1
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Barbulescu P, Chana CK, Wong MK, Ben Makhlouf I, Bruce JP, Feng Y, Keszei AFA, Wong C, Mohamad-Ramshan R, McGary LC, Kashem MA, Ceccarelli DF, Orlicky S, Fang Y, Kuang H, Mazhab-Jafari M, Pezo RC, Bhagwat AS, Pugh TJ, Gingras AC, Sicheri F, Martin A. FAM72A degrades UNG2 through the GID/CTLH complex to promote mutagenic repair during antibody maturation. Nat Commun 2024; 15:7541. [PMID: 39215025 PMCID: PMC11364545 DOI: 10.1038/s41467-024-52009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2). However, FAM72A downregulates UNG2 permitting dUs to persist and trigger SHM and CSR. How FAM72A promotes UNG2 degradation is unknown. Here, we show that FAM72A recruits a C-terminal to LisH (CTLH) E3 ligase complex to target UNG2 for proteasomal degradation. Deficiency in CTLH complex components result in elevated UNG2 and reduced SHM and CSR. Cryo-EM structural analysis reveals FAM72A directly binds to MKLN1 within the CTLH complex to recruit and ubiquitinate UNG2. Our study further suggests that FAM72A hijacks the CTLH complex to promote mutagenesis in cancer. These findings show that FAM72A is an E3 ligase substrate adaptor critical for humoral immunity and cancer development.
Collapse
Affiliation(s)
- Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Chetan K Chana
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ines Ben Makhlouf
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cassandra Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Laura C McGary
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mohammad A Kashem
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Yifei Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Huihui Kuang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Mohammad Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Frank Sicheri
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Dudley JP. APOBECs: Our fickle friends? PLoS Pathog 2023; 19:e1011364. [PMID: 37200235 DOI: 10.1371/journal.ppat.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Jaquelin P Dudley
- Department of Molecular Biosciences and LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Yang L, Van Beek M, Wang Z, Muecksch F, Canis M, Hatziioannou T, Bieniasz PD, Nussenzweig MC, Chakraborty AK. Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 Omicron after multiple vaccinations with the original strain. Cell Rep 2023; 42:112256. [PMID: 36952347 PMCID: PMC9986127 DOI: 10.1016/j.celrep.2023.112256] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is not effectively neutralized by most antibodies elicited by two doses of mRNA vaccines, but a third dose increases anti-Omicron neutralizing antibodies. We reveal mechanisms underlying this observation by combining computational modeling with data from vaccinated humans. After the first dose, limited antigen availability in germinal centers (GCs) results in a response dominated by B cells that target immunodominant epitopes that are mutated in an Omicron-like variant. After the second dose, these memory cells expand and differentiate into plasma cells that secrete antibodies that are thus ineffective for such variants. However, these pre-existing antigen-specific antibodies transport antigen efficiently to secondary GCs. They also partially mask immunodominant epitopes. Enhanced antigen availability and epitope masking in secondary GCs together result in generation of memory B cells that target subdominant epitopes that are less mutated in Omicron. The third dose expands these cells and boosts anti-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leerang Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew Van Beek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Yang L, Van Beek M, Wang Z, Muecksch F, Canis M, Hatziioannou T, Bieniasz PD, Nussenzweig MC, Chakraborty AK. Antigen presentation dynamics shape the response to emergent variants like SARS-CoV-2 Omicron strain after multiple vaccinations with wild type strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.24.505127. [PMID: 36052368 PMCID: PMC9435403 DOI: 10.1101/2022.08.24.505127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Omicron variant of SARS-CoV-2 evades neutralization by most serum antibodies elicited by two doses of mRNA vaccines, but a third dose of the same vaccine increases anti-Omicron neutralizing antibodies. By combining computational modeling with data from vaccinated humans we reveal mechanisms underlying this observation. After the first dose, limited antigen availability in germinal centers results in a response dominated by B cells with high germline affinities for immunodominant epitopes that are significantly mutated in an Omicron-like variant. After the second dose, expansion of these memory cells and differentiation into plasma cells shape antibody responses that are thus ineffective for such variants. However, in secondary germinal centers, pre-existing higher affinity antibodies mediate enhanced antigen presentation and they can also partially mask dominant epitopes. These effects generate memory B cells that target subdominant epitopes that are less mutated in Omicron. The third dose expands these cells and boosts anti-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leerang Yang
- Departments of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew Van Beek
- Departments of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | - Arup K Chakraborty
- Departments of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139
| |
Collapse
|
6
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive research has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID's molecular structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide, and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J recombination studies] also governs AID-medicated CSR. These advances have significantly advanced our understanding of AID's biochemical properties in vitro and AID's function and regulation in vivo. This mini review will discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
Collapse
|
7
|
Yu G, Wu Y, Duan Z, Tang C, Xing H, Scharff MD, MacCarthy T. A Bayesian model based computational analysis of the relationship between bisulfite accessible single-stranded DNA in chromatin and somatic hypermutation of immunoglobulin genes. PLoS Comput Biol 2021; 17:e1009323. [PMID: 34491985 PMCID: PMC8462741 DOI: 10.1371/journal.pcbi.1009323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/24/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
The B cells in our body generate protective antibodies by introducing somatic hypermutations (SHM) into the variable region of immunoglobulin genes (IgVs). The mutations are generated by activation induced deaminase (AID) that converts cytosine to uracil in single stranded DNA (ssDNA) generated during transcription. Attempts have been made to correlate SHM with ssDNA using bisulfite to chemically convert cytosines that are accessible in the intact chromatin of mutating B cells. These studies have been complicated by using different definitions of "bisulfite accessible regions" (BARs). Recently, deep-sequencing has provided much larger datasets of such regions but computational methods are needed to enable this analysis. Here we leveraged the deep-sequencing approach with unique molecular identifiers and developed a novel Hidden Markov Model based Bayesian Segmentation algorithm to characterize the ssDNA regions in the IGHV4-34 gene of the human Ramos B cell line. Combining hierarchical clustering and our new Bayesian model, we identified recurrent BARs in certain subregions of both top and bottom strands of this gene. Using this new system, the average size of BARs is about 15 bp. We also identified potential G-quadruplex DNA structures in this gene and found that the BARs co-locate with G-quadruplex structures in the opposite strand. Using various correlation analyses, there is not a direct site-to-site relationship between the bisulfite accessible ssDNA and all sites of SHM but most of the highly AID mutated sites are within 15 bp of a BAR. In summary, we developed a novel platform to study single stranded DNA in chromatin at a base pair resolution that reveals potential relationships among BARs, SHM and G-quadruplexes. This platform could be applied to genome wide studies in the future.
Collapse
Affiliation(s)
- Guojun Yu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yingru Wu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhi Duan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Haipeng Xing
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Matthew D. Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
8
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Haakenson JK, Huang R, Smider VV. Diversity in the Cow Ultralong CDR H3 Antibody Repertoire. Front Immunol 2018; 9:1262. [PMID: 29915599 PMCID: PMC5994613 DOI: 10.3389/fimmu.2018.01262] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 01/26/2023] Open
Abstract
Typical antibodies found in humans and mice usually have short CDR H3s and generally flat binding surfaces. However, cows possess a subset of antibodies with ultralong CDR H3s that can range up to 70 amino acids and form a unique “stalk and knob” structure, with the knob protruding far out of the antibody surface, where it has the potential to bind antigens with concave epitopes. Activation-induced cytidine deaminase (AID) has a proven role in diversifying antibody repertoires in humoral immunity, and it has been found to induce somatic hypermutation in bovine immunoglobulin genes both before and after contact with antigen. Due to limited use of variable and diversity genes in the V(D)J recombination events that produce ultralong CDR H3 antibodies in cows, the diversity in the bovine ultralong antibody repertoire has been proposed to rely on AID-induced mutations targeted to the IGHD8-2 gene that encodes the entire knob region. In this review, we discuss the genetics, structures, and diversity of bovine ultralong antibodies, as well as the role of AID in creating a diverse antibody repertoire.
Collapse
Affiliation(s)
- Jeremy K Haakenson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Ruiqi Huang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaughn V Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
10
|
Chen Z, Eder MD, Elos MT, Viboolsittiseri SS, Chen X, Wang JH. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions. THE JOURNAL OF IMMUNOLOGY 2016; 196:2335-47. [PMID: 26810227 DOI: 10.4049/jimmunol.1502184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Xiaomi Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
11
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Chen Z, Wang JH. Generation and repair of AID-initiated DNA lesions in B lymphocytes. Front Med 2014; 8:201-16. [PMID: 24748462 PMCID: PMC4039616 DOI: 10.1007/s11684-014-0324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| | - Jing H. Wang
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| |
Collapse
|
13
|
McIntyre D, Zuckerman NS, Field M, Mehr R, Stott DI. The V(H) repertoire and clonal diversification of B cells in inflammatory myopathies. Eur J Immunol 2014; 44:585-96. [PMID: 24343314 DOI: 10.1002/eji.201343315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/24/2013] [Accepted: 12/11/2013] [Indexed: 01/12/2023]
Abstract
The contribution of antigen-driven B-cell adaptive immune responses within the inflamed muscle of inflammatory myopathies (IMs) is largely unknown. In this study, we investigated the immunoglobulin V(H) gene repertoire, somatic hypermutation, clonal diversification, and selection of infiltrating B cells in muscle biopsies from IM patients (dermatomyositis and polymyositis), to determine whether B cells and/or plasma cells contribute to the associated pathologies of these diseases. The data reveal that Ig V(H) gene repertoires of muscle-infiltrating B cells deviate from the normal V(H) gene repertoire in individual patients, and differ between different types of IMs. Analysis of somatic mutations revealed clonal diversification of muscle-infiltrating B cells and evidence for a chronic B-cell response within the inflamed muscle. We conclude that muscle-infiltrating B cells undergo selection, somatic hypermutation and clonal diversification in situ during antigen-driven immune responses in patients with IMs, providing insight into the contribution of B cells to the pathological mechanisms of these disorders.
Collapse
Affiliation(s)
- Donna McIntyre
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
14
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
15
|
Abstract
In this review, I discuss the currently available experimental evidence concerning the molecular interactions of the activation-induced cytidine deaminase (AID) with transcription of its target genes. The basic question that underlies the transcription relationship is how the process of somatic hypermutation of Ig genes can be restricted to their variable (V) regions. This hallmark of SHM assures that high affinity antibodies can be created while the biological functions of their constant (C) region are undisturbed. I present a revised model of AID function in somatic hypermutation (SHM): In a B cell that produces AID protein and undergoes mutation of the V regions of the expressed Ig heavy and light chain genes, only some of the transcription complexes initiating at the active V-region promoters are associated with AID. When AID travels with the elongating RNA polymerase (pol), it attracts proteins that cause the pausing/stalling of pol and termination of transcription, followed by termination of SHM. This differential AID loading model would allow the mutating B cell to continue producing full-length Ig proteins that are required to avoid apoptosis by permitting the cell to assemble functional B cell receptors.
Collapse
Affiliation(s)
- Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Stamatopoulos K, Belessi C, Papadaki T, Stavroyianni N, Hadzidimitriou A, Kosmas C, Laoutaris N, Fassas A, Anagnostopoulos A. Somatic Hypermutation Patterns in Germinal Center B Cell Malignancies. Hematology 2013; 8:319-28. [PMID: 14530174 DOI: 10.1080/10245330310001612143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kostas Stamatopoulos
- Hematology Department and HCT Unit, G Papanicolaou Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Erratum to: The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013. [DOI: 10.1007/s12026-013-8432-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang JH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013; 55:287-97. [PMID: 22956489 DOI: 10.1007/s12026-012-8369-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than a decade ago, activation-induced deaminase (AID) was identified as the initiator for somatic hypermutation (SHM) and class switch recombination (CSR). Since then, tremendous progress has been achieved toward elucidating how AID functions. AID targets the highly repetitive switch regions of the immunoglobulin heavy chain (IgH) locus to induce DNA double-strand breaks (DSBs), which can be rejoined, leading to switch of constant regions of antibody. When targeting to variable region exons of IgH and IgL loci, AID predominantly induces point mutations, termed SHM, resulting in increased affinity of antibody for antigen. While SHM and CSR enhance antibody diversity, AID-initiated DSBs and mutations may predispose B cells to carcinogenesis. This review focuses on the mechanisms that provide the specificity of AID targeting to Ig loci and the role of AID in genomic instability.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
19
|
Chen Z, Viboolsittiseri SS, O'Connor BP, Wang JH. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. THE JOURNAL OF IMMUNOLOGY 2012; 189:3970-82. [PMID: 22962683 DOI: 10.4049/jimmunol.1200416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
20
|
Vuong BQ, Chaudhuri J. Combinatorial mechanisms regulating AID-dependent DNA deamination: interacting proteins and post-translational modifications. Semin Immunol 2012; 24:264-72. [PMID: 22771392 DOI: 10.1016/j.smim.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Protective humoral immune responses result from immunoglobulin (Ig) diversification reactions that proceed through programmed DNA double-strand breaks and mutations in developing or mature B cells. While primary Ig diversity is dependent on V(D)J recombination and the RAG proteins, secondary diversification is achieved through class switch recombination (CSR) and somatic hypermutation (SHM), which require AID (activation induced deaminase). Because aberrant AID activity can result in mutations in non-Ig loci and DNA translocations between the Ig locus and non-Ig genes, the activity of AID must be stringently regulated. AID mRNA expression is regulated transcriptionally by cytokine stimulation and post-transcriptionally by miRNAs. AID activity is regulated by post-translational modifications, subcellular localization, and interaction with other proteins. All of these molecular mechanisms have evolved to specifically induce AID-dependent mutations and DNA double-strand breaks at the Ig loci to promote maximal Ig gene diversification while limiting the access of this mutator to non-Ig regions.
Collapse
Affiliation(s)
- Bao Q Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, 1275 York Avenue, New York, NY 10065, United States.
| | | |
Collapse
|
21
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
22
|
AIDing antibody diversity by error-prone mismatch repair. Semin Immunol 2012; 24:293-300. [PMID: 22703640 DOI: 10.1016/j.smim.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
Abstract
The creation of a highly diverse antibody repertoire requires the synergistic activity of a DNA mutator, known as activation-induced deaminase (AID), coupled with an error-prone repair process that recognizes the DNA mismatch catalyzed by AID. Instead of facilitating the canonical error-free response, which generally occurs throughout the genome, DNA mismatch repair (MMR) participates in an error-prone repair mode that promotes A:T mutagenesis and double-strand breaks at the immunoglobulin (Ig) genes. As such, MMR is capable of compounding the mutation frequency of AID activity as well as broadening the spectrum of base mutations; thereby increasing the efficiency of antibody maturation. We here review the current understanding of this MMR-mediated process and describe how the MMR signaling cascade downstream of AID diverges in a locus dependent manner and even within the Ig locus itself to differentially promote somatic hypermutation (SHM) and class switch recombination (CSR) in B cells.
Collapse
|
23
|
Saribasak H, Maul RW, Cao Z, Yang WW, Schenten D, Kracker S, Gearhart PJ. DNA polymerase ζ generates tandem mutations in immunoglobulin variable regions. ACTA ACUST UNITED AC 2012; 209:1075-81. [PMID: 22615128 PMCID: PMC3371727 DOI: 10.1084/jem.20112234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic inactivation of the genes encoding several low-fidelity DNA polymerases indicates that DNA polymerase ζ inserts tandem double-base substitutions in the immunoglobulin variable region in mouse B cells. Low-fidelity DNA polymerases introduce nucleotide substitutions in immunoglobulin variable regions during somatic hypermutation. Although DNA polymerase (pol) η is the major low-fidelity polymerase, other DNA polymerases may also contribute. Existing data are contradictory as to whether pol ζ is involved. We reasoned that the presence of pol η may mask the contribution of pol ζ, and therefore we generated mice deficient for pol η and heterozygous for pol ζ. The frequency and spectra of hypermutation was unaltered between Polζ+/− Polη−/− and Polζ+/+ Polη−/− clones. However, there was a decrease in tandem double-base substitutions in Polζ+/− Polη−/− cells compared with Polζ+/+ Polη−/− cells, suggesting that pol ζ generates tandem mutations. Contiguous mutations are consistent with the biochemical property of pol ζ to extend a mismatch with a second mutation. The presence of this unique signature implies that pol ζ contributes to mutational synthesis in vivo. Additionally, data on tandem mutations from wild type, Polζ+/−, Polζ−/−, Ung−/−, Msh2−/−, Msh6−/−, and Ung−/− Msh2−/− clones suggest that pol ζ may function in the MSH2–MSH6 pathway.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Duvvuri B, Duvvuri VR, Wu J, Wu GE. Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23. Immunogenetics 2012; 64:481-96. [PMID: 22391874 DOI: 10.1007/s00251-012-0607-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
Abstract
Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA. By modelling the dynamical behaviour of IGHV3-23 DNA, a commonly used human variable gene segment, we observed that hypermutable bases on the non-transcribed strand are paired whereas those on transcribed strand are mostly unpaired. Hypermutable bases (both paired and unpaired) are made accessible to AID in stabilised secondary structures formed with increasing transcription levels. This observation provides a rationale for the hypermutable bases on both the strands of DNA being targeted to a similar extent despite having differences in unpairedness. We propose that increasing transcription and RNAP II stalling resulting in the formation and stabilisation of stem-loop structures with AID hotspots in negatively supercoiled region can localise the hypermutable bases of both strands of DNA, to AID-mediated SHM.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology & Health Science, Faculty of Health, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | | | | | | |
Collapse
|
25
|
Nucleosome stability dramatically impacts the targeting of somatic hypermutation. Mol Cell Biol 2012; 32:2030-40. [PMID: 22393257 DOI: 10.1128/mcb.06722-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is initiated by the activation-induced cytidine deaminase (AID). However, the influence of chromatin on SHM remains enigmatic. Our previous cell-free studies indicated that AID cannot access nucleosomal DNA in the absence of transcription. We have now investigated the influence of nucleosome stability on mutability in vivo. We introduced two copies of a high-affinity nucleosome positioning sequence (MP2) into a variable Ig gene region to assess its impact on SHM in vivo. The MP2 sequence significantly reduces the mutation frequency throughout the nucleosome, and especially near its center, despite proportions of AID hot spots similar to those in Ig genes. A weak positioning sequence (M5) was designed based on rules deduced from published whole-genome analyses. Replacement of MP2 with M5 resulted in much higher mutation rates throughout the nucleosome. This indicates that both nucleosome stability and positioning significantly influence the SHM pattern. We postulate that, unlike RNA polymerase, AID has reduced access to stable nucleosomes. This study outlines the limits of nucleosome positioning for SHM of Ig genes and suggests that stable nucleosomes may need to be disassembled for access of AID. Possibly the variable regions of Ig genes have evolved for low nucleosome stability to enhance access to AID, DNA repair factors, and error-prone polymerases and, hence, to maximize variability.
Collapse
|
26
|
Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A, Belcheva A, Berru M, Ronai D, Martin A. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet 2012; 8:e1002518. [PMID: 22346767 PMCID: PMC3276561 DOI: 10.1371/journal.pgen.1002518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID. Creating an effective antibody-mediated immune response relies on processes that create antibodies of high affinity and of different functions in order to clear pathogens. Activation-induced cytidine deaminase (AID) is an essential B cell–specific factor that is known to initiate these processes by deaminating dC on single-stranded DNA of actively transcribed genes. AID has also been implicated in deaminating dC at non-antibody genes, resulting in the disregulation of genes that may lead to B cell–related cancers. Until now, it has remained unknown what the source, structure, and distribution of the single-stranded DNA is that AID acts upon. By using a novel assay that allows direct detection of single-stranded DNA within intact cell nuclei, we observed patches of single-stranded DNA that are strongly correlated to the preferred activity of AID. Furthermore, we find that the activity of AID and single-stranded DNA patch formation can be enhanced by negative supercoiling of the DNA, which is a typical consequence of transcription. These findings allow us to better understand how AID is recruited to and mutates antibody genes as well as other genes implicated in cancers of B cell origin.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ahmad Zaheen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rajeev M. Nepal
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Anat Kapelnikov
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Diana Ronai
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
27
|
Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:991-1007. [PMID: 21349283 DOI: 10.1016/j.dci.2011.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
In the ten years since the discovery of activation-induced cytidine deaminase (AID) there has been considerable effort to understand the mechanisms behind this enzyme's ability to target and modify immunoglobulin genes leading to somatic hypermutation and class switch recombination. While the majority of research has focused on mouse and human models of AID function, work on other species, from lamprey to rabbit and sheep, has taught us much about the scope of functions of the AID mutator. This review takes a species-comparative approach to what has been learned about the AID mutator enzyme and its role in humoral immunity.
Collapse
|
28
|
Guttenberg N, Tabei SMA, Dinner AR. Short-time evolution in the adaptive immune system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031932. [PMID: 22060428 DOI: 10.1103/physreve.84.031932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/25/2011] [Indexed: 05/31/2023]
Abstract
We exploit a simple model to numerically and analytically investigate the effect of enforcing a time constraint for achieving a system-wide goal during an evolutionary dynamics. This situation is relevant to finding antibody specificities in the adaptive immune response as well as to artificial situations in which an evolutionary dynamics is used to generate a desired capability in a limited number of generations. When the likelihood of finding the target phenotype is low, we find that the optimal mutation rate can exceed the error threshold, in contrast to conventional evolutionary dynamics. We also show how a logarithmic correction to the usual inverse scaling of population size with mutation rate arises. Implications for natural and artificial evolutionary situations are discussed.
Collapse
Affiliation(s)
- Nicholas Guttenberg
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
29
|
Zuckerman NS, Hazanov H, Barak M, Edelman H, Hess S, Shcolnik H, Dunn-Walters D, Mehr R. Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases. J Autoimmun 2010; 35:325-35. [PMID: 20727711 DOI: 10.1016/j.jaut.2010.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022]
Abstract
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues.
Collapse
Affiliation(s)
- Neta S Zuckerman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zuckerman NS, Howard WA, Bismuth J, Gibson K, Edelman H, Berrih-Aknin S, Dunn-Walters D, Mehr R. Ectopic GC in the thymus of myasthenia gravis patients show characteristics of normal GC. Eur J Immunol 2010; 40:1150-61. [DOI: 10.1002/eji.200939914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci U S A 2009; 106:8629-34. [PMID: 19443686 DOI: 10.1073/pnas.0903803106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The somatic hypermutation of Ig variable regions requires the activity of activation-induced cytidine deaminase (AID) which has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) motif hot spots in in vivo and in vitro assays. We compared mutation profiles of in vitro assays for the 3' flanking intron of VhJ558-Jh4 region to previously reported in vivo profiles for the same region in the Msh2(-/-)Ung(-/-) mice that lack base excision and mismatch repair. We found that the in vitro and in vivo mutation profiles were highly correlated for the top (nontranscribed) strand, while for the bottom (transcribed) strand the correlation is far lower. We used an in silico model of AID activity to elucidate the relative importance of motif targeting in vivo. We found that the mutation process entails substantial complexity beyond motif targeting, a large part of which is captured in vitro. To elucidate the contribution of the sequence environment to the observed differences between the top and bottom strands, we analyzed intermutational distances. The bottom strand shows an approximately exponential distribution of distances in vivo and in vitro, as expected from a null model. However, the top strand deviates strongly from this distribution in that mutations approximately 50 nucleotides apart are greatly reduced, again both in vivo and in vitro, illustrating an important strand asymmetry. While we have confirmed that AID targeting of hot and cold spots is a key part of the mutation process, our results suggest that the sequence environment plays an equally important role.
Collapse
|
32
|
Shen HM, Poirier MG, Allen MJ, North J, Lal R, Widom J, Storb U. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. ACTA ACUST UNITED AC 2009; 206:1057-71. [PMID: 19380635 PMCID: PMC2715043 DOI: 10.1084/jem.20082678] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Tabibian-Keissar H, Zuckerman NS, Barak M, Dunn-Walters DK, Steiman-Shimony A, Chowers Y, Ofek E, Rosenblatt K, Schiby G, Mehr R, Barshack I. B-cell clonal diversification and gut-lymph node trafficking in ulcerative colitis revealed using lineage tree analysis. Eur J Immunol 2008; 38:2600-9. [PMID: 18792412 DOI: 10.1002/eji.200838333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In studies of inflammatory bowel diseases (IBD), research has so far focused mainly on the role of T cells. Despite evidence suggesting that B cells and the production of autoantibodies may play a significant role in IBD pathogenesis, the role of B cells in gut inflammation has not yet been thoroughly investigated. In the present study we used the new approach of lineage tree analysis for studying immunoglobulin variable region gene diversification in B cells found in the inflamed intestinal tissue of two ulcerative colitis patients as well as B cells from mucosa-associated lymph nodes (LN) in the same patients. Healthy intestinal tissue of three patients with carcinoma of the colon was used as normal control. Lineage tree shapes revealed active immune clonal diversification processes occurring in ulcerative colitis patients, which were quantitatively similar to those in healthy controls. B cells from intestinal tissues and the associated LN are shown here to be clonally related, thus supplying the first direct evidence supporting B-cell trafficking between gut and associated LN in IBD and control tissues.
Collapse
Affiliation(s)
- Hilla Tabibian-Keissar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shahaf G, Barak M, Zuckerman NS, Swerdlin N, Gorfine M, Mehr R. Antigen-driven selection in germinal centers as reflected by the shape characteristics of immunoglobulin gene lineage trees: a large-scale simulation study. J Theor Biol 2008; 255:210-22. [PMID: 18786548 DOI: 10.1016/j.jtbi.2008.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 08/03/2008] [Accepted: 08/04/2008] [Indexed: 01/12/2023]
Abstract
During the immune response, the generation of memory B lymphocytes in germinal centers involves affinity maturation of the cells' antigen receptors, based on somatic hypermutation of receptor genes and antigen-driven selection of the resulting mutants. Affinity maturation is vital for immune protection, and is the basis of humoral immune learning and memory. Lineage trees of somatically hypermutated immunoglobulin genes often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation in germinal centers. Here, we derive the quantitative relationships between parameters characterizing affinity maturation dynamics (proliferation, differentiation and mutation rates, initial affinity of the Ig to the antigen, and selection thresholds) and the mathematical properties of lineage trees, using a computer simulation which combines mathematical models for all mature B cell populations, stochastic models of hypermutation and selection, lineage tree generation and measurement of graphical tree characteristics. We identified seven key lineage tree properties, and found correlations of these with initial clone affinity and with the selection threshold. These two parameters were found to be the main factors affecting lineage tree shapes in both primary and secondary response trees. The results also confirm that recycling from centrocytes back to centroblasts is highly likely.
Collapse
Affiliation(s)
- Gitit Shahaf
- Mina & Everard Goodman Faculty of Life Sciences, Building 212, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Carrillo J, Puertas MC, Planas R, Pastor X, Alba A, Stratmann T, Pujol-Borrell R, Ampudia RM, Vives-Pi M, Verdaguer J. Anti-peripherin B lymphocytes are positively selected during diabetogenesis. Mol Immunol 2008; 45:3152-62. [PMID: 18433871 DOI: 10.1016/j.molimm.2008.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 01/06/2023]
Abstract
Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system. Moreover, we found that anti-peripherin antibody-producing hybridomas originated from B lymphocytes that had undergone immunoglobulin class switch recombination, a characteristic of secondary immune response. Therefore, in the present study we performed immunoglobulin VL and VH analysis of these hybridomas to ascertain whether they were derived from B lymphocytes that had undergone antigen-driven selection. The results indicated that whereas some anti-peripherin hybridomas showed signs of oligoclonality, somatic hypermutation and/or secondary rearrangements (receptor edition and receptor revision), others seemed to directly derive from the preimmune repertoire. In view of these results, we conclude that anti-peripherin B lymphocytes are positively selected and primed in the course of T1D development in NOD mice, and reinforce the idea that peripherin is a relevant autoantigen targeted during T1D development in this animal model.
Collapse
Affiliation(s)
- Jorge Carrillo
- Laboratory of Immunobiology for Research and Application to Diagnosis & Center for Transfusion and Tissue Bank (BST), Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shen HM, Bozek G, Pinkert CA, McBride K, Wang L, Kenter A, Storb U. Expression of AID transgene is regulated in activated B cells but not in resting B cells and kidney. Mol Immunol 2008; 45:1883-92. [PMID: 18067961 PMCID: PMC2376253 DOI: 10.1016/j.molimm.2007.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/26/2007] [Indexed: 12/18/2022]
Abstract
Activation-induced DNA cytidine deaminase (AID) is required for somatic hypermutation (SHM) and efficient class switch recombination (CSR) of immunoglobulin (Ig) genes. We created AID-transgenic mice that express AID ubiquitously under the control of a beta-actin promoter. When crossed with AID-/- mice, the AID-transgenic,AID-/- mice carried out SHM and CSR, showing that the AID transgenes were functional. However, the frequencies of SHM in V- and switch-regions, and CSR were reduced compared to those in a wild type AID background. Several criteria suggested that the inefficiency of SHM was due to reduced AID activity, rather than lack of recruiting error-prone DNA repair. High levels of AID mRNA were produced in resting B cells and kidney, cells that do not express AID in wild type mice. Compared with these cells, activated B cells expressed about an order of magnitude less AID mRNA suggesting that there may be a post-transcriptional mechanism that regulates AID mRNA levels in professional AID producers but not other cells. The AID protein expressed in resting B cells and kidney was phosphorylated at serine-38. Despite this modification, known to enhance AID activity, resting B cells did not undergo SHM. Apparently, the large amounts of AID in resting B cells are not targeted to Ig genes in vivo, in contrast to findings in vitro.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Grazyna Bozek
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Carl A. Pinkert
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642-8645
| | - Kevin McBride
- Department of Molecular Immunology, Rockefeller University, New York, NY10021-6399
| | - Lilly Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612-6415
| | - Amy Kenter
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612-6415
| | - Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
37
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Recent, surprising, and controversial discoveries have challenged conventional concepts regarding the origins and plasticity of stem cells, and their contributions to tissue regeneration, and highlight just how little is known about mammalian development in comparison to simpler model organisms. In the case of the transparent worm, Caenorhabditis elegans, Sulston and colleagues used a microscope to record the birth and death of every cell during its life, and the compilation of this "fate map" represents a milestone achievement of developmental biology. Determining a fate map for mammals or other higher organisms is more complicated because they are opaque, take a long time to mature, and have a tremendous number of cells. Consequently, fate mapping experiments have relied on tagging a progenitor cell with a dye or genetic marker in order to later identify its descendants. This approach, however, extracts little information because it demonstrates that a population of cells, all having inherited the same label, shares a common ancestor, but it does not reveal how cells in that population are related to one another. To avoid that problem, as well as technical limitations of current methods for mapping cell fate, we, and others, have developed a new strategy for retrospectively deriving cell fate maps by using phylogenetics to infer the order in which somatic mutations have arisen in the genomes of individual cells during development in multicellular organisms. DNA replication inevitably introduces mutations, particularly at repetitive sequences, every time a cell divides. It is thus possible to deduce the history of cell divisions by cataloging somatic mutations and phylogenetically reconstructing cell lineage. This approach has the potential to produce a complete mammalian cell fate map that, in principle, could describe the developmental lineage of any cell and help resolve outstanding questions of stem cell biology, tissue repair and maintenance, and aging.
Collapse
Affiliation(s)
- Stephen J Salipante
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
39
|
Belessi CJ, Davi FB, Stamatopoulos KE, Degano M, Andreou TM, Moreno C, Merle-Béral H, Crespo M, Laoutaris NP, Montserrat E, Caligaris-Cappio F, Anagnostopoulos AZ, Ghia P. IGHV gene insertions and deletions in chronic lymphocytic leukemia: "CLL-biased" deletions in a subset of cases with stereotyped receptors. Eur J Immunol 2006; 36:1963-74. [PMID: 16783849 DOI: 10.1002/eji.200535751] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nucleotide insertions/duplications or deletions in immunoglobulin heavy chain genes have been found in 24/760 patients (3.15%) with chronic lymphocytic leukemia (CLL). In 21/24 cases, the inserted/duplicated or lost nucleotides occurred in multiples of 3; therefore, the original reading frame was maintained and a potentially intact receptor was coded. The pattern and location of insertions/duplications or deletions in CLL and their restriction to mutated IGHV rearranged genes strongly suggests that they resulted from somatic hypermutation. Their incidence in CLL is consistent with previous reports in normal, auto-reactive and neoplastic human B cells, thus seemingly indicating that these modifications generally arise without any particular disease-specific associations. A striking exception to this rule was identified in CLL IGHV3-21-expressing cases: one amino acid was deleted from the CDR2 region in 16/63 (25.4%) mutated CLL IGHV3-21 sequences (including public database-derived IGHV3-21 CLL cases + the present series) vs. only 2/257 (0.78%) public database-derived mutated non-CLL IGHV3-21 sequences; 15/16 CLL IGHV3-21 sequences carrying this deletion belonged to a subset with unique, shared HCDR3 and light chain CDR3 motifs. This finding further supports the idea of selective antigenic pressures playing a pathogenetic role in some CLL cases.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Complementarity Determining Regions/genetics
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
Collapse
|
40
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
41
|
Abstract
Cell fate maps describe how the sequence of cell division, migration, and apoptosis transform a zygote into an adult. Yet, it is only in Caenorhabditis elegans where microscopic observation of each cell division has allowed for construction of a complete fate map. More complex, and opaque, animals prove less yielding. DNA replication, however, generates somatic mutations. Consequently, multicellular organisms comprise mosaics where most cells acquire unique genomes that are potentially capable of delineating their ancestry. Here we take a phylogenetic approach to passively retrace embryonic relationships by deducing the order in which mutations have arisen during development. We show that polyguanine repeat DNA sequences are particularly useful genetic markers, because they frequently change length during mitosis. To demonstrate feasibility, we phylogenetically reconstruct the lineage of cultured mouse NIH 3T3 cells based on mutations affecting the length of polyguanine markers. We then employ whole genome amplification to genotype polyguanine markers in single cells taken from a mouse and use phylogenetics to infer the developmental relationships of the sampled tissues. The result is consistent with the present understanding of embryogenesis and demonstrates the large scale potential of this method for producing a complete mammalian cell fate at the resolution of a single cell.
Collapse
Affiliation(s)
| | - Marshall S. Horwitz
- Departments of *Genome Sciences and
- Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Samaranayake M, Bujnicki JM, Carpenter M, Bhagwat AS. Evaluation of molecular models for the affinity maturation of antibodies: roles of cytosine deamination by AID and DNA repair. Chem Rev 2006; 106:700-19. [PMID: 16464021 PMCID: PMC4593474 DOI: 10.1021/cr040496t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mala Samaranayake
- Department of Chemistry, Wayne State University, Detroit, MI 48202, U.S.A
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland, and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Michael Carpenter
- Department of Chemistry, Wayne State University, Detroit, MI 48202, U.S.A
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, U.S.A
| |
Collapse
|
43
|
Longerich S, Tanaka A, Bozek G, Nicolae D, Storb U. The very 5' end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions. ACTA ACUST UNITED AC 2006; 202:1443-54. [PMID: 16301749 PMCID: PMC2212980 DOI: 10.1084/jem.20051604] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Somatic hypermutation (SHM) is restricted to VDJ regions and their adjacent flanks in immunoglobulin (Ig) genes, whereas constant regions are spared. Mutations occur after about 100 nucleotides downstream of the promoter and extend to 1–2 kb. We have asked why the very 5′ and most of the 3′ region of Ig genes are unmutated. Does the activation-induced cytosine deaminase (AID) that initiates SHM not gain access to these regions, or does AID gain access, but the resulting uracils are repaired error-free because error-prone repair does not gain access? The distribution of mutations was compared between uracil DNA glycosylase (Ung)-deficient and wild-type mice in endogenous Ig genes and in an Ig transgene. If AID gains access to the 5′ and 3′ regions that are unmutated in wild-type mice, one would expect an “AID footprint,” namely transition mutations from C and G in Ung-deficient mice in the regions normally devoid of SHM. We find that the distribution of total mutations and transitions from C and G is indistinguishable in wild-type and Ung-deficient mice. Thus, AID does not gain access to the 5′ and constant regions of Ig genes. The implications for the role of transcription and Ung in SHM are discussed.
Collapse
|
44
|
Lee CEH, Gaëta B, Malming HR, Bain ME, Sewell WA, Collins AM. Reconsidering the human immunoglobulin heavy-chain locus:. Immunogenetics 2006; 57:917-25. [PMID: 16402215 DOI: 10.1007/s00251-005-0062-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 11/06/2005] [Indexed: 10/25/2022]
Abstract
We have used a bioinformatics approach to evaluate the completeness and functionality of the reported human immunoglobulin heavy-chain IGHD gene repertoire. Using the hidden Markov-model-based iHMMune-align program, 1,080 relatively unmutated heavy-chain sequences were aligned against the reported repertoire. These alignments were compared with alignments to 1,639 more highly mutated sequences. Comparisons of the frequencies of gene utilization in the two databases, and analysis of features of aligned IGHD gene segments, including their length, the frequency with which they appear to mutate, and the frequency with which specific mutations were seen, were used to determine the reliability of alignments to the less commonly seen IGHD genes. Analysis demonstrates that IGHD4-23 and IGHD5-24, which have been reported to be open reading frames of uncertain functionality, are represented in the expressed gene repertoire; however, the functionality of IGHD6-25 must be questioned. Sequence similarities make the unequivocal identification of members of the IGHD1 gene family problematic, although all genes except IGHD1-14*01 appear to be functional. On the other hand, reported allelic variants of IGHD2-2 and of the IGHD3 gene family appear to be nonfunctional, very rare, or nonexistent. Analysis also suggests that the reported repertoire is relatively complete, although one new putative polymorphism (IGHD3-10*p03) was identified. This study therefore confirms a surprising lack of diversity in the available IGHD gene repertoire, and restriction of the germline sequence databases to the functional set described here will substantially improve the accuracy of IGHD gene alignments and therefore the accuracy of analysis of the V-D-J junction.
Collapse
Affiliation(s)
- C E H Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Komori A, Xu Z, Wu X, Zan H, Casali P. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells. Mol Immunol 2006; 43:1817-26. [PMID: 16412510 PMCID: PMC4621958 DOI: 10.1016/j.molimm.2005.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/28/2005] [Indexed: 12/18/2022]
Abstract
Somatic hypermutation (SHM) in immunoglobulin gene (Ig) variable (V) regions is critical for the maturation of the antibody response. It is dependent on the expression of activation-induced cytidine deaminase (AID) and translesion DNA polymerases in germinal center B cells as well as Ig V transcription, as regulated by the Ig heavy chain (H) intronic enhancer (iEmu) and the 3' enhancer (3'Ealpha) region. We analyzed the role of these cis elements in SHM by stably transfecting Ramos human lymphoblastoid B cells with a rearranged human IgH chain VD (diversity) J (joining) DNA construct containing a V(H) promoter at the 5' end and C(H)1 and C(H)2 exons of Cgamma1 at the 3' end. In this construct, mutations preferentially targeted dA/dT basepairs in the RGYW/WRCY hotspot. Most of the dA/dT mutations and accompanying dC/dG mutations were transitions. Deletion of iEmu resulted in decreased SHM which could be partially restored by insertion of the IgH hs1,2 enhancer. Other two 3'Ealpha enhancers, hs3-hs4, did not significantly increase the mutation frequency, but further strengthened the dA/dT bias. The frequency and spectrum of the mutations were independent of the genomic integration of the transgene or V gene transcription level. Thus, we have established a novel in vitro system to analyze SHM and identify the role of multiple cis-regulatory elements in regulating dA/dT biased SHM. This model system will be useful to further address the role of other cis-regulating elements and recruited trans-acting factors in expressing the modalities of SHM.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Casali
- Corresponding author. Tel.: +1 949 824 4456; fax: +1 949 824 2305. (P. Casali)
| |
Collapse
|
46
|
Spencer J, Dunn-Walters DK. Hypermutation at A-T base pairs: the A nucleotide replacement spectrum is affected by adjacent nucleotides and there is no reverse complementarity of sequences flanking mutated A and T nucleotides. THE JOURNAL OF IMMUNOLOGY 2005; 175:5170-7. [PMID: 16210621 DOI: 10.4049/jimmunol.175.8.5170] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypermutation is thought to be a two-phase process. The first phase is via the action of activation-induced cytidine deaminase (AID), which deaminates C nucleotides in WRC motifs. This results in the RGYW/WRCY hot spot motifs for mutation from G and C observed in vivo. The resemblance between the hot spot for C mutations and the reverse complement of that for G mutations implies a process acting equally on both strands of DNA. The second phase of hypermutation generates mutations from A and T and exhibits strand bias, with more mutations from A than T. Although this does not concur with the idea of one mechanism acting equally on both strands, it has been suggested that the AT mutator also has a reversible motif; WA/TW. We show here that the motifs surrounding the different substitutions from A vary significantly; there is no single targeting motif for all A mutations. Sequence preferences associated with mutations from A more likely reflect an influence of adjacent nucleotides over what the A mutates "to." This influence tends toward "like" replacements: Purines (A or G) in the 5' position bias toward replacement by another purine (G), whereas replacement with pyrimidines (C or T) is more likely if the preceding base is also a pyrimidine. There is no reverse complementarity in these observations, in that similar influences of nucleotides adjacent to T are not seen. Hence, WA and TW should not be considered as reverse complement hot spot motifs for A and T mutations.
Collapse
Affiliation(s)
- Jo Spencer
- Department of Immunobiology, King's College London School of Medicine at Guy's, King's, United Kingdom
| | | |
Collapse
|
47
|
Shen HM, Storb U. Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci U S A 2004; 101:12997-3002. [PMID: 15328407 PMCID: PMC516507 DOI: 10.1073/pnas.0404974101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class-switch recombination of Ig genes. It has been shown that in vitro, AID protein deaminates C in single-stranded DNA or the coding-strand DNA that is being transcribed but not in double-stranded DNA. However, in vivo, both DNA strands are mutated equally during SHM. We show that AID efficiently deaminates C on both DNA strands of a supercoiled plasmid, acting preferentially on SHM hotspot motifs. However, this DNA is not targeted by AID when it is relaxed after treatment with topoisomerase I, and thus, supercoiling plays a crucial role for AID targeting to this DNA. Most of the mutations are in negatively supercoiled regions, suggesting a mechanism of AID targeting in vivo. During transcription the DNA sequences upstream of the elongating RNA polymerase are negatively supercoiled, and this transient change in DNA topology may allow AID to access both DNA strands.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
48
|
Dunn-Walters DK, Edelman H, Mehr R. Immune system learning and memory quantified by graphical analysis of B-lymphocyte phylogenetic trees. Biosystems 2004; 76:141-55. [PMID: 15351138 DOI: 10.1016/j.biosystems.2004.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 11/22/2022]
Abstract
The immune system learns from its encounters with pathogens and memorizes its experiences. One of the mechanisms it uses for this purpose is the intra-individual evolution of antigen receptors on B lymphocytes, achieved via hypermutation and selection of antigen receptor variable region genes during an immune response. We have developed a novel method for analyzing the graphical properties of phylogenetic trees of receptor genes which have been mutated and selected during an immune response. In the study presented here, we address the artifacts introduced by experimental methods of cell collection for DNA analysis, the meaning of each parameter measured on the tree graphs, and the differences between the dynamics of the humoral immune response in different lymphoid tissues.
Collapse
|
49
|
Mehr R, Edelman H, Sehgal D, Mage R. Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. THE JOURNAL OF IMMUNOLOGY 2004; 172:4790-6. [PMID: 15067055 DOI: 10.4049/jimmunol.172.8.4790] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lineage trees of mutated rearranged Ig V region sequences in B lymphocyte clones often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation. In this study, we use a novel method for analyzing lineage tree shapes, using terms from graph theory to quantify the differences between primary and secondary diversification in rabbits and chickens. In these species, Ig gene diversification starts with rearrangement of a single (in chicken) or a few (in rabbit) V(H) genes. Somatic hypermutation and gene conversion contribute to primary diversification in appendix of young rabbits or in bursa of Fabricius of embryonic and young chickens and to secondary diversification during immune responses in germinal centers (GCs). We find that, at least in rabbits, primary diversification appears to occur at a constant rate in the appendix, and the type of Ag-specific selection seen in splenic GCs is absent. This supports the view that a primary repertoire is being generated within the expanding clonally related B cells in appendix of young rabbits and emphasizes the important role that gut-associated lymphoid tissues may play in early development of mammalian immune repertoires. Additionally, the data indicate a higher rate of hypermutation in rabbit and chicken GCs, such that the balance between hypermutation and selection tends more toward mutation and less toward selection in rabbit and chicken compared with murine GCs.
Collapse
Affiliation(s)
- Ramit Mehr
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
50
|
Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004; 430:992-8. [PMID: 15273694 DOI: 10.1038/nature02821] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/12/2004] [Indexed: 01/20/2023]
Abstract
Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA deaminase required for somatic hypermutation (SHM) and class switch recombination of immunoglobulin genes. Class switch recombination involves transcription through switch regions, which generates ssDNA within R loops. However, although transcription through immunoglobulin variable region exons is required for SHM, it does not generate stable ssDNA, which leaves the mechanism of AID targeting unresolved. Here we characterize the mechanism of AID targeting to in-vitro-transcribed substrates harbouring SHM motifs. We show that the targeting activity of AID is due to replication protein A (RPA), a ssDNA-binding protein involved in replication, recombination and repair. The 32-kDa subunit of RPA interacts specifically with AID from activated B cells in a manner that seems to be dependent on post-translational AID modification. Thus, our study implicates RPA as a novel factor involved in immunoglobulin diversification. We propose that B-cell-specific AID-RPA complexes preferentially bind to ssDNA of small transcription bubbles at SHM 'hotspots', leading to AID-mediated deamination and RPA-mediated recruitment of DNA repair proteins.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Howard Hughes Medical Institute, Children's Hospital, Center for Blood Research and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|