1
|
Zhu F, Liu H, Cao Y, Dai B, Wu H, Zhu Y, Li W. Taohong Siwu Decoction Combined With the LncRNA H19/miR-675-5p Axis Repairs Limb Ischemia-Reperfusion Injury Through the Regulation of the Wnt3a/Ca 2+ Signaling Pathway. Mediators Inflamm 2025; 2025:3096848. [PMID: 40034562 PMCID: PMC11873300 DOI: 10.1155/mi/3096848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Taohong Siwu decoction (THSWT) has shown therapeutic effects on ischemia/reperfusion injury (IRI). This study tended to investigate the role of THSWT combined with the long non-coding RNA (LncRNA) H19 (H19)/miR-675-5p axis in improving limb IRI (LIRI). Methods: Hind LIRI rats and simulated IRI skeletal myoblasts models were constructed to evaluate the therapeutic effects of THSWT. The mechanism of THSWT treatment on LIRI was investigated by the regulation of the H19/miR-675-5p axis and the wingless/integrated (Wnt)/Ca2+ signaling pathway. Various assessments, such as H&E staining, TUNEL staining, flow cytometry, cell counting kit-8 (CCK-8) assay, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), biochemical assay, and calcium fluorescence imaging, were conducted to observe skeletal muscle injury, cell apoptosis, skeletal myoblast proliferation, gene and protein expressions, cytokine levels, glucose (Glu) uptake, and Ca2+ concentration. Results: THSWT intervention effectively improved skeletal muscle injury in LIRI rats, as evidenced by reduced muscle fiber damage and decreased cell apoptosis, accompanied by downregulation of H19, miR-675-5p, cleaved-Caspase3, Bax, PLC, and PKC expressions and upregulation of Bcl2 expression. Furthermore, silencing of H19 inhibited cell apoptosis of skeletal muscle and reduced IL-1β, IL-6, and TNF-α levels in LIRI rats. Notably, THSWT intervention combined with the silencing of H19 synergistically promoted the repair of skeletal muscle injury in LIRI rats. Mechanistically, THSWT intervention combined with regulation of the H19/miR-675-5p axis promoted the proliferation of skeletal myoblasts damaged by IRI through the Wnt3a/Ca2+ signaling pathway, increasing the levels of intracellular Bcl2, while decreasing the levels of Ca2+, CaMKⅡ, PLC, PKC, cleaved-Caspase3, Bax, TNF-α, IL-1β, IL-6, Wnt3a, and β-catenin. Conclusions: THSWT combined with the regulation of the H19/miR-675-5p axis effectively improved LIRI by modulating the Wnt3a/Ca2+ signaling pathway, providing insights for potential therapeutic strategies for LIRI.
Collapse
Affiliation(s)
- Fuping Zhu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Hui Liu
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yinsheng Cao
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Bing Dai
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Hang Wu
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Yutong Zhu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Wuping Li
- Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| |
Collapse
|
2
|
Yapca OE, Yildiz GA, Mammadov R, Kurt N, Gundogdu B, Arslan YK, Suleyman H, Cetin N. The effects of metyrosine on ischemia-reperfusion-induced oxidative ovarian injury in rats: Biochemical and histopathological assessment. AN ACAD BRAS CIENC 2023; 95:e20201586. [PMID: 37018835 DOI: 10.1590/0001-3765202320201586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 04/07/2023] Open
Abstract
The aim of this study is to investigate the effect of metyrosine on ischemia-reperfusion (I/R) induced ovarian injury in rats in terms of biochemistry and histopathology. Rats were divided into: ovarian I/R (OIR), ovarian I/R+50 mg/kg metyrosine (OIRM) and sham (SG) operations. OIRM group received 50 mg/kg metyrosine one hour before the application of the anesthetic agent, OIR and SG group rats received equal amount of distilled water to be used as a solvent orally through cannula. Following the application of the anesthetic agent, ovaries of OIRM and OIR group rats were subjected to ischemia and reperfusion, each of which took two hours. This biochemical experiment findings revealed high levels of malondialdehyde (MDA) and cyclo-oxygenase-2 (COX-2) and low levels of total glutathione (tGSH), superoxide dismutase (SOD) and cyclo-oxygenase-1 (COX-1) in the ovarian tissue of OIR group, with significant histopathological injury. In metyrosine group, MDA and COX-2 levels were lower than the OIR group whereas tGSH, SOD and COX-1 levels were higher, with slighter histopathological injury. Our experimental findings indicate that metyrosine inhibits oxidative and pro-inflammatory damage associated with ovarian I/R in rats. These findings suggest that metyrosine could be useful in the treatment of ovarian injury associated with I/R.
Collapse
Affiliation(s)
- Omer E Yapca
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Gulsah A Yildiz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Yusuf K Arslan
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Nihal Cetin
- Department of Pharmacology, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| |
Collapse
|
3
|
Yuceli S, Suleyman B, Yazici GN, Mammadov R, Cankaya M, Kunak CS, Bulut S, Suleyman H, Altuner D. Effect of Taxifolin on Ischemia/Reperfusion-Induced Oxidative Injury of Sciatic Nerve in Rats. Transplant Proc 2021; 53:3087-3092. [PMID: 34772492 DOI: 10.1016/j.transproceed.2021.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ischemia is a condition in which blood flow to tissues is decreased or entirely stopped for various reasons. The reperfusion process exacerbates damage caused by ischemia in the organs and tissues. Reactive oxygen species (ROS) are mainly responsible for ischemia-reperfusion (IR) damage. ROS increase results in lipid peroxidation (LPO) and oxidative stress. In the literature, taxifolin reportedly suppresses ROS production. This study aimed to determine the effect of taxifolin, which is a flavonoid, on IR injury of the sciatic nerve in rats. METHODS This study divided 30 albino Wistar rats into 3 groups: IR without medication (IR) group, taxifolin applied IR (TAX+IR) group, and only dissection made to the sciatic nerve sham group (SHAM). Sciatic nerve injury was induced by applying 2 hours of ischemia and 3 hours of reperfusion to the abdominal aorta and iliolumbar arteries. Biochemical and histopathologic investigations then were performed on sciatic nerve tissues. Malondialdehyde, total glutathione, glutathione reductase, and glutathione peroxidase were analyzed as oxidative stress markers, and tumor necrosis factor-α and interleukin-1β levels were evaluated as inflammatory stress markers in biochemical tests. RESULTS The IR group has statistically significantly high oxidant and cytokine levels and low antioxidant levels compared with the TAX+IR group. Taxifolin treatment was also shown to cause significant histopathologic improvement. CONCLUSIONS We suggest that taxifolin may be effective in preventing IR injury of the sciatic nerve.
Collapse
Affiliation(s)
- Sahin Yuceli
- Department of Neurosurgery, Neon Hospital, Erzincan, Turkey
| | - Bahadir Suleyman
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology and Embryology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Murat Cankaya
- Department of Biology, Erzincan Binali Yildirim University School of Art and Science, Erzincan, Turkey
| | | | - Seval Bulut
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| |
Collapse
|
4
|
Hundscheid IHR, Schellekens DHSM, Grootjans J, Den Dulk M, Van Dam RM, Beets GL, Buurman WA, Lenaerts K, Derikx JPM, Dejong CHC. Evaluating the safety of two human experimental intestinal ischemia reperfusion models: A retrospective observational study. PLoS One 2021; 16:e0253506. [PMID: 34143845 PMCID: PMC8213171 DOI: 10.1371/journal.pone.0253506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background We developed a jejunal and colonic experimental human ischemia-reperfusion (IR) model to study pathophysiological intestinal IR mechanisms and potential new intestinal ischemia biomarkers. Our objective was to evaluate the safety of these IR models by comparing patients undergoing surgery with and without in vivo intestinal IR. Methods A retrospective study was performed comparing complication rates and severity, based on the Clavien-Dindo classification system, in patients undergoing pancreatoduodenectomy with (n = 10) and without (n = 20 matched controls) jejunal IR or colorectal surgery with (n = 10) and without (n = 20 matched controls) colon IR. Secondary outcome parameters were operative time, blood loss, 90-day mortality and length of hospital stay. Results Following pancreatic surgery, 63% of the patients experienced one or more postoperative complications. There was no significant difference in incidence or severity of complications between patients undergoing pancreatic surgery with (70%) or without (60%, P = 0.7) jejunal IR. Following colorectal surgery, 60% of the patients experienced one or more postoperative complication. Complication rate and severity were similar in patients with (50%) and without (65%, P = 0.46) colonic IR. Operative time, amount of blood loss, postoperative C-reactive protein, length of hospital stay or mortality were equal in both intervention and control groups for jejunal and colon IR. Conclusion This study showed that human experimental intestinal IR models are safe in patients undergoing pancreatic or colorectal surgery.
Collapse
Affiliation(s)
- Inca H. R. Hundscheid
- Department of Pathology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- * E-mail:
| | - Dirk H. S. M. Schellekens
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joep Grootjans
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel Den Dulk
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Ronald M. Van Dam
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Geerard L. Beets
- Department of Surgery, The Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wim A. Buurman
- MHeNs School for Mental Healthy and Neuroscience, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Centre, University of Amsterdam, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis H. C. Dejong
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
5
|
Erol G, Kartal H, Comu FM, Cetin E, Demirdas E, Sicim H, Unal CS, Gunay C, Oz BS, Bolcal C. Effects of N-Acetylcysteine and N-Acetylcysteine Amide on Erythrocyte Deformability and Oxidative Stress in a Rat Model of Lower Extremity Ischemia-Reperfusion Injury. Cardiol Res Pract 2020; 2020:6841835. [PMID: 33062321 PMCID: PMC7542486 DOI: 10.1155/2020/6841835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) is an antioxidant which works as a free radical scavenger and antiapoptotic agent. N-acetylcysteine-amide (NACA) is a modified form of NAC containing an amide group instead of a carboxyl group of NAC. Our study aims to investigate the effectiveness of these two substances on erythrocyte deformability and oxidative stress in muscle tissue. Materials and Methods. A total of 24 Wistar albino rats were used in our study. The animals were randomly divided into five groups as control (n: 6), ischemia (n: 6), NAC (n: 6), and NACA (n: 6). In the ischemia, NAC, and NACA groups, 120 min of ischemia and 120 min of reperfusion were achieved by placing nontraumatic vascular clamps across the abdominal aorta. The NAC and NACA groups were administered an injection 30 min before ischemia (100 mg/kg NAC; 100 mg/kg NACA; intravenous). Blood samples were taken from the animals at the end of the ischemic period. The lower extremity gastrocnemius muscle was isolated and stored at -80 degrees to assess the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values and was analyzed. Results. The erythrocyte deformability index was found to be statistically significantly lower in rats treated with NAC and NACA before ischemia-reperfusion compared to the groups that received only ischemia-reperfusion. In addition, no statistically significant difference was found between the control group and the NAC and NACA groups. The groups receiving NAC and NACA before ischemia exhibited higher total antioxidative status and lower total oxidative status while the oxidative stress index was also lower. Conclusion. The results of our study demonstrated the protective effects of NAC and NACA on erythrocyte deformability and oxidative damage in skeletal muscle in lower extremity ischemia-reperfusion. NAC and NACA exhibited similar protective effects on oxidative damage and erythrocyte deformability.
Collapse
Affiliation(s)
- Gokhan Erol
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Hakan Kartal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Faruk M. Comu
- Department of Physiology, Kırıkkale University Medical Faculty, Kırıkkale, Turkey
| | - Erdem Cetin
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Ertan Demirdas
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Huseyin Sicim
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Celal S. Unal
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Celalettin Gunay
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Bilgehan S. Oz
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Cengiz Bolcal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Renoprotective effect of edaravone in acute limb ischemia/reperfusion injury. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 28:274-281. [PMID: 32551157 DOI: 10.5606/tgkdc.dergisi.2020.18905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Background In this experimental study, we aimed to investigate the efficacy of edaravone on renal injury due to acute lower limb ischemia/reperfusion in a rat model. Methods Between June 2015 and August 2015, a total of 40 male Wistar rats were used in this study. The rats were randomly divided into the sham, ischemia/reperfusion, edaravone, and solvent groups (n=10 in each). The infrarenal abdominal aorta was clamped for 120 min and was, then, reperfused for 120 min after clamp removal. Edaravone was administered intravenously 30 min before the induction of ischemia. Serum and kidney tissue samples were subjected to biochemical and histopathological analyses. Results Edaravone decreased the serum and tissue malondialdehyde levels in the ischemia/reperfusion group. The serum superoxide dismutase activity in the edaravone group was significantly higher than the ischemia/reperfusion and solvent groups. The serum nitric oxide level in the ischemia/reperfusion group was numerically higher than the sham group. The serum nitric oxide level was decreased by edaravone. The serum nitric oxide level was lower in the edaravone group than the solvent group. The tissue nitric oxide level was significantly higher in the ischemia/reperfusion than the sham group. In the ischemia/ reperfusion group, the histopathological changes were improved by edaravone. Conclusion Edaravone ameliorated renal injury caused by lower-limb ischemia/reperfusion. Therefore, it can be used to ameliorate acute ischemia/reperfusion injury during aortic and peripheral vascular surgery.
Collapse
|
7
|
Emadi N, Nemati MH, Ghorbani M, Allahyari E. The Effect of High-Dose Vitamin C on Biochemical Markers of Myocardial Injury in Coronary Artery Bypass Surgery. Braz J Cardiovasc Surg 2019; 34:517-524. [PMID: 31719005 PMCID: PMC6852463 DOI: 10.21470/1678-9741-2018-0312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To evaluate the effect of high-dose vitamin C on cardiac reperfusion injury and plasma levels of creatine kinase-muscle/brain (CK-MB), troponin I, and lactate dehydrogenase (LDH) in patients undergoing coronary artery bypass grafting (CABG). METHODS This is a double-blind randomized clinical trial study. Fifty patients (50-80 years old) who had CABG surgery were selected. The intervention group received 5 g of intravenous vitamin C before anesthesia induction and 5 g of vitamin C in cardioplegic solution. The control group received the same amount of placebo (normal saline). Arterial blood samples were taken to determine the serum levels of CK-MB, troponin I, and LDH enzymes. Left ventricular ejection fraction was measured and hemodynamic parameters were recorded at intervals. RESULTS High doses of vitamin C in the treatment group led to improvement of ventricular function (ejection fraction [EF]) and low Intensive Care Unit (ICU) stay. The cardiac enzymes level in the vitamin C group was lower than in the control group. These changes were not significant between the groups in different time intervals (anesthesia induction, end of bypass, 6 h after surgery, and 24 h after surgery) for CK-MB, LDH, and troponin I. Hemodynamic parameters, hematocrit, potassium, urinary output, blood transfusion, arrhythmia, and inotropic support showed no significant difference between the groups. CONCLUSION Vitamin C has significantly improved the patients' ventricular function (EF) 72 h after surgery and reduced the length of ICU stay. No significant changes in cardiac biomarkers, including CK-MB, troponin I, and LDH, were seen over time in each group. IRCT CODE IRCT2016053019470N33.
Collapse
Affiliation(s)
- Nafiseh Emadi
- Shiraz University of Medical Sciences Blood Circulation Technology Shiraz Iran Blood Circulation Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Nemati
- Shiraz University of Medical Sciences Department of Heart Surgery Shiraz Iran Department of Heart Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ghorbani
- Shiraz University of Medical Sciences Anesthesiology Research Center Shiraz Iran Anesthesiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Torbat Heydarieh University of Medical Sciences Department of Public Health Torbat Heydarieh Iran Department of Public Health, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Elahe Allahyari
- Shiraz University of Medical Sciences Department of Anesthesiology Shiraz Iran Department of Anesthesiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Wei J, Wang Y, Zhang J, Wang L, Fu L, Cha BJ, Buggs J, Liu R. A mouse model of renal ischemia-reperfusion injury solely induced by cold ischemia. Am J Physiol Renal Physiol 2019; 317:F616-F622. [PMID: 31291121 DOI: 10.1152/ajprenal.00533.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transplanted kidneys usually experience several episodes of ischemia, including cold ischemia during allograft storage in preservation solution. However, previous studies focusing on cold renal ischemia were only carried out in vitro or ex vivo. In the present study, we developed and characterized an in vivo mouse model of renal ischemia-reperfusion injury (IRI) induced exclusively by cold ischemia. C57BL/6 mice underwent right kidney nephrectomy, and the left kidney was kept cool with circulating cold saline in a kidney cup, while body temperature was maintained at 37°C. We clamped the renal pedicle and flushed out the blood inside the kidney with cold saline via an opening on the renal vein. The severity of renal IRI was examined with different ischemic durations. We found that the mice with <2 h of cold ischemia exhibited no significant changes in renal function or histopathology; animals with 3 or 4 h of cold ischemia developed into mild to moderate acute kidney injury with characteristic features, including the elevation in plasma creatinine concentration and reduction in glomerular filtration rate and tubular necrosis, followed by a subsequent recovery. However, mice with 5 h of cold ischemia died in a few days with severe acute kidney injury. In summary, we generated a mouse model of renal IRI induced exclusively by cold ischemia, which mimics graft cold storage in preservation solution, and renal function can be evaluated in vivo.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Yingliang Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Liying Fu
- Tampa General Hospital, Tampa, Florida
| | - Byeong J Cha
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
9
|
Mohamed MH, Hamawy TY. Comparative evaluation between ascorbic acid and N-acetyl cysteine for preventing tourniquet induced ischaemic reperfusion injury during lower limb surgery, a randomized controlled trial. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Tamer Yosef Hamawy
- Department of Anesthesiology, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
10
|
Zhang L, Zhang F, He DK, Fan XM, Shen J. MicroRNA-21 is upregulated during intestinal barrier dysfunction induced by ischemia reperfusion. Kaohsiung J Med Sci 2018; 34:556-563. [PMID: 30309483 DOI: 10.1016/j.kjms.2018.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 01/26/2023] Open
Abstract
This study aimed to investigate the expression of miRNA-21 during intestinal barrier dysfunction induced by intestinal ischemia reperfusion. Forty SPF SD rats were divided into 5 groups randomly. Intestinal ischemia-reperfusion injury (IRI) was induced by mesenteric artery occlusion for 1 h and reperfusion for 1 h, and the rats were sacrificed at 1, 3, 6 and 12 h after reperfusion. Fresh intestine tissues were immediately isolated for the measurement of transepithelial electrical resistance (TER). The levels of cytokines, ICAM-1, DAO, iFABP and MPO in serum were determined by ELISA. Intestinal tight junction proteins occludin and claudin-1 were detected by immunofluorescence analysis and Western blot analysis. miR-21 expression in intestinal tissues was measured by RT-PCR. Compared with sham group, the levels of pro-inflammatory cytokines TNF-α and IL-6 and ICAM-1, DAO, iFABP and MPO increased while IL-10 level decreased in intestinal ischemia-reperfusion group. In addition, the levels of intestinal tight junction proteins occludin and claudin-1 decreased while miR-21 level increased in intestinal ischemia-reperfusion group, compared with sham group. In conclusion, miR-21 expression is upregulated during intestinal barrier dysfunction induced by IRI. miR-21 may play an important role in the regulation of intestinal barrier function.
Collapse
Affiliation(s)
- Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, PR China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, PR China
| | - Feng Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, PR China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, PR China
| | - Dai-Kun He
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, PR China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, PR China
| | - Xiao-Ming Fan
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, PR China
| | - Jie Shen
- Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, PR China; Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
11
|
Abstract
Ceramide, a bioactive membrane sphingolipid, functions as an important second messenger in apoptosis and cell signaling. In response to stresses, it may be generated by de novo synthesis, sphingomyelin hydrolysis, and/or recycling of complex sphingolipids. It is cleared from cells through the activity of ceramidases, phosphorylation to ceramide-1-phosphate, or resynthesis into more complex sphingolipids. Ischemia/reperfusion (IR) injury occurs when oxygen/nutrition is rapidly reintroduced into ischemic tissue, resulting in cell death and tissue damage, and is a major concern in diverse clinical settings, including organ resection and transplantation. Numerous reports show that ceramide levels are markedly elevated during IR. Mitochondria are major sites of reactive oxygen species (ROS) production and play a key role in IR-induced and ceramide-mediated cell death and tissue damage. During the development of IR injury, the initial response of ROS and TNF-alpha production activates two major ceramide generating pathways (sphingomyelin hydrolysis and de novo ceramide synthesis). The increased ceramide has broad effects depending on the IR phases, including both pro- and antiapoptotic effects. Therefore, strategies that reduce the levels of ceramide, for example, by modulation of ceramidase and/or sphingomyelinases activities, may represent novel and promising therapeutic approaches to prevent or treat IR injury in diverse clinical settings.
Collapse
|
12
|
Alexandropoulos D, Bazigos GV, Doulamis IP, Tzani A, Konstantopoulos P, Tragotsalou N, Kondi-Pafiti A, Kotsis T, Arkadopoulos N, Smyrniotis V, Perrea DN. Protective effects of N -acetylcystein and atorvastatin against renal and hepatic injury in a rat model of intestinal ischemia-reperfusion. Biomed Pharmacother 2017; 89:673-680. [DOI: 10.1016/j.biopha.2017.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022] Open
|
13
|
Rowlands TE, Homer-Vanniasinkam S. Paradoxical Neutrophil Elastase Release in Endovascular Abdominal Aortic Aneurysm Repair. Vasc Endovascular Surg 2016; 41:48-54. [PMID: 17277243 DOI: 10.1177/1538574406294070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endovascular repair of abdominal aortic aneurysm potentially avoids problems associated with prolonged aortic cross-clamping that occurs with open repair, but it appears to have its own biologic consequences, which may relate to neutrophil elastase release. Blood samples of consecutive patients undergoing open or endovascular abdominal aneurysm repair were analyzed for neutrophil elastase/α1-antitrypsin complex and free elastase. Free elastase rose from baseline and fell quickly in open repair patients, returning to baseline by 144 hours. In the endovascular repair group, it continued to increase for up to 144 hours. Bound elastase increased to 24 hours, returning to baseline in endovascular repair patients by 72 hours, but remaining elevated in open repair patients at 144 hours. Open repair patients showed raised elastase/α1-antitrypsin complex and initial raised free elastase levels. High free elastase levels in endovascular repair patients may reflect less bound elastase and may paradoxically lead to a prolonged inflammatory postoperative response.
Collapse
Affiliation(s)
- Timothy E Rowlands
- Vascular Surgical Unit, The General Infirmary at Leeds, Great George Street, Leeds, United Kingdom.
| | | |
Collapse
|
14
|
Kahlow BS, Nery RA, Skare TL, Ribas CAPM, Ramos GP, Petisco RD. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2016; 29:57-9. [PMID: 27120743 PMCID: PMC4851154 DOI: 10.1590/0102-6720201600010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022]
Abstract
Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes
carbohydrate patterns found on the surface of a large number of pathogenic
micro-organisms, activating the complement system. However, this protein seems to
increase the tissue damage after ischemia. In this paper is reviewed some aspects of
harmful role of the mannose binding lectin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Barbara Stadler Kahlow
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Araldi Nery
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Thelma L Skare
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | | | - Gabriela Piovezani Ramos
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Roberta Dombroski Petisco
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
15
|
Grootjans J, Lenaerts K, Buurman WA, Dejong CHC, Derikx JPM. Life and death at the mucosal-luminal interface: New perspectives on human intestinal ischemia-reperfusion. World J Gastroenterol 2016; 22:2760-2770. [PMID: 26973414 PMCID: PMC4777998 DOI: 10.3748/wjg.v22.i9.2760] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion (IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the (potential) future clinical implications.
Collapse
|
16
|
Çomu FM, Kılıç Y, Özer A, Kirişçi M, Dursun AD, Tatar T, Zor MH, Kartal H, Küçük A, Boyunağa H, Arslan M. Effect of picroside II on erythrocyte deformability and lipid peroxidation in rats subjected to hind limb ischemia reperfusion injury. Drug Des Devel Ther 2016; 10:927-931. [PMID: 27041996 PMCID: PMC4780181 DOI: 10.2147/dddt.s95418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (I/R) in hind limb is a frequent and important clinical phenomenon. Many structural and functional damages are observed in cells and tissues in these kinds of injuries. In this study, we aimed to evaluate the effect of picroside II on lipid peroxidation and erythrocyte deformability during I/R in rats. METHODS Rats were randomly divided into four groups - each containing six animals (sham, I/R, sham + picroside II, and I/R + picroside II). The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R groups. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg·kg(-1)) was administered intraperitoneally to the animals in the appropriate groups (sham + picroside II, I/R + picroside II groups). All rats were euthanized by intraperitoneal administration of ketamine (100 mg·kg(-1)) and taking blood from the abdominal aorta. Erythrocytes were extracted from heparinized complete blood samples. Buffer (PT) and then erythrocytes (PE) were passed through the filtration system and the changes in pressure were measured to investigate the role of serum malondialdehyde and nitric oxide (NO) in lipid peroxidation and erythrocyte deformability index. RESULTS Deformability index was significantly increased in the I/R group compared to groups sham, sham + picroside-II, and I/R + picroside-II (P<0.0001, P<0.0001, and P=0.007). Malondialdehyde (MDA) and NO levels were evaluated. MDA level and NO activity were also higher in the I/R group than in the other groups. Picroside II treatment before hind limb I/R prevented these changes. CONCLUSION These results support that deformability of erythrocytes is decreased in I/R injury and picroside II plays a critical role to prevent these alterations. Further experimental and clinical studies are needed to evaluate and clarify the molecular mechanisms of action and clinical importance of these findings.
Collapse
Affiliation(s)
- Faruk Metin Çomu
- Department of Physiology, Kirikkale University Medical Faculty, Kirikkale, Turkey
| | - Yiğit Kılıç
- Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Abdullah Özer
- Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Mehmet Kirişçi
- Department of Cardiovascular Surgery, Necip Fazıl State Hospital, Kahramanmaras, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Ankara University Medical Faculty, Ankara, Turkey
| | - Tolga Tatar
- Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Mustafa Hakan Zor
- Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Hakan Kartal
- Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Dumlupinar University Medical Faculty, Kütahyav
| | - Hakan Boyunağa
- Department of Biochemistry, Kirikkale University Medical Faculty, Kirikkale, Turkey
| | - Mustafa Arslan
- Department of Anaesthesiology and Reanimation, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
17
|
Lau A, Wang S, Liu W, Haig A, Zhang ZX, Jevnikar AM. Glycyrrhizic acid ameliorates HMGB1-mediated cell death and inflammation after renal ischemia reperfusion injury. Am J Nephrol 2014; 40:84-95. [PMID: 25059568 DOI: 10.1159/000364908] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/24/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Renal ischemia reperfusion injury (IRI) leads to acute kidney injury (AKI) and the death of tubular epithelial cells (TEC). The release of high-mobility group box-1 (HMGB1) and other damage-associated molecular pattern moieties from dying cells may promote organ dysfunction and inflammation by effects on TEC. Glycyrrhizic acid (GZA) is a functional inhibitor of HMGB1, but its ability to attenuate the HMGB1-mediated injury of TEC has not been tested. METHODS/RESULTS In vitro, hypoxia and cytokine treatment killed TEC and resulted in the progressive release of HMGB1 into the supernatant. GZA reduced the hypoxia-induced TEC death as measured by annexin-V and propidium iodide. Hypoxia increased the expression of MCP-1 and CXCL1 in TEC, which was reduced by GZA in a dose-dependent manner. Similarly, the HMGB1 activation of effector NK cells was inhibited by GZA. To test the effect of HMGB1 neutralization by GZA in vivo, mice were subjected to renal IRI. HMGB1 protein expression increased progressively in kidneys from 4 to 24 h after ischemia and was detected in tubular cells by 4 h using immunohistochemistry. GZA preserved renal function after IRI and reduced tubular necrosis and neutrophil infiltration by histological analyses and ethidium homodimer staining. CONCLUSIONS Importantly, these data demonstrate for the first time that AKI following hypoxia and renal IRI may be promoted by HMGB1 release, which can reduce the survival of TEC and augment inflammation. Inhibition of the interaction of HMGB1 with TEC through GZA may represent a therapeutic strategy for the attenuation of renal injury following IRI and transplantation.
Collapse
Affiliation(s)
- Arthur Lau
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Ont., Canada
| | | | | | | | | | | |
Collapse
|
18
|
Avci T, Erer D, Kucuk A, Oztürk Y, Tosun M, Oktar GL, Arslan M, Iriz E, Kavutcu M, Tatar T. The effects of iloprost on ischemia-reperfusion injury in skeletal muscles in a rodent model. J Surg Res 2014; 187:162-168. [DOI: 10.1016/j.jss.2013.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022]
|
19
|
Yang H, Jin Y, Wang CH, Tang CW. Effects of exogenous vasoactive intestinal peptide on mesenteric lymph pathway during early intestinal ischemia-reperfusion injury in rats. ACTA ACUST UNITED AC 2013; 186:36-42. [PMID: 23872373 DOI: 10.1016/j.regpep.2013.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Mesenteric lymph pathway serves as the primary route by which gut injury leads to systemic inflammation and distant organ injury. The inflammation of the intestinal tract is partially mediated by vasoactive intestinal peptide (VIP). Therefore, the aim of this study was to test whether exogenous VIP affects mesenteric lymph pathway during early intestinal ischemia-reperfusion (IIR) injury. Rats were randomized into control, control+VIP, IIR and IIR+VIP groups. The observation of mesenteric lymph flow was carried out by cannulation of mesenteric lymphatics. The distribution of in vivo lymphocyte trafficking was performed by (51)Cr labeled lymphocytes and was measured by γ-counter. Endotoxin concentration was assayed using the limulus test kit and TNF-α level was detected by ELISA. When IIR injury treated with VIP, the volumes of lymph flow increased by 80%, which caused the number of lymphocytes exiting in mesenteric lymphatic increased by 50% while the proportion of (51)Cr-lymphocytes in Peyer's patches, intestinal effector tissues, mesenteric nodes, large intestine, stomach decreased by 58%, 51%, 58%, 63%, 64% respectively at the 6th h after reperfusion following intestinal ischemia. Meanwhile, endotoxin and TNF-α levels in intestinal lymph decreased by 51% and 83%. These results suggest that exogenous VIP ameliorates IIR induced splanchnic organ damage via inhibition of toxic mediators reaching systemic circulation and reinforcement of the effective immune responses in gut-associated lymphoid tissues (GALT).
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroentrology, Nanjing Children's Hospital, Nanjing Medical University, 210008, China
| | | | | | | |
Collapse
|
20
|
Real-time in vivo imaging of early mucosal changes during ischemia-reperfusion in human jejunum. PLoS One 2012; 7:e39638. [PMID: 22745799 PMCID: PMC3382139 DOI: 10.1371/journal.pone.0039638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/27/2012] [Indexed: 02/08/2023] Open
Abstract
Background and study aims Small intestinal ischemia-reperfusion (IR) is a frequent, potentially life threatening phenomenon. There is a lack of non-invasive diagnostic modalities. For many intestinal diseases, visualizing the intestinal mucosa using endoscopy is gold standard. However, limited knowledge exists on small intestinal IR-induced, early mucosal changes. The aims of this study were to investigate endoscopic changes in human jejunum exposed to IR, and to study concordance between endoscopic appearance and histology. Patients and methods In 23 patients a part of jejunum, to be removed for surgical reasons, was isolated and selectively exposed to ischemia with 0, 30 or 120 minutes of reperfusion. In 3 patients, a videocapsule was inserted in the isolated segment before exposure to IR, to visualize the mucosa. Endoscopic view at several time points was related to histology (Heamatoxylin & Eosin) obtained from 20 patients. Results Ischemia was characterized by loss of villous structure, mucosal whitening and appearance of punctate lesions. This was related to appearance of subepithelial spaces and breaches in the epithelial lining in the histological view. Early during reperfusion, the lumen filled with IR-damaged, shed cells and VCE showed mucosal erosions, hemorrhage and intraluminal debris. At 60 minutes of reperfusion, the only remaining signs of IR were loss of villous structure and small erosions, indicating rapid mucosal healing. Conclusions This study shows a unique, real-time in vivo endoscopic view of early mucosal changes during IR of the human small intestine. Future studies should evaluate its usefulness in diagnosis of patients suspected of IR.
Collapse
|
21
|
Liu KX, He W, Rinne T, Liu Y, Zhao MQ, Wu WK. The Effect ofGinkgo bilobaExtract (EGb 761) Pretreatment on Intestinal Epithelial Apoptosis Induced by Intestinal Ischemia/Reperfusion in Rats: Role of Ceramide. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 35:805-19. [PMID: 17963320 DOI: 10.1142/s0192415x07005284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis was demonstrated to be a major mode of intestinal epithelial cell death caused by intestinal ischemia/reperfusion ( II / R ). Ceramide has been proposed as a messenger for apoptosis. The present study was aimed to investigate the effect of Ginkgo biloba extract 761 (EGb 761) pretreatment on II / R -induced intestinal mucosal epithelial apoptosis in rats and the mechanism related to ceramide. The rat model of II / R injury was produced by clamping superior mesenteric artery for 60 min followed by reperfusion for 180 min. Twenty four rats were randomly allocated into Sham, II / R and EGb + II / R groups. In EGb + II / R group, EGb 761 (100 mg/kg per day) was administered intragastrically for 7 days before the surgery. Animals in II / R and sham groups were treated with equal volume of normal saline solution. Intestinal mucosal epithelial apoptosis was detected via electron microscopy and TUNEL method. Lipid peroxidation in intestinal mucosa was determined by detecting the malondialdehyde level and the activities of superoxide dismutase and peroxidase glutathione. The ceramide generation and sphingomyelinase (SMase) mRNA expression in intestinal mucosa were determined by high performance, thin layer chromatography, and RT-PCR, respectively. II / R caused intestinal mucosal epithelial apoptosis and over-production of the ceramide accompanied by up-regulation of SMase mRNA expression and increases of lipid peroxidation. EGb 761 pretreatment significantly decreased apoptosis index, and concurrently reduced the ceramide generation accompanied by down-regulation of SMase expression and inhibition of lipid peroxidation. The findings indicate that EGb 761 pretreatment attenuates II / R -induced intestinal epithelial apoptosis, which might be attributable to its antioxidant action of mediating ceramide pathway.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei He
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Timo Rinne
- Division of Anaesthesia, Heart Center, Tampere University Hospital, Tampere 33521, Finland
| | - Ying Liu
- The Institute of Integrated Traditional Chinese Medicine and Western Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ming-Qi Zhao
- The Institute of Integrated Traditional Chinese Medicine and Western Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei-Kang Wu
- The Institute of Integrated Traditional Chinese Medicine and Western Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Thoracic epidural bupivacaine attenuates inflammatory response, intestinal lipid peroxidation, oxidative injury, and mucosal apoptosis induced by mesenteric ischemia/reperfusion. Anesth Analg 2011; 113:1226-32. [PMID: 21865496 DOI: 10.1213/ane.0b013e31822b8984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND We conducted this study to evaluate the effects of thoracic epidural anesthesia (TEA) on inflammatory response, lipid peroxidation, and oxidative stress in a rat model of mesenteric ischemia/reperfusion (I/R). METHOD Rats were divided into 4 groups: sham group (n=6; sham laparotomy), control group (n=6; I/R), bupivacaine group (n=6; mesenteric I/R and 20 μL/h 0.5% bupivacaine), and saline group (n=6, mesenteric I/R and 20 μL/h 0.9% saline). I/R injury was established by occluding the superior mesenteric artery for 1 hour followed by 12 hours reperfusion. Blood gas, tumor necrosis factor-α, interleukin-6, interleukin-1β, glutathione peroxidise, superoxide dismutase, catalese, myeloperoxidase concentrations, immunohistochemical examinations (intracellular adhesion molecule-1), apoptosis determination, and wet/dry ratio of intestinal edema were determined. RESULTS Bupivacaine significantly decreased the cytokine, malondialdehyde, and myeloperoxidase levels and increased the antioxidant enzyme levels. Wet/dry ratio comparison showed a significant decrease in the bupivacaine (2.88±0.17) group in comparison with control (5.45±0.67) and saline (5.87±0.17) groups. The intestinal injury score was significantly decreased in rats in the epidural bupivacaine (2 [1-2]) infusion group in comparison with rats in the control (3 [2-3]) and saline (3 [2-4]) groups. Bupivacaine (63%) caused a significant decrease in the percentage of apoptotic cells in comparison with control (85%) only. ICAM-1 levels in the bupivacaine (27.4±7.1) group decreased in comparison with control (12.3±7.4) and saline (24.9±3.2) groups. CONCLUSION This study demonstrated that epidural bupivacaine attenuates the mesenteric I/R-related inflammatory response and intestinal damage.
Collapse
|
23
|
Sahin MA, Yucel O, Guler A, Doganci S, Jahollari A, Cingoz F, Arslan S, Gamsizkan M, Yaman H, Demirkilic U. Is there any cardioprotective role of Taurine during cold ischemic period following global myocardial ischemia? J Cardiothorac Surg 2011; 6:31. [PMID: 21418563 PMCID: PMC3068941 DOI: 10.1186/1749-8090-6-31] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/18/2011] [Indexed: 11/25/2022] Open
Abstract
Background The aim of the present study was to investigate the cardioprotective effect of Taurine on the donor hearts during cold ischemic period. Methods 32 rats were divided into four groups (sham, taurine, ischemia, treatment group, 8 rats in each). All rats were fed with rat food for three weeks. Taurine and treatment groups were given a 200 mg/kg/day dose of Taurine by oral gavage besides rat feed. Cardiectomy was performed in all rats after three weeks. In ischemia and treatment groups, harvested hearts were kept in 0.9% sodium chloride at +4 degrees C for 5 hours. Tissue samples were taken from left ventricle in all groups. These samples were evaluated by histopathologic and biochemical examination. Results In the present study results of the biochemical and histopathological examination reveals the protective effects of Taurine. As a marker of lipid peroxidation, Malondialdehyde (MDA) levels in ischemia group were significantly higher than both Sham and Taurine groups. MDA values were recorded; 3.62 ± 0.197 in the sham group, 2.07 ± 0.751 in the Taurine group, 9.71 ± 1.439 in the ischemia group and 7.68 ± 1.365 in the treatment group. MDA levels decreased in treatment group. (p < 0.05) In accordance with MDA findings, while superoxide dismutase and glutathione peroxidase levels decreased in ischemia group, they increased in treatment group. (p < 0.05) There was no differences in Catalase (CAT) enzyme level between treatment and ischemia group (p = 1.000). CAT level results were recorded; 7.08 ± 0.609 in the sham group, 6.15 ± 0.119 in the Taurine group, 5.02 ± 0.62 in the ischemia group, and 5.36 ± 0.384 in the treatment group. Less intracellular edema and inflammatory cell reaction were observed in histologic examination in favor of treatment group. (p < 0.01) Conclusion Taurine decreased myocardial damage during cold ischemic period following global myocardial ischemia.
Collapse
Affiliation(s)
- Mehmet A Sahin
- Gülhane Military Medical Academy, Department of Cardiovascular Surgery, 06010, Etlik, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sphingosine-1-Phosphate Attenuates Lung Injury Induced by Intestinal Ischemia/Reperfusion in Mice: Role of Inducible Nitric-Oxide Synthase. Inflammation 2011; 35:158-66. [DOI: 10.1007/s10753-011-9301-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Lee JY, Kim CJ, Chung MY. Effect of high-dose vitamin C on oxygen free radical production and myocardial enzyme after tourniquet ischaemia-reperfusion injury during bilateral total knee replacement. J Int Med Res 2010; 38:1519-29. [PMID: 20926027 DOI: 10.1177/147323001003800436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study investigated the effects of high-dose vitamin C on oxygen free radical production and cardiac enzymes after tourniquet application and ischaemia-reperfusion injury during bilateral total knee replacement (TKR) in elderly patients. In the vitamin C (VC) group (VC group, n = 16), during surgery, patients received a priming bolus of 0.06 g/kg vitamin C with 100 ml saline followed by 0.02 g/kg vitamin C mixed with 30 ml saline, intravenously. The control group (n = 16) received no intra-operative vitamin C. In the VC group, malondialdehyde levels were lower, and arterial oxygen tension and mean blood pressure were higher, than in controls after post-operative deflation of both knee tourniquets. Troponin I levels were lower in the VC group than in controls 8 h post-operation. Administering high-dose vitamin C during bilateral TKR could prevent oxygen free radical production and a decline in arterial oxygen tension and mean blood pressure induced by ischaemia-reperfusion injury, thereby protecting the myocardium.
Collapse
Affiliation(s)
- J Y Lee
- Department of Anaesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | |
Collapse
|
26
|
Gulmen S, Kiris I, Kocyigit A, Kumbul Dogus D, Ceylan BG, Meteoglu I. β-Glucan Protects against Lung Injury Induced by Abdominal Aortic Ischemia-Reperfusion in Rats. J Surg Res 2010; 164:e325-32. [DOI: 10.1016/j.jss.2010.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/08/2010] [Accepted: 08/09/2010] [Indexed: 11/16/2022]
|
27
|
Zhao HD, Zhang F, Shen G, Li YB, Li YH, Jing HR, Ma LF, Yao JH, Tian XF. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J Gastroenterol 2010; 16:3002-3010. [PMID: 20572303 PMCID: PMC2890940 DOI: 10.3748/wjg.v16.i24.3002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/18/2010] [Accepted: 04/25/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antioxidant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS Rats were divided randomly into four experimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfusion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the operation. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis. RESULTS Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a significant increase in serum AST and ALT levels (AST: 260.13 +/- 40.17 U/L vs 186.00 +/- 24.21 U/L, P < 0.01; ALT: 139.63 +/- 11.35 U/L vs 48.38 +/- 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 +/- 40.17 U/L vs 216.63 +/- 22.65 U/L, P < 0.05; ALT: 139.63 +/- 11.35 U/L vs 97.63 +/- 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In addition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevated liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression. CONCLUSION SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.
Collapse
|
28
|
Grootjans J, Lenaerts K, Derikx JPM, Matthijsen RA, de Bruïne AP, van Bijnen AA, van Dam RM, Dejong CHC, Buurman WA. Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2283-91. [PMID: 20348235 DOI: 10.2353/ajpath.2010.091069] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human intestinal ischemia-reperfusion (IR) is a frequent phenomenon carrying high morbidity and mortality. Although intestinal IR-induced inflammation has been studied extensively in animal models, human intestinal IR induced inflammatory responses remain to be characterized. Using a newly developed human intestinal IR model, we show that human small intestinal ischemia results in massive leakage of intracellular components from ischemically damaged cells, as indicated by increased arteriovenous concentration differences of intestinal fatty acid binding protein and soluble cytokeratin 18. IR-induced intestinal barrier integrity loss resulted in free exposure of the gut basal membrane (collagen IV staining) to intraluminal contents, which was accompanied by increased arteriovenous concentration differences of endotoxin. Western blot for complement activation product C3c and immunohistochemistry for activated C3 revealed complement activation after IR. In addition, intestinal IR resulted in enhanced tissue mRNA expression of IL-6, IL-8, and TNF-alpha, which was accompanied by IL-6 and IL-8 release into the circulation. Expression of intercellular adhesion molecule-1 was markedly increased during reperfusion, facilitating influx of neutrophils into IR-damaged villus tips. In conclusion, this study for the first time shows the sequelae of human intestinal IR-induced inflammation, which is characterized by complement activation, production and release of cytokines into the circulation, endothelial activation, and neutrophil influx into IR-damaged tissue.
Collapse
Affiliation(s)
- Joep Grootjans
- Department of Surgery, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu KX, Chen SQ, Zhang H, Guo JY, Li YS, Huang WQ. Intestinal ischaemia/reperfusion upregulates beta-defensin-2 expression and causes acute lung injury in the rat. Injury 2009; 40:950-5. [PMID: 19486970 DOI: 10.1016/j.injury.2009.01.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human beta-defensin-2 (BD-2) is a positive ion antimicrobial peptide. We investigated the effects of intestinal ischaemia/reperfusion (II/R) on rat BD-2 mRNA and protein expressions in rat lung to address the potential role of BD-2 in acute lung injury (ALI) induced by II/R. METHODS Rats were randomly divided into two groups (n=36 each). (i) Sham control and (ii) II/R group (1h superior mesenteric artery clamping, followed by reperfusion of different durations). In II/R group, 6 animals were sacrificed at 0min, 15min, 30min, 60min, 3h and 6h after reperfusion, and serum, lung tissue and bronchoalveolar lavage fluid were harvested. Samples were taken at the corresponding time points in the sham group. Lung histological changes were observed under microscope and the pulmonary permeability index (PPI) was calculated. The lung tissue levels of TNFalpha were detected by ELISA. BD-2 mRNA and protein expressions were examined by RT-PCR and western blotting techniques, respectively. RESULTS ALI induced by II/R was confirmed by pathological examination and significantly increased PPI (P<0.05 or 0.01). II/R significantly increased the lung TNFalpha levels and upregulated the expressions of BD-2 mRNA and protein expressions (P<0.05 or 0.01). BD-2 mRNA expression was significantly positively correlated to the lung TNFalpha level (r=0.823, P<0.01) and negatively correlated to PPI (r=-0.615, P<0.05). CONCLUSION II/R can upregulate BD-2 mRNA and protein expressions in rat lung. BD-2 could be an innate protective factor against II/R-induced lung injury.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
30
|
Soydan G, Sökmensüer C, Kilinç K, Tuncer M. The effects of sildenafil on the functional and structural changes of ileum induced by intestinal ischemia-reperfusion in rats. Eur J Pharmacol 2009; 610:87-92. [PMID: 19303867 DOI: 10.1016/j.ejphar.2009.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/26/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
There is evidence demonstrating the protective effect of cGMP-specific phosphodiesterase type 5 (PDE5) inhibitors against ischemic injury in certain tissues. In this study, sildenafil, a potent inhibitor of PDE5, was tested for its beneficial effects in the prevention of disrupted ileal contractility and damage to tissue caused by intestinal ischemia-reperfusion in rats. Male Sprague-Dawley rats were divided into four groups: sham-operated; sham-operated with sildenafil pretreatment; ischemia-reperfusion with vehicle pretreatment; and ischemia-reperfusion with sildenafil pretreatment. The superior mesenteric artery was occluded for 45 min to induce ischemia. The clamp was then removed for a 60 min period of reperfusion. Sildenafil (1 mg/kg, i.v.) or saline was administered prior to the surgical procedure in the ischemia-reperfusion and sham-operated groups. Isometric contractions of the ileal segments in response to acetylcholine or electrical field stimulation (120 V, 2 ms pulse for 5 s, 1-20 Hz) were recorded. Additionally, levels of thiobarbituric acid reactive substances and myeloperoxidase activity were measured in addition to a histopathological examination of the ileal tissue. The contractions induced by both acetylcholine and electrical field stimulations were markedly inhibited after ischemia-reperfusion. Sildenafil pretreatment (1 mg/kg, i.v.) abolished the inhibition of responses to acetylcholine. The increased levels of thiobarbituric acid reactive substances and myeloperoxidase activity caused by ischemia-reperfusion were reversed to control levels with sildenafil pretreatment. Intestinal ischemia-reperfusion caused severe ischemic injury in rat ileum, which was prevented by sildenafil. These results suggest that sildenafil pretreatment has a protective effect against ileal dysfunction and damage induced by intestinal ischemia-reperfusion in the rat.
Collapse
Affiliation(s)
- Güray Soydan
- Department of Pharmacology, Hacettepe University, Ankara 06100, Turkey
| | | | | | | |
Collapse
|
31
|
Choi HS, Jung KH, Lee SC, Yim SV, Chung JH, Kim YW, Jeon WK, Hong HP, Ko YG, Kim CH, Jang KH, Kang SA. Bovine Colostrum Prevents Bacterial Translocation in an Intestinal Ischemia/Reperfusion-Injured Rat Model. J Med Food 2009; 12:37-46. [DOI: 10.1089/jmf.2007.0613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Han Sung Choi
- Department of Emergency Medicine, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Hee Jung
- Department of Pharmacology, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Chul Lee
- Department of Emergency Medicine, College of Medicine, DongGuk University, Goyang, Republic of Korea
| | - Sung Vin Yim
- Department of Pharmacology, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Ho Chung
- Department of Pharmacology, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Youn Wha Kim
- Department of Pathology, College of Medicine, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Woo Kyu Jeon
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoon Pyo Hong
- Department of Emergency Medicine, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Young Gwan Ko
- Department of Emergency Medicine, Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Biotechnology Research Division, Jeonbuk Branch Institute Molecular Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| | - Ki-Hyo Jang
- Department of Food and Nutrition, Kangwon National University, Samcheok, Gangwon, Republic of Korea
| | - Soon Ah Kang
- Department of Fermented Food Science, Seoul University of Venture & Information, Seoul, Republic of Korea
| |
Collapse
|
32
|
Liu KX, Chen SQ, Huang WQ, Li YS, Irwin MG, Xia Z. Propofol pretreatment reduces ceramide production and attenuates intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion in rats. Anesth Analg 2008; 107:1884-91. [PMID: 19020134 DOI: 10.1213/ane.0b013e3181884bbf] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Apoptosis has been shown to be a major mode of intestinal epithelial cell death caused by intestinal ischemia/reperfusion (II/R), a condition that is associated with increased oxidative stress. Ceramide has been proposed as a messenger of apoptosis. We investigated if pretreatment with propofol, an anesthetic with antioxidant properties, could reduce ceramide production, and consequently, mucosal epithelial apoptosis induced by II/R in rats. METHODS Rat II/R injury was produced by clamping the superior mesenteric artery for 1 h followed by 3 h of reperfusion. Thirty rats were randomly allocated into control, injury (II/R) and propofol (pretreatment) groups (n = 10 per group). In the propofol group, propofol 50 mg/kg, a dose that has been shown to cause the loss of reflex responses to a painful stimulus while remaining sensitive to skin incision in rats, was administered intraperitoneally 30 min before inducing intestinal ischemia, while animals in control and untreated injury groups received an equal volume of intralipid. Intestinal mucosal epithelial apoptosis was detected via electron microscopy and TUNEL analysis. Lipid oxidation product malondialdehyde and the activities of superoxide dismutase were assessed by colorimetric analyses. Ceramide generation and sphingomyelinase mRNA expression in intestinal mucosa were determined by high performance thin layer chromatography and reverse transcriptase polymerase chain reaction, respectively. RESULTS II/R caused intestinal mucosal epithelial apoptosis and over-production of ceramide accompanied by up-regulation of sphingomyelinase mRNA expression and increases in lipid oxidation (all P < 0.01 versus control). Propofol pretreatment significantly attenuated these changes (all P < 0.01, propofol versus injury). CONCLUSION The findings indicate that propofol pretreatment attenuates II/R-induced intestinal epithelial apoptosis, which might be attributable to its antioxidant property modulating the ceramide pathway.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan 2th Rd., Guangzhou, China, 510080.
| | | | | | | | | | | |
Collapse
|
33
|
Lu F, Chauhan AK, Fernandes SM, Walsh MT, Wagner DD, Davis AE. The effect of C1 inhibitor on intestinal ischemia and reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1042-9. [PMID: 18787060 DOI: 10.1152/ajpgi.90460.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Complement activation and neutrophil stimulation are two major components in events leading to ischemia and reperfusion (IR) injury. C1 inhibitor (C1INH) inhibits activation of each of the three pathways of complement activation and of the contact system. It is also endowed with anti-inflammatory properties that are independent of protease inhibition. The goal of these studies was to investigate the role and mechanism of C1INH in alleviating IR-induced intestinal injury. C57BL/6, C1INH-deficient (C1INH(-/-)), bradykinin type 2 receptor-deficient (Bk2R(-/-)), and C3-deficient mice (C3(-/-)) were randomized into three groups: sham operated control, IR, and IR + C1INH-treated groups. Ischemia was generated by occlusion of the superior mesenteric artery followed by reperfusion. C1INH or reactive center-cleaved inactive C1INH (iC1INH) was injected intravenously before reperfusion. IR resulted in intestinal injury in C57BL/6, C1INH(-/-), Bk2R(-/-), and C3(-/-) mice with significantly increased neutrophil infiltration into intestinal tissue. In each mouse strain, C1INH treatment reduced intestinal tissue injury and attenuated leukocyte infiltration compared with the untreated IR group. C1INH inhibited leukocyte rolling in the mesenteric veins of both C57BL/6 and C3-deficient mice subjected to IR. C1INH treatment also improved the survival rate of C57BL/6 and C1INH(-/-) mice following IR. Similar findings were observed in the IR animals treated with iC1INH. These studies emphasize the therapeutic benefit of C1INH in preventing intestinal injury caused by IR. In addition to the protective activities mediated via inhibition of the complement system, these studies indicate that C1INH also plays a direct role in suppression of leukocyte transmigration into reperfused tissue.
Collapse
Affiliation(s)
- Fengxin Lu
- Immune Disease Inst., Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Cuzzocrea S, Di Paola R, Genovese T, Mazzon E, Esposito E, Crisafulli C, Bramanti P, Salvemini D. Anti-inflammatory and anti-apoptotic effects of fumonisin B1, an inhibitor of ceramide synthase, in a rodent model of splanchnic ischemia and reperfusion injury. J Pharmacol Exp Ther 2008; 327:45-57. [PMID: 18612046 DOI: 10.1124/jpet.108.139808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Ceramide is a sphingolipid with potent proinflammatory and proapoptotic properties. This study sought to determine whether pharmacological inhibition of ceramide biosynthesis in the intestine attenuates pathophysiological sequelae of shock induced by splanchnic artery occlusion and reperfusion. Ischemia and reperfusion injury was induced in anesthetized rats by clamping both the superior mesenteric artery and the celiac artery for 45 min followed by reperfusion. Within 6 min after reperfusion, animals developed significant systemic hypotension with 100% of the animals dying during the 4-h period of reperfusion. In parallel experiments, animals were necropsied after 60 min of reperfusion, and the ileum was harvested for histological examination and assessment of biochemical changes. Administration of fumonisin B1 (FB1), a competitive and reversible inhibitor of ceramide synthase (3 mg/kg, 15 min before reperfusion), significantly reduced i) the increased ceramide expression as detected by immunohistochemistry; ii) peroxynitrite-mediated protein nitration; iii) infiltration of the reperfused intestine with polymorphonuclear neutrophils following a decrease in intercellular adhesion molecule-1 expression; iv) production of the proinflammatory cytokine tumor necrosis factor-alpha; and v) apoptosis in the ileum. Overall, tissue-protective effects were clearly observed upon histological examination of the ileum. These beneficial events were ultimately linked to decreases in both the development of hypotension and overall mortality. These results implicate ceramide as a key signaling molecule in splanchnic arterial ischemia and reperfusion-induced shock. The broader implications of our results provide a pharmacological rationale for the development of inhibitors of ceramide biosynthesis as novel therapeutics for ischemia and reperfusion-induced shock of several etiologies.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Alterations in the content of metal elements and fatty acids in hepatic ischaemia-reperfusion: induction of apoptotic and necrotic cell death. Dig Dis Sci 2008; 53:1325-33. [PMID: 17934863 DOI: 10.1007/s10620-007-0001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/21/2007] [Indexed: 12/09/2022]
Abstract
Ischaemia and reperfusion are related to oxidative stress, which alters with the redox-homeostasis of the liver cells. Our aim was to reveal the correlations between changes of metal element and fatty acid concentration (two main components of redox-balance) and apoptotic and necrotic processes of hepatic ischaemia-reperfusion. Wistar rats were divided into three groups: control, sham-operated and reperfusion. Hepatic ischaemia was induced for 45 min in the left lateral, left medial and right medial lobes followed by 24 h of reperfusion. Global redox parameters and glutathione peroxidase and superoxide dismutase activity were detected by luminometry and spectrophotometry. Routine laboratory measurements, fatty acid composition (with gas chromatography) as well as metal ion concentration of liver (with ICP-OES) were determined. Metallothionein activity was measured by atomic absorption spectrometry. Immunohistochemical and histological examinations were carried out to investigate apoptotic and necrotic changes in the liver. During reperfusion, global antioxidant parameters decreased and superoxide dismutase level of the liver was significantly lower than in the sham-operated group. Changes in the metal element concentration are essential for cellular biochemical pathways, and significant correlations were found between decrease in Cu and Zn content and decreased superoxide dismutase activity. Necrotic lesions along with increased number of apoptotic cells were found in the liver after 24 h of reperfusion. Alterations in the metal element and fatty acid content was found in the liver tissue during 24 h of ischaemia-reperfusion along with increase in the number of apoptotic cells and significant disturbance of the antioxidant balance. Study of the metal element content of the liver during hepatic ischaemia-reperfusion may provide new supportive strategies for liver surgery and transplantation.
Collapse
|
36
|
Turner S, Derham C, Orsi NM, Bosomworth M, Bellamy MC, Howell SJ. Randomized clinical trial of the effects of methylprednisolone on renal function after major vascular surgery. Br J Surg 2008; 95:50-6. [PMID: 18027383 DOI: 10.1002/bjs.5978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Perioperative renal dysfunction following abdominal aortic aneurysm (AAA) repair is multifactorial and may involve hypotension, hypoxia and ischaemia-reperfusion injury. Studies of cardiac and hepatic transplant surgery have demonstrated beneficial effects on renal function of high-dose methylprednisolone administered before surgery. METHODS Twenty patients undergoing elective open AAA repair were randomized to receive either methylprednisolone 10 mg/kg or dextrose (control) before induction of anaesthesia. Blood was analysed for a panel of cytokines representative of T helper cell type 1 and 2 subsets. Urine was analysed for subclinical markers of renal dysfunction (albumin, alpha(1)-microglobulin and N-acetyl-beta-D-glucosaminidase). RESULTS Data from 18 patients were analysed. Both groups demonstrated glomerular and proximal convoluted tubular dysfunction that was unaffected by steroid treatment. Steroid administration increased serum levels of urea and creatinine (both P < 0.001). The steroid group had increased interleukin 10 levels (P = 0.005 compared to controls). There were no differences between groups in overall surgical complications, length of intensive care unit (P = 0.821) and hospital (P = 0.719) stay, or 30-day mortality. CONCLUSION Methylprednisolone administration altered the cytokine profile favourably but adversely affected postoperative renal function.
Collapse
Affiliation(s)
- S Turner
- Academic Unit of Anaesthesia, Leeds General Infirmary, Leeds, UK
| | | | | | | | | | | |
Collapse
|
37
|
Ischemia-Reperfusion Injury. Eur J Trauma Emerg Surg 2007; 33:600-12. [DOI: 10.1007/s00068-007-7152-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 10/30/2007] [Indexed: 12/21/2022]
|
38
|
Zhang W, Zhang J, Xu M, Zhang Y. Effect of oxytocin on gastric ischemia-reperfusion injury in rats. ACTA ACUST UNITED AC 2007; 1:433-7. [DOI: 10.1007/s11684-007-0085-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
40
|
Tsuboi H, Naito Y, Katada K, Takagi T, Handa O, Kokura S, Ichikawa H, Yoshida N, Tsukada M, Yoshikawa T. Role of the thrombin/protease-activated receptor 1 pathway in intestinal ischemia-reperfusion injury in rats. Am J Physiol Gastrointest Liver Physiol 2007; 292:G678-83. [PMID: 17023547 DOI: 10.1152/ajpgi.00361.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CXC chemokines, including human interleukin-8 and rat cytokine-induced neutrophil chemoattractant-1, play a crucial role in the pathogenesis of intestinal inflammation induced by ischemia-reperfusion (I-R). Thrombin and its specific receptor, protease-activated receptor 1 (PAR1), act as important players in inflammation. However, the association between thrombin activation and chemokine production during I-R has not been well studied. We investigated whether thrombin and PAR1 might be involved in the pathophysiology of intestinal I-R, using an in vivo model. Intestinal damage was induced by clamping the superior mesenteric artery for 30 min followed by reperfusion in male Wistar rats. Thrombin-antithrombin complex was measured as an indicator of thrombin activation. PAR1 expression in the intestine was evaluated by real-time PCR. The severity of the intestinal mucosal injury was evaluated on the distal segment of the ileum by several biochemical markers and histological findings. Reperfusion significantly increased the serum levels of thrombin-antithrombin complex and enhanced PAR1 expression in the intestinal mucosa. The levels of both intraluminal hemoglobin and protein were significantly increased in the I-R group. The mucosal myeloperoxidase activity and expressions and/or productions of cytokine-induced neutrophil chemoattractant-1 and TNF-alpha were significantly increased after I-R. These increases were inhibited by the treatment of rat with antithrombin intravenously before I-R at a dose of 30 U/kg. These results suggest that the thrombin/PAR1 pathway plays an important role in the production of these cytokines during I-R and that antithrombin exerts potent anti-inflammatory effects on this injury via inhibition of proinflammatory cytokines.
Collapse
Affiliation(s)
- Hisato Tsuboi
- Department of Inflammation and Immunology, Kyoto Prefectural Univ of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu KX, Wu WK, He W, Liu CL. Ginkgo biloba extract (EGb 761) attenuates lung injury induced by intestinal ischemia/reperfusion in rats: Roles of oxidative stress and nitric oxide. World J Gastroenterol 2007; 13:299-305. [PMID: 17226913 PMCID: PMC4065962 DOI: 10.3748/wjg.v13.i2.299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of ginkgo biloba extract (EGb 761) on lung injury induced by intestinal ischemia/reperfusion (II/R).
METHODS: The rat model of II/R injury was produced by clamping the superior mesenteric artery for 60 min followed by reperfusion for 180 min. The rats were randomly allocated into sham, II/R, and EGb +II/R groups. In EGb +II/R group, EGb 761 (100 mg/kg per day) was given via a gastric tube for 7 consecutive days prior to surgery. Rats in II/R and sham groups were treated with equal volumes of the vehicle of EGb 761. Lung injury was assessed by light microscopy, wet-to-dry lung weight ratio (W/D) and pulmonary permeability index (PPI). The levels of malondialdehyde (MDA) and nitrite/nitrate (NO2-/NO3-), as well as the activities of superoxide dismutase (SOD) and myeloperoxidase (MPO) were examined. Western blot was used to determine the expression of inducible nitric oxide synthase (iNOS).
RESULTS: EGb 761 markedly improved mean arterial pressure and attenuated lung injury, manifested by the improvement of histological changes and significant decreases of pulmonary W/D and PPI (p < 0.05 or 0.01). Moreover, EGb 761 markedly increased SOD activity, reduced MDA levels and MPO activity, and suppressed NO generation accompanied by down-regulation of iNOS expression (p < 0.05 or 0.01).
CONCLUSION: The results indicate that EGb 761 has a protective effect on lung injury induced by II/R, which may be related to its antioxidant property and suppressions of neutrophil accumulation and iNOS-induced NO generation. EGb 761 seems to be an effective therapeutic agent for critically ill patients with respiratory failure related to II/R.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| | | | | | | |
Collapse
|
42
|
Heidenhain C, Heise M, Jonas S, Ben-Asseur M, Puhl G, Mittler J, Thelen A, Schmidt S, Langrehr J, Neuhaus P. Retrograde reperfusion via vena cava lowers the risk of initial nonfunction but increases the risk of ischemic-type biliary lesions in liver transplantation--a randomized clinical trial. Transpl Int 2006; 19:738-48. [PMID: 16918535 DOI: 10.1111/j.1432-2277.2006.00347.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Initial nonfunction (INF) and biliary complications such as ischemic-type biliary lesion (ITBL) remain two major complications in clinical orthotopic liver transplantation (OLT). The influence of ischemia and reperfusion injury (I/R) as a significant risk factor for both complications is widely unquestioned. A new reperfusion technique that reduces I/R injury should lead to a reduction in both INF and ITBL. One hundred and thirty two OLT patients were included in this study and randomized into two groups. Group A underwent standard reperfusion with anterograde simultaneous arterial and portal reperfusion and group B received retrograde reperfusion via the vena cava before sequential anterograde reperfusion of portal vein and hepatic artery. Serum transaminase level as a surrogate parameter for I/R injury and serum bilirubin level as a parameter for graft function were significantly reduced during the first week after OLT in group B. INF rate was 7.7% in group A and 0% in group B (P = 0.058). ITBL incidence was 4.55% in group A versus 12.3% in group B (P = 0.053). Retrograde reperfusion seemed to be beneficial for hepatocytes, but was detrimental for the biliary epithelium. The unexplained increased incidence of ITBL after retrograde reperfusion will be focus of further investigation.
Collapse
Affiliation(s)
- Christoph Heidenhain
- Department of General, Visceral and Transplantation Surgery, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baltalarli A, Ozcan V, Bir F, Ferda B, Aybek H, Sacar M, Onem G, Goksin I, Demir S, Teke Z, Zafer T. Ascorbic acid (vitamin C) and iloprost attenuate the lung injury caused by ischemia/reperfusion of the lower extremities of rats. Ann Vasc Surg 2006; 20:49-55. [PMID: 16378148 DOI: 10.1007/s10016-005-9284-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objectives of this study were to compare the protective effects of ascorbic acid and iloprost on lung injury caused by ischemia reperfusion (I/R) of the lower extremities of rats. Wistar albino rats (n = 34) were divided into five groups. In the I/R group (n = 6), the aorta was cross-clamped for 3 hr, followed by 1 hr of reperfusion. In the vitamin C group (n = 8), animals were pretreated with 100 mg/kg ascorbic acid via the left jugular vein before aortic cross-clamping. In the iloprost group (n = 8), animals were pretreated with 20 ng/(kg x min) iloprost by constant intravenous infusion via the left jugular venous cannula. In the sham group (n = 6), the abdomen was left open at the same period and a juguler venous line was established. In the control group (n = 6), lungs were removed and blood samples taken immediately after sternotomy. No treatment was given in this group. After both lungs were removed, biochemical parameters were measured and histopathological evaluation was made. Although the arterial blood pO2 and HCO3 levels were statistically significantly high in both the vitamin C and iloprost groups compared to the I/R group, plasma malondialdehyde (MDA) levels were significantly low. Meanwhile, the MDA levels in the lung tissue were significantly low in the vitamin C group compared to the I/R group. The MDA level in the lung tissue in the iloprost group was also low compared to the I/R group, but it was not statistically significant. The lungs of the I/R group displayed intense interstitial leukocytic infiltration in histopathological examination compared to the other groups. Pretreatment of animals with iloprost and vitamin C significantly decreased the pulmonary injury characterized by decreased plasma leukocyte sequestration. The results suggest that both vitamin C and iloprost are useful agents for attenuating the lung injury caused by increased oxidative stress and neutrophil accumulation after a period of I/R of the lower extremities.
Collapse
Affiliation(s)
- Ahmet Baltalarli
- Department of Cardiovascular Surgery, Pamukkale University, Denizli, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ozturk H, Ozturk H, Duran H, Uzunlar AK. Mibefradil, a T-type Ca2+ channel blocker, protects against mesenteric ischemia-reperfusion-induced oxidative injury and histologic alterations in intestinal mucosa in rats. Dig Dis Sci 2006; 51:1454-60. [PMID: 16868826 DOI: 10.1007/s10620-005-9060-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/22/2005] [Indexed: 02/08/2023]
Abstract
The purpose of the present study was to investigate whether mibefradil can reduce oxidative stress and histologic damage in the rat small bowel subjected to mesenteric ischemia and reperfusion injury. Thirty Sprague-Dawley rats weighing between 210 and 220 g were divided into three groups, each containing 10 rats: group 1, sham operation; group 2, untreated ischemia-reperfusion; and group 3, ischemia-reperfusion plus mibefradil treatment group. Intestinal ischemia for 45 min and reperfusion for 60 min were applied. Ileal specimens were obtained to determine the tissue levels of MDA, CAT, SOD, and GSH-Px and histologic changes. In group 2, MDA values were significantly increased compared to those in groups 1 and 3. In addition, SOD, CAT, and GSH-Px values decreased significantly in group 2 compared to groups 1 and 3. The intestinal injury score increased significantly in group 2 and 3 rats compared to group 1 rats. However, this increase was reduced in group 3 rats compared to group 2. Histopathologically, the rats in group 1 had essentially normal testicular architecture. In group 2 rats, the lesions varied between grade 3 and grade 5. In contrast, most of the specimens in the mibefradil-treated group 3 showed grade 1 injury. Mibefradil plays a role in attenuating reperfusion injury of the small intestine by depressing free radical production and mucosal injury score and regulating postischemic intestinal perfusion while restoring intestinal microcirculatory blood flow and encountered histologic injury.
Collapse
Affiliation(s)
- Hayrettin Ozturk
- Department of Pediatric Surgery, Dicle University, Medical School, 21280 Diyarbakir, Turkey.
| | | | | | | |
Collapse
|
45
|
Naito Y, Katada K, Takagi T, Tsuboi H, Kuroda M, Handa O, Kokura S, Yoshida N, Ichikawa H, Yoshikawa T. Rosuvastatin reduces rat intestinal ischemia-reperfusion injury associated with the preservation of endothelial nitric oxide synthase protein. World J Gastroenterol 2006; 12:2024-30. [PMID: 16610051 PMCID: PMC4087679 DOI: 10.3748/wjg.v12.i13.2024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect of rosuvastatin on ischemia-reperfusion (I-R)-induced small intestinal injury and inflammation in rats, and to determine the effect of this agent on the expression of endothelial nitric oxide synthase (eNOS) protein.
METHODS: Intestinal damage was induced in male Sprague-Dawley rats by clamping both the superior mesenteric artery and the celiac trunk for 30 min, followed by reperfusion for 60 min. Rosuvastatin dissolved in physiological saline was administered intraperitoneally 60 min before ischemia. The severity of the intestinal mucosal injury and inflammation were evaluated by several biochemical markers, as well as by histological findings. The protein levels of eNOS were determined by Western blot.
RESULTS: The levels of both intraluminal hemoglobin and protein, as indices of mucosal damage, were significantly increased in the I-R group compared with those in the sham-operated group. These increases, however, were significantly inhibited by treatment with rosuvastatin in a dose-dependent manner. The protective effects of rosuvastatin were also confirmed by histological findings. Exposure of the small intestine to I-R resulted in mucosal inflammation characterized by significant increases in thiobarbituric acid-reactive substances, tissue-associated myeloperoxidase activity, and the mucosal contents of rat cytokine-induced neutrophil chemoattractant-1 (CINC-1) and tumor necrosis factor-α (TNF-α). These increases in inflammatory parameters after I-R were significantly inhibited by pretreatment with rosuvastatin at a dose of 10 mg/kg. Furthermore, mRNA expression of CINC-1 and TNF-α was increased after I-R, and this increase was also inhibited by rosuvastatin. The mucosal protein levels of eNOS decreased during I-R, but were preserved in rats treated with rosuvastatin.
CONCLUSION: Rosuvastatin inhibits rat intestinal injury and inflammation induced by I-R, and its protection is associated with the preservation of eNOS protein.
Collapse
Affiliation(s)
- Yuji Naito
- Department of Medical Proteomics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Barocelli E, Ballabeni V, Ghizzardi P, Cattaruzza F, Bertoni S, Lagrasta CAM, Impicciatore M. The selective inhibition of inducible nitric oxide synthase prevents intestinal ischemia-reperfusion injury in mice. Nitric Oxide 2006; 14:212-8. [PMID: 16504557 DOI: 10.1016/j.niox.2005.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 11/02/2005] [Accepted: 11/19/2005] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) involvement in intestinal ischemia-reperfusion (I/R) injury has been widely suggested but its protective or detrimental role remains still question of debate. Here, we examine the impact of supplementation or inhibition of NO availability on intestinal dysmotility and inflammation caused by mesenteric I/R in mice. Ischemia 45min and reperfusion 24h were performed by superior mesenteric artery occlusion in female Swiss mice. Saline-treated sham-operated (S) or normal mice without surgery (N) served as controls. Drugs were subcutaneously injected 0, 4, 8, and 18 h after ischemia. Upper gastrointestinal transit (GIT, estimated through black marker gavage), intestinal myeloperoxidase activity (MPO), intestinal malondialdehyde levels (MDA), Evans blue extravasation (EB), intestinal histological damage, and mean arterial pressure (MAP) were considered. In I/R mice, GIT was significantly delayed compared to S and N groups; MPO activity and EB extravasation enhanced, whereas MDA levels did not change. Compared to N and S groups, in I/R mice selective iNOS inhibitor P-BIT significantly prevented motor, MPO and EB changes; putative iNOS inhibitor aminoguanidine significantly counteracted GIT delay but not neutrophil recruitment and the increase in vascular permeability; NOS inhibitor l-NAME and NO precursor l-arginine were scarcely or no effective. Furthermore, in S mice aminoguanidine caused a significant increase of MPO activity reverted by H(1) histamine receptor antagonist pre-treatment. Unlike P-BIT, aminoguanidine and l-NAME injection increased MAP. These findings confirm a detrimental role for iNOS-derived NO overproduction during reperfusion. Aminoguanidine-associated neutrophil recruitment suggests that this drug could act through mechanisms additional to iNOS inhibition involving both eNOS blockade, as indicated by its hemodynamic effects, and indirect activation of H(1) histamine receptors.
Collapse
Affiliation(s)
- Elisabetta Barocelli
- Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, Parco Area delle Scienze 47/A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Frässdorf J, Luther B, Müllenheim J, Otto F, Preckel B, Schlack W, Thämer V. Influence of groin incision, duration of ischemia, and prostaglandin E1 on ischemia-reperfusion injury of the lower limb. J Cardiothorac Vasc Anesth 2006; 20:187-95. [PMID: 16616658 DOI: 10.1053/j.jvca.2005.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The influences of groin incision, duration of ischemia, and the effects of prostaglandin E1 (PGE1) on ischemia-reperfusion (I/R) injury of the hind limb in rabbits were evaluated. DESIGN A prospective study. SETTING Laboratory. PARTICIPANTS In 64 rabbits, bilateral hind limb ischemia was induced by occlusion of the abdominal aorta. Volume changes, neuromuscular function of the hind limb, and creatine kinase (CK) release were measured as variables of tissue injury. INTERVENTIONS Eight rabbits served as untreated controls (CON). In 2 groups (each n = 14), 3 hours of ischemia were followed by 3 hours of reperfusion (I/R). In 2 different groups (each n = 14), 45 minutes of ischemia were followed by 2 hours of reperfusion. To determine effects of PGE1, 1 I/R group of each ischemia duration was treated intravenously with 80 ng/kg/min of PGE1 starting 30 minutes after the onset of ischemia (I/R-PGE1). To determine effects of groin incision on edema formation, volume changes were determined in the "operated" right (CON-R, 3h-R, 3h-PGE1-R and 45 min-R, 45 min-PGE1-R) or in the "nonoperated" left hind limb (CON-L, 3h-L, 3h-PGE1-L and 45 min-L, 45 min-PGE1-L), representing a subgroup analysis. MEASUREMENTS AND MAIN RESULTS Volume changes after I/R occurred only in operated legs after ischemia (3h-R: 2.3 +/- 0.3 mL, p < 0.0001 v CON-R and 3h-L; 45 min-R: 0.8 +/- 0.2 mL, p < 0.01 v 45 min-L). PGE1 reduced edema formation in the operated legs (3h-PGE1-R: 1.0 +/- 0.4 mL, p < 0.0001 v 3h-R; 45 min-PGE1-R: 0.5 +/- 0.3 mL, p = 1.0 v 45 min-R). Groin incision without I/R had no effect on edema formation (CON-R: -0.13 +/- 0.17 mL of baseline). The increase of CK release from 616 +/- 584 U/L in controls to 5,921 +/- 2,156 U/L after 3 hours of ischemia (p < 0.001) was attenuated by treatment with PGE1 (3,732 +/- 2,653, p < 0.05 v I/R). Forty-five minutes of ischemia did not lead to cellular damage as measured by CK release (I/R: 606 +/- 364 U/L). Recovery of neuromuscular function was not affected by PGE1. CONCLUSION Development of edema during I/R depends on groin incision of the hind limb and on the duration of ischemia. The I/R injury is attenuated by PGE1 treatment, in terms of reduced edema formation and CK release, but not in terms of neuromuscular function.
Collapse
Affiliation(s)
- Jan Frässdorf
- Department of Anesthesiology, University Hospital of Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Troxler M, Thompson D, Homer-Vanniasinkam S. Ischaemic Skeletal Muscle Increases Serum Ischaemia Modified Albumin. Eur J Vasc Endovasc Surg 2006; 31:164-9. [PMID: 16081305 DOI: 10.1016/j.ejvs.2005.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Ischaemia modified albumin (IMA) has been used as a marker of myocardial ischaemia but little is known about its production during ischaemia of other tissues. The clinical models of patients with intermittent claudication and major arterial surgery were used to investigate IMA production from ischaemic skeletal muscle. DESIGN Prospective clinical study. MATERIALS AND METHODS IMA was measured pre-operatively, at end ischaemia, and 5 min, 4, 24, 48, 72 and 144 h post-surgery in patients undergoing (a) revascularisation for intermittent claudication (IC, n=15), (b) abdominal aortic aneurysm repair (AAA, n=12) and controls (n=16). RESULTS The median pre-operative IMA concentration in IC patients was significantly higher than the AAA group (88.3 versus 83.5 U/ml, p=0.036) and controls (88.3 versus 80.3 U/ml, p=0.031). IMA concentrations increased significantly during arterial clamping in both IC and AAA groups (88.3 versus 120.0 U/ml, p=0.001; 83.5 versus 118.8 U/ml, p=0.002, respectively) consistent with increased skeletal muscle ischaemia. In contrast, there was only a mild perioperative increase in the controls (80.3 versus 91.6 U/ml, p=0.012). CONCLUSIONS Patients with intermittent claudication have significantly elevated IMA and skeletal muscle ischaemia during arterial surgery results in significantly increased circulating IMA. When IMA is used to detect myocardial ischaemia, ischaemic skeletal muscle must be excluded.
Collapse
Affiliation(s)
- M Troxler
- Vascular Surgical Unit, The General Infirmary at Leeds, Leeds, UK
| | | | | |
Collapse
|
49
|
El Eter E, Hagar HH, Al-Tuwaijiri A, Arafa M. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 2005; 83:483-92. [PMID: 16049548 DOI: 10.1139/y05-034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyrrolidinedithiocarbamate (PDTC) is a potent antioxidant and an inhibitor of nuclear factor-kappaB (NF-kappaB). The present study examined the impact of PDTC preconditioning on gastric protection in response to ischemia-reperfusion (I/R) injury to the rat stomach. Male Wistar rats were recruited and divided into 3 groups (n = 7). One group was subjected to gastric ischemia for 30 min and reperfusion for 1 hour. The second group of rats was preconditioned with PDTC (200 mg/kg body mass i.v.) 15 min prior to ischemia and before reperfusion. The third group of rats was sham-operated and served as the control group. Gastric I/R injury increased serum lactate dehydrogenase level, vascular permeability of gastric mucosa (as indicated by Evans blue dye extravasation) and gastric content of inflammatory cytokine; tumor necrosis factor-alpha (TNF-alpha). Moreover, oxidative stress was increased as indicated by elevated lipid peroxides formation (measured as thiobarbituric acid reactive substances) and depleted reduced glutathione in gastric tissues. NF-kappaB translocation was also detected by electrophoretic mobility shift assay. Microscopically, gastric tissues subjected to I/R injury showed ulceration, hemorrhages, and neutrophil infiltration. Immunohistochemical studies of gastric sections revealed increased expression of p53 and Bcl-2 proteins. PDTC pretreatment reduced Evans blue extravasation, serum lactate dehydrogenase levels, gastric TNF-alpha levels, and thiobarbituric acid reactive substances content, and increased gastric glutathione content. Moreover, PDTC pretreatment abolished p53 expression and inhibited NF-kappaB translocation. Finally, histopathological changes were nearly restored by PDTC pretreatment. These results clearly demonstrate that NF-kappaB activation and pro-apoptotic protein p53 induction are involved in gastric I/R injury. PDTC protects against gastric I/R injury by an antioxidant, NF-kappaB inhibition, and by reduction of pro-apoptotic protein p53 expression, which seems to be downstream to NF-kappaB, thus promoting cell survival.
Collapse
Affiliation(s)
- Eman El Eter
- Physiology Department, Medical College & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
50
|
Iida K, Nagao K, Uchiyama T, Kushiro T. Relationship between heart-type fatty acid-binding protein levels and the risk of death in patients with serious condition on arrival at the emergency department. Intern Med 2005; 44:1039-45. [PMID: 16293913 DOI: 10.2169/internalmedicine.44.1039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Although heart-type fatty acid-binding protein (H-FABP) is a cardiac marker useful for early diagnosis of acute myocardial infarction (AMI), few data are available on its prognostic value. The objective of this study is to clarify the prognostic value of H-FABP in patients with a serious condition. METHODS AND PATIENTS We conducted a prospective study of 617 patients who presented to the emergency department with a serious condition. The H-FABP levels on arrival at the emergency department were divided into four groups using their quartiles. The endpoint was death from any causes in-hospital. RESULTS H-FABP ranged from 1.2 to 2,300 ng/ml, with a median of 19.9 ng/ml, a 25%-value of 6.7 ng/ml and 75%-value of 54.0 ng/ml. The unadjusted rate of the mortality increased progressively with increasing H-FABP quartile point (11% for quartile-I, 22% for quartile-II, 36% for quartile-III, and 38% for quartile-IV; p<0.001). After adjustment for age, gender, systolic blood pressure and the presence or absence of cardiovascular disease, H-FABP was the independent factor to predict the mortality. CONCLUSION H-FABP has proven to be an independent factor for prognosis in patients with a serious condition on arrival at the emergency department.
Collapse
Affiliation(s)
- Kiyoshi Iida
- Department of Cardiology, Nihon University School of Medicine, Tokyo
| | | | | | | |
Collapse
|