1
|
Omar I, Alakhras A, Mutwali S, Bakhiet M. Molecular insights into T cell development, activation and signal transduction (Review). Biomed Rep 2025; 22:94. [PMID: 40247929 PMCID: PMC12001230 DOI: 10.3892/br.2025.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
T cell modulation plays a fundamental role to adaptive and innate immunity, which aids the recognition and defense against pathogens while also maintaining self-tolerance. Numerous molecular pathways participate in this process including thymic selection, T cell receptor and antigen-presenting cells cross linkage, along with co-stimulatory signaling cascades. The present review demonstrates a holistic analysis of various classic and novel mechanisms that govern T cell regulation and emerging therapeutic applications. Recent advancements have introduced novel roles in the journey of T cell modulation that can have a pivotal impact on the understanding of this process; for example, phase separation of the linker for activation of T cells, and the newer application of chimeric antigen receptor (CAR) T cell therapy in autoimmune diseases. While discoveries of proximal and distal signal transduction pathways have contributed to the comprehension of T cell anergy, cytokine-mediated differentiation and the delicate balance between immune activation and tolerance, there are still unresolved debates about further molecular mechanisms. There are also still questions about the long-term side effects of CAR-T cell therapy. Deeper research and analysis are required to further aid the understanding and use of this novel therapeutic approach.
Collapse
Affiliation(s)
- Isra Omar
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Medicine, College of Medicine, University of Medical Sciences and Technology, 3523 Kigali, Rwanda
- Royal College of Physicians of Ireland, Dublin D02 E434, Ireland
| | - Ahmed Alakhras
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
| | - Samahir Mutwali
- TeleGeriatric Research Fellowship Program, Michigan State University, MI 48824, USA
| | - Moiz Bakhiet
- Department of Molecular Medicine and Medical Science, Arabian Gulf University, Manama 328, Kingdom of Bahrain
| |
Collapse
|
2
|
Pham-Danis C, Novak AJ, Danis E, McClellan SM, Leach L, Yarnell MC, Ebmeier CC, Tasian SK, Kohler ME. Restoration of LAT activity improves CAR T cell sensitivity and persistence in response to antigen-low acute lymphoblastic leukemia. Cancer Cell 2025; 43:482-502.e9. [PMID: 40068599 PMCID: PMC12002840 DOI: 10.1016/j.ccell.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 04/18/2025]
Abstract
Chimeric antigen receptor (CAR) T cells induce responses in patients with relapsed/refractory leukemia; however, long-term efficacy is frequently limited by relapse. The inability to target antigen-low cells is an intrinsic vulnerability of second-generation CAR T cells and underlies most relapses following CD22BBz CAR T cell therapy. Here, we interrogate CD22BBz CAR signaling in response to low antigen and find inefficient phosphorylation of the linker for activation of T cells (LAT) limiting downstream signaling. To overcome this, we designed the adjunctive LAT-activating CAR T cell (ALA-CART) platform, pairing a second-generation CAR with a LAT-CAR incorporating the intracellular domain of LAT. ALA-CART cells demonstrate reduced differentiation during manufacturing and increased LAT phosphorylation, MAPK signaling, and AP-1 activity. ALA-CART cells show improved cytotoxicity, proliferation, persistence, and efficacy against antigen-low leukemias that were refractory to clinically active CD22BBz CAR T cells. Restoration of LAT signaling through the ALA-CART platform represents a promising strategy for overcoming multiple mechanisms of CAR T cell failure.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Novak
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Biostatistics & Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Samantha M McClellan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lillie Leach
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael C Yarnell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher C Ebmeier
- Proteomics and Mass Spectrometry Core, Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics & Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Eric Kohler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Blood and Marrow Transplantation & Cellular Therapy, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Hortal AM, Calleja E, Oeste CL, Arellano I, Lacuna M, Blanco S, Martín-Blanco N, Montanuy I, Alcamí A, Bustelo XR, Alarcón B. Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2. Sci Signal 2025; 18:eadk4204. [PMID: 39874377 DOI: 10.1126/scisignal.adk4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity. R-RAS2 exhibited direct, high-affinity interactions with ITAM peptides derived from B and T cell receptors through a proline-rich sequence in the hypervariable domain of R-RAS2. In resting T and B cells, the presence of antigen receptors at the plasma membrane was sufficient to promote the activation of R-RAS2 and PI3K, and mutations that abolished the interaction of R-RAS2 with ITAMs reduced R-RAS2 signaling. Binding to ITAMs increased GDP-GTP exchange on R-RAS2 through a mechanism distinct from that by which conventional cytosolic guanosine nucleotide exchange factors (GEFs) activate RAS proteins. These results define antigen receptors as noncanonical GEFs involved in the basal activation state of R-RAS2 in lymphocytes. Such a mechanism may underlie the leukemic transformation of B cells that occurs when wild-type R-RAS2 is present in high amounts.
Collapse
Affiliation(s)
- Alejandro M Hortal
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Lacuna
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nadia Martín-Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inmaculada Montanuy
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
4
|
Katsuyama E, Humbel M, Suarez-Fueyo A, Satyam A, Yoshida N, Kyttaris VC, Tsokos MG, Tsokos GC. CD38 in SLE CD4 T cells promotes Ca 2+ flux and suppresses interleukin-2 production by enhancing the expression of GM2 on the surface membrane. Nat Commun 2024; 15:8304. [PMID: 39333474 PMCID: PMC11436706 DOI: 10.1038/s41467-024-52617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
CD38 has emerged as a potential therapeutic target for patients with systemic lupus erythematosus (SLE) but it is not known whether CD38 alters CD4+ T cell function. Using primary human T cells and CD38-sufficient and CD38-deficient Jurkat T cells, we demonstrate that CD38 shifts the T cell lipid profile of gangliosides from GM3 to GM2 by upregulating B4GALNT1 in a Sirtuin 1-dependent manner. Enhanced expression of GM2 causes ER stress by enhancing Ca2+ flux through the PLCγ1-IP3 pathway. Interestingly, correction of the calcium overload by an IP3 receptor inhibitor, but not by a store-operated calcium entry (SOCE) inhibitor, improves IL-2 production by CD4+ T cells in SLE. This study demonstrates that CD38 affects calcium homeostasis in CD4+ T cells by controlling cell membrane lipid composition that results in suppressed IL-2 production. CD38 inhibition with biologics or small drugs should be expected to benefit patients with SLE.
Collapse
Affiliation(s)
- Eri Katsuyama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Morgane Humbel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abel Suarez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
5
|
Rubin AJ, Dao TT, Schueppert AV, Regev A, Shalek AK. LAT encodes T cell activation pathway balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609683. [PMID: 39253472 PMCID: PMC11383308 DOI: 10.1101/2024.08.26.609683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune cells transduce environmental stimuli into responses essential for host health via complex signaling cascades. T cells, in particular, leverage their unique T cell receptors (TCRs) to detect specific Human Leukocyte Antigen (HLA)-presented peptides. TCR activation is then relayed via linker for activation of T cells (LAT), a TCR-proximal disordered adapter protein, which organizes protein partners and mediates the propagation of signals down diverse pathways including NFAT and AP-1. Here, we studied how balanced downstream pathway activation is encoded in the amino acid sequence of LAT. To comprehensively profile the sequence-function relationship of LAT, we developed a pooled, single-cell, high-content screening approach in which a large series of mutants in the LAT protein were analyzed to characterize their effects on T cell activation. Measuring epigenetic, transcriptomic, and cell surface protein dynamics of single cells harboring distinct LAT mutants, we found functional regions spanning over 40% of the LAT amino acid sequence. Conserved sequence motifs for protein interactions along with charge distribution are critical sequence features, and contribute to interpretation of human genetic variation in LAT. While mutant defect severity spans from moderate to complete loss of function, nearly all defective mutants, irrespective of their position in LAT, confer balanced defects across all downstream pathways. To understand the molecular basis for this observation, we performed proximal protein labeling which demonstrated that disruption of LAT interaction with a single partner protein indirectly disrupts other partner interactions, likely through the dual roles of these proteins as effectors of downstream pathways and bridging factors between LAT molecules. Overall, we report widely distributed functional regions throughout a disordered adapter and a precise physical organization of LAT and interacting molecules which constrains signaling outputs. More broadly, we describe an approach for interrogating sequence-function relationships for proteins with complex activities across regulatory layers of the cell.
Collapse
Affiliation(s)
- Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Tyler T. Dao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amelia V. Schueppert
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address: Genentech, South San Francisco, CA, 94080
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Gülow K, Tümen D, Heumann P, Schmid S, Kandulski A, Müller M, Kunst C. Unraveling the Role of Reactive Oxygen Species in T Lymphocyte Signaling. Int J Mol Sci 2024; 25:6114. [PMID: 38892300 PMCID: PMC11172744 DOI: 10.3390/ijms25116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Reactive oxygen species (ROS) are central to inter- and intracellular signaling. Their localized and transient effects are due to their short half-life, especially when generated in controlled amounts. Upon T cell receptor (TCR) activation, regulated ROS signaling is primarily initiated by complexes I and III of the electron transport chain (ETC). Subsequent ROS production triggers the activation of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2), prolonging the oxidative signal. This signal then engages kinase signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway and increases the activity of REDOX-sensitive transcription factors such as nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). To limit ROS overproduction and prevent oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant proteins such as superoxide dismutases (SODs) finely regulate signal intensity and are capable of terminating the oxidative signal when needed. Thus, oxidative signals, such as T cell activation, are well-controlled and critical for cellular communication.
Collapse
Affiliation(s)
- Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (P.H.); (S.S.); (A.K.); (M.M.); (C.K.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Weiss A. Peeking Into the Black Box of T Cell Receptor Signaling. Annu Rev Immunol 2024; 42:1-20. [PMID: 37788477 DOI: 10.1146/annurev-immunol-090222-112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.
Collapse
Affiliation(s)
- Arthur Weiss
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
8
|
Zhang J, Li K, Cao Y, Wang D, Cheng J, Gao H, Geng M, Yang J, Wei X. Inducible IL-2 production and IL-2 + cell expansion are landmark events for T-cell activation of teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109515. [PMID: 38499218 DOI: 10.1016/j.fsi.2024.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
As a multipotent cytokine, interleukin (IL)-2 plays important roles in activation, differentiation and survival of the lymphocytes. Although biological characteristics and function of IL-2 have been clarified in several teleost species, evidence regarding IL-2 production at the cellular and protein levels is still scarce in fish due to the lack of reliable antibody. In this study, we developed a mouse anti-Nile tilapia IL-2 monoclonal antibody (mAb), which could specifically recognize IL-2 protein and identify IL-2-producing lymphocytes of tilapia. Using this mAb, we found that CD3+ T cells, but not CD3- lymphocytes, are the main cellular source of IL-2 in tilapia. Under resting condition, both CD3+CD4-1+ T cells and CD3+CD4-1- T cells of tilapia produce IL-2. Moreover, the IL-2 protein level and the frequency of IL-2+ T cells significantly increased once T cells were activated by phytohemagglutinin (PHA) or CD3 plus CD28 mAbs in vitro. In addition, Edwardsiella piscicida infection also induces the IL-2 production and the expansion of IL-2+ T cells in the spleen lymphocytes. These findings demonstrate that IL-2 takes part in the T-cell activation and anti-bacterial adaptive immune response of tilapia, and can serve as an important marker for T-cell activation of teleost fish. Our study has enriched the knowledge regarding T-cell response in fish species, and also provide novel perspective for understanding the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
9
|
James J, Coelho A, Lahore GF, Hernandez CM, Forster F, Malissen B, Holmdahl R. Redox Regulation of LAT Enhances T Cell-Mediated Inflammation. Antioxidants (Basel) 2024; 13:499. [PMID: 38671946 PMCID: PMC11047684 DOI: 10.3390/antiox13040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The positional cloning of single nucleotide polymorphisms (SNPs) of the neutrophil cytosolic factor 1 (Ncf1) gene, advocating that a low oxidative burst drives autoimmune disease, demands an understanding of the underlying molecular causes. A cellular target could be T cells, which have been shown to be regulated by reactive oxygen species (ROS). However, the pathways by which ROS mediate T cell signaling remain unclear. The adaptor molecule linker for activation of T cells (LAT) is essential for coupling T cell receptor-mediated antigen recognition to downstream responses, and it contains several cysteine residues that have previously been suggested to be involved in redox regulation. To address the possibility that ROS regulate T cell-dependent inflammation through LAT, we established a mouse strain with cysteine-to-serine mutations at positions 120 and 172 (LATSS). We found that redox regulation of LAT through C120 and C172 mediate its localization and phosphorylation. LATSS mice had reduced numbers of double-positive thymocytes and naïve peripheral T cells. Importantly, redox insensitivity of LAT enhanced T cell-dependent autoimmune inflammation in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). This effect was reversed on an NCF1-mutated (NCF1m1j), ROS-deficient, background. Overall, our data show that LAT is redox-regulated, acts to repress T cell activation, and is targeted by ROS induced by NCF1 in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Jaime James
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Ana Coelho
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Gonzalo Fernandez Lahore
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Clara M. Hernandez
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Florian Forster
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Bernard Malissen
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, 13288 Marseille, France;
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| |
Collapse
|
10
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, Amirian R, Izadi Z, Hadjati J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis 2024; 15:17. [PMID: 38191571 PMCID: PMC10774412 DOI: 10.1038/s41419-023-06391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Mohammadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Haddadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Merati
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Sciences, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
13
|
Liang H, Kong X, Cao Z, Wang H, Liu E, Sun F, Qi J, Zhang Q, Zhou Y. Bioinformatics and Raman spectroscopy-based identification of key pathways and genes enabling differentiation between acute myeloid leukemia and T cell acute lymphoblastic leukemia. Front Immunol 2023; 14:1194353. [PMID: 37266435 PMCID: PMC10229868 DOI: 10.3389/fimmu.2023.1194353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Acute myeloid leukemia (AML) and T cell acute lymphoblastic leukemia (T-ALL) are two of the most prevalent hematological malignancies diagnosed among adult leukemia patients, with both being difficult to treat and associated with high rates of recurrence and mortality. In the present study, bioinformatics approaches were used to analyze both of these types of leukemia in an effort to identify characteristic gene expression patterns that were subsequently validated via Raman spectroscopy. For these analyses, four Gene Expression Omnibus datasets (GSE13204, GSE51082, GSE89565, and GSE131184) pertaining to acute leukemia were downloaded, and differentially expressed genes (DEGs) were then identified through comparisons of AML and T-ALL patient samples using the R Bioconductor package. Shared DEGs were then subjected to Gene Ontology (GO) enrichment analyses and were used to establish a protein-protein interaction (PPI) network analysis. In total, 43 and 129 upregulated and downregulated DEGs were respectively identified. Enrichment analyses indicated that these DEGs were closely tied to immune function, collagen synthesis and decomposition, inflammation, the synthesis and decomposition of lipopolysaccharide, and antigen presentation. PPI network module clustering analyses further led to the identification of the top 10 significantly upregulated and downregulated genes associated with disease incidence. These key genes were then validated in patient samples via Raman spectroscopy, ultimately confirming the value of these genes as tools that may aid the differential diagnosis and treatment of AML and T-ALL. Overall, these results thus highlight a range of novel pathways and genes that are linked to the incidence and progression of AML and T-ALL, providing a list of important diagnostic and prognostic molecular markers that have the potential to aid in the clinical diagnosis and treatment of these devastating malignancies.
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaodong Kong
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ertao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fanfan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianwei Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
14
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
15
|
Bagheri M, Khani MH, Zahmatkesh A, Barkhordari M, Ebrahimi MM, Asli E, Shahsavandi S, Banihashemi R, Esmaeilnejad-Ahranjani P, Bidhendi SM. Evaluation of Cellular and Humoral Immune Response in Chickens Immunized with Flagellin-Adjuvanted Inactivated Newcastle Disease Virus. Comp Immunol Microbiol Infect Dis 2022; 85:101796. [DOI: 10.1016/j.cimid.2022.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
16
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, Templeton ML, Muhunthan V, Voillet V, Sommermeyer D, Whiteaker JR, Gottardo R, Veatch SL, Paulovich AG, Riddell SR. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal 2021; 14:14/697/eabe2606. [PMID: 34429382 DOI: 10.1126/scisignal.abe2606] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.
Collapse
Affiliation(s)
- Alexander I Salter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anusha Rajan
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah A Shelby
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabel Leung
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan L Templeton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town 8001, South Africa
| | - Daniel Sommermeyer
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Dine E, Reed EH, Toettcher JE. Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep 2021; 35:109280. [PMID: 34161759 PMCID: PMC8292983 DOI: 10.1016/j.celrep.2021.109280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state. Dine et al. study how different modes of molecular organization contribute to cell signaling using the kinase Zap70 and its substrate LAT as a model system. Optogenetic manipulation reveals that LAT:Zap70 clusters—but not dimers—trigger potent signaling via localized positive feedback among LAT, Zap70, and Src-family kinases.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| |
Collapse
|
19
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
O'Brien SA, Zhu M, Zhang W. Spontaneous Differentiation of T Follicular Helper Cells in LATY136F Mutant Mice. Front Immunol 2021; 12:656817. [PMID: 33912184 PMCID: PMC8072119 DOI: 10.3389/fimmu.2021.656817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Mice with a mutation at the LAT-PLCγ1 binding site (Y136) have a defect in thymocyte development due to dampened TCR signaling. CD4+ T cells that do reach the periphery are hyper-activated and skewed to Th2. Over time, these mice develop an autoimmune-like syndrome, characterize by overproduction of Th2 cytokines, T cell infiltration into various organs, and B cell activation, isotype switching, and autoantibody production. In this study, we examined IL4 production by CD4+ T cells in the LATY136F mice using the KN2 reporter mice, in which human CD2 expression marks T cells that are actively producing IL4 protein. We showed that these mice had spontaneous Tfh differentiation. Despite the fact that the majority of CD4+ T cells were skewed to Th2 and were GATA3+, only a small subset of them were actively secreting IL4. These T cells were Tfh cells that expressed BCL6 and were localized to B cell-rich germinal centers within the spleen. Interestingly, these Tfh cells expressed high levels of both BCL6 and GATA3. By using LAT conditional knockout mice that inducibly express only the LATY136F allele, we further showed that Tfh cell differentiation was likely the result of defective LAT-PLCγ1 signaling in the periphery. In addition, B cells were required for spontaneous development of Tfh cells and uncontrolled T cell expansion in these mice. Together, these results indicated a novel role for tonic LAT-PLCγ1 signaling in modulating Tfh cell differentiation during development of autoimmune syndrome.
Collapse
Affiliation(s)
- Sarah A O'Brien
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
21
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling. Cells 2021; 10:cells10020343. [PMID: 33562083 PMCID: PMC7915312 DOI: 10.3390/cells10020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.
Collapse
|
23
|
Glatzová D, Mavila H, Saija MC, Chum T, Cwiklik L, Brdička T, Cebecauer M. The role of prolines and glycine in the transmembrane domain of LAT. FEBS J 2021; 288:4039-4052. [PMID: 33458942 DOI: 10.1111/febs.15713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
Linker for activation in T cells (LAT) is a critical regulator of T-cell development and function. It organises signalling events at the plasma membrane. However, the mechanism, which controls LAT localisation at the plasma membrane, is not fully understood. Here, we studied the impact of helix-breaking amino acids, two prolines and one glycine, in the transmembrane segment on localisation and function of LAT. Using in silico analysis, confocal and super-resolution imaging and flow cytometry, we demonstrate that central proline residue destabilises transmembrane helix by inducing a kink. The helical structure and dynamics are further regulated by glycine and another proline residue in the luminal part of LAT transmembrane domain. Replacement of these residues with aliphatic amino acids reduces LAT dependence on palmitoylation for sorting to the plasma membrane. However, surface expression of these mutants is not sufficient to recover function of nonpalmitoylated LAT in stimulated T cells. These data indicate that geometry and dynamics of LAT transmembrane segment regulate its localisation and function in immune cells.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic.,Laboratory of Leukocyte Signaling, Institute of Molecule Genetics, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Harsha Mavila
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Chiara Saija
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Chum
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lukasz Cwiklik
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Brdička
- Laboratory of Leukocyte Signaling, Institute of Molecule Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Park I, Son M, Ahn E, Kim YW, Kong YY, Yun Y. The Transmembrane Adaptor Protein LIME Is Essential for Chemokine-Mediated Migration of Effector T Cells to Inflammatiory Sites. Mol Cells 2020; 43:921-934. [PMID: 33243936 PMCID: PMC7700840 DOI: 10.14348/molcells.2020.0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022] Open
Abstract
Lck-interacting transmembrane adaptor 1 (LIME) has been previously identified as a raft-associated transmembrane protein expressed predominantly in T and B lymphocytes. Although LIME is shown to transduce the immunoreceptor signaling and immunological synapse formation via its tyrosine phosphorylation by Lck, a Src-family kinase, the in vivo function of LIME has remained elusive in the previous studies. Here we report that LIME is preferentially expressed in effector T cells and mediates chemokine-mediated T cell migration. Interestingly, in LIME-/- mice, while T cell receptor stimulation-dependent proliferation, differentiation to effector T cells, cytotoxic T lymphocyte (CTL) function and regulatory T lymphocyte (Treg) function were normal, only T cell-mediated inflammatory response was significantly defective. The reduced inflammation was accompanied by the impaired infiltration of leukocytes and T cells to the inflammatory sites of LIME-/- mice. More specifically, the absence of LIME in effector T cells resulted in the reduced migration and defective morphological polarization in response to inflammatory chemokines such as CCL5 and CXCL10. Consistently, LIME-/- effector T cells were found to be defective in chemokine-mediated activation of Rac1 and Rap1, and dysregulated phosphorylation of Pyk2 and Cas. Taken together, the present findings show that LIME is a critical regulator of inflammatory chemokine-mediated signaling and the subsequent migration of effector T cells to inflammatory sites.
Collapse
Affiliation(s)
- Inyoung Park
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Myongsun Son
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Eunseon Ahn
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Young-Woong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yungdae Yun
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
25
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Tremblay MM, Ollinger T, Houtman JCD. The membrane proximal proline-rich region and correct order of C-terminal tyrosines on the adaptor protein LAT are required for TCR-mediated signaling and downstream functions. Cell Signal 2020; 76:109790. [PMID: 32979494 DOI: 10.1016/j.cellsig.2020.109790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
The primary activating receptor for T cells is the T cell receptor (TCR), which is stimulated upon binding to an antigen/MHC complex. TCR activation results in the induction of regulated signaling pathways vital for T cell differentiation, cellular adhesion and cytokine release. A critical TCR-induced signaling protein is the adaptor protein LAT. Upon TCR stimulation, LAT is phosphorylated on conserved tyrosines, which facilitates the formation of multiprotein complexes needed for propagation of signaling pathways. Although the role of the conserved tyrosines in LAT-mediated signaling has been investigated, few studies have examined the role of larger regions of LAT in TCR-induced pathways. In this study, a sequence alignment of 97 mammalian LAT proteins was used to identify several "functional" domains on LAT. Using LAT mutants expressed in Jurkat E6.1 cells, we observed that the membrane proximal, proline-rich region of LAT and the correct order of domains containing conserved tyrosines are necessary for optimal TCR-mediated early signaling, cytokine production, and cellular adhesion. Together, these data show that LAT contains distinct regions whose presence and correct order are required for the propagation of TCR-mediated signaling pathways.
Collapse
Affiliation(s)
- Mikaela M Tremblay
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA
| | - Tomye Ollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA
| | - Jon C D Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, USA.
| |
Collapse
|
27
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1146] [Impact Index Per Article: 229.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
28
|
Arbulo-Echevarria MM, Vico-Barranco I, Narbona-Sánchez I, García-Cózar F, Miazek A, Aguado E. Increased Protein Stability and Interleukin-2 Production of a LAT G131D Variant With Possible Implications for T Cell Anergy. Front Cell Dev Biol 2020; 8:561503. [PMID: 33042995 PMCID: PMC7517355 DOI: 10.3389/fcell.2020.561503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.
Collapse
Affiliation(s)
| | | | | | - Francisco García-Cózar
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Arkadiusz Miazek
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Enrique Aguado
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| |
Collapse
|
29
|
Dong R, Libby KA, Blaeschke F, Fuchs W, Marson A, Vale RD, Su X. Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR). EMBO J 2020; 39:e104730. [PMID: 32643825 PMCID: PMC7429742 DOI: 10.15252/embj.2020104730] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
The chimeric antigen receptor (CAR) directs T cells to target and kill specific cancer cells. Despite the success of CAR T therapy in clinics, the intracellular signaling pathways that lead to CAR T cell activation remain unclear. Using CD19 CAR as a model, we report that, similar to the endogenous T cell receptor (TCR), antigen engagement triggers the formation of CAR microclusters that transduce downstream signaling. However, CAR microclusters do not coalesce into a stable central supramolecular activation cluster (cSMAC). Moreover, LAT, an essential scaffold protein for TCR signaling, is not required for microcluster formation, immunological synapse formation, nor actin remodeling following CAR activation. However, CAR T cells still require LAT for an optimal production of the cytokine IL-2. Together, these data show that CAR T cells can bypass LAT for a subset of downstream signaling outputs, thus revealing a rewired signaling pathway as compared to native T cells.
Collapse
Affiliation(s)
- Rui Dong
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Kendra A Libby
- Department of Cell BiologyYale School of MedicineNew HavenCTUSA
- Yale CollegeNew HavenCTUSA
| | - Franziska Blaeschke
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Diabetes CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyCAUSA
| | - Walker Fuchs
- Department of Cell BiologyYale School of MedicineNew HavenCTUSA
- Yale Combined Program in the Biological and Biomedical SciencesNew HavenCTUSA
| | - Alexander Marson
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Diabetes CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyCAUSA
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
- Parker Institute for Cancer ImmunotherapySan FranciscoCAUSA
| | - Ronald D Vale
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
- The Howard Hughes Medical InstituteUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Xiaolei Su
- Department of Cell BiologyYale School of MedicineNew HavenCTUSA
- Yale Cancer CenterYale UniversityNew HavenCTUSA
| |
Collapse
|
30
|
Poli A, Fiume R, Mongiorgi S, Zaurito A, Sheth B, Vidalle MC, Hamid SA, Kimber S, Campagnoli F, Ratti S, Rusciano I, Faenza I, Manzoli L, Divecha N. Exploring the controversial role of PI3K signalling in CD4 + regulatory T (T-Reg) cells. Adv Biol Regul 2020; 76:100722. [PMID: 32362560 DOI: 10.1016/j.jbior.2020.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.
Collapse
Affiliation(s)
- Alessandro Poli
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Sara Mongiorgi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonio Zaurito
- Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Magdalena Castellano Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Shidqiyyah Abdul Hamid
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - ScottT Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Francesca Campagnoli
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Isabella Rusciano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
31
|
Tuning T helper cell differentiation by ITK. Biochem Soc Trans 2020; 48:179-185. [PMID: 32049330 DOI: 10.1042/bst20190486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
CD4+ effector T cells effectuate T cell immune responses, producing cytokines to orchestrate the nature and type of immune responses. The non-receptor tyrosine kinase IL-2 inducible T cell kinase (ITK), a mediator of T cell Receptor signaling, plays a critical role in tuning the development of these effector cells. In this review we discussed the role that signals downstream of ITK, including the Ras/MAPK pathway, play in differentially controlling the differentiation of TH17, Foxp3+ T regulatory (Treg) cells, and Type 1 regulatory T (Tr1) cells, supporting a model of ITK signals controlling a decision point in the effector T cell differentiation process.
Collapse
|
32
|
Abstract
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
|
33
|
Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, Pölönen P, Hohtari H, Saeed K, Hannunen T, Ellonen P, Steinberger P, Kankainen M, Aittokallio T, Keränen MAI, Korhonen M, Mustjoki S. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 2020; 135:597-609. [PMID: 31830245 PMCID: PMC7098811 DOI: 10.1182/blood.2019002121] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
MESH Headings
- Cell Line, Tumor
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Chimeric Antigen
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jan Koski
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Judith Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; and
| | - Helena Hohtari
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
- Department of Mathematics and Statistics, University of Turku, Quantum, Turku, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
34
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
36
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
38
|
Ghashghaei M, Niazi TM, Aguilar-Mahecha A, Klein KO, Greenwood CMT, Basik M, Muanza TM. Identification of a Radiosensitivity Molecular Signature Induced by Enzalutamide in Hormone-sensitive and Hormone-resistant Prostate Cancer Cells. Sci Rep 2019; 9:8838. [PMID: 31221986 PMCID: PMC6586860 DOI: 10.1038/s41598-019-44991-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer amongst men. A novel androgen receptor (AR) antagonist, enzalutamide (ENZA) has recently been demonstrated to enhance the effect of radiation (XRT) by impairing the DNA damage repair process. This study aimed to identify a radiosensitive gene signature induced by ENZA in the PCa cells and to elucidate the biological pathways which influence this radiosensitivity. We treated LNCaP (AR-positive, hormone-sensitive PCa cells) and C4-2 (AR-positive, hormone-resistant PCa cells) cells with ENZA alone and in combination with androgen deprivation therapy (ADT) and XRT. Using one-way ANOVA on the gene expression profiling, we observed significantly differentially expressed (DE) genes in inflammation-and metabolism-related genes in hormone-sensitive and hormone-resistant PCa cell lines respectively. Survival analysis in both the TCGA PRAD and GSE25136 datasets suggested an association between the expression of these genes and time to recurrence. These results indicated that ENZA alone or in combination with ADT enhanced the effect of XRT through immune and inflammation-related pathways in LNCaP cells and metabolic-related pathways in C4-2 cells. Kaplan–Meier analysis and Cox proportional hazard models showed that low expression of all the candidate genes except for PTPRN2 were associated with tumor progression and recurrence in a PCa cohort.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Tamim M Niazi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada
| | | | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M T Greenwood
- Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.,Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.,Department of Surgery and Oncology, Jewish General Hospital, Montréal, QC, Canada
| | - Thierry M Muanza
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
39
|
Lenouvel D, González-Moles MÁ, Talbaoui A, Ramos-García P, González-Ruiz L, Ruiz-Ávila I, Gil-Montoya JA. An update of knowledge on PD-L1 in head and neck cancers: Physiologic, prognostic and therapeutic perspectives. Oral Dis 2019; 26:511-526. [PMID: 30866171 DOI: 10.1111/odi.13088] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a transmembrane protein that acts as a co-inhibitory factor in the immune response. Its receptor, programmed cell death protein 1 (PD-1), is found on immune cells, where binding to PD-L1 can reduce the proliferation of PD-1-positive cells, inhibit their cytokine secretion and induce apoptosis. PD-L1 in immune-privileged tissue plays a crucial role in peripheral tolerance. PD-L1 can be overexpressed in various malignancies, including oral squamous cell carcinoma, where it can attenuate the host immune response to tumour cells and has been associated with a worse prognosis. Monoclonal antibody therapies targeting the PD-1:PD-L1 axis have shown initial promise, but further research is needed to identify which patients will benefit. We provide an update of knowledge on PD-L1, including its structure, function and regulation. We also review studies on the overexpression of PD-L1 in cancer, specifically oral squamous cell carcinoma, and explore its potential value as a therapeutic target.
Collapse
Affiliation(s)
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| | - Asmae Talbaoui
- School of Dentistry, University of Granada, Granada, Spain
| | | | - Lucía González-Ruiz
- Servicio de Dermatología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Isabel Ruiz-Ávila
- Instituto de Investigación Biosanitaria, Granada, Spain.,Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - José Antonio Gil-Montoya
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| |
Collapse
|
40
|
Wartewig T, Ruland J. PD-1 Tumor Suppressor Signaling in T Cell Lymphomas. Trends Immunol 2019; 40:403-414. [PMID: 30979616 DOI: 10.1016/j.it.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
The inhibitory receptor PD-1 is critical to balancing antigen-induced T cell activation; its inhibition is currently being explored to enhance antitumor T cell immunity with certain successful outcomes. However, PD-1 has also emerged as a central tumor suppressor in T cell lymphomas, where the tumor cell originates from a T cell itself. These aggressive cancers are frequently characterized by oncogenic mutations in T cell receptor (TCR) signaling pathways. PD-1 activity within malignant T cells can negatively regulate the PI3K/AKT and PKCθ/NF-κB tumor survival pathways and PD-1 is frequently inactivated in this human malignancy. This review summarizes current insights into oncogenic T cell signaling, discusses tumor-suppressive functions and mechanisms of PD-1 in T cell lymphomagenesis, and addresses potential unwanted effects caused by PD-1 checkpoint inhibition.
Collapse
Affiliation(s)
- Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Center for Infection Research (DZIF), partner site, Munich, Germany.
| |
Collapse
|
41
|
Yi J, Balagopalan L, Nguyen T, McIntire KM, Samelson LE. TCR microclusters form spatially segregated domains and sequentially assemble in calcium-dependent kinetic steps. Nat Commun 2019; 10:277. [PMID: 30655520 PMCID: PMC6336795 DOI: 10.1038/s41467-018-08064-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/08/2018] [Indexed: 01/21/2023] Open
Abstract
Engagement of the T cell receptor (TCR) by stimulatory ligand results in the rapid formation of microclusters at sites of T cell activation. Whereas microclusters have been studied extensively using confocal microscopy, the spatial and kinetic relationships of their signaling components have not been well characterized due to limits in image resolution and acquisition speed. Here we show, using TIRF-SIM to examine the organization of microclusters at sub-diffraction resolution, the presence of two spatially distinct domains composed of ZAP70-bound TCR and LAT-associated signaling complex. Kinetic analysis of microcluster assembly reveal surprising delays between the stepwise recruitment of ZAP70 and signaling proteins to the TCR, as well as distinct patterns in their disassociation. These delays are regulated by intracellular calcium flux downstream of T cell activation. Our results reveal novel insights into the spatial and kinetic regulation of TCR microcluster formation and T cell activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Calcium/immunology
- Calcium/metabolism
- Feedback, Physiological
- Gene Knockout Techniques
- Humans
- Image Processing, Computer-Assisted
- Intravital Microscopy/methods
- Jurkat Cells
- Kinetics
- Leukocytes, Mononuclear
- Lymphocyte Activation/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Primary Cell Culture
- Protein Domains/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tiffany Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine M McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
43
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
44
|
Arbulo-Echevarria MM, Narbona-Sánchez I, Fernandez-Ponce CM, Vico-Barranco I, Rueda-Ygueravide MD, Dustin ML, Miazek A, Duran-Ruiz MC, García-Cózar F, Aguado E. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Front Immunol 2018; 9:115. [PMID: 29456532 PMCID: PMC5801411 DOI: 10.3389/fimmu.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Cecilia M Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | | | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, The University of Oxford, Headington, United Kingdom
| | - Arkadiusz Miazek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mª Carmen Duran-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
45
|
Sukenik S, Frushicheva MP, Waknin-Lellouche C, Hallumi E, Ifrach T, Shalah R, Beach D, Avidan R, Oz I, Libman E, Aronheim A, Lewinson O, Yablonski D. Dimerization of the adaptor Gads facilitates antigen receptor signaling by promoting the cooperative binding of Gads to the adaptor LAT. Sci Signal 2017; 10:10/498/eaal1482. [PMID: 28951535 DOI: 10.1126/scisignal.aal1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate assembly of signalosomes centered on the adaptor protein LAT (linker of activated T cells) is required for antigen receptor signaling in T cells and mast cells. During signalosome assembly, members of the growth factor receptor-bound protein 2 (Grb2) family of cytosolic adaptor proteins bind cooperatively to LAT through interactions with its phosphorylated tyrosine (pTyr) residues. We demonstrated the Src homology 2 (SH2) domain-mediated dimerization of the Grb2 family member, Grb2-related adaptor downstream of Shc (Gads). Gads dimerization was mediated by an SH2 domain interface, which is distinct from the pTyr binding pocket and which promoted cooperative, preferential binding of paired Gads to LAT. This SH2 domain-intrinsic mechanism of cooperativity, which we quantified by mathematical modeling, enabled Gads to discriminate between dually and singly phosphorylated LAT molecules. Mutational inactivation of the dimerization interface reduced cooperativity and abrogated Gads signaling in T cells and mast cells. The dimerization-dependent, cooperative binding of Gads to LAT may increase antigen receptor sensitivity by reducing signalosome formation at incompletely phosphorylated LAT molecules, thereby prioritizing the formation of complete signalosomes.
Collapse
Affiliation(s)
- Sigalit Sukenik
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Cecilia Waknin-Lellouche
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Talia Ifrach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Reuven Avidan
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Evgeny Libman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Oded Lewinson
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
46
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
47
|
LFA-1 activates focal adhesion kinases FAK1/PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation. Nat Commun 2017; 8:16001. [PMID: 28699640 PMCID: PMC5510181 DOI: 10.1038/ncomms16001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/23/2017] [Indexed: 01/27/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and de-adhesion, dependent on receptor clustering. Although increased affinity mediates adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on receptor cross-linking. The T-cell integrin LFA-1 binds ICAM-1 on antigen presenting cells to affect TCR-MHC interactions. Here the authors show detailed mechanics of how LFA-1 ligation affects T-cell conjugation to dendritic cells to regulate adhesion and de-adhesion of these cells in the context of antigen presentation.
Collapse
|
48
|
Navas VH, Cuche C, Alcover A, Di Bartolo V. Serine Phosphorylation of SLP76 Is Dispensable for T Cell Development but Modulates Helper T Cell Function. PLoS One 2017; 12:e0170396. [PMID: 28107427 PMCID: PMC5249077 DOI: 10.1371/journal.pone.0170396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022] Open
Abstract
The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses.
Collapse
Affiliation(s)
- Victor H. Navas
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- Université "Pierre et Marie Curie", Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
49
|
LAT alleviates Th2/Treg imbalance in an OVA-induced allergic asthma mouse model through LAT-PLC-γ1 interaction. Int Immunopharmacol 2017; 44:9-15. [PMID: 28063403 DOI: 10.1016/j.intimp.2016.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Low expression of linker for activation of T cells (LAT) is observed in asthma. LAT and its downstream regulator, phospholipase C-gamma 1 (PLC-γ1) play important roles in the T cell antigen receptor signaling pathway, and their interaction is associated with CD4+ cell polarization. Here, we investigated whether LAT can alleviate the imbalance among CD4+ cell subgroups and the possible mechanism. METHODS An ovalbumin-induced allergic asthma mouse model was established and LAT plasmid was delivered. The pathological changes in lung were evaluated by hematoxylin and eosin and periodic acid-Schiff staining. The typical cytokines released by T helper 2 (Th2) and regulatory T (Treg) cells were measured using enzyme-linked immunosorbent assay and the number of Th1, Th2, and Treg cells were determined using flow cytometry. Lung CD4+ T cells were isolated by magnetic isolation. The mRNA expression of LAT and PLC-γ1 was determined by real-time PCR. Co-Immunoprecipitation was performed to confirm the interaction between LAT and PLC-γ1. The protein expression of LAT, PLC-γ1 and corresponding downstream signaling factors were determined by western blotting. RESULTS The delivery of LAT DNA to the lung could suppress an overactive Th2 response by decreasing allergic response and Th2 cytokine secretion, and by increasing Treg cytokine secretion. The Th2/Treg imbalance in lung and decreased phosphorylated PLC-γ1 expression in lung CD4+ T cells were rectified by LAT DNA delivery. Excessive activation of the Raf-MEK-ERK and PI3K-AKT-CREB pathways after asthma is attenuated by LAT. CONCLUSION The site-specific delivery of LAT DNA to the lung could suppress an overactive Th2 response and rectify the Th2/Treg imbalance in asthmatic mouse model. LAT-PLC-γ1 interaction may contribute to LAT activity in vivo and LAT protects against asthma partly via Raf-MEK-ERK and PI3K-AKT-CREB pathways. The delivery of LAT DNA could offer a novel and safe strategy for asthma prevention.
Collapse
|
50
|
Hivroz C, Larghi P, Jouve M, Ardouin L. Purification of LAT-Containing Membranes from Resting and Activated T Lymphocytes. Methods Mol Biol 2017; 1584:355-368. [PMID: 28255712 DOI: 10.1007/978-1-4939-6881-7_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process. We describe herein a protocol, which combines a separation of membranes on flotation gradient with an affinity purification of Strep-tagged fusion transmembrane proteins with Strep-Tactin® resin, allowing the purification of membranes containing the Strep-tagged molecule of interest. By keeping the membranes intact, this protocol leads to the purification of molecules physically associated with the Strep-tagged protein as well as of molecules present in the same membrane compartment: transmembrane proteins, proteins strongly associated with the membranes, and luminal proteins. The example shown herein is the purification of membrane compartment prepared from T lymphocytes expressing LAT fused to a Strep-tag.
Collapse
Affiliation(s)
- Claire Hivroz
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France
- PSL Research University, Paris, France
- Immunity and Cancer, INSERM U932, Paris, France
| | - Paola Larghi
- University of Milan, Milan, Italy
- Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', INGM, Milan, Italy
| | - Mabel Jouve
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France
- PSL Research University, Paris, France
- Immunity and Cancer, INSERM U932, Paris, France
| | - Laurence Ardouin
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France.
- PSL Research University, Paris, France.
- Immunity and Cancer, INSERM U932, Paris, France.
| |
Collapse
|