound peptide ligands (pMHCII). These CD4 T cells stimulate B cell antibody production and cytolytic T cell generation. Until recently, the structural basis of coordinate T cell receptor (TCR) and CD4 co-receptor interaction with a given pMHCII was unknown. Here we review current structural data on specific pMHCII recognition by T cells and compare TCR and co-receptor docking to pMHCI versus pMHCII ligands. The implications of these findings for thymic selection, helper versus cytolytic T cell recognition and alloreactivity are discussed.
Collapse
Affiliation(s)
- Jia-huai Wang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | |
Collapse
|
41
|
Yassai M, Ammon K, Goverman J, Marrack P, Naumov Y, Gorski J. A molecular marker for thymocyte-positive selection: selection of CD4 single-positive thymocytes with shorter TCRB CDR3 during T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3801-7. [PMID: 11937532 DOI: 10.4049/jimmunol.168.8.3801] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The generation of the naive T cell repertoire is a direct result of maturation and selection events in the thymus. Although maturation events are judged predominantly on the expression of surface markers, molecular markers, more intimately involved in the selection process, can be informative. We have identified a molecular marker for selection in later stages of maturation in humans. Thymocytes are selected for the expression of TCR beta-chains with shorter CDR3 at the double-positive to single-positive (SP) transition. Here we extend these studies to the mouse and show that the selection phenotype is not related to alpha-chain pairing but is a function of the MHC haplotype. Interestingly, the selection is much more apparent in CD4 SP thymocytes than in CD8 SP cells. This is in contrast to human thymocytes, where the selection is equally apparent in both lineages. The involvement of MHC in the process argues that this is a positive selection stage. The difference in the extent of this selection between the two SP lineages may indicate a class difference in the nature of the TCR-MHC interaction, the role of coreceptors in the selection process, or both.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/blood
- Complementarity Determining Regions/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, MHC Class II/physiology
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Maryam Yassai
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tompkins SM, Padilla J, Dal Canto MC, Ting JPY, Van Kaer L, Miller SD. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4173-83. [PMID: 11937578 DOI: 10.4049/jimmunol.168.8.4173] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Cell Movement/genetics
- Cell Movement/immunology
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Histocompatibility Antigens Class II/genetics
- Immunity, Innate/genetics
- Injections, Subcutaneous
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myelin Proteolipid Protein/administration & dosage
- Myelin Proteolipid Protein/immunology
- Myelin Proteolipid Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Nuclear Proteins
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Trans-Activators/deficiency
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Stephen Mark Tompkins
- Department of Microbiology-Immunology and Pathology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
43
|
Casrouge A, Fazilleau N, Cabaniols JP, Kourilsky P, Kanellopoulos JM. [Methods of studying T-lymphocyte repertoires]. PATHOLOGIE-BIOLOGIE 2002; 50:151-6. [PMID: 11980327 DOI: 10.1016/s0369-8114(02)00281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Alfonso C, Han JO, Williams GS, Karlsson L. The impact of H2-DM on humoral immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6348-55. [PMID: 11714799 DOI: 10.4049/jimmunol.167.11.6348] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
H2-DM (DM, previously H2-M) facilitates the exchange of peptides bound to MHC class II molecules. In this study, we have used H2-DM-deficient (DM(-/-)) mice to analyze the influence of DM in the priming of B cell responses in vivo and for Ag presentation by B cells in vitro. After immunization, IgG Abs could be raised to a T-dependent Ag, 4-hydroxy-5-nitrophenylacetyl-OVA, in DM(-/-) mice, but closer analysis revealed the IgG response to be slower, diminished in titer, and composed of low-affinity Abs. The Ab response correlated with a vast reduction in the number of germinal centers in the spleen. The presentation of multiple epitopes by H2-A(b) from distinct Ags was found to be almost exclusively DM-dependent whether B cells internalized Ags via fluid phase uptake or using membrane Ig receptors. The poor B cell response in vivo could be largely, but not completely restored by expression of a H2-Ea(d) transgene, despite the fact that Ag presentation by H2-E(d/b) molecules was found to be highly DM dependent. Hence, while substantial Ab responses can be raised in the absence of DM, this molecule is a crucial factor both for Ag processing and for the normal maturation of T-dependent humoral immune responses in vivo.
Collapse
Affiliation(s)
- C Alfonso
- R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
45
|
Sasada T, Ghendler Y, Neveu JM, Lane WS, Reinherz EL. A naturally processed mitochondrial self-peptide in complex with thymic MHC molecules functions as a selecting ligand for a viral-specific T cell receptor. J Exp Med 2001; 194:883-92. [PMID: 11581311 PMCID: PMC2193488 DOI: 10.1084/jem.194.7.883] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Accepted: 08/17/2001] [Indexed: 01/26/2023] Open
Abstract
Peptide fragments of self-proteins bound to major histocompatibility complex molecules within the thymus are important for positively selecting T cell receptor (TCR)-bearing CD4(+)CD8(+) double positive (DP) thymocytes for further maturation. The relationship between naturally processed thymic self-peptides and TCR-specific cognate peptides is unknown. Here we employ HPLC purification of peptides released from H-2K(b) molecules of the C57BL/6 thymus in conjunction with mass spectrometry (MS) and functional profiling to identify a naturally processed K(b)-bound peptide positively selecting the N15 TCR specific for the vesicular stomatitis virus octapeptide (VSV8) bound to K(b). The selecting peptide was identified in 1 of 80 HPLC fractions and shown by tandem MS (MS/MS) sequencing to correspond to residues 68-75 of the MLRQ subunit of the widely expressed mitochondrial NADH ubiquinone oxidoreductase (NUbO(68-75)). Of note, the peptide differs at six of its eight residues from the cognate peptide VSV8 and functions as a weak agonist for mature CD8 single positive (SP) N15 T cells, with activity 10,000-fold less than VSV8. In N15 transgenic (tg) recombinase activating gene 2(-/)- transporter associated with antigen processing 1(-/)- fetal thymic organ culture, NUbO(68-75) induces phenotypic and functional differentiation of N15 TCR bearing CD8 SP thymocytes. Failure of NUbO(68-75) to support differentiation of a second K(b)-restricted TCR indicates that its inductive effects are not general.
Collapse
Affiliation(s)
- Tetsuro Sasada
- Laboratory of Immunobiology and Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Yoseph Ghendler
- Laboratory of Immunobiology and Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - John M. Neveu
- Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, MA 02138
| | - William S. Lane
- Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, MA 02138
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
46
|
Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med 2001; 194:427-38. [PMID: 11514600 PMCID: PMC2193499 DOI: 10.1084/jem.194.4.427] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Accepted: 06/12/2001] [Indexed: 01/25/2023] Open
Abstract
CD4(+)25(+) T cells are a unique population of immunoregulatory T cells which are critical for the prevention of autoimmunity. To address the thymic selection of these cells we have used two models of attenuated thymic deletion. In K14-A(beta)(b) mice, major histocompatibility complex (MHC) class II I-A(b) expression is limited to thymic cortical epithelium and deletion by hematopoietic antigen-presenting cells does not occur. In H2-DMalpha-deficient mice, MHC class II molecules contain a limited array of self-peptides resulting in inefficient clonal deletion. We find that CD4(+)25(+) T cells are present in the thymus and periphery of K14-A(beta)(b) and H2-DMalpha-deficient mice and, like their wild-type counterparts, suppress the proliferation of cocultured CD4(+)25(-) effector T cells. In contrast, CD4(+)25(+) T cells from MHC class II-deficient mice do not suppress responder CD4(+) T cells in vitro or in vivo. Thus, development of regulatory CD4(+)25(+) T cells is dependent on MHC class II-positive thymic cortical epithelium. Furthermore, analysis of the specificities of CD4(+)25(+) T cells in K14-A(beta)(b) and H2-DMalpha-deficient mice suggests that a subset of CD4(+)25(+) T cells is subject to negative selection on hematopoietic antigen-presenting cells.
Collapse
|
47
|
Stefanski HE, Mayerova D, Jameson SC, Hogquist KA. A low affinity TCR ligand restores positive selection of CD8+ T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2001; 166:6602-7. [PMID: 11359813 DOI: 10.4049/jimmunol.166.11.6602] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The T cell repertoire is shaped by the processes of positive and negative selection. During development, the TCR binds self peptide-MHC complexes in the thymus, and the kinetics of this interaction are thought to determine the thymocyte's fate. For development of CD8(+) T cells, the data supporting such a model have been obtained using fetal thymic organ culture. To confirm the fidelity of this model in vivo, we studied development of OT-I TCR-transgenic mice that expressed different individual K(b) binding peptides in thymic epithelial cells under the control of the human keratin 14 promoter. We used a system that allowed TAP-independent expression of the peptide-MHC complex, such that the ability of given peptides to restore positive selection in TAP(o) mice could be assessed. We found that transgenic expression of a TCR antagonist peptide (E1) in vivo efficiently restored positive selection of OT-I T cells in TAP(o) mice. An unrelated transgenic peptide (SIY) did not restore selection of OT-I T cells, nor did the E1-transgenic peptide restore selection of an unrelated receptor (2C), showing that positive selection is peptide specific in vivo, as observed in organ cultures. Neither E1 nor SIY transgenes increased the polyclonal CD8 T cell repertoire size in non-TCR-transgenic animals, arguing that single class I binding peptides do not detectably affect the size of the CD8 T cell repertoire when expressed at low levels. We also observed that OT-I T cells selected in TAP(o)-E1 mice were functional in their response to Ag; however, there was a lag in this response, suggesting that the affinity of the TCR interaction with MHC-self peptide can result in fine-tuning of the T cell response.
Collapse
Affiliation(s)
- H E Stefanski
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
48
|
Hogan RJ, VanBeek J, Broussard DR, Surman SL, Woodland DL. Identification of MHC class II-associated peptides that promote the presentation of toxic shock syndrome toxin-1 to T cells. THE JOURNAL OF IMMUNOLOGY 2001; 166:6514-22. [PMID: 11359802 DOI: 10.4049/jimmunol.166.11.6514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that the DM-deficient cell line, T2-I-A(b), is very inefficient at presenting toxic shock syndrome toxin 1 (TSST-1) to T cells, suggesting that I-A(b)-associated peptides play an essential role in the presentation of this superantigen. Consistent with this, the loading of an I-A(b)-binding peptide, staphylococcal enterotoxin B 121-136, onto T2-I-A(b) cells enhanced TSST-1 presentation >1000-fold. However, despite extensive screening, no other peptides have been identified that significantly promote TSST-1 presentation. In addition, the peptide effect on TSST-1 presentation has been demonstrated only in the context of the tumor cell line T2-I-A(b). Here we show that peptides that do not promote TSST-1 presentation can be converted into "promoting" peptides by the progressive truncation of C-terminal residues. These studies result in the identification of two peptides derived from IgGV heavy chain and I-Ealpha proteins that are extremely strong promoters of TSST-1 presentation (47,500- and 12,000-fold, respectively). We have also developed a system to examine the role of MHC class II-associated peptides in superantigen presentation using splenic APC taken directly ex vivo. The data confirmed that the length of the MHC class II-bound peptide plays a critical role in the presentation of TSST-1 by splenic APC and showed that different subpopulations of APC are equally peptide dependent in TSST-1 presentation. Finally, we demonstrated that the presentation of staphylococcal enterotoxin A, like TSST-1, is peptide dependent, whereas staphylococcal enterotoxin B presentation is peptide independent.
Collapse
Affiliation(s)
- R J Hogan
- Trudeau Institute, Saranac Lake, 100 Algonquin Avenue, NY 12983, USA
| | | | | | | | | |
Collapse
|
49
|
Viret C, He X, Janeway CA. Paradoxical intrathymic positive selection in mice with only a covalently presented agonist peptide. Proc Natl Acad Sci U S A 2001; 98:9243-8. [PMID: 11470911 PMCID: PMC55405 DOI: 10.1073/pnas.161274698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Y-Ae mAb and the 1H3.1 alphabeta T cell antigen receptor (TCR) are both specific for the I-Ealpha52-68 peptide bound to the I-A(b) major histocompatibility complex (MHC) class II molecule. Antigen-presenting cells (APCs) from I-A(b+) mice with a natural or transgenic (Tg) I-Ealpha chain activate mature 1H3.1 T cells and cause the deletion of 1H3.1 TCR Tg thymocytes. However, 1H3.1 T cells were neither activated nor inactivated by confrontation with APCs from I-Ab-Ep mice in which I-A(b) molecules are occupied only by the covalently associated Ealpha52-68 peptide. Instead, immature 1H3.1 TCR Tg thymocytes were efficiently positively selected into the CD4 lineage in the I-Ab-Ep thymus. This selection relied on specific recognition of the Ealpha52-68/I-A(b) complex because it was blocked by Y-Ae. 1H3.1 TCR Tg T cells maturing in the I-Ab-Ep thymus efficiently populated the periphery, displayed a naive phenotype, and were specifically reactive to the Ealpha52-68 peptide or to I-A(b+)I-Ealpha(+) APCs, indicating that 1H3.1 T cells were not antagonized in I-Ab-Ep mice. The data identify major histocompatibility complex class II molecules with only a covalently attached self-peptide as a ligand for in vivo positive selection of T cells specific for the same peptide.
Collapse
Affiliation(s)
- C Viret
- Section of Immunobiology, Yale University School of Medicine, and Howard Hughes Medical Institute, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
50
|
Nepom GT. The role of the DR4 shared epitope in selection and commitment of autoreactive T cells in rheumatoid arthritis. Rheum Dis Clin North Am 2001; 27:305-15. [PMID: 11396094 DOI: 10.1016/s0889-857x(05)70203-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanistic basis for HLA associations with RA is still unknown in spite of 20 years of disease association studies and a detailed characterization of HLA class II alleles associated with disease. Analysis of the structural interactions between DR4 susceptibility molecules and T cells specific for the peptide-MHC complex suggests a mechanism for directed T-cell selection and amplification in which RA-associated genetic polymorphisms bias intermolecular recognition. New immunologic models for illustrating the importance of regulated thresholds for T-cell activation based on avidity between the TCR, MHC, and peptide offer insight into a potential mechanism in which the disease-associated HLA molecules create an autoimmune-prone individual by virtue of a biased TCR selection and T-cell amplification process. New tools such as the use of HLA-DR4 tetramers provide the ability to identify and monitor the presence of such autoreactive T cells in the periphery of individuals and patients and should assist in further testing of the multistep model for RA pathways presented in this article.
Collapse
Affiliation(s)
- G T Nepom
- Virginia Mason Research Center, Seattle, Washington, USA.
| |
Collapse
|