1
|
Joyce W, Shiels HA, Franklin CE. The integrative biology of the heart: mechanisms enabling cardiac plasticity. J Exp Biol 2024; 227:jeb249348. [PMID: 39422034 DOI: 10.1242/jeb.249348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cardiac phenotypic plasticity, the remodelling of heart structure and function, is a response to any sustained (or repeated) stimulus or stressor that results in a change in heart performance. Cardiac plasticity can be either adaptive (beneficial) or maladaptive (pathological), depending on the nature and intensity of the stimulus. Here, we draw on articles published in this Special Issue of Journal of Experimental Biology, and from the broader comparative physiology literature, to highlight the core components that enable cardiac plasticity, including structural remodelling, excitation-contraction coupling remodelling and metabolic rewiring. We discuss when and how these changes occur, with a focus on the underlying molecular mechanisms, from the regulation of gene transcription by epigenetic processes to post-translational modifications of cardiac proteins. Looking to the future, we anticipate that the growing use of -omics technologies in integration with traditional comparative physiology approaches will allow researchers to continue to uncover the vast scope for plasticity in cardiac function across animals.
Collapse
Affiliation(s)
- William Joyce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Van Wert JC, Ekström AT, Gilbert MJH, Hendriks BJ, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Coronary circulation enhances the aerobic performance of wild Pacific salmon. J Exp Biol 2024; 227:jeb247422. [PMID: 38841879 PMCID: PMC11418299 DOI: 10.1242/jeb.247422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.
Collapse
Affiliation(s)
- Jacey C. Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Andreas T. Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Matthew J. H. Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian J. Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Aquatic Research Cooperative Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Erika J. Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Zena LA, Ekström AT, Morgenroth D, McArley T, Axelsson M, Sundh H, Palmquist A, Johansen IB, Gräns A, Sandblom E. Beating the heart failure odds: long-term survival after myocardial ischemia in juvenile rainbow trout. Am J Physiol Regul Integr Comp Physiol 2024; 326:R484-R498. [PMID: 38406842 PMCID: PMC11381025 DOI: 10.1152/ajpregu.00005.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Salmonid fish include some of the most valued cultured fish species worldwide. Unlike most other fish, the hearts of salmonids, including Atlantic salmon and rainbow trout, have a well-developed coronary circulation. Consequently, their hearts' reliance on oxygenation through coronary arteries leaves them prone to coronary lesions, believed to precipitate myocardial ischemia. Here, we mimicked such coronary lesions by subjecting groups of juvenile rainbow trout to coronary ligation, assessing histomorphological myocardial changes associated with ischemia and scarring in the context of cardiac arrhythmias using electrocardiography (ECG). Notable ECG changes resembling myocardial ischemia-like ECG in humans, such as atrioventricular blocks and abnormal ventricular depolarization (prolonged and fragmented QRS complex), as well as repolarization (long QT interval) patterns, were observed during the acute phase of myocardial ischemia. A remarkable 100% survival rate was observed among juvenile trout subjected to coronary ligation after 24 wk. Recovery from coronary ligation occurred through adaptive ventricular remodeling, coupled with a fast cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health in salmonid fish, a family particularly susceptible to cardiac diseases. Furthermore, our results provide valuable insights into comparative studies on the evolution, pathophysiology, and ontogeny of vertebrate cardiac repair and restoration.NEW & NOTEWORTHY Juvenile rainbow trout exhibit a remarkable capacity to recover from cardiac injury caused by myocardial ischemia. Recovery from cardiac damage occurs through adaptive ventricular remodeling, coupled with a rapid cardiac revascularization response. These findings carry significant implications for understanding the mechanisms governing cardiac health within salmonid fishes, which are particularly susceptible to cardiac diseases.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Gothenburg, Sweden
| | - Andreas T Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden
| | - Ida B Johansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Albin Gräns
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Yousaf MN, Røn Ø, Keitel-Gröner F, McGurk C, Obach A. Heart rate as an indicator of stress during the critical swimming speed test of farmed Atlantic salmon (Salmo salar L.). JOURNAL OF FISH BIOLOGY 2024; 104:633-646. [PMID: 37903720 DOI: 10.1111/jfb.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
A swim tunnel is to fish as a treadmill is to humans, and is a device used for indirect measuring of the metabolic rate. This study aims to explore the fish stress (if any) during the critical swimming test routines (fish handling, confinement, and swimming) using heart rate (fH , heartbeat per minute) bio-loggers in farmed Atlantic salmon (Salmo salar L.). In addition, the recovery dynamics of exercised fish using fH were explored for 48 h post swim tests. Continuous fH data were acquired following the surgical implantation and throughout the trials, such as during fish handling, swim tests (critical swimming speed, Ucrit ), and 48 h post swim tests. After 3 weeks of surgical recovery, fH stabilized at 46.20 ± 1.26 beats min-1 , equalizing a ~38% reduction in fH recorded post-surgical tachycardia (74.13 ± 1.44 beats min-1 ). Interestingly, fH was elevated by ~200% compared to baseline levels not only due to the Ucrit (92.04 ± 0.23 beats min-1 ) but also due to fish handling and confinement in the swim tunnel, which was 66% above the baseline levels (77.48 ± 0.34 beats min-1 ), suggesting fish stress. Moreover, significantly higher plasma cortisol levels (199.56 ± 77.17 ng mL-1 ) corresponding to a ~300% increase compared to baseline levels (47.92 ± 27.70 ng mL-1 ) were identified after Ucrit , predicting post-swim test stress (physiological exhaustion). These findings reinforce the importance of fish acclimation in the swim tunnel prior to the swimming tests. However, fH dropped over the course of the 48-h post-swim test, but remained comparatively higher than the basal levels, suggesting fish should be given at least 48 h to recover from handling stress for better fish welfare. This study further explored the influence of fish tagging on Ucrit , which resulted in reduced swimming capabilities of tagged fish (1.95 ± 0.37 body lengths s-1 ) compared to untagged fish (2.54 ± 0.42 body length s-1 ), although this was not significant (p = 0.06), and therefore future tagging studies are warranted.
Collapse
Affiliation(s)
| | - Øyvind Røn
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | | | - Charles McGurk
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | - Alex Obach
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| |
Collapse
|
5
|
Ekström A, Hendriks B, Van Wert JC, Gilbert MJH, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming. Sci Rep 2023; 13:21204. [PMID: 38040741 PMCID: PMC10692232 DOI: 10.1038/s41598-023-47713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart's capacity to pump sufficient oxygen to body tissues to sustain up-river swimming, especially in warm water when oxygen availability declines and cardiac and whole-animal oxygen demand increases. We tested this hypothesis by measuring cardiac and metabolic (cardiorespiratory) performance, and assessing the upper thermal tolerance of coho salmon (Oncorhynchus kisutch) during sustained swimming and acute warming. By surgically ligating the coronary artery, which naturally accumulates arteriosclerotic lesions in migrating salmon, we partially impaired oxygen supply to the heart. Coronary ligation caused drastic cardiac impairment during swimming, even at benign temperatures, and substantially constrained cardiorespiratory performance during swimming and progressive warming compared to sham-operated control fish. Furthermore, upper thermal tolerance during swimming was markedly reduced (by 4.4 °C) following ligation. While the cardiorespiratory capacity of female salmon was generally lower at higher temperatures compared to males, upper thermal tolerance during swimming was similar between sexes within treatment groups. Cardiac oxygen supply is a crucial determinant for the migratory capacity of salmon facing climatic environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 40530, Gothenburg, Sweden.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jacey C Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| | - Matthew J H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| |
Collapse
|
6
|
Wallbom N, Zena LA, McArley TJ, Ekström A, Axelsson M, Gräns A, Sandblom E, Morgenroth D, Kallstenius N. Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout. J Exp Biol 2023; 226:286759. [PMID: 36700410 PMCID: PMC10088527 DOI: 10.1242/jeb.244733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.
Collapse
Affiliation(s)
- Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicklas Kallstenius
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| |
Collapse
|
7
|
Chen G, Wang M, Zhu P, Wang G, Hu T. Adverse effects of SYP-3343 on zebrafish development via ROS-mediated mitochondrial dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129382. [PMID: 35749898 DOI: 10.1016/j.jhazmat.2022.129382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
As a newly-invented and highly-efficiency strobilurin fungicide, pyraoxystrobin (SYP-3343) has been recognized as a highly poisonous toxin for a variety of aquatic organisms. Nevertheless, the developmental toxicity and potential mechanism of SYP-3343 have not been well-documented. The results showed that SYP-3343 was relatively stable and maintained within the range of 20 % in 24 h, and the LC50 value to embryos at 72 hpf was 17.13 μg/L. The zebrafish embryotoxicity induced by 1, 2, 4, and 8 μg/L SYP-3343 is demonstrated by repressive embryo incubation, enhancive mortality rate, abnormal heart rate, malformed morphological characteristic, and impaired spontaneous coiling, indicating SYP-3343 mostly exerted its toxicity in a dose- and time-dependent manner. Besides SYP-3343 was critically involved in regulating cell cycle, mitochondrial membrane potential, and reactive oxygen species production as well as zebrafish primary cells apoptosis, which can be mitigated using antioxidant N-acetyl-L-cysteine. A significant change occurred in total protein content, the biochemical indices, and antioxidant capacities owing to SYP-3343 exposure. Additionally, SYP-3343 altered the mRNA levels of heart development-, mitochondrial function-, and apoptosis-related genes in zebrafish embryos. These results indicated that SYP-3343 induced apoptosis accompanying reactive oxygen species-initiated mitochondrial dysfunction in zebrafish embryos.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
8
|
Zena LA, Ekström A, Gräns A, Olsson C, Axelsson M, Sundh H, Sandblom E. It takes time to heal a broken heart: ventricular plasticity improves heart performance after myocardial infarction in rainbow trout, Oncorhynchus mykiss. J Exp Biol 2021; 224:273477. [PMID: 34792140 DOI: 10.1242/jeb.243578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
Coronary arteriosclerosis is a common feature of both wild and farmed salmonid fishes and may be linked to stress-induced cardiac pathologies. Yet, the plasticity and capacity for long-term myocardial restructuring and recovery following a restriction in coronary blood supply are unknown. Here, we analyzed the consequences of acute (3 days) and chronic (from 33 to 62 days) coronary occlusion (i.e. coronary artery ligation) on cardiac morphological characteristics and in vivo function in juvenile rainbow trout, Oncorhynchus mykiss. Acute coronary artery occlusion resulted in elevated resting heart rate and decreased inter-beat variability, which are both markers of autonomic dysfunction following acute myocardial ischemia, along with severely reduced heart rate scope (maximum-resting heart rate) relative to sham-operated trout. We also observed a loss of myocardial interstitial collagen and compact myocardium. Following long-term coronary artery ligation, resting heart rate and heart rate scope normalized relative to sham-operated trout. Moreover, a distinct fibrous collagen layer separating the compact myocardium into two layers had formed. This may contribute to maintain ventricular integrity across the cardiac cycle or, alternatively, demark a region of the compact myocardium that continues to receive oxygen from the luminal venous blood. Taken together, we demonstrate that rainbow trout may cope with the aversive effects caused by coronary artery obstruction through plastic ventricular remodeling, which, at least in part, restores cardiac performance and myocardium oxygenation.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg 405 30, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
9
|
Poppe TT, Reed AK, Hofossaeter M, Wisløff H. Novel myocardial pathology in farmed salmonids. JOURNAL OF FISH DISEASES 2021; 44:1657-1660. [PMID: 34214213 DOI: 10.1111/jfd.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
|
10
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
11
|
Morgenroth D, McArley T, Gräns A, Axelsson M, Sandblom E, Ekström A. Coronary blood flow influences tolerance to environmental extremes in fish. J Exp Biol 2021; 224:jeb.239970. [PMID: 33688058 DOI: 10.1242/jeb.239970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
13
|
Ekström A, Gräns A, Sandblom E. Can´t beat the heat? Importance of cardiac control and coronary perfusion for heat tolerance in rainbow trout. J Comp Physiol B 2019; 189:10.1007/s00360-019-01243-7. [PMID: 31707423 DOI: 10.1007/s00360-019-01243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Coronary perfusion and cardiac autonomic regulation may benefit myocardial oxygen delivery and thermal performance of the teleost heart, and thus influence whole animal heat tolerance. Yet, no study has examined how coronary perfusion affects cardiac output during warming in vivo. Moreover, while β-adrenergic stimulation could protect cardiac contractility, and cholinergic decrease in heart rate may enhance myocardial oxygen diffusion at critically high temperatures, previous studies in rainbow trout (Oncorhynchus mykiss) using pharmacological antagonists to block cholinergic and β-adrenergic regulation showed contradictory results with regard to cardiac performance and heat tolerance. This could reflect intra-specific differences in the extent to which altered coronary perfusion buffered potential negative effects of the pharmacological blockade. Here, we first tested how cardiac performance and the critical thermal maximum (CTmax) were affected following a coronary ligation. We then assessed how these performances were influenced by pharmacological cholinergic or β-adrenergic blockade, hypothesising that the effects of the pharmacological treatment would be more pronounced in coronary ligated trout compared to trout with intact coronaries. Coronary blockade reduced CTmax by 1.5 °C, constrained stroke volume and cardiac output across temperatures, led to earlier cardiac failure and was associated with reduced blood oxygen-carrying capacity. Nonetheless, CTmax and the temperatures for cardiac failure were not affected by autonomic blockade. Collectively, our data show that coronary perfusion improves heat tolerance and cardiac performance in trout, while evidence for beneficial effects of altered cardiac autonomic tone during warming remains inconclusive.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden.
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
14
|
Ekström A, Axelsson M, Gräns A, Brijs J, Sandblom E. Importance of the coronary circulation for cardiac and metabolic performance in rainbow trout ( Oncorhynchus mykiss). Biol Lett 2019; 14:rsbl.2018.0063. [PMID: 30045901 DOI: 10.1098/rsbl.2018.0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/26/2018] [Indexed: 02/02/2023] Open
Abstract
Cardiac oxygenation is achieved via both coronary arterial and luminal venous oxygen supply routes in many fish species. However, the relative importance of these supplies for cardiac and aerobic metabolic performance is not fully understood. Here, we investigated how coronary artery ligation in rainbow trout (Oncorhynchus mykiss), implanted with heart rate loggers, affected cardiorespiratory performance in vivo While coronary ligation significantly elevated resting heart rate, the standard metabolic rate was unchanged compared to sham-treated controls. However, coronary ligation reduced the maximum metabolic rate while heart rate remained unchanged following enforced exercise. Thus, coronary ligation reduced metabolic and heart rate scopes by 29% and 74%, respectively. Our findings highlight the importance of coronary oxygen supply for overall cardiorespiratory performance in salmonid fish, and suggest that pathological conditions that impair coronary flow (e.g. coronary arteriosclerosis) constrain the ability of fish to cope with metabolically demanding challenges such as spawning migrations and environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Dalum AS, Kristthorsdottir KH, Griffiths DJ, Bjørklund K, Poppe TT. Arteriosclerosis in the ventral aorta and epicarditis in the bulbus arteriosus of Atlantic salmon (Salmo salar L). JOURNAL OF FISH DISEASES 2017; 40:797-809. [PMID: 27723105 DOI: 10.1111/jfd.12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Spontaneous mortality of seemingly healthy, farmed Atlantic salmon (Salmo salar L) is an increasing problem in Norwegian aquaculture. In this study, we present a morphological study of the previously undescribed syndrome of arteriosclerosis of the ventral aorta and epicarditis of the adjacent bulbus arteriosus found in farmed Atlantic salmon, with wild-captured fish as a control group. Both the ventral aorta and epicardium are vital for correct arterial compliance and vascular resistance in the respiratory capillaries of the gills. We discuss the possible implications of ventral aorta arteriosclerosis and epicarditis for blood vascular health and in particular for the increasing frequency of spontaneous gill bleeding in farmed salmon. As both these conditions primarily occur in farmed salmon, we suggest that they should be considered pathological.
Collapse
Affiliation(s)
- A S Dalum
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K H Kristthorsdottir
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - D J Griffiths
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K Bjørklund
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - T T Poppe
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
16
|
Ekström A, Axelsson M, Gräns A, Brijs J, Sandblom E. Influence of the coronary circulation on thermal tolerance and cardiac performance during warming in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2017; 312:R549-R558. [DOI: 10.1152/ajpregu.00536.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
Thermal tolerance in fish may be related to an oxygen limitation of cardiac function. While the hearts of some fish species receive oxygenated blood via a coronary circulation, the influence of this oxygen supply on thermal tolerance and cardiac performance during warming remain unexplored. Here, we analyzed the effect in vivo of acute warming on coronary blood flow in adult sexually mature rainbow trout ( Onchorhynchus mykiss) and the consequences of chronic coronary ligation on cardiac function and thermal tolerance in juvenile trout. Coronary blood flow at 10°C was higher in females than males (0.56 ± 0.08 vs. 0.30 ± 0.08 ml·min−1·g ventricle−1), and averaged 0.47 ± 0.07 ml·min−1·g ventricle−1 across sexes. Warming increased coronary flow in both sexes until 14°C, at which it peaked and plateaued at 0.78 ± 0.1 and 0.61 ± 0.1 ml·min−1·g ventricle−1 in females and males, respectively. Thus, the scope for increasing coronary flow was 101% in males, but only 39% in females. Coronary-ligated juvenile trout exhibited elevated heart rate across temperatures, reduced Arrhenius breakpoint temperature for heart rate (23.0 vs. 24.6°C), and reduced upper critical thermal maximum (25.3 vs. 26.3°C). To further analyze the effects of coronary flow restriction on cardiac rhythmicity, electrocardiogram characteristics were determined before and after coronary occlusion in anesthetized trout. Occlusion resulted in reduced R-wave amplitude and an elevated S-T segment, indicating myocardial ischemia, while heart rate was unaffected. This suggests that the tachycardia in ligated trout across temperatures in vivo was mainly to compensate for reduced cardiac contractility to maintain cardiac output. Moreover, our findings show that coronary flow increases with warming in a sex-specific manner. This may improve whole animal thermal tolerance, presumably by sustaining cardiac oxygenation and contractility at high temperatures.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| |
Collapse
|
17
|
Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, Koppang EO. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. JOURNAL OF FISH DISEASES 2016; 39:41-54. [PMID: 25413740 DOI: 10.1111/jfd.12321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Consumption of fatty acids from fishes is widely regarded as beneficial for preventing cardiovascular disorders. Nevertheless, salmonids themselves are victims of vascular diseases. As the pathogenesis and nature of these changes are elusive, they are here addressed using novel morphological and transcriptional approaches. Coronary arteries of wild Atlantic salmon Salmo salar L., (n = 12) were investigated using histological and immunohistochemical techniques, and RT-qPCR was employed to investigate expression of stretch-induced genes. In an experimental trial, fish were fed diets with different fatty acids composition, and histological features of the coronary arteries (n = 36) were investigated. In addition, the heart fatty acid profile (n = 60) was analysed. There were no differences in morphological or immunological features between wild fish and groups of experimental fish. Arteriosclerotic lesions consisted of smooth muscle cells in dissimilar differential stages embedded in considerable amounts of extracellular matrix in a similar fashion to what is seen in early stages of human atherosclerosis. No fat accumulations were observed, and very few inflammatory cells were present. In affected arteries, there was an induction of stretch-related genes, pointing to a stress-related response. We suggest that salmon may have a natural resistance to developing atherosclerosis, which corresponds well with their high investment in lipid metabolism.
Collapse
Affiliation(s)
- A Dalum
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - R Tangen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K Falk
- Norwegian Veterinary Institute, Norway
| | - I Hordvik
- Institute of Biology, University of Bergen, Norway
| | | | - B Torstensen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - E O Koppang
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
Deng J, Mai K, Chen L, Mi H, Zhang L. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus). FISH & SHELLFISH IMMUNOLOGY 2015; 44:436-444. [PMID: 25804486 DOI: 10.1016/j.fsi.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
This study evaluated the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on growth, antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × Oreochromis aureus). Five experimental diets were formulated with 0 (control), 10, 20, 30, and 40% RSM replacing graded levels of SBM, respectively. Fish were fed one of the five experimental diets for eight weeks, and then challenged by A. hydrophila via intraperitoneal injection and kept for seven days. Dietary RSM inclusion level up to 30% did not affect the weight gain and daily growth coefficient, whereas these were depressed by a further inclusion. Fish fed diet with 40% RSM showed the lowest serum total antioxidant capacity, lysozyme, alternative complement pathway, respiratory burst and phagocytic activities. Dietary RSM inclusion gradually depressed the post-challenge survival rate, and that was significantly lower in fish fed diet with 40% RSM compared to fish fed the control diet. Conversely, the inclusion of RSM generally increased the serum total cholesterol level, the plasma alanine aminotransferase and aspartate aminotransferase activities, and these were significantly higher in fish fed diet with 40% RSM compared to fish fed the control diet. The results indicated that RSM can be included at level up to 30% in diet for tilapia without obvious adverse effects on the growth, antioxidant capacity, non-specific immune response and resistance to A. hydrophila infection, whereas these were depressed by a further inclusion.
Collapse
Affiliation(s)
- Junming Deng
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao 266003, PR China
| | - Liqiao Chen
- School of Life Science, East China Normal University, Shanghai 200062, PR China
| | - Haifeng Mi
- Tongwei Co., Ltd., Chengdu 610093, PR China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu 610093, PR China.
| |
Collapse
|
19
|
Pedrosa V, Romano L, Santos FD, Guimarães J, Silva AD, Mendes E. Hiperplasia em túnicas de artérias coronárias de beijupirás criados em sistema offshore. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-7497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As lesões coronarianas já foram relatadas em espécies de peixes anádromos, com características semelhantes às observadas em aterosclerose humana, mas não em peixes cultivados sem interferência de padrões reprodutivos. Objetivou-se descrever lesões coronarianas em beijupirá (Rachycentron canadum) criado em sistema offshore, em 54 exemplares coletados ao longo do cultivo de oito meses. Amostras de tecido cardíaco de alevinos e juvenis foram submetidas à análise histopatológica e à microscopia eletrônica de transmissão (MET), para visualização de lesões coronarianas, sendo as lâminas histológicas coradas pela técnica de hematoxilina-eosina, ácido periódico de Schiff, alcian blue e reticulina de Gomori. Exames realizados pela fotomicroscopia de luz evidenciaram lesões arteriais caracterizadas por hiperplasia das túnicas íntima e média de artérias coronárias em, respectivamente, 29,63% e 79,63% dos animais, com redução do lúmen arterial. Na MET, foram observadas alterações na estrutura das coronárias com espessamento do endotélio e membrana basal, proliferação de fibroblastos e fibras colágenas, com acúmulo de material lipídico subendotelial, resíduos celulares aderidos à membrana basal e vesículas pinocitóticas com presença de lisossomos isolados. Constatou-se que os peixes da espécie Rachycentron canadum criados em cativeiro desenvolvem lesão arterial do tipo crônica degenerativa inflamatória.
Collapse
Affiliation(s)
- V.F. Pedrosa
- Universidade Federal Rural de Pernambuco, Brasil
| | | | | | | | | | - E.S. Mendes
- Universidade Federal Rural de Pernambuco, Brasil
| |
Collapse
|
20
|
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 2014; 307:H1401-11. [PMID: 25217653 PMCID: PMC4233302 DOI: 10.1152/ajpheart.00755.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
21
|
Borucinska JD, Obasa OA, Haffey NM, Scott JP, Williams LN, Baker SM, Min SJ, Kaplan A, Mudimala R. Morphological features of coronary arteries and lesions in hearts from five species of sharks collected from the northwestern Atlantic Ocean. JOURNAL OF FISH DISEASES 2012; 35:741-753. [PMID: 22882583 DOI: 10.1111/j.1365-2761.2012.01405.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/25/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
Morphological features of coronary arteries and incidental lesions are reported from hearts in five species of sharks, the shortfin mako shark, Isurus oxyrhinchus Rafinesque, thresher shark Alopias vulpinus (Bonaterre), blue shark, Prionace glauca L., the smooth dogfish, Mustelus canis (Mitchill), and spiny dogfish, Squalus acanthias L. Sharks were collected from the northwestern Atlantic between June and August from 1996 to 2010. They were necropsied dockside and the hearts were preserved in buffered formalin. Routine sections including ventricle/conus arteriosus and the atrio-ventricular junctions were embedded in paraffin, stained with common histological and immunohistochemical methods and examined by brightfield microscopy. Myointimal hyperplasia, medial myo-myxomatous hyperplasia and bifurcation pads were observed commonly, and medial muscle reorientation and epicardial myeloid tissues were rare. All the above features differed in severity, prevalence and distribution depending on anatomical site and shark species/size. Morphometric analysis indicated that myomyxomatous hyperplasia is associated with luminal narrowing of blood vessels. As suggested previously, the described morphological features are most likely physiological responses to blood flow characteristics. Vascular and cardiac lesions were uncommon and included, granulomatous proliferative epicarditis with fibroepitheliomas, myxomatous epicardial expansions, medial arterial vacuolation, myocardial fibrosis, acute ventricular emboli and parasitic granulomas. The lesions of embolism, proliferative and granulomatous epicarditis and myocardial fibrosis were in all sharks associated with capture events including retained fishing hooks. The significance and aetiopathogenesis of medial vacuolation and epicardial myxomatous expansions remains unclear.
Collapse
Affiliation(s)
- J D Borucinska
- Department of Biology, University of Hartford, West Hartford, CT 06117-1559, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Johnson KR, Hoagland TM, Olson KR. Endogenous vascular synthesis of B-type and C-type natriuretic peptides in the rainbow trout. ACTA ACUST UNITED AC 2011; 214:2709-17. [PMID: 21795567 DOI: 10.1242/jeb.052415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, natriuretic peptides (NPs) lower blood pressure, reduce blood volume and broadly inhibit cardiovascular remodeling. NPs are often referred to as cardiac hormones, though they also have integral roles in regulating vascular tone, endothelial remodeling and inhibiting vascular smooth muscle cell hypertrophy. Two NPs [atrial (ANP) and C-type (CNP)] have been identified as endogenous constituents in the vasculature of mammals, though such a phenomenon has not previously been described in fishes. Here we describe the endogenous production of B-type NP (BNP) and CNP in multiple blood vessels of the rainbow trout. Western blot analysis showed pro-BNP and pro-CNP production in the efferent branchial artery, celiacomesenteric artery, ventral aorta and anterior cardinal vein. The detection of pro-BNP and pro-CNP was also supported by MALDI-TOF mass spectrometry analysis of NP-enriched tissue extracts. Although vascular pro-peptide levels of BNP and CNP were quantitatively quite comparable to those found in reference tissues (the atrium for BNP and brain for CNP), mRNA levels of these NPs in the vasculature were greatly reduced as determined by quantitative PCR. When the evolutionarily conserved vascular NP (CNP) was infused into un-anesthetized trout, it reduced central venous pressure and mean circulatory filling pressure. CNP also decreased cardiac output via a reduction in preload. The presence of endogenous NP production in the trout vasculature and potent in vivo hypotensive effects further support the numerous functional similarities between teleost and mammalian NP systems.
Collapse
Affiliation(s)
- Keven R Johnson
- University of Notre Dame, Department of Biological Sciences, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
23
|
|
24
|
Durán AC, Rodríguez C, Gil de Sola L, Fernández B, Arqué JM, Sans-Coma V. Intimal thickening of coronary arteries in the rabbitfish, Chimaera monstrosa L. (Chondrichthyes: Holocephali). JOURNAL OF FISH DISEASES 2010; 33:675-682. [PMID: 20572901 DOI: 10.1111/j.1365-2761.2010.01175.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study is the first to report the occurrence of intimal thickening of coronary arteries in a holocephalan, namely the rabbitfish, Chimaera monstrosa. The sample studied consisted of five hearts from rabbitfish with body weights ranging between 12 g and 1116 g. The specimens were fixed in formalin, in methanol:acetone:water (MAW), or in paraformaldehyde and were examined by brightfield and polarization light microscopy. Coronary arteries from three larger animals displayed focal intimal thickenings, which were located in the left main coronary artery trunk, at the level of the cono-ventricular junction, and in several intramyocardial ventricular arteries. The vascular changes were characterized by myointimal proliferation, breakage or absence of the inner elastic lamina, and, in one case, by increased collagen within the myointimal proliferation. Taking into account the severity of the coronary arterial changes, their location, and the body weight of the affected animals, we conclude that (1) these changes are age-related in the rabbitfish and (2) local intense mechanical tension seems to be an important factor in their formation in this species.
Collapse
Affiliation(s)
- A C Durán
- Department of Animal Biology, University of Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Hagensen MK, Abe AS, Falk E, Wang T. Physiological importance of the coronary arterial blood supply to the rattlesnake heart. J Exp Biol 2008; 211:3588-93. [DOI: 10.1242/jeb.024489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe reptilian heart consists of a thick inner spongy myocardium that derives its oxygen and nutrient supply directly from the blood within the ventricular cavity, which is surrounded by a thin outer compact layer supplied by coronary arteries. The functional importance of these coronary arteries remains unknown. In the present study we investigate the effects of permanent coronary artery occlusion in the South American rattlesnake (Crotalus durissus) on the ability to maintain heart rate and blood pressure at rest and during short term activity. We used colored silicone rubber(Microfil) to identify the coronary artery distribution and interarterial anastomoses. The coronary circulation was occluded and the snakes were then kept for 4 days at 30°C. Microfil injections verified that virtually all coronary arteries had successfully been occluded, but also made visible an extensive coronary supply to the outer compact layer in untreated snakes. Electrocardiogram (ECG), blood pressure (Psys) and heart rate (fH) were measured at rest and during enforced activity at day 1 and 4. Four days after occlusion of the coronary circulation, the snakes could still maintain a Psys and fH of 5.2±0.2 kPa and 58.2±2.2 beats min–1, respectively, during activity and the ECG was not affected. This was not different from sham-operated snakes. Thus, while the outer compact layer of the rattlesnake heart clearly has an extensive coronary supply, rattlesnakes sustain a high blood pressure and heart rate during activity without coronary artery blood supply.
Collapse
Affiliation(s)
- Mette K. Hagensen
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
- Department of Cardiology, Research Unit, Aarhus University Hospital (Skejby),Denmark
| | - Augusto S. Abe
- Departamento de Zoologia, Centro de Aquicultura, UNESP, Rio Claro, São Paulo, Brazil
| | - Erling Falk
- Department of Cardiology, Research Unit, Aarhus University Hospital (Skejby),Denmark
| | - Tobias Wang
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
| |
Collapse
|
26
|
Seierstad SL, Svindland A, Larsen S, Rosenlund G, Torstensen BE, Evensen Ø. Development of intimal thickening of coronary arteries over the lifetime of Atlantic salmon, Salmo salar L., fed different lipid sources. JOURNAL OF FISH DISEASES 2008; 31:401-413. [PMID: 18471096 DOI: 10.1111/j.1365-2761.2008.00913.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The objective of the present study was to investigate the development of intimal changes of coronary arteries over the lifetime of farmed Atlantic salmon, Salmo salar L., fed either a 100% fish oil or a 100% vegetable oil blend. The study was performed as a randomized observer blinded controlled trial with parallel group design. At the start of the project, the fish were divided in two groups and sampled at five different time points throughout their life span. The total study sample consisted of 259 healthy fish. Serial sections were taken from the coronary artery lying on the bulbus arteriosus for histopathological evaluation and for area measurements using semi-quantitative and quantitative methods. The earliest onset of vascular changes was detected in fish from both groups in the freshwater stage prior to smoltification. The mean range lesion (MRL), used to describe the severity of the lesions observed, increased significantly for both groups from sea transfer throughout the study period. Comparison of the two groups based on the overall material corrected for time of sampling did not show any difference (P = 0.20) between the two groups with regard to MRL. The percentage lumen loss (PLL) measured by a quantitative method and used as a measure to indicate lesion severity showed an incremental, non-significant increase from week 72 to week 92 and further to week 115 in both diet groups during the seawater phase. Comparison of the groups corrected for time of sampling indicated a difference of PLL in favour of VO (P = 0.02). Heart weight, body weight and body length were all positively and significantly correlated to Log MRL. The partial correlation analysis indicated that heart weight was the most dominant variable in the set. Early vascular changes were found in the major bifurcation of the coronary artery at the apex and beyond the flow divider into the daughter branches. The latter represented the dominant changes and were found throughout the entire lifecycle of the fish. Increasing in size over time they formed pads or cushions that were regularly located close to the outer walls of the bifurcation. The origin of the cells forming the intimal thickening has not been conclusively determined, but immunohistochemical findings indicate a smooth muscle cell origin, possibly of a myointimal type. Our findings suggest there is no correlation between diet and intimal changes. The severity of the changes, MRL and PLL, of the coronary vessels correlate with heart weight and fish weight growth and growth rate and mechanical factors are implicated in intimal development, but rather than being induced by external injury due to the location of the coronaries, haemodynamic factors and low shear stress are proposed as the main mechanism behind these changes.
Collapse
Affiliation(s)
- S L Seierstad
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
27
|
Kjær M, Vegusdal A, Gjøen T, Rustan A, Todorčević M, Ruyter B. Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:112-22. [DOI: 10.1016/j.bbalip.2007.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/21/2007] [Accepted: 12/28/2007] [Indexed: 10/22/2022]
|
28
|
McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 2008; 583:174-85. [PMID: 18282566 DOI: 10.1016/j.ejphar.2007.11.071] [Citation(s) in RCA: 1136] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 09/29/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Stress begins in the brain and affects the brain, as well as the rest of the body. Acute stress responses promote adaptation and survival via responses of neural, cardiovascular, autonomic, immune and metabolic systems. Chronic stress can promote and exacerbate pathophysiology through the same systems that are dysregulated. The burden of chronic stress and accompanying changes in personal behaviors (smoking, eating too much, drinking, poor quality sleep; otherwise referred to as "lifestyle") is called allostatic overload. Brain regions such as hippocampus, prefrontal cortex and amygdala respond to acute and chronic stress and show changes in morphology and chemistry that are largely reversible if the chronic stress lasts for weeks. However, it is not clear whether prolonged stress for many months or years may have irreversible effects on the brain. The adaptive plasticity of chronic stress involves many mediators, including glucocorticoids, excitatory amino acids, endogenous factors such as brain neurotrophic factor (BDNF), polysialated neural cell adhesion molecule (PSA-NCAM) and tissue plasminogen activator (tPA). The role of this stress-induced remodeling of neural circuitry is discussed in relation to psychiatric illnesses, as well as chronic stress and the concept of top-down regulation of cognitive, autonomic and neuroendocrine function. This concept leads to a different way of regarding more holistic manipulations, such as physical activity and social support as an important complement to pharmaceutical therapy in treatment of the common phenomenon of being "stressed out". Policies of government and the private sector play an important role in this top-down view of minimizing the burden of chronic stress and related lifestyle (i.e. allostatic overload).
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue Box 165, New York, NY 10065, United States.
| |
Collapse
|
29
|
Poppe TT, Taksdal T, Bergtun PH. Suspected myocardial necrosis in farmed Atlantic salmon, Salmo salar L.: a field case. JOURNAL OF FISH DISEASES 2007; 30:615-20. [PMID: 17850577 DOI: 10.1111/j.1365-2761.2007.00841.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arteriosclerosis of the coronary artery has been described as a 'fact of life' for Pacific and Atlantic salmonids due to the high prevalence in spawning fish. The lesions are believed to be the result of overstretching of the highly distensible bulbus arteriosus whereby the endothelium of the main coronary vessel becomes mechanically damaged and a smooth muscle proliferation ensues with resultant partial occlusion of the vessel. The physiological significance for the function of the heart has yet to be demonstrated, but experimental studies show that, for example, swimming performance is compromised in fish in which the coronary artery has been ligated. This paper describes a case of myocardial necrosis in harvest-size Atlantic salmon during and after transportation to the slaughterhouse. Mortality during this process reached 10% in some of the transports and affected fish showed characteristic signs of congestive cardiac failure. Histology revealed extensive myointimal proliferation in the coronary artery and patchy necrosis of the compact ventricular myocardium. Several unfavourable factors such as high water temperature, skeletal malformations and crowding all probably contributed to extra cardiac workload. To the best of our knowledge, this is the first reported field case showing a link between coronary lesions and severe cardiac pathology.
Collapse
Affiliation(s)
- T T Poppe
- Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | | | | |
Collapse
|
30
|
Abstract
The brain is the key organ of the response to stress because it determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the "flight-or-fight" response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear and tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in the short-run and promote adaptation ("allostasis"). The brain is a target of stress, and the hippocampus was the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus, amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physiological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
31
|
McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. DIALOGUES IN CLINICAL NEUROSCIENCE 2007. [PMID: 17290796 PMCID: PMC3181832 DOI: 10.31887/dcns.2006.8.4/bmcewen] [Citation(s) in RCA: 603] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mind involves the whole body, and two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Stress is a condition of the mind-body interaction, and a factor in the expression of disease that differs among individuals. It is not just the dramatic stressful events that exact their toll, but rather the many events of daily life that elevate and sustain activities of physiological systems and cause sleep deprivation, overeating, and other health-damaging behaviors, producing the feeling of being “stressed out.” Over time, this results in wear and tear on the body, which is called “allostatic load,” and it reflects not only the impact of life experiences but also of genetic load, individual lifestyle habits reflecting items such as diet, exercise, and substance abuse, and developmental experiences that set life-long patterns of behavior and physiological reactivity. Hormones associated with stress and allostatic load protect the body in the short run and promote adaptation by the process known as allostasis, but in the long run allostatic load causes changes in the body that can lead to disease. The brain is the key organ of stress, allostasis, and allostatic load, because it determines what is threatening and therefore stressful, and also determines the physiological and behavioral responses. Brain regions such as the hippocampus, amygdala, and prefrontal cortex respond to acute and chronic stress by undergoing structural remodeling, which alters behavioral and physiological responses. Translational studies in humans with structural and functional imaging reveal smaller hippocampal volume in stress-related conditions, such as mild cognitive impairment in aging and prolonged major depressive illness, as well as in individuals with low self-esteem. Alterations in amygdala and prefrontal cortex are also reported. Besides Pharmaceuticals, approaches to alleviate chronic stress and reduce allostatic load and the incidence of diseases of modern life include lifestyle change, and policies of government and business that would improve the ability of individuals to reduce their own chronic stress burden.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
32
|
Kleveland EJ, Syvertsen BL, Ruyter B, Vegusdal A, Jørgensen SM, Gjøen T. Characterization of scavenger receptor class B, type I in Atlantic salmon (Salmo salar L.). Lipids 2006; 41:1017-27. [PMID: 17263301 DOI: 10.1007/s11745-006-5052-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The scavenger receptor class B, type I (SR-BI) is an important player in regulation of mammalian lipid homeostasis. We therefore wanted to study this receptor in Atlantic salmon (Salmo salar L.), which requires a diet with particular high lipid content. We have for the first time cloned and characterized SR-BI from a salmonid fish. The predicted 494 amino acid protein contained two transmembrane domains, several putative N-glycosylation sites, and showed 72% sequence identity with the predicted homolog from zebrafish. SR-BI expression was analyzed by reverse transcription Real-Time PCR in several tissues, and a high relative expression in salmon midgut was detected, which may suggest that SR-BI has a role in uptake of lipids from the diet. We also expressed a construct of salmon myc-tagged SR-BI in salmon TO cells and HeLa cells, which gave a protein of approximately 80 kDa on reducing SDS-PAGE using an antibody against the myc-epitope. Immunofluorescence microscopy analyses of the salmon SR-BI protein in transiently transfected HeLa cells revealed staining in the cell periphery and in some intracellular membranes, but not in the nucleus, which indicated that the salmon protein may be a functional membrane protein. We also observed a high degree of co-localization using an anti-peptide SR-BI antiserum. We found that 20 microg mL(-1) insulin up-regulated the SR-BI mRNA levels in primary cultures of salmon hepatocytes relative to untreated cells. Oleic acid, EPA, DHA, or dexamethasone did not affect the relative expression of SR-BI in this liver model system. In conclusion, the salmon SR-BI cDNA encoded a protein with several features common to those of mammalian species. SR-BI gene expression was high in the intestine, which leads us to propose that SR-BI may contribute to the uptake of lipids from the diet.
Collapse
Affiliation(s)
- E J Kleveland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
33
|
Tørud B, Taksdal T, Dale OB, Kvellestad A, Poppe TT. Myocardial glycogen storage disease in farmed rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2006; 29:535-40. [PMID: 16948703 DOI: 10.1111/j.1365-2761.2006.00749.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper is the first description of a spontaneous glycogen-storage disease in a lower vertebrate, as previous descriptions deal with humans and other mammals, or fish where the condition has been experimentally induced. Affected farmed rainbow trout experienced increased mortality from 60 days post-startfeeding and displayed clinical signs of heart failure with abnormal behaviour, exophthalmia, distended abdomen and ventral skin petechiation. Necropsy revealed alterations in cardiac shape with distended atria and rounded ventricles. Microscopically, the compact wall of the ventricle was absent, uneven or thinner than normal. The cardiac myocytes contained extensive amounts of glycogen in cytoplasmic vacuoles as demonstrated by periodic acid-Schiff staining that was abolished by saliva-diastase pretreatment on serial sections. Associated lesions included conspicuous subepicardial and myocardial vascularization, epicardial thickening and necrosis of the ventricular compactum/spongiosum interphase. The lesions in cardiac myocytes had a striking resemblance to glycogenosis type II (Pompe disease), a rare autosomal recessive lysosomal storage disease in humans. This condition was more severe and mortality was higher in a replicate/parallel fish group treated perorally with 17alpha-methyltestosterone to produce all-female progeny, indicating that the hormone treatment aggravated the condition resulting in earlier and more severe manifestation of the disease in this group.
Collapse
Affiliation(s)
- B Tørud
- Fiskehelsa BA, Valsøyfjord, Norway.
| | | | | | | | | |
Collapse
|
34
|
Takle H, Baeverfjord G, Helland S, Kjorsvik E, Andersen O. Hyperthermia induced atrial natriuretic peptide expression and deviant heart development in Atlantic salmon Salmo salar embryos. Gen Comp Endocrinol 2006; 147:118-25. [PMID: 16466726 DOI: 10.1016/j.ygcen.2005.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/19/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
Heart abnormalities are increasingly recognized as a problem in salmon aquaculture. Fish in early life-stages are particularly susceptible to teratogens, including elevated water temperature. Recently, heat-induced mRNA expression of the cardiac hormone atrial natriuretic peptide (ANP), which is known to be involved in modulation of cardiac growth and regulation of cardiac homeostasis, was demonstrated in Atlantic salmon (Salmo salar) embryos by RAP-PCR. The relation between heat sensitive ANP expression and heart abnormalities was explored in two experiments. In an experiment with short-term exposure, salmon eggs were heat shocked at 16 degrees C at eight different embryonic stages from gastrulation till completion of somitogenesis. The RT-PCR results showed that the ANP mRNA expression was down-regulated at the onset of heart formation at the gastrula stage, while the transcription became heat inducible from the fusioning of the heart tube around the 15th-20th somite stage and onwards. This was confirmed by whole-mount in situ hybridization, which also showed that ANP is exclusively expressed in the heart of Atlantic salmon embryos. In a second long-term experiment, salmon embryos were incubated at either 10 degrees C (high temperature) or 8 degrees C (controls) from fertilization till first feeding, and subsequently reared within normal conditions to an average size of 52 g. The long-term hyperthermic embryos showed up-regulated ANP transcription at the approximately 9th and approximately 20th somite stage and at the completion of somitogenesis. The cardiosomatic index [CSI; (ventricle weight/body weight) *100] demonstrated a significant decrease in the relative heart weight of fish incubated at 10 degrees C during the embryogenesis compared with controls. In these fish, aplasia of septum transversum was observed in 2 of 25 fish, resulting in abnormally shaped hearts situated partly within the abdominal cavity. Altogether, our results demonstrate that hyperthermia both induce deviant development of heart and associated structures and up-regulation of ANP transcription during embryogenesis. A possible role of ANP in development of heart malformations is thus suggested.
Collapse
Affiliation(s)
- Harald Takle
- AKVAFORSK, Institute of Aquaculture Research, P.O. Box 5010, N-1432 Aas, Norway.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Jones DR, Perbhoo K, Braun MH. Necrophysiological determination of blood pressure in fishes. Naturwissenschaften 2005; 92:582-5. [PMID: 16172859 DOI: 10.1007/s00114-005-0046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
Bony fishes have an elastic chamber between the heart and aorta, the bulbus arteriosus, which has unique mechanical properties. On inflation, the isolated bulbus is initially very stiff but soon becomes extremely compliant yielding a steady (plateau) pressure upon further inflation, which appears to be similar in any given species. Here we show that the plateau pressure correlates with mean blood pressure determined in vivo. Consequently, inflation of the bulbus can be used to determine blood pressure in the living animal from recordings made after it is dead.
Collapse
Affiliation(s)
- David R Jones
- Zoology Animal Care, University of British Columbia, 6199 South Campus Road, Vancouver, BC, V6T 1W5, Canada.
| | | | | |
Collapse
|
37
|
Seierstad SL, Poppe TT, Koppang EO, Svindland A, Rosenlund G, Frøyland L, Larsen S. Influence of dietary lipid composition on cardiac pathology in farmed Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2005; 28:677-90. [PMID: 16303029 DOI: 10.1111/j.1365-2761.2005.00671.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The present study investigated the short-term (5 months) effect of replacing dietary marine oils with vegetable oils on the development of arteriosclerotic changes in the heart of Atlantic salmon, Salmo salar. The experiment was performed as a randomized observer-blinded and controlled trial. Farmed Atlantic salmon were randomly sampled from a study population containing 900 individuals. The salmon were divided into three groups and given diets with either 100% fish oil (Diet 1), a 50/50% mixture of fish oil and rapeseed oil (Diet 2) or 100% rapeseed oil (Diet 3). Ten sexually immature salmon from each dietary group were sampled in March and August 2002. Additionally, 47 sexually mature wild salmon were randomly collected in mid-September 2001. Serial histological sections were taken from the bulbus arteriosus and ventricle wall for histopathological evaluation of the coronary arteries and myocardium. No significant differences in mean coronary changes recorded by the main variable 'mean range lesion' (MRL) were detected between the groups in March or August. MRL increased significantly between March and August with Diet 2 (P < 0.01), was nearly significant with Diet 3 (P = 0.06) and was unchanged with Diet 1. This pattern coincided with the Diet 2 group having the highest increase in heart weight. MHC class II immunoreactive cells in the coronary changes were detected in sections from one individual in each group. Heart weight was the most dominant variable in the data set and explained linearly 15.5% of the variation in MRL. Body weight, fish length and heart weight were all significantly, positively and linearly correlated to MRL. The Diet 2 group had the highest growth rate and also exhibited a significant increase in MRL. The possible influence of diet composition on weight gain and MRL needs to be further elucidated. Increase in heart weight seems to be the dominating predictor of the appearance of MRL in Atlantic salmon. However, the present results cannot exclude the possibility that differences in fatty acid composition of fish feed can influence the development of arteriosclerotic changes in Atlantic salmon.
Collapse
Affiliation(s)
- S L Seierstad
- Department of Basic Sciences and Aquatic Medicine, The Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mangel M, Munch SB. A life-history perspective on short- and long-term consequences of compensatory growth. Am Nat 2005; 166:E155-76. [PMID: 16475079 DOI: 10.1086/444439] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 06/23/2005] [Indexed: 11/03/2022]
Abstract
Compensatory or catch-up growth (CG) is widely observed following periods of resource deprivation. Because of this commonness, it is generally assumed that compensatory growth is adaptive, but most theory to date has explicitly ignored considerations of fitness. Following a period of deprivation, when resources become plentiful again, individuals may not respond at all and continue on a "normal" trajectory from a smaller size at age, may exhibit faster-than-normal growth immediately following the end of the period, or may adopt a growth strategy that involves faster-than-normal growth at some later time. Compensating individuals may also overtake control individuals who have been growing normally throughout. We hypothesize that the key to understanding CG is that growth leads to the accumulation of damage at the cellular level that is expressed (and thus must be modeled) at the level of the organism. We show that a life-history model incorporating the mortality consequences of both size and damage provides a framework for understanding compensatory growth. We use the theory to classify physiological and life-history characteristics for which CG is predicted to be the optimal response to deprivation.
Collapse
Affiliation(s)
- Marc Mangel
- Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
39
|
Agnisola C. Role of nitric oxide in the control of coronary resistance in teleosts. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:178-87. [PMID: 15979368 DOI: 10.1016/j.cbpb.2005.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 05/19/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
In mammals, the in vivo coronary blood flow and myocardial oxygen consumption are closely related via changes in coronary resistance in response to the metabolic demands of the myocardium. A fine neurohumoral regulation of coronary resistance holds true also in fish, and particularly in teleosts, where several vasoconstrictive and vasodilative mechanisms have been described, with numerous putative effectors, including prostanoids, acetylcholine, adrenaline, serotonin, adenosine, steroid hormones. Here, a resume is reported of the available evidence on the involvement of nitric oxide (NO) in the control of coronary resistance in teleosts and particularly in salmonids. Most of the evidence reported is from a comprehensive study performed on a Langedorff-type preparation of the isolated trout heart. Using a physio-pharmacological approach, the experiments performed on this preparation have demonstrated that trout coronary resistance is reduced by l-arginine (NOS substrate), nitroprusside and SNAP (NO donors) and is increased by the NOS inhibitors l-NNA and l-NAME. The vasodilation induced by nitroprusside is blocked by the guanylate cyclase inhibitor methylene blue. l-arginine increases NO release in the perfusate, while l-NNA reduces the release. NO release is inversely related with the coronary resistance. l-NNA inhibits the vasodilatory effects of acetylcholine, serotonin and adenosine. The vasodilation induced by adenosine is accompanied by NO release and involves stretch receptors. Hypoxia induces vasodilation and both adenosine and NO release in the preparation; the NO release under hypoxia is blocked by theophylline. On the whole these data indicate that NO plays a central role in the control of coronary resistance in trout. In particular, a main role for NO as an amplifier of the adenosine-mediated vasodilation under hypoxia can be hypothesized.
Collapse
Affiliation(s)
- C Agnisola
- Department of Biological Sciences, University of Naples Federico II, V. Mezzocannone 8, I-80134 Naples, Italy.
| |
Collapse
|
40
|
Vegusdal A, Gjøen T, Berge RK, Thomassen MS, Ruyter B. Effect of 18∶1n−9, 20∶5n−3, and 22∶6n−3 on lipid accumulation and secretion by atlantic salmon hepatocytes. Lipids 2005; 40:477-86. [PMID: 16094857 DOI: 10.1007/s11745-005-1407-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have studied the effects of dietary FA on the accumulation and secretion of [3H]glycerolipids by salmon hepatocytes in culture. Atlantic salmon were fed diets supplemented with either 100% soybean oil (SO) or 100% fish oil (FO), and grew from an initial weight of 113 +/- 5 g to a final weight of 338 +/- 19 g. Hepatocytes were isolated from both dietary groups and incubated with [3H]glycerol in an FA-free medium; a medium supplemented with 0.75 mM of one of three FA-18:1 n-9, 20:5n-3, or 22:6n-3--or a medium supplemented with 0.75 mM of the sulfur-substituted FA analog tetradecylthioacetic acid (TTA), which cannot undergo beta-oxidation. Incubations were allowed to proceed for 1, 2, 6, or 24 h. The rate of the secretion of radioactive glycerolipids with no FA added was 36% lower from hepatocytes isolated from fish fed the FO diet than it was from hepatocytes isolated from fish fed the SO diet. Hepatocytes incubated with 18:1 n-9 secreted more [3H]TAG than when incubated with no FA, whereas hepatocytes incubated with 20:5n-3 or TTA secreted less labeled TAG than when incubated with no FA. This observation was independent of the feeding group. Hepatocytes incubated with 22:6n-3 secreted the highest amounts of total [3H]glycerolipids compared with the other treatments, owing to increased secretion of phospholipids and mono- and diacylglycerols (MDG). In contrast, the same amounts of [3H]TAG were secreted from these cells as from cells incubated in an FA-free medium. The lipid-lowering effect of FO is thus independent of 22:6n-3, showing that 20:5n-3 is the FA that is responsible for the lipid-lowering effect. The ratio of TAG to MDG in lipids secreted from hepatocytes to which 20:5n-3 or TTA had been added was lower than that in lipids secreted from hepatocytes incubated with 18:1 n-9 or 22:6n-3, suggesting that the last step in TAG synthesis was inhibited. Morphometric measurements revealed that hepatocytes incubated with 20:5n-3 accumulated significantly more cellular lipid than cells treated with 18:1n-9, 22:6n-3, TTA, or no treatment. The area occupied by mitochondria was also greater in these cells. The present study shows that dietary FO reduces TAG secretion from salmon hepatocytes and that 20:5n-3 mediates this effect.
Collapse
Affiliation(s)
- A Vegusdal
- AKVAFORSK, Institute of Aquaculture Research, NO-1432 As, Norway.
| | | | | | | | | |
Collapse
|
41
|
Seierstad SL, Poppe T, Larsen S. Introduction and comparison of two methods of assessment of coronary lesions in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2005; 28:189-197. [PMID: 15813860 DOI: 10.1111/j.1365-2761.2005.00615.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigated and compared quantitative and semi-quantitative coronary lesion evaluation in Atlantic salmon, Salmo salar. A total of 121 immature farmed and 47 sexually mature wild Atlantic salmon were included. Coronary arteries from all fish were morphometrically evaluated using a semi-quantitative method. A subsample of 76 salmon was additionally evaluated using a quantitative method. Another subsample of 71 salmon was used for reliability testing of the semi-quantitative method. Ten cross-sections of coronary arteries located on the ventral surface of the bulbus arteriosus were semi-quantitatively scored with regard to myointimal coronary lesions. Quantitative measurements comprised maximal intimal thickness and area lesion (%) while semi-quantitative measurements comprised maximal intimal thickness and lesion degree (%). Scores for individual fish were expressed as the average of lesion score, denoted as mean range lesion. One person performed all evaluations blindly. Two pathologists tested repeatability of the semi-quantitative lesion score measurements blindly. Both semi-quantitative and quantitative variables increased significantly with increasing lesion score. Semi-quantitative estimation gave significantly higher maximal intimal thickness values than quantitative measurement. Semi-quantitative measurements were found to explain 63.2% of variation in quantitatively measured maximal intimal thickness. Due to lack of agreement, the two methods are not directly comparable and one method cannot replace the other. Repeatability within and between observers with regard to semi-quantitative classification was very good with Kappa values larger than 61.5%. The semi-quantitative method was a valid and reliable method for coronary lesion evaluation in Atlantic salmon.
Collapse
Affiliation(s)
- S L Seierstad
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | |
Collapse
|
42
|
Clark JJ, Clark RJ, McMinn JT, Rodnick KJ. Microvascular and biochemical compensation during ventricular hypertrophy in male rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:695-703. [PMID: 15581801 DOI: 10.1016/j.cbpc.2004.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/14/2004] [Accepted: 08/16/2004] [Indexed: 11/28/2022]
Abstract
We investigated whether there are compensatory changes in the coronary microvasculature, cardiac lipid metabolism, and myocyte ultrastructure associated with ventricular enlargement in male rainbow trout. Epicardial tissue was sampled at different stages of sexual maturation, and we estimated arterial capillary density, intercapillary diffusion distance, and applied a diffusion model to predict PO(2) at different workloads. We also measured biochemical indices of lipid metabolism and estimated fractional volumes of mitochondria and myofibrils in myocytes. Immature fish with nonenlarged ventricles had the highest capillary length densities (1620+/-158 mm mm(-3)). Maturing trout with moderate ventricular hypertrophy had lower capillary length densities (1103+/-58 mm mm(-3)) and similar diffusion distances (13.9+/-0.7 microm) compared with immature fish (11.7+/-0.9 microm). The largest ventricles had intermediate capillary length densities (1457+/-288 mm mm(-3)) and diffusion distances (12.8+/-0.8 microm). Modelling predicted that enlarged ventricles would not become anoxic even at maximal workloads. Biochemical markers of fatty acid metabolism and aerobic capacity were unchanged with hypertrophy. Volume densities of mitochondria and myofibrils were also not influenced by cardiac growth. In summary, ventricle hypertrophy results in expansion of the coronary capillary bed and the maintenance of the epicardial capacities for fat and oxidative metabolism.
Collapse
Affiliation(s)
- J Jason Clark
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
43
|
Agnisola C, Petersen L, Mustafa T. Effect of coronary perfusion on the basal performance, volume loading and oxygen consumption in the isolated resistance-headed heart of the trout Oncorhynchus mykiss. ACTA ACUST UNITED AC 2004; 206:4003-10. [PMID: 14555740 DOI: 10.1242/jeb.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basal performance, volume loading response and oxygen consumption were determined in a resistance-headed preparation of the isolated trout heart. Two groups of hearts were used: the +CF group, in which the coronary vascular tree was perfused with a flow directly related to the pressure generated by the heart, and the -CF group, in which the coronary flow was set to zero. As a criterion for setting basal performance, the atrial input pressure was set in order to induce the ventricle to produce a cardiac output of 15 ml min(-1) kg(-1). Once basal conditions were obtained, the preparation was perfused for 30 min, and atrial and aortic pressure, cardiac output, heart rate, coronary pressure and coronary flow were determined at 5 min intervals. At the onset of perfusion, there was no difference in the basal performance between the two groups: the same preload was necessary to get the same cardiac output in both perfusion groups. None of the other performance parameters determined were different. However, after only 5 min of perfusion, the -CF hearts displayed significant adjustments, with increased atrial preload and ventricular preload (mean atrial pressure), and a significant decrease in cardiac output. At the end of the 30 min basal perfusion period, hearts were challenged with a stepwise increase in preload in order to obtain maximal stroke work (volume loading). The effect of coronary perfusion on the heart's response to volume loading was highly significant: the stroke work-preload relationship was significantly shifted towards higher preload values in the -CF group. Also, the maximal work produced by the heart under the experimental conditions used was lower in the -CF group. Rate of oxygen consumption of the heart increased significantly with volume loading, from a basal value of approximately 20 microl O2 min(-1) g(-1) to approx. 40 microl O2 min(-1) g(-1), but was not significantly affected by the absence of coronary perfusion. Mechanical efficiency under basal conditions was approximately 17%, but was not affected by either volume loading or coronary perfusion. Taken as a whole, these data represent direct evidence of the effect of coronary perfusion on the mechanical performance of the trout heart, but also show that these effects are limited by significant self-adjustments that occur in the heart.
Collapse
Affiliation(s)
- C Agnisola
- Università degli studi di Napoli, Dipartimento di Fisiologia Generale ed Ambientale, via Mezzocannone 8, 80134-Napoli, Italy.
| | | | | |
Collapse
|
44
|
Agnisola C, Masullo P, Mustafa T. Short-term responses of coronary circulation to cortisol and estrogen in trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2004; 135:210-6. [PMID: 14697307 DOI: 10.1016/j.ygcen.2003.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study was designed to investigate the short-term effects of cortisol and 17-beta-estradiol on the intact coronary tree of rainbow trout (Oncorhynchus mykiss). A non-working, isolated, and perfused heart preparation was used. The coronary pressure was monitored together with the coronary flow in order to calculate the coronary resistance. The drug effects were expressed as percent change in coronary resistance. At concentrations higher than 10(-5) mol l(-1), cortisol elicited a significant vasoconstriction (p<0.001) within 10 min of perfusion. The simultaneous administration of cortisol and adenosine (both at 10(-4) mol l(-1)) induced a significant reduction (p<0.001) of the coronary tree response elicited by each drug alone. The perfusion of the intact coronary trout system with 20 ng ml(-1) of 17-beta-estradiol elicited a significant vasodilative response (p<0.001) within 5-15 min of perfusion. This vasodilation did not involve nitric oxide, because no significant effect of Nomega-nitro-L-arginine (L-NA, a nitric oxide synthase inhibitor) in presence of the estrogen was observed. 17-beta-estradiol was also able to reduce the vasoconstriction induced by 10(-3) mol l(-1) acetylcholine. From these results it is possible to suggest that the steroid hormones, cortisol and 17-beta-estradiol, expound their action on the trout coronary tree through a non-genomic mechanism.
Collapse
Affiliation(s)
- C Agnisola
- Dipartimento di Fisiologia Generale ed Ambientale, Università degli studi di Napoli Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| | | | | |
Collapse
|