1
|
Argentino F, Mallardo M, Costagliola C, Daniele A, Nigro E. β-Hydroxybutyrate mitigates the detrimental effects of high glucose in human retinal pigment epithelial ARPE-19 cells. Hum Cell 2025; 38:59. [PMID: 39976785 PMCID: PMC11842486 DOI: 10.1007/s13577-025-01187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
High glucose leads to cellular damage and dysfunction in the retina. Dietary interventions, including the use of ketogenic diets, have been explored for their potential to reduce the adverse effects of hyperglycemia. β-Hydroxybutyrate (BHB), a ketone body, has immune and anti-inflammatory properties. This study aims to investigate whether BHB ameliorates the harmful effects induced by high glucose in ARPE-19 cells, a model of retinal pigment epithelium. We investigated the effects induced by high glucose and/or BHB on viability, migration, colony-forming ability, cell cycle progression and cytokine production. Our data indicate that high glucose significantly reduces the viability of ARPE-19 cells with no significant changes in apoptosis or autophagy, while inducing cell cytostasis. On the other hand, BHB exerts a protective effect on ARPE-19 cells under hyperglycemic conditions improving cell viability and alleviating glucose-induced cell cycle arrest. Additionally, BHB treatment affects the expression of IL-8 and IL-17α, as well as of MCP-1, modulating the inflammatory response, cell migration and wound healing. In conclusion, this study highlights the potential protective role of BHB against the detrimental effects induced by high glucose on ARPE-19 cells. These findings support the use of ketone bodies in mitigating high glucose-induced cellular damage. Future research will be critical to translate these findings to the clinical practice for metabolic diseases.
Collapse
Affiliation(s)
- Francesca Argentino
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145, Naples, Italy
- International School of Advanced Studies, Center for Neuroscience, University of Camerino, 62032, Camerino, MC, Italy
| | - Marta Mallardo
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, Eye Clinic, University of Naples "Federico II", Naples, Italy
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
2
|
Wu JS, Chu PY, Hsu WY, Chuang TH, Yu YC, Pan YC, Lin YT, Tang CH, Lee CL, Wu YC. Fractionation and identification of ocular protective compounds from kochiae fructus against oxidative damage in retinal pigment epithelium cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119328. [PMID: 39793774 DOI: 10.1016/j.jep.2025.119328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kochiae Fructus, the ripe fruit of Kochia scoparia, is a traditional Chinese medicine commonly used to treat eye discomforts and vision problems. Although Kochiae Fructus is mentioned in many classical Chinese medical texts, its protective effects and the roles of its active phytochemicals in eye treatment still lack scientific exploration. AIM OF THE STUDY This study aimed to clarify the protective effects and identify the active fractions and compounds of Kochiae Fructus against oxidative stress-induced retinal pigment epithelium (RPE) cell death. MATERIALS AND METHODS Liquid-liquid partitioning was employed to prepare active fractions. Silica gel, RP-18, and Sephadex™ LH-20 gels were used as stationary phases to purify the compounds through column chromatography. Cell models were established by treating ARPE-19 (RPE cell line) with hydrogen peroxide (H₂O₂) and tert-butyl hydroperoxide (TBHP), respectively. RESULTS The methanol aqueous fraction from ethyl acetate-soluble extract (KSEM) alleviated oxidant-induced RPE cell death in a dose-dependent manner and activated the Nrf2/HO-1 pathway, a critical defense mechanism against oxidative damage. The isolated flavonols in fraction KSEM, hyperoside, quercetin, and kaempferol, reduced oxidant-induced cell mortality, with quercetin showing the strongest effect. Moreover, combination treatment revealed that hyperoside and kaempferol synergistically enhanced the protective effects of quercetin, making the combined treatment more efficient than quercetin alone. CONCLUSIONS The protective effects of Kochiae Fructus against oxidative damage in RPE cell was validated with the KSEM fraction. The compound quercetin was identified as the important contributor. However, the synergistic effect of the hyperoside, quercetin, and kaempferol mixture may play a dominant role in the protective action of Kochiae Fructus. Overall, these findings highlight the potential of Kochiae Fructus and its flavonol mixture as a basis for developing treatments targeting ocular diseases associated with oxidative damage in retina.
Collapse
Affiliation(s)
- Jian-Sheng Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 0402, Taiwan; Department of Ophthalmology, Changhua Christian Hospital, Changhua, 50006, Taiwan.
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan.
| | - Wei-Yu Hsu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, 406040, Taiwan.
| | - Ying-Chun Yu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| | - Yi-Cheng Pan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| | - Yi-Ting Lin
- Department of Cosmeceutics, China Medical University, Taichung, 40604, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 0402, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Chia-Lin Lee
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Cosmeceutics, China Medical University, Taichung, 40604, Taiwan.
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
3
|
Parmar UPS, Surico PL, Mori T, Singh RB, Cutrupi F, Premkishore P, Gallo Afflitto G, Di Zazzo A, Coassin M, Romano F. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants (Basel) 2025; 14:152. [PMID: 40002339 PMCID: PMC11852319 DOI: 10.3390/antiox14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision impairment worldwide, primarily driven by oxidative stress and inflammation. This review examines the role of antioxidants in mitigating oxidative damage, emphasizing both their therapeutic potential and limitations in AMD management. Key findings underscore the efficacy of specific antioxidants, including vitamins C and E, lutein, zeaxanthin, and Coenzyme Q10, in slowing AMD progression. Landmark studies such as AREDS and AREDS2 have shaped current antioxidant formulations, although challenges persist, including patient variability and long-term safety concerns. Emerging therapies, such as mitochondrial-targeted antioxidants and novel compounds like saffron and resveratrol, offer promising avenues for AMD treatment. Complementary lifestyle interventions, including antioxidant-rich diets and physical activity, further support holistic management approaches. This review highlights the critical role of antioxidants in AMD therapy, advocating for personalized strategies to optimize patient outcomes.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
- Department of Sense Organs, La Sapienza University, 00185 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Rohan Bir Singh
- Department of Health and Medical Sciences, Adelaide Medical School, Adelaide, SA 5000, Australia
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Pramila Premkishore
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Sciences, Ospedale Luigi Sacco, University of Milan, 20157 Milan, Italy
| |
Collapse
|
4
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
5
|
Tang AC, Besley NA, Trimpey-Warfhatig R, Yang P, Wessel H, Brown L, Kirshner Z, Jaffe GJ. The novel secretome ST266 activates Akt and protects against oxidative stress-mediated injury in human RPE and Müller cells. Exp Eye Res 2024; 248:110060. [PMID: 39182598 DOI: 10.1016/j.exer.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative stress-mediated retinal pigment epithelial (RPE) cell damage is associated with age-related macular degeneration (AMD). ST266 is the biological secretome produced by a novel population of amnion-derived multipotent progenitor cells. Herein, we investigated the effect of ST266 on RPE cell injury induced by hydroquinone (HQ), a cigarette smoke related oxidant, hydrogen peroxide (H2O2) and all-trans retinal (atRal), a pro-oxidant component of the retinoid cycle. We additionally investigated its effect on Müller cell injury induced by H2O2. Cultured human RPE cells were pre-treated for 1 h in the presence or absence of MK-2206, a protein kinase B (Akt) inhibitor, then treated with varying concentrations of HQ, H2O2, or atRal for 1.5 h. Cultured human Müller cells (MIO-M1) were pre-treated for 1 h in the presence or absence of MK-2206, then treated with varying concentrations of H2O2 for 1.5 h. Media were then replaced with STM100 (control media into which the ST266 secretome proteins were collected) or ST266 at various times. Cell viability was determined with WST-1 reagent. Mitochondrial membrane potential (Δψm) was quantified by a fluorescence plate reader. The protein phosphorylation levels of Akt, glycogen synthase kinase 3 beta (GSK-3β), and p70 ribosomal S6 kinase (p70S6K) were measured by Western blot. ST266 significantly improved RPE and MIO-M1 cell viability that was reduced by oxidant exposure and improved oxidant-disrupted Δψm. In both cell types, ST266 induced phosphorylation of Akt, GSK-3β, and p70S6K. MK-2206 significantly eliminated ST266-mediated protein phosphorylation of Akt, GSK-3β, and p70S6K and abolished the ST266-protective effect on cell viability. In conclusion, ST266 activates Akt, protects against oxidative stress-mediated cell injury in an Akt-dependent manner, and improves Δψm, suggesting a potential role for ST266 therapy in treating retinal diseases such as AMD.
Collapse
Affiliation(s)
- Alan C Tang
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | - Nicholas A Besley
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | | | - Ping Yang
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Ziv Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Glenn J Jaffe
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA.
| |
Collapse
|
6
|
Salcedo-Villanueva G, Becerra-Revollo C, Rhoads-Avila LA, García-Sánchez J, Jácome-Gutierrez FA, Cernichiaro-Espinosa L, Henaine-Berra A, Orozco-Hernandez A, Ruiz-García H, Torres-Porras E. Perception of #TheDress in childhood is influenced by age and green-leaf preference. J Vis 2024; 24:11. [PMID: 39172467 PMCID: PMC11353488 DOI: 10.1167/jov.24.8.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The perception of the ambiguous image of #TheDress may be influenced by optical factors, such as macular pigments. Their accumulation during childhood could increase with age and the ingestion of carotenoid-containing foods. The purpose of this study was to investigate whether the visual perception of the dress in children would differ based on age and carotenoid preference. This was a cross-sectional, observational, and comparative study. A poll was administered to children aged 2 to 10 years. Parents were instructed to inquire about the color of #TheDress from their children. A carotenoid preference survey was also completed. A total of 413 poll responses were analyzed. Responses were categorized based on the perceived color of the dress: blue/black (BB) (n = 204) and white/gold (WG) (n = 209). The mean and median age of the WG group was higher than the BB group (mean 6.1, median 6.0 years, standard deviation [SD] 2.2; mean 5.5, median 5.0 years, SD 2.3; p = 0.007). Spearman correlation between age and group was 0.133 (p = 0.007). Green-leaf preference (GLP) showed a statistically significant difference between groups (Mann-Whitney U: p = 0.038). Spearman correlation between GLP and group was 0.102 (p = 0.037). Logistic regression for the perception of the dress as WG indicated that age and GLP were significant predictors (age: B weight 0.109, p = 0.012, odds ratio: 1.115; GLP: B weight 0.317, p = 0.033, odds ratio: 1.373). Older children and those with a higher GLP were more likely to perceive #TheDress as WG. These results suggest a potential relationship with the gradual accumulation of macular pigments throughout a child's lifetime.
Collapse
Affiliation(s)
| | - Catalina Becerra-Revollo
- Ocular Ultrasound Department, Asociación Para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | | | - Julian García-Sánchez
- Retina Department, Asociación Para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
7
|
You W, Azuma K, Iwagawa T, Watanabe S, Aihara M, Shiraya T, Ueta T. The role of lipid peroxidation in epithelial-mesenchymal transition of retinal pigment epithelial cells. Sci Rep 2024; 14:16498. [PMID: 39020017 PMCID: PMC11255318 DOI: 10.1038/s41598-024-67587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) of retinal pigment epithelial (RPE) cells is recognized as pivotal in various retinal diseases. Previous studies have suggested a reciprocal regulation between reactive oxygen species (ROS) and EMT, though the involvement of peroxidized lipids or the effects of reducing them has remained unclear. The present study disclosed that EMT of ARPE-19 cells induced by TGF-β2 and TNF-α involves increased lipid peroxidation, and Ferrostatin-1 (Fer-1), a lipophilic antioxidative agent, successfully inhibited the increase in lipid peroxidation. Fer-1 suppressed the formation of EMT-associated fibrotic deposits, while EMT induction or Fer-1 treatment did not influence the cell viability or proliferation. Functionally, Fer-1 impeded EMT-driven cell migration and reduction in transepithelial electrical resistance. It demonstrated regulatory prowess by downregulating the mesenchymal marker fibronectin, upregulating the epithelial marker ZO-1, and inhibiting the EMT-associated transcriptional factor ZEB1. Additionally, VEGF, a major pathogenic cytokine in various retinal diseases, is also upregulated during EMT, and Fer-1 significantly mitigated the effect. The present study disclosed the involvement of lipid peroxidation in EMT of RPE cells, and suggests the suppression of lipid peroxidation may be a potential therapeutic target in retinal diseases in which EMT is implicated.
Collapse
Affiliation(s)
- Wang You
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
8
|
Peng ZQ, Guan XH, Yu ZP, Wu J, Han XH, Li MH, Qu XH, Chen ZP, Han XJ, Wang XY. Human amniotic mesenchymal stem cells-derived conditioned medium and exosomes alleviate oxidative stress-induced retinal degeneration by activating PI3K/Akt/FoxO3 pathway. Exp Eye Res 2024; 244:109919. [PMID: 38729254 DOI: 10.1016/j.exer.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.
Collapse
Affiliation(s)
- Zhe-Qing Peng
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, PR China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Ming-Hui Li
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Zhi-Ping Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
9
|
Zhang Y, Paik SS, Kim IB. Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses. Exp Neurobiol 2024; 33:152-164. [PMID: 38993082 PMCID: PMC11247282 DOI: 10.5607/en24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
10
|
Carles L, Gibaja A, Scheper V, Alvarado JC, Almodovar C, Lenarz T, Juiz JM. Efficacy and Mechanisms of Antioxidant Compounds and Combinations Thereof against Cisplatin-Induced Hearing Loss in a Rat Model. Antioxidants (Basel) 2024; 13:761. [PMID: 39061830 PMCID: PMC11273477 DOI: 10.3390/antiox13070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cisplatin is an election chemotherapeutic agent used for many cancer treatments. Its cytotoxicity against neoplastic cells is mirrored by that taking place in healthy cells and tissues, resulting in serious adverse events. A very frequent one is ototoxicity, causing hearing loss which may permanently affect quality of life after successful oncologic treatments. Exacerbated oxidative stress is a main cytotoxic mechanism of cisplatin, including ototoxicity. Previous reports have shown antioxidant protection against cisplatin ototoxicity, but there is a lack of comparative studies on the otoprotectant activity and mechanism of antioxidant formulations. Here, we show evidence that a cocktail of vitamins A, C, and E along with Mg++ (ACEMg), previously shown to protect against noise-induced hearing loss, reverses auditory threshold shifts, promotes outer hair cell survival, and attenuates oxidative stress in the cochlea after cisplatin treatment, thus protecting against extreme cisplatin ototoxicity in rats. The addition of 500 mg N-acetylcysteine (NAC), which, administered individually, also shows significant attenuation of cisplatin ototoxicity, to the ACEMg formulation results in functional degradation of ACEMg otoprotection. Mg++ administered alone, as MgSO4, also prevents cisplatin ototoxicity, but in combination with 500 mg NAC, otoprotection is also greatly degraded. Increasing the dose of NAC to 1000 mg also results in dramatic loss of otoprotection activity compared with 500 mg NAC. These findings support that single antioxidants or antioxidant combinations, particularly ACEMg in this experimental series, have significant otoprotection efficacy against cisplatin ototoxicity. However, an excess of combined antioxidants and/or elevated doses, above a yet-to-be-defined "antioxidation threshold", results in unrecoverable redox imbalance with loss of otoprotectant activity.
Collapse
Grants
- PID2020-117266RB-C22-1, EXC 2177/1, ID:390895286, SBPLY/17/180501/000544. Ministerio de Ciencia Innovación, MCINN, Gobierno de España, Plan Estatal de I+D+i, PID2020-117266RB-C22-1, Cluster of Excellence "Hearing4All" EXC 2177/1, ID:390895286, part of the Germany´s Excellence Strategy of the German Research Foundation, DFG. Co
Collapse
Affiliation(s)
- Liliana Carles
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Carlos Almodovar
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| |
Collapse
|
11
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Xiang W, Li L, Zhao Q, Zeng Y, Shi J, Chen Z, Gao G, Lai K. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model. GeroScience 2024; 46:2697-2714. [PMID: 38153666 PMCID: PMC10828283 DOI: 10.1007/s11357-023-01038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision damage among elderly individuals. There is still no efficient treatment for dry AMD. Retinal pigment epithelial (RPE) degeneration has been confirmed to play an important role in dry AMD. Recent studies have reported that ferroptosis caused by iron overload and lipid peroxidation may be the primary causes of RPE degeneration. However, the upstream regulatory molecules of RPE ferroptosis remain largely unknown. Pigment epithelium-derived factor (PEDF) is an important endogenic protective factor for the RPE. Our results showed that in the murine dry AMD model induced by sodium iodate (SI), PEDF expression was downregulated. Moreover, dry AMD-like pathology was observed in PEDF-knockout mice. Therefore, the aim of this study was to reveal the effects and mechanism of PEDF on RPE ferroptosis and investigate potential therapeutic targets for dry AMD. The results of lipid peroxidation and transmission electron microscope showed that retinal ferroptosis was significantly activated in SI-treated mice and PEDF-knockout mice. Restoration of PEDF expression ameliorated SI-induced retinal dysfunction in mice, as assessed by electroretinography and optical coherence tomography. Mechanistically, western blotting and immunofluorescence analysis demonstrated that the overexpression of PEDF could upregulate the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain-1 (FTH1), which proved to inhibit lipid peroxidation and RPE ferroptosis induced by SI. This study revealed the novel role of PEDF in ferroptosis inhibition and indicated that PEDF might be a potential therapeutic target for dry AMD.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zitong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
13
|
Bojňanská T, Kolesárová A, Čech M, Tančinová D, Urminská D. Extracts with Nutritional Potential and Their Influence on the Rheological Properties of Dough and Quality Parameters of Bread. Foods 2024; 13:382. [PMID: 38338518 PMCID: PMC10855696 DOI: 10.3390/foods13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.
Collapse
Affiliation(s)
- Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Matej Čech
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| |
Collapse
|
14
|
Upadhyay M, Bonilha VL. Regulated cell death pathways in the sodium iodate model: Insights and implications for AMD. Exp Eye Res 2024; 238:109728. [PMID: 37972750 PMCID: PMC10841589 DOI: 10.1016/j.exer.2023.109728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The sodium iodate (NaIO3) model of increased oxidative stress recapitulates dry AMD features such as patchy RPE loss, secondary photoreceptors, and underlying choriocapillaris death, allowing longitudinal evaluation of the retinal structure. Due to the time- and dose-dependent degeneration observed in diverse animal models, this preclinical model has become one of the most studied models. The events leading to RPE cell death post- NaIO3 injection have been extensively studied, and here we have reviewed different modalities of cell death, including apoptosis, necroptosis, ferroptosis, and pyroptosis with a particular focus on findings associated with in vivo and in vitro NaIO3 studies on RPE cell death. Because the fundamental cause of vision loss in patients with dry AMD is the death of these same cells affected by NaIO3, studies using NaIO3 can provide valuable insights into RPE and photoreceptor cell death mechanisms and can help understand mechanisms behind RPE degeneration in AMD.
Collapse
Affiliation(s)
- Mala Upadhyay
- Cole Eye Institute, Ophthalmic Research, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vera L Bonilha
- Cole Eye Institute, Ophthalmic Research, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.
| |
Collapse
|
15
|
de Almeida Torres RJ, Moreto F, Luchini A, de Almeida Torres RJ, Longo SP, Pinho RA, Nagashima S, de Noronha L, Ferron AJT, de Almeida Silva CCV, Correa CR, Aldini G, Ferreira ALA. Carnosine supplementation and retinal oxidative parameters in a high-calorie diet rat model. BMC Ophthalmol 2023; 23:502. [PMID: 38066465 PMCID: PMC10709828 DOI: 10.1186/s12886-023-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND To assess oxidative effects induced by a high-calorie diet on the retina of Wistar rats and test the antioxidative effects of carnosine supplementation. METHODS Wistar rats were randomly divided into the following groups: standard diet (SD), high-calorie diet (HcD), standard diet + carnosine (SD + Car), and high-calorie diet + carnosine (HcD + Car). The body weight, adiposity index, plasma glucose, total lipids, high-density lipoprotein (HDL), low-density lipoprotein (LDL), uric acid, creatinine, and triglycerides of the animals were evaluated. The retinas were analyzed for markers of oxidative stress. Hydrogen peroxide production was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCF) oxidation. The total glutathione (tGSH), total antioxidant capacity (TAC), protein carbonyl, and sulfhydryl groups of the antioxidant system were analyzed. RESULTS TAC levels increased in the retinas of the SD + Car group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the HcD group (p < 0.05). The levels of GSH and the GSSH:GSSG ratio were increased in the HcD + Car group compared to the SD + Car group (p < 0.05). An increase in the retinal carbonyl content was observed in the HcD group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the SD + Car group (p < 0.05). A high-calorie diet (HcD) was also associated with a decrease in retinal sulfhydryl-type levels compared to the SD group (p < 0.05). CONCLUSION The results suggest that feeding a high-calorie diet to rats can promote an increase in carbonyl content and a reduction in sulfhydryl groups in their retinas. The administration of carnosine was not effective in attenuating these oxidative markers. TRIAL REGISTRATION Animal Ethics Committee of Botucatu Medical School - Certificate number 1292/2019.
Collapse
Affiliation(s)
- Rogil Jose de Almeida Torres
- Medical School, Department of Internal Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-687, Brazil.
| | - Fernando Moreto
- Medical School, Department of Internal Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-687, Brazil
| | - Andrea Luchini
- Department of Ophthalmology, Centro Oftalmologico de Curitiba, Curitiba, PR, Brazil
| | | | - Sofia Pimentel Longo
- Postgraduate Program in Health Sciences, School of Medicine, Pontificia Universidade Catolica Do Paraná, Curitiba, PR, Brazil
| | - Ricardo Aurino Pinho
- Postgraduate Program in Health Sciences, School of Medicine, Pontificia Universidade Catolica Do Paraná, Curitiba, PR, Brazil
| | - Seigo Nagashima
- Postgraduate Program in Health Sciences, School of Medicine, Pontificia Universidade Catolica Do Paraná, Curitiba, PR, Brazil
| | - Lucia de Noronha
- Postgraduate Program in Health Sciences, School of Medicine, Pontificia Universidade Catolica Do Paraná, Curitiba, PR, Brazil
| | - Artur Junio Togneri Ferron
- Medical School, Department of Internal Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-687, Brazil
| | | | - Camila Renata Correa
- Medical School, Department of Internal Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-687, Brazil
| | - Giancarlo Aldini
- Dipartimento Di Scienze Farmaceutiche (DISFARM), Università Degli Studi Di Milano, Milan, Italy
| | - Ana Lucia Anjos Ferreira
- Medical School, Department of Internal Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, 18618-687, Brazil
| |
Collapse
|
16
|
Rajanala K, Dotiwala F, Upadhyay A. Geographic atrophy: pathophysiology and current therapeutic strategies. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1327883. [PMID: 38983017 PMCID: PMC11182118 DOI: 10.3389/fopht.2023.1327883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 07/11/2024]
Abstract
Geographic atrophy (GA) is an advanced stage of age-related macular degeneration (AMD) that leads to gradual and permanent vision loss. GA is characterized by the loss of photoreceptor cells and retinal pigment epithelium (RPE), leading to distinct atrophic patches in the macula, which tends to increase with time. Patients with geographic atrophy often experience a gradual and painless loss of central vision, resulting in difficulty reading, recognizing faces, or performing activities that require detailed vision. The primary risk factor for the development of geographic atrophy is advanced age; however, other risk factors, such as family history, smoking, and certain genetic variations, are also associated with AMD. Diagnosis is usually based on a comprehensive eye examination, including imaging tests such as fundus photography, optical coherence tomography (OCT), and fluorescein angiography. Numerous clinical trials are underway, targeting identified molecular pathways associated with GA that are promising. Recent approvals of Syfovre and Izervay by the FDA for the treatment of GA provide hope to affected patients. Administration of these drugs resulted in slowing the rate of progression of the disease. Though these products provide treatment benefits to the patients, they do not offer a cure for geographic atrophy and are limited in efficacy. Considering these safety concerns and limited treatment benefits, there is still a significant need for therapeutics with improved efficacy, safety profiles, and better patient compliance. This comprehensive review discusses pathophysiology, currently approved products, their limitations, and potential future treatment strategies for GA.
Collapse
Affiliation(s)
| | | | - Arun Upadhyay
- Research and Development, Ocugen Inc., Malvern, PA, United States
| |
Collapse
|
17
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Sayin O, Altinkaynak H. Macular Pigment Optical Density in First Degree Relatives of Age-Related Macular Degeneration Patients. Curr Eye Res 2023; 48:1057-1062. [PMID: 37494149 DOI: 10.1080/02713683.2023.2242012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE To measure the macular pigment optical density in first-degree relatives of patients with age-related macular degeneration and compare it with a healthy control group. METHODS One hundred and twenty-eight healthy subjects who were first-degree relatives of age-related macular degeneration patients were included in the study (Group 1). As the control group, 74 healthy subjects were included in the study (Group 2). The right eyes of all cases were included in the study. Macular pigment optical density was measured with a commercially available device (MPSII®, Elektron Technology, Switzerland) using technology based on heterochromatic flicker photometry. Central foveal thickness and subfoveal choroidal thickness were measured with spectral-domain optical coherence tomography. Values were compared between the two groups. RESULTS There were 54 males and 74 females in Group 1 and 32 males and 42 females in Group 2. The mean ± SD ages of Group 1 and Group 2 were 49.0 ± 7.6 and 41.8 ± 8.6, respectively. Mean ± SD macular pigment optical density values of Group 1 and Group 2 were 0.43 ± 0.09 and 0.47 ± 0.12 (p = 0.048), mean ± SD central foveal thickness were 208 ± 19 and 216 ± 8 µm (p = 0.014), and mean ± SD subfoveal choroidal thickness were 232 ± 29 and 250 ± 21 µm (p = 0.002), respectively. CONCLUSION The macular pigment optical density values were significantly lower in the first-degree relatives of patients with age-related macular degeneration than in the control group. Macular pigment optical density may be a marker for the development of age-related macular degeneration in the future in the first-degree relatives of age-related macular degeneration patients. Further prospective studies with a larger number of participants will be needed to confirm our results moreover, to clarify its benefit as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Osman Sayin
- Department of Ophthalmology, Konya City Hospital, Konya, Turkey
| | | |
Collapse
|
20
|
Hussain A, Ashique S, Afzal O, Altamimi MA, Malik A, Kumar S, Garg A, Sharma N, Farid A, Khan T, Altamimi ASA. A correlation between oxidative stress and diabetic retinopathy: An updated review. Exp Eye Res 2023; 236:109650. [PMID: 37734426 DOI: 10.1016/j.exer.2023.109650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Nidhi Sharma
- Graduate Assistant, Department of Biomedical Engineering University of Connecticut, UCONN, Storrs Campus, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I. Khan, KPK, Pakistan
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| |
Collapse
|
21
|
Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell Mol Neurobiol 2023; 43:3265-3276. [PMID: 37391574 PMCID: PMC10477140 DOI: 10.1007/s10571-023-01383-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu- Lin Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
22
|
Sun T, Huang K, Niu K, Lin C, Liu W, Yeh C, Kuo S, Chang C. Hyperbaric oxygen therapy suppresses hypoxia and reoxygenation injury to retinal pigment epithelial cells through activating peroxisome proliferator activator receptor-alpha signalling. J Cell Mol Med 2023; 27:3189-3201. [PMID: 37731202 PMCID: PMC10568664 DOI: 10.1111/jcmm.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Retinal ischemia followed by reperfusion (IR) is a common cause of many ocular disorders, such as age-related macular degeneration (AMD), which leads to blindness in the elderly population, and proper therapies remain unavailable. Retinal pigment epithelial (RPE) cell death is a hallmark of AMD. Hyperbaric oxygen (HBO) therapy can improve IR tissue survival by inducing ischemic preconditioning responses. We conducted an in vitro study to examine the effects of HBO preconditioning on oxygen-glucose deprivation (OGD)-induced IR-injured RPE cells. RPE cells were treated with HBO (100% O2 at 3 atmospheres absolute for 90 min) once a day for three consecutive days before retinal IR onset. Compared with normal cells, the IR-injured RPE cells had lower cell viability, lower peroxisome proliferator activator receptor-alpha (PPAR-α) expression, more severe oxidation status, higher blood-retinal barrier disruption and more elevated apoptosis and autophagy rates. HBO preconditioning increased PPAR-α expression, improved cell viability, decreased oxidative stress, blood-retinal barrier disruption and cellular apoptosis and autophagy. A specific PPAR-α antagonist, GW6471, antagonized all the protective effects of HBO preconditioning in IR-injured RPE cells. Combining these observations, HBO therapy can reverse OGD-induced RPE cell injury by activating PPAR-α signalling.
Collapse
Affiliation(s)
- Tzong‐Bor Sun
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Kuo‐Feng Huang
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
| | - Ko‐Chi Niu
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
| | - Cheng‐Hsien Lin
- Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Wen‐Pin Liu
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chao‐Hung Yeh
- Division of Neurosurgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
| | - Shu‐Chun Kuo
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
- Department of OphthalmologyChi Mei Medical CenterTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
23
|
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2023; 9:CD000254. [PMID: 37702300 PMCID: PMC10498493 DOI: 10.1002/14651858.cd000254.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a degenerative condition of the back of the eye that occurs in people over the age of 50 years. Antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of AMD. This is the third update of the review. OBJECTIVES To assess the effects of antioxidant vitamin and mineral supplements on the progression of AMD in people with AMD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, one other database, and three trials registers, most recently on 29 November 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation to placebo or no intervention, in people with AMD. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS We included 26 studies conducted in the USA, Europe, China, and Australia. These studies enroled 11,952 people aged 65 to 75 years and included slightly more women (on average 56% women). We judged the studies that contributed data to the review to be at low or unclear risk of bias. Thirteen studies compared multivitamins with control in people with early and intermediate AMD. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 3 studies, 2445 participants; moderate-certainty evidence). In people with early AMD, who are at low risk of progression, this means there would be approximately four fewer cases of progression to late AMD for every 1000 people taking vitamins (one fewer to six fewer cases). In people with intermediate AMD at higher risk of progression, this corresponds to approximately 78 fewer cases of progression for every 1000 people taking vitamins (26 fewer to 126 fewer). AREDS also provided evidence of a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence), and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (measured with the Visual Function Questionnaire) in treated compared with non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). In exploratory subgroup analyses in the follow-on study to AREDS (AREDS2), replacing beta-carotene with lutein/zeaxanthin gave hazard ratios (HR) of 0.82 (95% CI 0.69 to 0.96), 0.78 (95% CI 0.64 to 0.94), 0.94 (95% CI 0.70 to 1.26), and 0.88 (95% CI 0.75 to 1.03) for progression to late AMD, neovascular AMD, geographic atrophy, and vision loss, respectively. Six studies compared lutein (with or without zeaxanthin) with placebo and one study compared a multivitamin including lutein/zeaxanthin with multivitamin alone. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA; almost all participants in AREDS2 also took the original AREDS supplementation formula. People taking lutein/zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05) compared with control (1 study, 4176 participants, 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein/zeaxanthin and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (Visual Function Questionnaire) was similar between groups (MD 1.21, 95% CI -2.59 to 5.01; 2 studies, 308 participants; moderate-certainty evidence). One study in Australia randomised 1204 people to vitamin E or placebo with four years of follow-up; 19% of participants had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05; very low-certainty evidence). There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47; low-certainty evidence). There were no data on neovascular AMD, geographic atrophy, or quality of life. Five studies compared zinc with placebo. Evidence largely drawn from the largest study (AREDS) found a lower progression to late AMD over six years (OR 0.83, 95% CI 0.70 to 0.98; 3 studies, 3790 participants; moderate-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 2 studies, 3791 participants; moderate-certainty evidence). There were no data on quality of life. Gastrointestinal symptoms were the main reported adverse effect. In AREDS, zinc was associated with a higher risk of genitourinary problems in men, but no difference was seen between high- and low-dose zinc groups in AREDS2. Most studies were too small to detect rare adverse effects. Data from larger studies (AREDS/AREDS2) suggested there may be little or no effect on mortality with multivitamin (HR 0.87, 95% CI 0.60 to 1.25; low-certainty evidence) or lutein/zeaxanthin supplementation (HR 1.06, 95% CI 0.87 to 1.31; very low-certainty evidence), but confirmed the increased risk of lung cancer with beta-carotene, mostly in former smokers. AUTHORS' CONCLUSIONS Moderate-certainty evidence suggests that antioxidant vitamin and mineral supplementation (AREDS: vitamin C, E, beta-carotene, and zinc) probably slows down progression to late AMD. People with intermediate AMD have a higher chance of benefiting from antioxidant supplements because their risk of progression is higher than people with early AMD. Although low-certainty evidence suggested little effect with lutein/zeaxanthin alone compared with placebo, exploratory subgroup analyses from one large American study support the view that lutein/zeaxanthin may be a suitable replacement for the beta-carotene used in the original AREDS formula.
Collapse
Affiliation(s)
- Jennifer R Evans
- Centre for Public Health, International Centre for Eye Health, London School of Hygiene & Tropical Medicine, Belfast, UK
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| |
Collapse
|
24
|
Velazquez-Soto H, Groman-Lupa S, Cruz-Aguilar M, Salazar AL, Zenteno JC, Jimenez-Martinez MC. Exogenous CFH Modulates Levels of Pro-Inflammatory Mediators to Prevent Oxidative Damage of Retinal Pigment Epithelial Cells with the At-Risk CFH Y402H Variant. Antioxidants (Basel) 2023; 12:1540. [PMID: 37627535 PMCID: PMC10451625 DOI: 10.3390/antiox12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex, progressive degenerative retinal disease. Retinal pigment epithelial (RPE) cells play an important role in the immune defense of the eye and their dysfunction leads to the progressive irreversible degeneration of photoreceptors. Genetic factors, chronic inflammation, and oxidative stress have been implicated in AMD pathogenesis. Oxidative stress causes RPE injury, resulting in a chronic inflammatory response and cell death. The Y402H polymorphism in the complement factor H (CFH) protein is an important risk factor for AMD. However, the functional significance of CFH Y402H polymorphism remains unclear. In the present study, we investigated the role of CFH in the pro-inflammatory response using an in vitro model of oxidative stress in the RPE with the at-risk CFH Y402H variant. ARPE-19 cells with the at-risk CFH Y402H variant were highly susceptible to damage caused by oxidative stress, with increased levels of inflammatory mediators and pro-apoptotic factors that lead to cell death. Pretreatment of the ARPE-19 cell cultures with exogenous CFH prior to the induction of oxidative stress prevented damage and cell death. This protective effect may be related to the negative regulation of pro-inflammatory cytokines. CFH contributes to cell homeostasis and is required to modulate the pro-inflammatory cytokine response under oxidative stress in the ARPE-19 cells with the at-risk CFH Y402H variant.
Collapse
Affiliation(s)
- Henry Velazquez-Soto
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Sergio Groman-Lupa
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Marisa Cruz-Aguilar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Alberto L. Salazar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Juan C. Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
25
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
26
|
Chen X, Tzekov R, Su M, Zhu Y, Han A, Li W. Hydrogen peroxide-induced oxidative damage and protective role of peroxiredoxin 6 protein via EGFR/ERK signaling pathway in RPE cells. Front Aging Neurosci 2023; 15:1169211. [PMID: 37529008 PMCID: PMC10388243 DOI: 10.3389/fnagi.2023.1169211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, United States
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yusheng Zhu
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Wensheng Li
- Shanghai Aier Eye Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Cornebise C, Perus M, Hermetet F, Valls-Fonayet J, Richard T, Aires V, Delmas D. Red Wine Extract Prevents Oxidative Stress and Inflammation in ARPE-19 Retinal Cells. Cells 2023; 12:1408. [PMID: 37408242 DOI: 10.3390/cells12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the most commonly occurring ocular diseases worldwide. This degenerative condition affects the retina and leads to the loss of central vision. The current treatments are focused on the late stage of the disease, but recent studies have highlighted the importance and benefits of preventive treatments and how good dietary habits can reduce the risk of progression to an advanced form of the disease. In this context, we studied whether resveratrol (RSV) or a polyphenolic cocktail, red wine extract (RWE), are able to prevent the initiating events of AMD (i.e., oxidative stress and inflammation) in human ARPE-19 retinal pigment epithelial (RPE) cells and macrophages. This study highlights that RWE and RSV can prevent hydrogen peroxide (H2O2) or 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress and can subsequently prevent DNA damage via the inhibition of the ATM (ataxia telangiectasia-mutated)/Chk2 (checkpoint kinase 2) or Chk1 signaling pathways, respectively. Moreover, ELISA assays show that RWE and RSV can prevent the secretion of proinflammatory cytokines in RPE cells and in human macrophages. Interestingly, RWE exhibits a greater protective impact compared to RSV alone, even though RSV was more concentrated when used alone than in the red wine extract. Our results suggest that RWE and RSV may have potential interest as preventive nutritional supplementations against AMD.
Collapse
Affiliation(s)
- Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Maude Perus
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Josep Valls-Fonayet
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Tristan Richard
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
28
|
Lenin RR, Koh YH, Zhang Z, Yeo YZ, Parikh BH, Seah I, Wong W, Su X. Dysfunctional Autophagy, Proteostasis, and Mitochondria as a Prelude to Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24108763. [PMID: 37240109 DOI: 10.3390/ijms24108763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Retinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. As miniature chemical engines of the cell, self-replicating mitochondria are heavily implicated in the aging process through a variety of mechanisms. In the eye, mitochondrial dysfunction is strongly associated with several diseases, including age-related macular degeneration (AMD), which is a leading cause of irreversible vision loss in millions of people globally. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation, and increased numbers of mitochondrial DNA mutations. Mitochondrial bioenergetics and autophagy decline during aging because of insufficient free radical scavenger systems, the impairment of DNA repair mechanisms, and reductions in mitochondrial turnover. Recent research has uncovered a much more complex role of mitochondrial function and cytosolic protein translation and proteostasis in AMD pathogenesis. The coupling of autophagy and mitochondrial apoptosis modulates the proteostasis and aging processes. This review aims to summarise and provide a perspective on (i) the current evidence of autophagy, proteostasis, and mitochondrial dysfunction in dry AMD; (ii) current in vitro and in vivo disease models relevant to assessing mitochondrial dysfunction in AMD, and their utility in drug screening; and (iii) ongoing clinical trials targeting mitochondrial dysfunction for AMD therapeutics.
Collapse
Affiliation(s)
- Raji Rajesh Lenin
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Department of Medical Research, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Yi Hui Koh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Zheting Zhang
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 11 Mandalay Road, Experimental Medicine Building, Singapore 308232, Singapore
| | - Yan Zhuang Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ivan Seah
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| |
Collapse
|
29
|
Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
30
|
Khan Z, Ali SA. Isocyanate induces cytotoxicity via activation of phosphorylated alpha synuclein protein, nitrosative stress, and apoptotic pathway in Parkinson's Disease model-SHSY-5Y cells. Neurol Res 2023; 45:676-687. [PMID: 36827495 DOI: 10.1080/01616412.2023.2181919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND Neurotoxic disorders account for a significant portion of the diseases that influence the worldwide disease burden. Parkinson's disease is one such disease that is linked with environmental toxin exposure. Isocyanates are a highly reactive industrial intermediate used widely in manufacturing plastic products, paints, etc. This study aims to delineate the neurotoxic potential of isocyanate in Parkinson's cell model-SHSY-5Y cells. METHODOLOGY SHSY-5Y cells were treated with isocyanate analogue (N succinimidyl N methyl carbamate) in time and dose dependant manner. Different parameters were assessed like protein expression, nitrosative stress level, antioxidant enzymes level and apoptosis. RESULTS Our findings demonstrate that dose- and time-dependent isocyanate exposure increases reactive nitrogen species and decreases the glutathione, SOD, and catalase levels. Further, increased phosphorylated alpha-synuclein protein and activation of caspase 3 exert cytotoxicity in SHSY-5Y cells. CONCLUSION Our research reveals that widely used isocyanate induces cytotoxicity, apoptosis, nitrosative stress, and protein dysfunction, which might constitute a potential mechanism of neurodegeneration in Parkinsonism.
Collapse
Affiliation(s)
- Zeba Khan
- Department of Biotechnology, Saifia Science College, Bhopal, India
| | - Sharique A Ali
- Department of Biotechnology, Saifia Science College, Bhopal, India
| |
Collapse
|
31
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
32
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, Znaor L, Erceg S, Stieger K, Motlik J, Bharti K, Petrovski G. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023; 11:310. [PMID: 36830851 PMCID: PMC9952929 DOI: 10.3390/biomedicines11020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe”, Stem Cell Therapies in Neurodegenerative Diseases Laboratory, 46012 Valencia, Spain
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 11720 Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892, USA
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
33
|
Hydrogen sulfide protects retinal pigment epithelium cells against ferroptosis through the AMPK- and p62-dependent non-canonical NRF2-KEAP1 pathway. Exp Cell Res 2023; 422:113436. [PMID: 36435220 DOI: 10.1016/j.yexcr.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress-induced ferroptosis of retinal pigment epithelium (RPE) cells contributes to retinal degenerative diseases. The antioxidant molecule hydrogen sulfide (H2S) regulates oxidative stress response, but its effect on the ferroptosis of RPE cells is unclear. In this study, sodium hydrosulfide (NaHS) was used as an exogenous H2S donor to intervene tert-butyl hydroperoxide (t-BHP)-induced ferroptosis of APRE-19 cells. We found that NaHS pretreatment attenuates t-BHP-induced oxidative stress and ferroptosis. Analysis of mRNA-sequencing coupled with FerrDb database identified nuclear factor erythroid-2-related factor 2 (NRF2) as a primary target for the cytoprotective role of H2S. NRF2 inhibitor ML385 reverses the effects of H2S on ferroptosis. Biochemical analysis revealed that H2S stabilizes NRF2. H2S decreases the interaction between NRF2 and KEAP1, but enhances the interaction between KEAP1 and p62. These results suggest that H2S activates the non-canonical NRF2-KEAP1 pathway. Further study demonstrated that H2S stimulates AMPK to interact and phosphorylate p62. Additionally, inhibiting AMPK or knocking down p62 blocks the effects of H2S. We speculate that targeting the non-canonical NRF2-KEAP1 pathway by H2S-based drug may benefit the treatment of retinal degenerative diseases.
Collapse
|
34
|
Demirci Kucuk K, Tokuc EO, Aciksari A, Duruksu G, Yazir Y, Karabas VL. The effects of crocetin on oxidative stress induced ARPE-19 cells by H 2O 2. Exp Eye Res 2023; 226:109305. [PMID: 36372214 DOI: 10.1016/j.exer.2022.109305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
The anti-apoptotic and antioxidant effects of crocetin was aimed to investigate on the oxidative damage model of ARPE-19 cells. The oxidative damage in ARPE cells was developed by H2O2 treatment at 800 μM. Different doses of crocetin (1-80 μM) were applied for 24 h, and the effects on viability were evaluated to find out the optimum drug dose. At first, three effective doses of crocetin (10, 20, 40 μM) on cell viability were selected for further analyses. The levels of superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were determined, and the expression of pro-apoptotic Bax gene and anti-apoptotic Bcl-2 gene were evaluated. The most effective crocetin dose on cell viability was found to be 10 μM. After the H2O2 treatment, SOD and GSH were decreased and MDA were increased significantly (p = 0.011, 0.037, 0.018, respectively). Following the crocetin treatment at 10 μM, SOD and GSH activities were improved compared to the no drug group; and MDA level was declined remarkably (p = 0.022, 0.019, 0.029, respectively). The Bcl-2 level was significantly decreased (p < 0.01), while the Bax1 and Nrf2 expression and ROS level was increased significantly in the damage model group (p < 0.01). After the drug treatment, the Bax1 and Nrf2 expression level were decreased in all groups (p < 0.01). The increase in Bcl-2 expression was significant in crocetin 40 μM (p < 0.05) and the decrease in ROS level were significant in 20 μM and 40 μM doses of crocetin (p < 0.05). It has been shown that crocetin might be used as an antioxidant and anti-apoptotic agent on the hindering the effect of the oxidative damage. Following the development of the oxidative stress in the cells, crocetin reversed the damage signals. By the in vitro tests, it was shown that crocetin might be considered as an effective molecule to be used in the AMD treatment.
Collapse
Affiliation(s)
- Kübra Demirci Kucuk
- Kocaeli University School of Medicine, Department of Ophthalmology, Izmit, Kocaeli, Turkey.
| | - Ecem Onder Tokuc
- Kocaeli University School of Medicine, Department of Ophthalmology, Izmit, Kocaeli, Turkey.
| | - Aysegul Aciksari
- Kocaeli University, Center for Stem Cells and Gene Therapies Research and Practice, Izmit, Kocaeli, Turkey.
| | - Gokhan Duruksu
- Kocaeli University, Center for Stem Cells and Gene Therapies Research and Practice, Izmit, Kocaeli, Turkey.
| | - Yusufhan Yazir
- Kocaeli University, Center for Stem Cells and Gene Therapies Research and Practice, Izmit, Kocaeli, Turkey; Kocaeli University School of Medicine, Department of Histology and Embryology, Izmit, Kocaeli, Turkey.
| | - Veysel Levent Karabas
- Kocaeli University School of Medicine, Department of Ophthalmology, Izmit, Kocaeli, Turkey.
| |
Collapse
|
35
|
Wei P, He M, Han G. Metabolic Characterization of Ocular Tissues in Relation to Laser-Induced Choroidal Neovascularization in Rats. J Proteome Res 2022; 21:2979-2986. [PMID: 36315600 DOI: 10.1021/acs.jproteome.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Age-related macular degeneration is a metabolic compromise disorder whose main pathological feature is choroidal neovascularization (CNV) formation. Using untargeted metabolomics analysis, we determined to assess the metabolomic alterations in a CNV rat model to provide an insight into its pathogenesis. In the CNV model, there were 24 significantly changed metabolites in the plasma and 71 in various ocular tissues. Pathway analysis showed that certain metabolic pathways changed in interrelated tissues: for instance, in terms of the altered urea cycle, arginine and proline metabolism were increased in the plasma, while spermidine and spermine biosynthesis activities were increased in the retinal pigment epithelium (RPE)/choroid. The retina and RPE/choroid shared the same changed metabolites of branched-chain amino acid metabolism. Fatty acid metabolism was found to be the significant altered metabolic pathway in the retina of this CNV model. Although the metabolism pattern of different substances is specific for each ocular tissue, there is also a certain material exchange between different tissues. Dysregulated metabolomic profiles in differential tissues may point to an interconnected pathway, oxidative stress response, which may lead to RPE cell degeneration and, ultimately, CNV development.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| | - Meiqin He
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, PR China
| | - Guoge Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| |
Collapse
|
36
|
Fietz A, Hurst J, Schnichels S. Out of the Shadow: Blue Light Exposure Induces Apoptosis in Müller Cells. Int J Mol Sci 2022; 23:ijms232314540. [PMID: 36498867 PMCID: PMC9739907 DOI: 10.3390/ijms232314540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Awareness toward the risks of blue light (BL) exposure is rising due to increased use of BL-enriched LEDs in displays. Short-wave BL (400-500 nm) has a high photochemical energy, leading to the enhanced production of reactive oxygen species (ROS). BL potentially plays a role in causing dry eye, cataracts, and age-related macular degeneration (AMD). The effect of BL on retinal pigment epithelium cells (RPEs) or photoreceptors has been extensively investigated. In contrast, only a few studies have investigated the effects of BL exposure on Müller cells (MCs). This is mainly due to their lack of photosensitive elements and the common assumption that their reaction to stress is only secondary in disease development. However, MCs perform important supportive, secretory, and immune functions in the retina, making them essential for retinal survival. Increased oxidative stress is a key player in many retinal diseases such as AMD or glaucoma. We hypothesize that increased oxidative stress can also affect MCs. Thus, we simulated oxidative stress levels by exposing primary porcine MCs and human MIO-M1 cells to BL. To confirm the wavelength-specificity, the cells were further exposed to red (RL), purple (PL), and white light (WL). BL and WL exposure increased ROS levels, but only BL exposure led to apoptosis in primary MCs. Thus, BL accounted for the harmful part of WL exposure. When cells were simultaneously exposed to BL and RL (i.e., PL), cell damage due to BL could be partly prevented, as could the inhibition of p53, demonstrating the protective effect of RL and p53 dependency. In contrast, BL hardly induced apoptosis in MIO-M1 cells, which is likely due to the immortalization of the cells. Therefore, enhanced oxidative stress levels can significantly harm MC function, probably leading to decreased retinal survival and, thus, further enhancing the progression of retinal diseases. Preventing the cell death of these essential retinal cells represents a promising therapy option to enhance retinal survival.
Collapse
|
37
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
38
|
Hanschmann EM, Wilms C, Falk L, Holubiec MI, Mennel S, Lillig CH, Godoy JR. Cytosolic glutaredoxin 1 is upregulated in AMD and controls retinal pigment epithelial cells proliferation via β-catenin. Biochem Biophys Res Commun 2022; 618:24-29. [PMID: 35714567 DOI: 10.1016/j.bbrc.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
Thioredoxin (Trx) family proteins are key players in redox signaling. Here, we have analyzed glutaredoxin (Grx) 1 and Grx2 in age-related macular degeneration (AMD) and in retinal pigment epithelial (ARPE-19) cells. We hypothesized that these redoxins regulate cellular functions and signaling circuits such as cell proliferation, Wnt signaling and VEGF release that have been correlated to the pathophysiology of AMD. ARPE-19 cells were transfected with specific siRNAs to silence the expression of Grx1 and Grx2 and were analyzed for proliferation/viability, migration capacity, β-catenin activation, and VEGF release. An active site-mutated C-X-X-S Grx1 was utilized to trap interacting proteins present in ARPE-19 cell extracts. In both, AMD retinas and in ARPE-19 cells incubated under hypoxia/reoxygenation conditions, Grx1 showed an increased nuclear localization. Grx1-silenced ARPE-19 cells showed a significantly reduced proliferation and migration rate. Our trapping approach showed that Grx1 interacts with β-catenin in a dithiol-disulfide exchange reaction. Knock-down of Grx1 led to a reduction in both total and active β-catenin levels. These findings add redox control to the regulatory mechanisms of β-catenin signaling in the retinal pigment epithelium and open the door to novel therapeutic approaches in AMD that is currently treated with VEGF-inhibitors.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | - Christina Wilms
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Falk
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | - Mariana Inés Holubiec
- Instituto de Biología Celular y Neurociencia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | - José Rodrigo Godoy
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, NY, USA.
| |
Collapse
|
39
|
Srivastava GK, Rodriguez-Crespo D, Fernandez-Bueno I, Pastor JC. Factors influencing mesenchymal stromal cells in in vitro cellular models to study retinal pigment epithelial cell rescue. Hum Cell 2022; 35:1005-1015. [PMID: 35511404 DOI: 10.1007/s13577-022-00705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Mesenchymal stromal cells (MSC) stop or slow retinal pigment epithelium (RPE) and neuroretina (NR) degeneration by paracrine activity in oxidative stress-induced retinal degenerative diseases. However, it is mandatory to develop adequate in vitro models that allow testing new treatment strategies against oxidative stress before performing in vivo studies. The viable double- and triple-layered setups are composed of separate layers of NR, MSC, and RPE (NR-MSC-RPE, NR-RPE, MSC-RPE) partially mimic in vivo retinal conditions. In this study, the paracrine neuroprotective effect of each setup's microenvironment on hydrogen peroxide (H2O2)-stressed was compared with unstressed RPE cells. RPE cell proliferation viability was assessed on day 1, 3, and 6 using Alamar Blue® (10%), MTT (10%) and a cell viability/cytotoxicity assay kit followed by data analysis. The results showed that RPE cells, highly viable (> 90%) in mixed medium of DMEM and neurobasal A (1:1), lost 50% viability on exposure to 400 µM of H2O2 (P < 0.05). The unexposed groups differed significantly from exposed groups for RPE cell growth (RPE and [Formula: see text]RPE (P < 0.0001), NR-MSC-RPE, and NR-MSC-[Formula: see text]RPE (P < 0.05), NR-RPE and NR-[Formula: see text]RPE (P < 0.01), and MSC-RPE and MSC-[Formula: see text]RPE (P < 0.01). NR-[Formula: see text]RPE and NR-RPE supported RPE cell proliferation viability better than other setups (P < 0.01) and RPE cells proliferated 0.49-fold more in NR-MSC-[Formula: see text]RPE than NR-MSC-RPE. Thus, NR and MSC presence improved significantly each setup's microenvironment for cell rescue, nevertheless, each setup also showed limitations for its use as an in vitro study tool. Health of microenvironment of such setups depends on many factors including cell-secreted trophic factors.
Collapse
Affiliation(s)
- Girish K Srivastava
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén, 17, 47011, Valladolid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla Y León, Valladolid, Spain.
| | - David Rodriguez-Crespo
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén, 17, 47011, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén, 17, 47011, Valladolid, Spain
| | - José Carlos Pastor
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén, 17, 47011, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla Y León, Valladolid, Spain
| |
Collapse
|
40
|
Hassel C, Couchet M, Jacquemot N, Blavignac C, Loï C, Moinard C, Cia D. Citrulline protects human retinal pigment epithelium from hydrogen peroxide and iron/ascorbate induced damages. J Cell Mol Med 2022; 26:2808-2818. [PMID: 35460170 PMCID: PMC9097847 DOI: 10.1111/jcmm.17294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chervin Hassel
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Morgane Couchet
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - Nathalie Jacquemot
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont Auvergne, Centre Imagerie Cellulaire Santé, Clermont-Ferrand, France
| | | | - Christophe Moinard
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - David Cia
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| |
Collapse
|
41
|
Decorin Protects Retinal Pigment Epithelium Cells from Oxidative Stress and Apoptosis via AMPK-mTOR-Regulated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3955748. [PMID: 35391926 PMCID: PMC8983248 DOI: 10.1155/2022/3955748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss among the elderly worldwide with unidentified pathogenesis and limited therapeutic options. Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is central in the development and progression of AMD. Decorin (DCN), a small leucine-rich proteoglycan, possesses powerful antifibrotic, anti-inflammatory, and antiangiogenic properties. DCN has also been reported to serve a cytoprotective role in various cell types, but its protective effects against H2O2-induced oxidative stress and apoptosis in ARPE-19 cells remain unclear. In this study, we showed that DCN significantly attenuated the increase in cell viability loss, apoptosis rate, and reactive oxygen species (ROS) levels in ARPE-19 cells induced by H2O2. Furthermore, DCN activated the AMPK/mTOR pathway to promote autophagy while genetic inhibition of autophagy-related gene 5 (ATG5) hindered autophagic process and diminished the protective role of DCN against oxidative stress in ARPE-19 cells. Collectively, these results suggest that DCN could protect RPE cells from H2O2-induced oxidative stress and apoptosis via autophagy promotion, thus providing the therapeutic potential for AMD prevention and treatment.
Collapse
|
42
|
Huang S, Liu CH, Wang Z, Fu Z, Britton WR, Blomfield AK, Kamenecka TM, Dunaief JL, Solt LA, Chen J. REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biol 2022; 51:102261. [PMID: 35176707 PMCID: PMC8851379 DOI: 10.1016/j.redox.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction and atrophy occur in dry age-related macular degeneration (AMD), often leading to photoreceptor degeneration and vision loss. Accumulated oxidative stress during aging contributes to RPE dysfunction and degeneration. Here we show that the nuclear receptor REV-ERBα, a redox sensitive transcription factor, protects RPE from age-related degeneration and oxidative stress-induced damage. Genetic deficiency of REV-ERBα leads to accumulated oxidative stress, dysfunction and degeneration of RPE, and AMD-like ocular pathologies in aging mice. Loss of REV-ERBα exacerbates chemical-induced RPE damage, and pharmacological activation of REV-ERBα protects RPE from oxidative damage both in vivo and in vitro. REV-ERBα directly regulates transcription of nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream antioxidant enzymes superoxide dismutase 1 (SOD1) and catalase to counter oxidative damage. Moreover, aged mice with RPE specific knockout of REV-ERBα also exhibit accumulated oxidative stress and fundus and RPE pathologies. Together, our results suggest that REV-ERBα is a novel intrinsic protector of the RPE against age-dependent oxidative stress and a new molecular target for developing potential therapies to treat age-related retinal degeneration.
Collapse
|
43
|
Liu Z, Overton M, Chauhan A. Transport of Vitamin E from Ethanol/Water Solution into Contact Lenses and Impact on Drug Transport. J Ocul Pharmacol Ther 2022; 38:396-403. [PMID: 35049374 DOI: 10.1089/jop.2021.0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Contact lens-based drug delivery has many advantages over eye drops including higher bioavailability and sustained release. Commercial contact lenses release drug rapidly necessitating integration of control-release mechanisms into the lenses such as incorporation of vitamin E diffusion barriers. In prior publications, vitamin E barriers are loaded by placing the lenses in vitamin E-ethanol solution, followed by the ethanol extraction. In this article, we investigate feasibility of manufacturing vitamin E barriers by soaking contact lenses in vitamin E dissolved in ethanol-water solutions to minimize swelling. Methods: Contact lenses are soaked in solutions of vitamin E dissolved in ethanol-water mixtures. The dynamics of vitamin E transport into the measured and fitted to diffusion equation to determine diffusivity and partition coefficient. Vitamin E loaded lenses are imaged and transport of hydrophilic drug timolol is measured. Results: The partition coefficient of vitamin E increases more than 5 and 10-fold when the water content in the loading solution reaches 15% and 25% (v/v), respectively. The solubility of vitamin E in the solutions decreases as water fraction increases but the increase in partition coefficient allows for loading > 20% vitamin E in the lens. The barriers manufactured by this approach are effective at sustaining release of glaucoma drug timolol. Conclusions: Vitamin E barriers can be incorporated into contact lenses by soaking in solutions of vitamin E in water and ethanol. Vitamin E barriers extended hydrophilic drug release and the reduced swelling is beneficial in minimizing the possibility of lens damage during loading of vitamin E.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Anuj Chauhan
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
44
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Li Y, Li X, Li X, Zeng Z, Strang N, Shu X, Tan Z. Non-neglectable therapeutic options for age-related macular degeneration: A promising perspective from traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114531. [PMID: 34474141 DOI: 10.1016/j.jep.2021.114531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Age-related macular degeneration (AMD) is a chronic neurodegenerative disease which causes irreversible central vision loss among the elderly population. Traditional Chinese Medicine (TCM), including formulas, acupuncture and herbs, has been used in the treatment of AMD for thousands of years and is currently used by many AMD patients around the world. AIM OF THE REVIEW A comprehensive, in-depth literature review examining the use of TCM in the treatment of AMD has yet to be compiled. This review will improve current knowledge relating to the use of TCM and will open new avenues of exploration in developing new drugs for the treatment of AMD. METHODS A literature search of the PubMed database, Web of Science, Google Scholar and China National Knowledge Infrastructure (CNKI) was performed using relevant terms and keywords related to TCM in the treatment of AMD. Related books, PhD and master's theses were also researched. RESULTS The TCM-based interpretation of AMD has been used to establish a theoretical foundation for understanding the effect of TCM formulas and acupuncture on AMD. The possible mechanism of action of common Chinese herbs has also been discussed in detail. CONCLUSION TCM is a promising treatment option of AMD patients. However, lack of rigorous scientific evidence has limited the impact and uptake of TCM therapy. Future research should focus on improving understanding of the mechanism of action and bioactive components of TCM therapies.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
46
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2194-2206. [DOI: 10.1093/hmg/ddac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
|
47
|
Liu J, Li Y, Pu Q, Qiu H, Di D, Cao Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int J Biol Macromol 2021; 201:111-120. [PMID: 34968548 DOI: 10.1016/j.ijbiomac.2021.12.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are beneficial for vision; however, relevant research has mainly focused on entire crude polysaccharides, with the basis and exact structure of the polysaccharide rarely explored. In this study, LICP009-3F-2a, a novel polysaccharide from Lycium barbarum L., was separated and then purified using anion-exchange and size-exclusion chromatography. Structural characteristics were investigated using chemical and spectroscopic methods, which revealed that LICP009-3F-2a has an Mw of 13720 Da and is an acidic heteropolysaccharide composed of rhamnose (39.1%), arabinose (7.4%), galactose (22.5%), glucose (8.3%), galacturonic acid (13.7%), and glucuronic acid (4.0%). Linkage and NMR data revealed that LICP009-3F-2a has the following backbone: →2)-α-L-Rha-(1→2,4)-α-L-Rha- (1→4)-α-D-GalAp-(1→3,6)-β-D-Galp-(1→3,6)-β-D-Galp-(1→6)-β-D-Galp-(1→, with three main branches, including: α-L-Araf-(1→5)-α-L-Araf-(1→6)-β-D-Glcp-(1→2,4)-α-L-Rha-(1→, β-D-Glcp-(1→4)-β-D-Glcp-(1→3,6)-β-D-Galp-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→3,6) -β-D-Galp-(1→. Differential scanning colorimetry and thermogravimetric analysis showed that LICP009-3F-2a is thermally stable, while X-ray diffractometry showed that LICP009-3F-2a has a semi-crystalline structure. In addition, LICP009-3F-2a protects ARPE-19 cells from H2O2-induced oxidative damage by regulating the expression of antioxidant SOD1 and CAT enzymes and down-regulating MMP2 expression. Moreover, LICP009-3F-2a promotes the proliferation of ARPE-19 cells in a concentration-dependent manner, and protects ARPE-19 cells from hyperglycemia by inhibiting apoptosis.
Collapse
Affiliation(s)
- Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchun Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
48
|
Dieguez HH, Calanni JS, Romeo HE, Alaimo A, González Fleitas MF, Iaquinandi A, Chianelli MS, Keller Sarmiento MI, Sande PH, Rosenstein RE, Dorfman D. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration. Cell Death Dis 2021; 12:1128. [PMID: 34864827 PMCID: PMC9632251 DOI: 10.1038/s41419-021-04412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Weber SR, Zhao Y, Ma J, Gates C, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM. A validated analysis pipeline for mass spectrometry-based vitreous proteomics: new insights into proliferative diabetic retinopathy. Clin Proteomics 2021; 18:28. [PMID: 34861815 PMCID: PMC8903510 DOI: 10.1186/s12014-021-09328-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Vitreous is an accessible, information-rich biofluid that has recently been studied as a source of retinal disease-related proteins and pathways. However, the number of samples required to confidently identify perturbed pathways remains unknown. In order to confidently identify these pathways, power analysis must be performed to determine the number of samples required, and sample preparation and analysis must be rigorously defined. Methods Control (n = 27) and proliferative diabetic retinopathy (n = 23) vitreous samples were treated as biologically distinct individuals or pooled together and aliquoted into technical replicates. Quantitative mass spectrometry with tandem mass tag labeling was used to identify proteins in individual or pooled control samples to determine technical and biological variability. To determine effect size and perform power analysis, control and proliferative diabetic retinopathy samples were analyzed across four 10-plexes. Pooled samples were used to normalize the data across plexes and generate a single data matrix for downstream analysis. Results The total number of unique proteins identified was 1152 in experiment 1, 989 of which were measured in all samples. In experiment 2, 1191 proteins were identified, 727 of which were measured across all samples in all plexes. Data are available via ProteomeXchange with identifier PXD025986. Spearman correlations of protein abundance estimations revealed minimal technical (0.99–1.00) and biological (0.94–0.98) variability. Each plex contained two unique pooled samples: one for normalizing across each 10-plex, and one to internally validate the normalization algorithm. Spearman correlation of the validation pool following normalization was 0.86–0.90. Principal component analysis revealed stratification of samples by disease and not by plex. Subsequent differential expression and pathway analyses demonstrated significant activation of metabolic pathways and inhibition of neuroprotective pathways in proliferative diabetic retinopathy samples relative to controls. Conclusions This study demonstrates a feasible, rigorous, and scalable method that can be applied to future proteomic studies of vitreous and identifies previously unrecognized metabolic pathways that advance understanding of diabetic retinopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09328-8.
Collapse
Affiliation(s)
- Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Felipe da Veiga Leprevost
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Thomas W Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
50
|
Tao L, He D, Liao C, Cai B, Chen C, Wang Y, Chen J, Liu Z, Wu Y. Repressing c-Jun N-terminal kinase signaling mitigates retinal pigment epithelium degeneration in mice with failure to clear all-trans-retinal. Exp Eye Res 2021; 214:108877. [PMID: 34863682 DOI: 10.1016/j.exer.2021.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Retinal pigment epithelium (RPE) cell apoptosis arising from all-trans-retinal (atRAL) is in close contact with the etiology of dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its underlying mechanisms remain elusive. In this study, we reported that c-Jun N-terminal kinase (JNK) activation facilitated atRAL-induced apoptosis of RPE cells. Reactive oxygen species production and endoplasmic reticulum stress were identified as two of major upstream events responsible for activating JNK signaling in atRAL-loaded RPE cells. Inhibiting JNK signaling rescued RPE cells from apoptosis induced by atRAL through attenuating caspase-3 activation leading to poly-ADP-ribose polymerase (PARP) cleavage, and DNA damage response. Abca4-/-Rdh8-/- mice upon light exposure exhibit rapidly increased accumulation of atRAL in the retina, and display severe RPE degeneration, a primary attribute of dry AMD and STGD1. Reducing JNK signaling by intraperitoneally injected JNK-IN-8 was highly effective in preventing RPE atrophy and apoptosis in light-exposed Abca4-/-Rdh8-/- mice. These findings afford a further understanding for contribution of JNK activation by atRAL to retinal damage.
Collapse
Affiliation(s)
- Lei Tao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Danxue He
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Binxiang Cai
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Department of Ophthalmology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China.
| |
Collapse
|