1
|
Vo NDN, Gaßler N, Wolf G, Loeffler I. The Role of Collagen VIII in the Aging Mouse Kidney. Int J Mol Sci 2024; 25:4805. [PMID: 38732023 PMCID: PMC11084264 DOI: 10.3390/ijms25094805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-β1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.
Collapse
Affiliation(s)
- Ngoc Dong Nhi Vo
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Nikolaus Gaßler
- Institute of Forensic Medicine, Section Pathology, University Hospital Jena, 07745 Jena, Germany;
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| |
Collapse
|
2
|
Wu Q, He X, Liu J, Ou C, Li Y, Fu X. Integrative evaluation and experimental validation of the immune-modulating potential of dysregulated extracellular matrix genes in high-grade serous ovarian cancer prognosis. Cancer Cell Int 2023; 23:223. [PMID: 37777759 PMCID: PMC10543838 DOI: 10.1186/s12935-023-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding therapeutic interventions. METHODS AND RESULTS Using univariate Cox regression analysis, we identified 71 ECM genes associated with prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer research. CONCLUSION The comprehensive evaluation of the ECM may help identify immune activation and assist patients in HGSOC and even pan-cancer in receiving proper therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Ruijin Er Road, Huangpu District, Shanghai, 200025, China.
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
3
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
4
|
Grigorieva O, Basalova N, Vigovskiy M, Arbatskiy M, Dyachkova U, Kulebyakina M, Kulebyakin K, Tyurin-Kuzmin P, Kalinina N, Efimenko A. Novel Potential Markers of Myofibroblast Differentiation Revealed by Single-Cell RNA Sequencing Analysis of Mesenchymal Stromal Cells in Profibrotic and Adipogenic Conditions. Biomedicines 2023; 11:biomedicines11030840. [PMID: 36979822 PMCID: PMC10045579 DOI: 10.3390/biomedicines11030840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are the key regulators of tissue homeostasis and repair after damage. Accumulating evidence indicates the dual contribution of MSCs into the development of fibrosis induced by chronic injury: these cells can suppress the fibrotic process due to paracrine activity, but their promoting role in fibrosis by differentiating into myofibroblasts has also been demonstrated. Many model systems reproducing fibrosis have shown the ability of peroxisome proliferator-activated receptor (PPAR) agonists to reverse myofibroblast differentiation. Thus, the differentiation of multipotent cells into myofibroblasts and adipocytes can be considered as processes that require the activation of opposite patterns of gene expression. To test this hypothesis, we analyzed single cell RNA-Seq transcriptome of human adipose tissue MSCs after stimulation of the myofibroblast or adipogenic differentiation and revealed several genes that changed their expression in a reciprocal manner upon these conditions. We validated the expression of selected genes by RT-PCR, and evaluated the upregulation of several relevant proteins using immunocytochemistry, refining the results obtained by RNA-Seq analysis. We have shown, for the first time, the expression of neurotrimin (NTM), previously studied mainly in the nervous tissue, in human adipose tissue MSCs, and demonstrated its increased gene expression and clustering of membrane receptors upon the stimulation of myofibroblast differentiation. We also showed an increased level of CHD3 (Chromodomain-Helicase-DNA-binding protein 3) in MSCs under profibrotic conditions, while retinol dehydrogenase-10 (RDH10) was detected only in MSCs after adipogenic induction, which contradicted the data of transcriptomic analysis and again highlights the need to validate the data obtained by omics methods. Our findings suggest the further analysis of the potential contribution of neurotrimin and CHD3 in the regulation of myofibroblast differentiation and the development of fibrosis.
Collapse
Affiliation(s)
- Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Correspondence:
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Uliana Dyachkova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| |
Collapse
|
5
|
Maiti G, Monteiro de Barros MR, Hu N, Dolgalev I, Roshan M, Foster JW, Tsirigos A, Wahlin KJ, Chakravarti S. Single cell RNA-seq of human cornea organoids identifies cell fates of a developing immature cornea. PNAS NEXUS 2022; 1:pgac246. [PMID: 36712326 PMCID: PMC9802453 DOI: 10.1093/pnasnexus/pgac246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
The cornea is a protective and refractive barrier in the eye crucial for vision. Understanding the human cornea in health, disease, and cell-based treatments can be greatly advanced with cornea organoids developed in culture from induced pluripotent stem cells. While a limited number of studies have investigated the single-cell transcriptomic composition of the human cornea, its organoids have not been examined similarly. Here, we elucidated the transcriptomic cell fate map of 4-month-old human cornea organoids and human donor corneas. The organoids harbor cell clusters that resemble cells of the corneal epithelium, stroma, and endothelium, with subpopulations that capture signatures of early developmental states. Unlike the adult cornea where the largest cell population is stromal, the organoids contain large proportions of epithelial and endothelial-like cells. These corneal organoids offer a 3D model to study corneal diseases and integrated responses of different cell types.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA
| | - Mona Roshan
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - James W Foster
- Wilmer Eye Institute, Johns Hopkins school of Medicine, Smith M037, 400 Broadway, Baltimore, MD 21287, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA,Department of Pathology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Karl J Wahlin
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
6
|
COL8A1 Predicts the Clinical Prognosis of Gastric Cancer and Is Related to Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7567447. [PMID: 35774273 PMCID: PMC9239809 DOI: 10.1155/2022/7567447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Background Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths. Because GC has the characteristics of high heterogeneity, unclear mechanism, limited treatment methods, and low five-year survival rate, it is necessary to find the prognostic biomarkers of GC and explore the mechanism of GC. Methods We first identified differentially expressed genes (DEGs) between gastric cancer and normal gastric cells through expression analysis. A protein-protein interaction (PPI) network was constructed to find tightly connected modules. We performed survival analysis on the DEGs in the modules to identify genes with prognostic significance. Gene set enrichment analysis (GSEA) was used to identify gene enrichment pathways. Finally, we used our own collected clinical samples of 119 gastric adenocarcinoma (STAD) tissues and 40 normal gastric tissues to perform immunohistochemical (IHC) staining to verify the differential expression of COL8A1 in STAD tissues and normal gastric tissues and its correlation with epithelial-mesenchymal transition- (EMT-) related factors. Results We identified 356 DEGs through differential expression analysis. Through PPI analysis and survival analysis, we determined that the collagen type VII alpha-1 chain (COL8A1) gene has prognostic significance. GSEA analysis showed that COL8A1 was significantly enriched in the EMT. IHC results showed that COL8A1 was upregulated in STAD tissues and could be used as an independent prognostic factor and was related to EMT. Conclusion This study shows that COL8A1 is related to the prognosis of GC patients and might affect the progress of GC through the EMT pathway. Therefore, COL8A1 may be a biomarker for predicting the prognosis of GC.
Collapse
|
7
|
Proteomic analysis of temperature-dependent developmental plasticity within the ventricle of juvenile Atlantic salmon (Salmo salar). Curr Res Physiol 2022; 5:344-354. [PMID: 36035983 PMCID: PMC9403292 DOI: 10.1016/j.crphys.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
|
8
|
Spinozzi D, Miron A, Bruinsma M, Dapena I, Kocaba V, Jager MJ, Melles GRJ, Ni Dhubhghaill S, Oellerich S. New developments in corneal endothelial cell replacement. Acta Ophthalmol 2021; 99:712-729. [PMID: 33369235 DOI: 10.1111/aos.14722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is currently the most effective treatment to restore corneal clarity in patients with endothelial disorders. Endothelial transplantation, either by Descemet membrane endothelial keratoplasty (DMEK) or by Descemet stripping (automated) endothelial keratoplasty (DS(A)EK), is a surgical approach that replaces diseased Descemet membrane and endothelium with tissue from a healthy donor eye. Its application, however, is limited by the availability of healthy donor tissue. To increase the pool of endothelial grafts, research has focused on developing new treatment options as alternatives to conventional corneal transplantation. These treatment options can be considered as either 'surgery-based', that is tissue-efficient modifications of the current techniques (e.g. Descemet stripping only (DSO)/Descemetorhexis without endothelial keratoplasty (DWEK) and Quarter-DMEK), or 'cell-based' approaches, which rely on in vitro expansion of human corneal endothelial cells (hCEC) (i.e. cultured corneal endothelial cell sheet transplantation and cell injection). In this review, we will focus on the most recent developments in the field of the 'cell-based' approaches. Starting with the description of aspects involved in the isolation of hCEC from donor tissue, we then describe the different natural and bioengineered carriers currently used in endothelial cell sheet transplantation, and finally, we discuss the current 'state of the art' in novel therapeutic approaches such as endothelial cell injection.
Collapse
Affiliation(s)
- Daniele Spinozzi
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Marieke Bruinsma
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
| | - Viridiana Kocaba
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Tissue Engineering and Stem Cell Group Singapore Eye Research Institute Singapore Singapore
| | - Martine J. Jager
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Gerrit R. J. Melles
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Amnitrans EyeBank Rotterdam The Netherlands
| | - Sorcha Ni Dhubhghaill
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Antwerp University Hospital (UZA) Edegem Belgium
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| |
Collapse
|
9
|
Rubenstein DR, Corvelo A, MacManes MD, Maia R, Narzisi G, Rousaki A, Vandenabeele P, Shawkey MD, Solomon J. Feather Gene Expression Elucidates the Developmental Basis of Plumage Iridescence in African Starlings. J Hered 2021; 112:417-429. [PMID: 33885791 PMCID: PMC11502951 DOI: 10.1093/jhered/esab014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
- Center for Integrative Animal Behavior, Columbia University, New York, NY
| | | | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | | | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat, Ghent, Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| |
Collapse
|
10
|
Walckling M, Waterstradt R, Baltrusch S. Collagen Remodeling Plays a Pivotal Role in Endothelial Corneal Dystrophies. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33259606 PMCID: PMC7718819 DOI: 10.1167/iovs.61.14.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To elucidate the collagen structure in the Descemet membrane (DM) of the human cornea and to characterize its rearrangement in patients with endothelial corneal dystrophies. Methods Corneas from nine human donors and dystrophic DMs removed from 16 affected eyes of 13 patients by endothelial keratoplasty (DMEK) were investigated using a correlative RT-qPCR and label-free two-channel multiphoton microscopy (MPM) setup. Although collagen formation was visualized by second harmonic generation, the cellular structure was determined by autofluorescence. Results The DM of the human donor cornea was characterized by a consistent pattern of fine hexagonal collagen structures that form a supportive scaffold for the endothelial cells. Accordingly, network-forming collagens (8A1 and 8A2) but less fibrillar collagens (only 1A2) were expressed. DMEK resulted in significant (P < 0.0001) improvement of best-corrected visual acuity. In the removed dystrophic DMs, MPM analyses revealed collagen rearrangement in addition to loss of endothelial cells and the development of guttae. MPM analyses of the whole patient's DM demonstrated this collagen remodeling in its entirety and facilitated correlation to Scheimpflug corneal tomography. In most DMs a unique honeycomb collagen network was identified, with distinct bundles surrounding the guttae and correlating with expression of fibrillar collagens (1A1). Conversely, some DMs showed either reduced collagen on MPM and RT-qPCR analysis or diffuse thickening and storage of extracellular matrix. Conclusions The collagen structure of the DM and its adaptive remodeling in endothelial corneal dystrophies has been characterized for the first time here and will facilitate individual therapeutic approaches.
Collapse
Affiliation(s)
- Marcus Walckling
- Department of Ophthalmology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Diseases of the corneal endothelium. Exp Eye Res 2021; 205:108495. [PMID: 33596440 DOI: 10.1016/j.exer.2021.108495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
The corneal endothelial monolayer and associated Descemet's membrane (DM) complex is a unique structure that plays an essential role in corneal function. Endothelial cells are neural crest derived cells that rest on a special extracellular matrix and play a major role in maintaining stromal hydration within a narrow physiologic range necessary for clear vision. A number of diseases affect the endothelial cells and DM complex and can impair corneal function and vision. This review addresses different human corneal endothelial diseases characterized by loss of endothelial function including: Fuchs endothelial corneal dystrophy (FECD), posterior polymorphous corneal dystrophy (PPCD), congenital hereditary endothelial dystrophy (CHED), bullous keratopathy, iridocorneal endothelial (ICE) syndrome, post-traumatic fibrous downgrowth, glaucoma and diabetes mellitus.
Collapse
|
12
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
13
|
de Oliveira RC, Wilson SE. Descemet's membrane development, structure, function and regeneration. Exp Eye Res 2020; 197:108090. [PMID: 32522478 DOI: 10.1016/j.exer.2020.108090] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Basement membranes are layers of extracellular matrix which anchor the epithelium or endothelium to connective tissues in most organs. Descemet's membrane- which is the basement membrane for the corneal endothelium- is a dense, thick, relatively transparent and cell-free matrix that separates the posterior corneal stroma from the underlying endothelium. It was historically named Descemet's membrane after Jean Descemet, a French physician, but it is also known as the posterior limiting elastic lamina, lamina elastica posterior, and membrane of Demours. Normal Descemet's membrane ultrastructure in humans has been shown to consist of an interfacial matrix that attaches to the overlying corneal stroma, an anterior banded layer and a posterior non-banded layer-upon which corneal endothelial cells attach. These layers have been shown to have unique composition and morphology, and to contribute to corneal homeostasis and clarity, participate in the control of corneal hydration and to modulate TGF-β-induced posterior corneal fibrosis. Pathophysiological alterations of Descemet's membrane are noted in ocular diseases such as Fuchs' dystrophy, bullous keratopathy, keratoconus, primary congenital glaucoma (Haab's striae), as well as in systemic conditions. Unrepaired extensive damage to Descemet's membrane results in severe corneal opacity and vision loss due to stromal fibrosis, which may require penetrating keratoplasty to restore corneal transparency. The purpose of this article is to highlight the current understanding of Descemet's membrane structure, function and potential for regeneration.
Collapse
|
14
|
Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2020; 28:2030-2045. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.
Collapse
Affiliation(s)
| | | | | | - Kevin E McElhanon
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | | | | | - Federica Accornero
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | - Noah L Weisleder
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | |
Collapse
|
15
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
16
|
Hauck JS, Howard ZM, Lowe J, Rastogi N, Pico MG, Swager SA, Petrosino JM, Gomez-Sanchez CE, Gomez-Sanchez EP, Accornero F, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Front Physiol 2019; 10:1324. [PMID: 31736768 PMCID: PMC6830343 DOI: 10.3389/fphys.2019.01324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
Acute skeletal muscle injury is followed by a temporal response of immune cells, fibroblasts, and muscle progenitor cells within the muscle microenvironment to restore function. These same cell types are repeatedly activated in muscular dystrophy from chronic muscle injury, but eventually, the regenerative portion of the cycle is disrupted and fibrosis replaces degenerated muscle fibers. Mineralocorticoid receptor (MR) antagonist drugs have been demonstrated to increase skeletal muscle function, decrease fibrosis, and directly improve membrane integrity in muscular dystrophy mice, and therefore are being tested clinically. Conditional knockout of MR from muscle fibers in muscular dystrophy mice also improves skeletal muscle function and decreases fibrosis. The mechanism of efficacy likely results from blocking MR signaling by its endogenous agonist aldosterone, being produced at high local levels in regions of muscle damage by infiltrating myeloid cells. Since chronic and acute injuries share the same cellular processes to regenerate muscle, and MR antagonists are clinically used for a wide variety of conditions, it is crucial to define the role of MR signaling in normal muscle repair after injury. In this study, we performed acute injuries using barium chloride injections into tibialis anterior muscles both in myofiber MR conditional knockout mice on a wild-type background (MRcko) and in MR antagonist-treated wild-type mice. Steps of the muscle regeneration response were analyzed at 1, 4, 7, or 14 days after injury. Presence of the aldosterone synthase enzyme was also assessed during the injury repair process. We show for the first time aldosterone synthase localization in infiltrating immune cells of normal skeletal muscle after acute injury. MRcko mice had an increased muscle area infiltrated by aldosterone synthase positive myeloid cells compared to control injured animals. Both MRcko and MR antagonist treatment stabilized damaged myofibers and increased collagen infiltration or compaction at 4 days post-injury. MR antagonist treatment also led to reduced myofiber size at 7 and 14 days post-injury. These data support that MR signaling contributes to the normal muscle repair process following acute injury. MR antagonist treatment delays muscle fiber growth, so temporary discontinuation of these drugs after a severe muscle injury could be considered.
Collapse
Affiliation(s)
- J. Spencer Hauck
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Zachary M. Howard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Madison G. Pico
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Sarah A. Swager
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer M. Petrosino
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Celso E. Gomez-Sanchez
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Elise P. Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Federica Accornero
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jill A. Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Moschos MM, Diamantopoulou A, Gouliopoulos N, Droutsas K, Bagli E, Chatzistefanou K, Kitsos G, Kroupis C. TCF4 and COL8A2 Gene Polymorphism Screening in a Greek Population of Late-onset Fuchs Endothelial Corneal Dystrophy. In Vivo 2019; 33:963-971. [PMID: 31028223 DOI: 10.21873/invivo.11565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Fuchs' endothelial corneal dystrophy (FECD) is a hereditary, progressive, bilateral, and irreversible disorder of the corneal endothelium. The purpose of this study was to develop a novel, accurate and high-throughput real-time polymerase chain reaction (PCR) method and melting-curve analysis in order to genotype the rs613872 polymorphism in the transcription factor 4 (TCF4) gene and to implement it on a well-ascertained sample of 22 Greek FECD patients and 58 healthy individuals, age- and sex-matched. PATIENTS AND METHODS DNA was extracted from blood samples, which were screened with the DNA sequencing method in order to detect the g.31753T>G/p.L450W (rs8035192) and g.31767C>A/p.Q455K (rs8035191) mutations in a COL8A2 genomic region. RESULTS TCF4 risk G allele frequency increased to 48% in FECD patients compared to 17% in healthy-subjects [OR=4.82 (95% CI=1.98-11.73)]. No p.L450W and p.Q455K COL8A2 gene mutations were detected. CONCLUSION We confirmed that rs613872 in the TCF4 gene is strongly and statistically associated with late-onset FECD in a Greek population.
Collapse
Affiliation(s)
- Marilita M Moschos
- First Department of Ophthalmology, G. Gennimatas General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana Diamantopoulou
- Department of Clinical Biochemistry, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Gouliopoulos
- First Department of Ophthalmology, G. Gennimatas General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Droutsas
- First Department of Ophthalmology, G. Gennimatas General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Bagli
- Department of Ophthalmology, Ioannina University General Hospital, University of Ioannina, Ioannina, Greece
| | - Klio Chatzistefanou
- First Department of Ophthalmology, G. Gennimatas General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kitsos
- Department of Ophthalmology, Ioannina University General Hospital, University of Ioannina, Ioannina, Greece
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a common disease resulting from corneal endothelial cell dysfunction. It is inherited in an autosomal dominant fashion with incomplete penetrance, and with a female bias. Approximately half of cases occur sporadically, and the remainder are familial. Early and late-onset forms of the disease exist. A review of the literature has revealed more than 15 genes harbouring mutations and/or single nucleotide polymorphisms associated with FECD. The proteins encoded by these genes cover a wide range of endothelial function, including transcription regulation, DNA repair, mitochondrial DNA mutations, targeting of proteins to the cell membrane, deglutamylation of proteins, extracellular matrix secretion, formation of cell-cell and cell-extracellular matrix junctions, water pump, and apoptosis. These genetic variations will form the platform for the further understanding of the pathological basis of the disease, and the development of targeted treatments. This review aims to summarise known genetic variations associated with FECD, discuss any known molecular effects of the variations, how these provide opportunities for targeted therapies, and what therapies are currently in development.
Collapse
|
19
|
Parrott ME, Aljrbi E, Biederman DL, Montalvo RN, Barth JL, LaVoie HA. Maternal cardiac messenger RNA expression of extracellular matrix proteins in mice during pregnancy and the postpartum period. Exp Biol Med (Maywood) 2018; 243:1220-1232. [PMID: 30541349 PMCID: PMC6384446 DOI: 10.1177/1535370218818457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT This study provides the first comprehensive analysis of extracellular matrix protein (ECM) gene expression combined with echocardiographic analyses of heart functional parameters in the murine heart during pregnancy and the early postpartum period. Our findings show regulation of all Timp, selected Mmps, and Col1a1, Col3a1, and Col8a1 mRNA levels with reproductive status, with the greatest number of significant changes occurring in the early postpartum period. Left ventricle cardiac diastolic parameters were the first to change during pregnancy and remained elevated postpartum, whereas systolic parameters were increased in late pregnancy and began to recover during the first week postpartum. These novel findings indicate that although some ECM genes are elevated during late pregnancy, that the postpartum period is a time of robust altered ECM gene expression. These studies provide a basis for examining ECM proteins and their activities in the normal pregnant and postpartum heart and in models of postpartum cardiomyopathy.
Collapse
Affiliation(s)
- Megan E Parrott
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Esam Aljrbi
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Diane L Biederman
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Ryan N Montalvo
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Jeremy L Barth
- MUSC Proteogenomics Facility, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
20
|
Basement membranes in the cornea and other organs that commonly develop fibrosis. Cell Tissue Res 2018; 374:439-453. [PMID: 30284084 DOI: 10.1007/s00441-018-2934-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Basement membranes are thin connective tissue structures composed of organ-specific assemblages of collagens, laminins, proteoglycan-like perlecan, nidogens, and other components. Traditionally, basement membranes are thought of as structures which primarily function to anchor epithelial, endothelial, or parenchymal cells to underlying connective tissues. While this role is important, other functions such as the modulation of growth factors and cytokines that regulate cell proliferation, migration, differentiation, and fibrosis are equally important. An example of this is the critical role of both the epithelial basement membrane and Descemet's basement membrane in the cornea in modulating myofibroblast development and fibrosis, as well as myofibroblast apoptosis and the resolution of fibrosis. This article compares the ultrastructure and functions of key basement membranes in several organs to illustrate the variability and importance of these structures in organs that commonly develop fibrosis.
Collapse
|
21
|
Yi Y, Lv Y, Zhang L, Yang J, Shi Q. High Throughput Identification of Antihypertensive Peptides from Fish Proteome Datasets. Mar Drugs 2018; 16:E365. [PMID: 30279337 PMCID: PMC6212880 DOI: 10.3390/md16100365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Antihypertensive peptides (AHTPs) are a group of small peptides with the main role to block key enzymes or receptors in the angiotensin genesis pathway. A great number of AHTPs have been isolated or digested from natural food resources; however, comprehensive studies on comparisons of AHTPs in various species from the perspective of big data are rare. Here, we established a simplified local AHTP database, and performed in situ mapping for high throughput identification of AHTPs with high antihypertensive activity from high-quality whole proteome datasets of 18 fish species. In the 35 identified AHTPs with reported high activity, we observed that Gly-Leu-Pro, Leu-Pro-Gly, and Val-Ser-Val are the major components of fish proteins, and AHTP hit numbers in various species demonstrated a similar distributing pattern. Interestingly, Atlantic salmon (Salmo salar) is in possession of far more abundant AHTPs compared with other fish species. In addition, collagen subunit protein is the largest group with more matching AHTPs. Further exploration of two collagen subunits (col4a5 and col8a1) in more fish species suggested that the hit pattern of these conserved proteins among teleost is almost the same, and their phylogeny is consistent with the evolution of these fish species. In summary, our present study provides basic information for the relationship of AHTPs with fish proteins, which sheds light on rapid discovery of marine drugs or food additives from fish protein hydrolysates to alleviate hypertension.
Collapse
Affiliation(s)
- Yunhai Yi
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Yunyun Lv
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Lijun Zhang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jian Yang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
22
|
Li Y, Li J, Woo YM, Shen Z, Yao H, Cai Y, Lin MCM, Poon WS. Enhanced expression of Vastatin inhibits angiogenesis and prolongs survival in murine orthotopic glioblastoma model. BMC Cancer 2017; 17:126. [PMID: 28193190 PMCID: PMC5307880 DOI: 10.1186/s12885-017-3125-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Antiangiogenic therapies are considered promising for the treatment of glioblastoma (GB). The non-collagenous C-terminal globular NC1 domain of type VIII collagen a1 chain, Vastatin, is an endogenous antiangiogenic polypeptide. Sustained enhanced expression of Vastatin was shown to inhibit tumour growth and metastasis in murine hepatocellular carcinoma models. In this study, we further explored the efficacy of Vastatin in the treatment of GB xenografts. Method Treatment of Vastatin was carried out using a nanopolymer gene vector PEI600-CyD-Folate (H1). Antiangiogenic effect of Vastatin was tested in vitro by using co-culture system and conditioned medium. An orthotopic GB murine model was established to examine the in vivo therapeutic effect of Vastatin alone treatment and its combination with temozolomide. Results Vastatin gene transfection mediated by H1 could target tumour cells specifically and suppress the proliferation of microvessel endothelial cells (MECs) through a paracrine inhibition manner. Enhancing Vastatin expression by intracerebral injection of H1-Vastatin significantly prolonged animal survival from 48 to 75 days in GB murine model, which was comparable to the effect of Endostatin, the most studied endogenous antiangiogenic polypeptide. The diminished presence of CD34 positive cells in the GB xenografts suggested that Vastatin induced significant antiangiogenesis. Moreover, a synergistic effect in extending survival was detected when H1-Vastatin was administered with temozolomide (TMZ) in GB chemoresistant murine models. Conclusion Our results suggest, for the first time, that Vastatin is an antiangiogenic polypeptide with significant potential therapeutic benefit for GB. H1-Vastatin gene therapy may have important implications in re-sensitizing recurrent GB to standard chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Li
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Li
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yat Ming Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Zan Shen
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Yao
- Jiangsu Eng. Lab of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Yijun Cai
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Marie Chia-Mi Lin
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Kim HA, Whang WJ, Lee JH, Chae H, Kim M, Kim MS. Clinical Characteristics and Prognosis of Fuchs Dystrophy According to COL8A2 Gene Mutation Status. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.4.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyun-Ah Kim
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong-Joo Whang
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hye Lee
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Man Soo Kim
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
24
|
Velazquez-Villoria A, Recalde S, Anter J, Bezunartea J, Hernandez-Sanchez M, García-García L, Alonso E, Ruiz-Moreno JM, Araiz-Iribarren J, Fernandez-Robredo P, García-Layana A. Evaluation of 10 AMD Associated Polymorphisms as a Cause of Choroidal Neovascularization in Highly Myopic Eyes. PLoS One 2016; 11:e0162296. [PMID: 27643879 PMCID: PMC5028023 DOI: 10.1371/journal.pone.0162296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023] Open
Abstract
Choroidal neovascularization (CNV) commonly occurs in age related macular degeneration and pathological myopia patients. In this study we conducted a case-control prospective study including 431 participants. The aim of this study was to determine the potential association between 10 single nucleotide polymorphisms (SNPs) located in 4 different genetic regions (CFI, COL8A1, LIPC, and APOE), and choroidal neovascularization in age-related macular degeneration and the development of choroidal neovascularization in highly myopic eyes of a Caucasian population. Univariate and multivariate logistic regression analysis adjusted for age, sex and hypertension was performed for each allele, genotype and haplotype frequency analysis. We found that in the univariate analysis that both single-nucleotide polymorphisms in COL8A1 gene (rs13095226 and rs669676) together with age, sex and hypertension were significantly associated with myopic CNV development in Spanish patients (p<0.05). After correcting for multiple testing none of the polymorphisms studied remained significantly associated with myopic CNV (p>0.05); however, analysis of the axial length between genotypes of rs13095226 revealed an important influence of COL8A1 in the development of CNV in high myopia. Furthermore we conducted a meta-analysis of COL8A1, CFI and LIPC genes SNPs (rs669676, rs10033900 and rs10468017) and found that only rs669676 of these SNPs were associated with high myopia neovascularization.
Collapse
Affiliation(s)
- Alvaro Velazquez-Villoria
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sergio Recalde
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| | - Jaouad Anter
- Department of Celular and Molecular Medicine, Centro de Investigaciones Biológicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Jaione Bezunartea
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
| | | | - Laura García-García
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
| | - Elena Alonso
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose María Ruiz-Moreno
- Department of Ophthalmology, Castilla La Mancha University, Albacete and Baviera European Institute of Retina, Alicante, Spain
| | - Javier Araiz-Iribarren
- University of the Basque Country (Surgical-Clinical Institute of Ophthalmology) and San Eloy Hospital, Bilbao, Spain
| | | | - Alfredo García-Layana
- Ophthalmology Experimental Laboratory, Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
25
|
Xia D, Zhang S, Nielsen E, Ivarsen AR, Liang C, Li Q, Thomsen K, Hjortdal JØ, Dong M. The Ultrastructures and Mechanical Properties of the Descement's Membrane in Fuchs Endothelial Corneal Dystrophy. Sci Rep 2016; 6:23096. [PMID: 26980551 PMCID: PMC4793225 DOI: 10.1038/srep23096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/26/2016] [Indexed: 11/16/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD), is the most common corneal endothelial dystrophy, and contributes up to 50% of all corneal transplantations performed in developed countries. FECD develops in Descemet’s membrane (DM) and possibly alters the mechanical properties and internal structures in this basal lamina. In this work, the morphology and mechanical properties of FECD-DMs are studied by transmission electron microscopy (TEM) and quantitative dynamic atomic force microscopy (QD-AFM) at nano scale. Pathological wide-space collagens that are typical of FECD display different mechanical properties in that they are softer than the remaining tissue both for dehydrated- and fully hydrated samples. Additionally, the hydration level has major influence on the mechanical properties. These findings could help to further understand the structural changes in FECD, and possibly be useful for further characterization of the disease, the diagnosis and assessment or even pathologic analysis.
Collapse
Affiliation(s)
- Dan Xia
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China.,The Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Shuai Zhang
- The Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Esben Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qiang Li
- The Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Karen Thomsen
- The Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | | | - Mingdong Dong
- The Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
26
|
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy and frequently results in vision loss. Hallmarks of the disease include loss of corneal endothelial cells and formation of excrescences of Descemet's membrane. Later stages involve all layers of the cornea. Impairment of endothelial barrier and pump function and cell death from oxidative and unfolded protein stress contribute to disease progression. The genetic basis of FECD includes numerous genes and chromosomal loci, although alterations in the transcription factor 4 gene are associated with the majority of cases. Definitive treatment of FECD is corneal transplantation. In this paper, we highlight advances that have been made in understanding FECD's clinical features, pathophysiology, and genetics. We also discuss recent advances in endothelial keratoplasty and potential future treatments.
Collapse
Affiliation(s)
- Gustavo Vedana
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
27
|
Kim J, Procknow JD, Yanagisawa H, Wagenseil JE. Differences in genetic signaling, and not mechanical properties of the wall, are linked to ascending aortic aneurysms in fibulin-4 knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H103-13. [PMID: 25934097 PMCID: PMC4491524 DOI: 10.1152/ajpheart.00178.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
Abstract
Fibulin-4 is an extracellular matrix protein that is essential for proper assembly of arterial elastic fibers. Mutations in fibulin-4 cause cutis laxa with thoracic aortic aneurysms (TAAs). Sixty percent of TAAs occur in the ascending aorta (AA). Newborn mice lacking fibulin-4 (Fbln4(-/-)) have aneurysms in the AA, but narrowing in the descending aorta (DA), and are a unique model to investigate locational differences in aneurysm susceptibility. We measured mechanical behavior and gene expression of AA and DA segments in newborn Fbln4(-/-) and Fbln4(+/+) mice. Fbln4(-/-) AA has increased diameters compared with Fbln4(+/+) AA and Fbln4(-/-) DA at most applied pressures, confirming genotypic and locational specificity of the aneurysm phenotype. When diameter compliance and tangent modulus were calculated from the mechanical data, we found few significant differences between genotypes, suggesting that the mechanical response to incremental diameter changes is similar, despite the fragmented elastic fibers in Fbln4(-/-) aortas. Fbln4(-/-) aortas showed a trend toward increased circumferential stretch, which may be transmitted to smooth muscle cells (SMCs) in the wall. Gene expression data suggest activation of pathways for SMC proliferation and inflammation in Fbln4(-/-) aortas compared with Fbln4(+/+). Additional genes in both pathways, as well as matrix metalloprotease-8 (Mmp8), are upregulated specifically in Fbln4(-/-) AA compared with Fbln4(+/+) AA and Fbln4(-/-) DA. Mmp8 is a neutrophil collagenase that targets type 1 collagen, and upregulation may be necessary to allow diameter expansion in Fbln4(-/-) AA. Our results provide molecular and mechanical targets for further investigation in aneurysm pathogenesis.
Collapse
MESH Headings
- Acute-Phase Proteins/genetics
- Acute-Phase Proteins/metabolism
- Animals
- Animals, Newborn
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/ultrastructure
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/ultrastructure
- Aortic Aneurysm, Thoracic/genetics
- Calcium-Binding Proteins
- Collagen Type VIII/genetics
- Collagen Type VIII/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Elastic Modulus
- Epiregulin/genetics
- Epiregulin/metabolism
- Extracellular Matrix Proteins/genetics
- Gene Expression Profiling
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/metabolism
- Matrix Metalloproteinase 8/genetics
- Matrix Metalloproteinase 8/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serpins/genetics
- Serpins/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; and Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri;
| |
Collapse
|
28
|
Skrbic B, Engebretsen KVT, Strand ME, Lunde IG, Herum KM, Marstein HS, Sjaastad I, Lunde PK, Carlson CR, Christensen G, Bjørnstad JL, Tønnessen T. Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovasc Res 2015; 106:32-42. [PMID: 25694587 DOI: 10.1093/cvr/cvv041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS In pressure overload, left ventricular (LV) dilatation is a key step in transition to heart failure (HF). We recently found that collagen VIII (colVIII), a non-fibrillar collagen and extracellular matrix constituent, was reduced in hearts of mice with HF and correlated to degree of dilatation. A reduction in colVIII might be involved in LV dilatation, and we here examined the role of reduced colVIII in pressure overload-induced remodelling using colVIII knock-out (col8KO) mice. METHODS AND RESULTS Col8KO mice exhibited increased mortality 3-9 days after aortic banding (AB) and increased LV dilatation from day one after AB, compared with wild type (WT). LV dilatation remained increased over 56 days. Forty-eight hours after AB, LV expression of main structural collagens (I and III) was three-fold increased in WT mice, but these collagens were unaltered in the LV of col8KO mice together with reduced expression of the pro-fibrotic cytokine TGF-β, SMAD2 signalling, and the myofibroblast markers Pxn, α-SMA, and SM22. Six weeks after AB, LV collagen mRNA expression and protein were increased in col8KO mice, although less pronounced than in WT. In vitro, neonatal cardiac fibroblasts from col8KO mice showed lower expression of TGF-β, Pxn, α-SMA, and SM22 and reduced migratory ability possibly due to increased RhoA activity and reduced MMP2 expression. Stimulation with recombinant colVIIIα1 increased TGF-β expression and fibroblast migration. CONCLUSION Lack of colVIII reduces myofibroblast differentiation and fibrosis and promotes early mortality and LV dilatation in response to pressure overload in mice.
Collapse
Affiliation(s)
- Biljana Skrbic
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kristin V T Engebretsen
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mari E Strand
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ida G Lunde
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway Department of Genetics, Harvard` Medical School, Boston, MA, USA
| | - Kate M Herum
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henriette S Marstein
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per K Lunde
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine R Carlson
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Geir Christensen
- Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes L Bjørnstad
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Zhang J, Patel DV. The pathophysiology of Fuchs' endothelial dystrophy – A review of molecular and cellular insights. Exp Eye Res 2015; 130:97-105. [DOI: 10.1016/j.exer.2014.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
|
30
|
Futyma K, Miotła P, Różyńska K, Zdunek M, Semczuk A, Rechberger T, Wojcierowski J. Expression of genes encoding extracellular matrix proteins: a macroarray study. Oncol Rep 2014; 32:2349-53. [PMID: 25231141 PMCID: PMC4240474 DOI: 10.3892/or.2014.3493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.
Collapse
Affiliation(s)
- Konrad Futyma
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Paweł Miotła
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Krystyna Różyńska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zdunek
- Department of Clinical Pathology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jacek Wojcierowski
- Department of Medical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
31
|
Hamill CE, Schmedt T, Jurkunas U. Fuchs endothelial cornea dystrophy: a review of the genetics behind disease development. Semin Ophthalmol 2014; 28:281-6. [PMID: 24138036 DOI: 10.3109/08820538.2013.825283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fuchs dystrophy represents the most common form of endothelial dystrophy and is a significant cause of visual impairment. The cause of Fuchs dystrophy is a complicated combination of both genetic and environmental factors. Understanding the underlying causes of the disease can potentially lead to new medical treatments preventing loss of vision.
Collapse
Affiliation(s)
- Cecily E Hamill
- Massachusetts Eye and Ear Infirmary , Boston, Massachusetts , USA
| | | | | |
Collapse
|
32
|
Stenmark KR, Nozik-Grayck E, Gerasimovskaya E, Anwar A, Li M, Riddle S, Frid M. The adventitia: Essential role in pulmonary vascular remodeling. Compr Physiol 2013; 1:141-61. [PMID: 23737168 DOI: 10.1002/cphy.c090017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in."
Collapse
Affiliation(s)
- Kurt R Stenmark
- University of Colorado Denver - Pediatric Critical Care, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Skrbic B, Bjørnstad JL, Marstein HS, Carlson CR, Sjaastad I, Nygård S, Bjørnstad S, Christensen G, Tønnessen T. Differential regulation of extracellular matrix constituents in myocardial remodeling with and without heart failure following pressure overload. Matrix Biol 2013; 32:133-42. [PMID: 23220517 DOI: 10.1016/j.matbio.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
|
34
|
Hindman HB, McCally RL, Kim A, D'Anna SE, Eberhart CG, Jun AS. Evaluation of the effects of circular Descemet's membrane incision on the biomechanical, topographic and optical properties of rabbit corneas. Clin Exp Ophthalmol 2012; 39:691-9. [PMID: 22212852 DOI: 10.1111/j.1442-9071.2011.02518.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prospective interventional animal case series to investigate quantitatively changes in corneal light-scattering, corneal hysteresis, keratometry and pachymetry induced by circular Descemet's membrane incision. METHODS Thirty mature New Zealand White rabbits were divided into three study groups: (i) surgical intervention with circular Descemet's incision; (ii) surgical control; and (iii) medical control. Group 1 eyes had two paracenteses placed 120 degrees apart and an 8.5-mm-diameter Descemetorhexis was created with a reverse Sinskey hook. Group 2 eyes had two paracenteses placed 120 degrees apart. The main outcome measures were scatterometry, corneal hysteresis, pachymetry and keratometry measurements, which were performed prior to and 2 weeks following the interventions. Histology and transmission electron microscopy were performed post-mortem in representative eyes. RESULTS Eyes that had undergone circular Descemet's incision had significantly decreased mean keratometry (43.9 ± 0.7 dioptres [mean ± standard deviation] preoperatively vs. 43.5 ± 0.9 dioptres postoperatively, P = 0.007). Circular Descemet's membrane incision did not significantly change corneal hysteresis (4.4 ± 1.1 mmHg preoperatively vs. 4.6 ± 0.9 mmHg postoperatively, P = 0.664). Corneal light scattering decreased after Descemet's scoring (0.00254 ± 0.00059 preoperatively vs. 0.00206 ± 0.00031 postoperatively, P = 0.0025). Pachymetry measurements remained relatively stable (341.3 ± 18.6 µm preoperatively vs. 330.6 ± 20.0 µm postoperatively) without postoperative oedema. CONCLUSIONS Circular Descemet's scoring flattened the corneal curvature by a mean of 0.4 dioptres without affecting corneal hysteresis in rabbit corneas. These findings may have important implications for ongoing developments in endothelial keratoplasty.
Collapse
Affiliation(s)
- Holly B Hindman
- Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Boudko SP, Engel J, Bächinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 2012; 44:21-32. [DOI: 10.1016/j.biocel.2011.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
|
36
|
Balasubramanian P, Prabhakaran MP, Sireesha M, Ramakrishna S. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective. POLYMER COMPOSITES – POLYOLEFIN FRACTIONATION – POLYMERIC PEPTIDOMIMETICS – COLLAGENS 2012. [DOI: 10.1007/12_2012_176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Umezawa M, Kudo S, Yanagita S, Shinkai Y, Niki R, Oyabu T, Takeda K, Ihara T, Sugamata M. Maternal exposure to carbon black nanoparticle increases collagen type VIII expression in the kidney of offspring. J Toxicol Sci 2011; 36:461-8. [PMID: 21804310 DOI: 10.2131/jts.36.461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The potential health risks of inhaling nanomaterials are of great concern because of their high specific activity and their unique property of translocation. Earlier studies showed that exposure to nanoparticles through the airway affects both respiratory and extrapulmonary organs. When pregnant mice were exposed to nanoparticles, the respiratory system, the central nervous system and the reproductive system of their offspring were affected. The aim of this study was to assess the effect of maternal exposure to nanoparticles on the offspring, particularly on the kidney. Pregnant ICR mice were exposed to a total of 100 µg of carbon black nanoparticle on the fifth and the ninth days of pregnancy. Samples of blood and kidney tissue were collected from 3-week-old and 12-week-old male offspring mice. Collagen expression was examined by quantitative RT-PCR and immunohistochemistry. Serum levels of creatinine and blood urea nitrogen were examined. Exposure of pregnant ICR mice to carbon black resulted in increased expression of Collagen, type VIII, a1 (Col8a1) in the tubular cells in the kidney of 12-week-old offspring mice but not in 3-week-old ones. The levels of serum creatinine and blood urea nitrogen, indices of renal function, were not different between the groups. These observations were similar to those of tubulointerstitial fibrosis in diabetic nephropathy. These results suggest that maternal exposure to carbon black nanoparticle induces renal abnormalities similar to tubulointerstitial fibrosis in diabetic nephropathy are induced in the kidney of offspring.
Collapse
|
38
|
Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 2011; 47:212-21. [PMID: 22010885 DOI: 10.1111/j.1600-0765.2011.01423.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell adhesion plays important roles in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. The objective of the present investigation was to extend our understanding of the effect of cyclic mechanical strain on the expression of adhesion-related genes by human periodontal ligament cells. MATERIAL AND METHODS Cultured periodontal ligament cells were subjected to a cyclic in-plane tensile deformation of 12% for 5 s (0.2 Hz) every 90 s for 6-24 h in a Flexercell FX-4000 Strain Unit. The following parameters were measured: (i) cell viability by the MTT assay; (ii) caspase-3 and -7 activity; and (iii) the expression of 84 genes encoding adhesion-related molecules using real-time RT-PCR microarrays. RESULTS Mechanical stress reduced the metabolic activity of deformed cells at 6 h, and caspase-3 and -7 activity at 6 and 12 h. Seventy-three genes were detected at critical threshold values < 35. Fifteen showed a significant change in relative expression: five cell adhesion molecules (ICAM1, ITGA3, ITGA6, ITGA8 and NCAM1), three collagen α-chains (COL6A1, COL8A1 and COL11A1), four MMPs (ADAMTS1, MMP8, MMP11 and MMP15), plus CTGF, SPP1 and VTN. Four genes were upregulated (ADAMTS1, CTGF, ICAM1 and SPP1) and 11 downregulated, with the range extending from a 1.76-fold induction of SPP1 at 12 h to a 2.49-fold downregulation of COL11A1 at 24 h. CONCLUSION The study has identified several mechanoresponsive adhesion-related genes, and shown that onset of mechanical stress was followed by a transient reduction in overall cellular activity, including the expression of two apoptosis 'executioner' caspases.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
39
|
A cellular model for the investigation of Fuchs' endothelial corneal dystrophy. Exp Eye Res 2011; 93:880-8. [PMID: 22020132 DOI: 10.1016/j.exer.2011.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/28/2011] [Accepted: 10/03/2011] [Indexed: 11/22/2022]
Abstract
Fuchs' endothelial corneal dystrophy is the most common corneal endotheliopathy, and a leading indication for corneal transplantation in the US. Relatively little is known about its underlying pathology. We created a cellular model of the disease focusing on collagen VIII alpha 2 (COL8A2), a collagen which is normally present in the cornea, but which is found in abnormal amounts and distribution in both early and late-onset forms of the disease. We performed cellular transfections using COL8A2 cDNAs including both wild-type and mutant alleles which are known to result in early-onset FECD. We used this cell model to explore the cellular production of wild-type and mutant monomeric and trimeric collagen VIII and measured production levels and patterns using Western blotting and immunofluorescence. We studied the thermal stability of the mutated collagen VIII helices using computer modeling, and further investigated these differences using collagen mimetic peptides. The Western blots demonstrated that similar amounts of wild-type and mutant collagen VIII monomers were produced in the cells. However, the levels of trimeric collagen peptide in the mutant-transfected cells were elevated. Intracellular accumulation of trimeric collagen VIII was confirmed on immunofluorescence studies. Both the computer model and the collagen mimetic peptides demonstrated that the L450W mutant was less thermally stable than either the Q455K or wild-type collagen VIII. Thus, although both mutant collagen VIII peptides were retained intracellularly, the biochemical reasons for the retention varied between genotypes. Collagen VIII mutations, which clinically result in Fuchs' dystrophy, are associated with abnormal cellular accumulation of collagen VIII. Different collagen VIII mutations may act via distinct biochemical mechanisms to produce the FECD phenotype.
Collapse
|
40
|
Jun AS, Meng H, Ramanan N, Matthaei M, Chakravarti S, Bonshek R, Black GCM, Grebe R, Kimos M. An alpha 2 collagen VIII transgenic knock-in mouse model of Fuchs endothelial corneal dystrophy shows early endothelial cell unfolded protein response and apoptosis. Hum Mol Genet 2011; 21:384-93. [PMID: 22002996 DOI: 10.1093/hmg/ddr473] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation. FECD is characterized by progressive alterations in endothelial cell morphology, excrescences (guttae) and thickening of the endothelial basement membrane and cell death. Ultimately, these changes lead to corneal edema and vision loss. Due to the lack of vision loss in early disease stages and the decades long disease course, early pathophysiology in FECD is virtually unknown as studies of pathologic tissues have been limited to end-stage tissues obtained at transplant. The first genetic defect shown to cause FECD was a point mutation causing a glutamine to lysine substitution at amino acid position 455 (Q455K) in the alpha 2 collagen 8 gene (COL8A2) which results in an early onset form of the disease. Homozygous mutant knock-in mice with this mutation (Col8a2(Q455K/Q455K)) show features strikingly similar to human disease, including progressive alterations in endothelial cell morphology, cell loss and basement membrane guttae. Ultrastructural analysis shows the predominant defect as dilated endoplasmic reticulum (ER), suggesting ER stress and unfolded protein response (UPR) activation. Immunohistochemistry, western blotting, quantitative reverse transcriptase polymerase chain reaction and terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end-labeling analyses support UPR activation and UPR-associated apoptosis in the Col8a2(Q455K/Q455K) mutant corneal endothelium. This study confirms the Q455K substitution in the COL8A2 gene as being sufficient to cause FECD in the first mouse model of this disease and supports the role of the UPR and UPR-associated apoptosis in the pathogenesis of FECD caused by COL8A2 mutations.
Collapse
Affiliation(s)
- Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamada A, Koyanagi KO, Watanabe H. In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis. Gene 2011; 491:232-6. [PMID: 21963995 DOI: 10.1016/j.gene.2011.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Brachyury, a member of the T-box transcription family, has been suggested to be essential for morphogenetic movements in various processes of animal development. However, little is known about its critical transcriptional targets. In order to identify targets of Brachyury and understand the molecular mechanisms underlying morphogenetic movements, we first searched the genome sequence of Xenopus tropicalis, the only amphibian genomic sequence available, for Brachyury-binding sequences known as T-half sites, and then screened for the ones conserved between vertebrate genomes. We found three genes that have evolutionarily conserved T-half sites in the promoter regions and examined these genes experimentally to determine whether their expressions were regulated by Brachyury, using the animal cap system of Xenopus laevis embryos. Eventually, we obtained evidence that vimentin, encoding an intermediate filament protein, was a potential target of Brachyury. This is the first report to demonstrate that Brachyury might affect the cytoskeletal structure through regulating the expression of an intermediate filament protein, vimentin.
Collapse
Affiliation(s)
- Atsuko Yamada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | | | | |
Collapse
|
42
|
Schmedt T, Silva MM, Ziaei A, Jurkunas U. Molecular bases of corneal endothelial dystrophies. Exp Eye Res 2011; 95:24-34. [PMID: 21855542 DOI: 10.1016/j.exer.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/18/2011] [Accepted: 08/03/2011] [Indexed: 01/12/2023]
Abstract
The phrase "corneal endothelial dystrophies" embraces a group of bilateral corneal conditions that are characterized by a non-inflammatory and progressive degradation of corneal endothelium. Corneal endothelial cells exhibit a high pump site density and, along with barrier function, are responsible for maintaining the cornea in its natural state of relative dehydration. Gradual loss of endothelial cells leads to an insufficient water outflow, resulting in corneal edema and loss of vision. Since the pathologic mechanisms remain largely unknown, the only current treatment option is surgical transplantation when vision is severely impaired. In the past decade, important steps have been taken to understand how endothelial degeneration progresses on the molecular level. Studies of affected multigenerational families and sporadic cases identified genes and chromosomal loci, and revealed either Mendelian or complex disorder inheritance patterns. Mutations have been detected in genes that carry important structural, metabolic, cytoprotective, and regulatory functions in corneal endothelium. In addition to genetic predisposition, environmental factors like oxidative stress were found to be involved in the pathogenesis of endotheliopathies. This review summarizes and crosslinks the recent progress on deciphering the molecular bases of corneal endothelial dystrophies.
Collapse
Affiliation(s)
- Thore Schmedt
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
43
|
Bjornstad JL, Sjaastad I, Nygard S, Hasic A, Ahmed MS, Attramadal H, Finsen AV, Christensen G, Tonnessen T. Collagen isoform shift during the early phase of reverse left ventricular remodelling after relief of pressure overload. Eur Heart J 2010; 32:236-45. [DOI: 10.1093/eurheartj/ehq166] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ. The architecture of the cornea and structural basis of its transparency. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:25-49. [PMID: 20663483 DOI: 10.1016/s1876-1623(08)78002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cornea is the transparent connective tissue window at the front of the eye. In the extracellular matrix of the corneal stroma, hybrid type I/V collagen fibrils are remarkably uniform in diameter at approximately 30 nm and are regularly arranged into a pseudolattice. Fibrils are believed to be kept at defined distances by the influence of proteoglycans. Light entering the cornea is scattered by the collagen fibrils, but their spatial distribution is such that the scattered light interferes destructively in all directions except from the forward direction. In this way, light travels forward through the cornea to reach the retina. In this chapter, we will review the macromolecular components of the corneal stroma, the way they are organized into a stacked lamellar array, and how this organization guarantees corneal transparency.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three alpha chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recognizable peptide modules found in other matrix molecules. Proper tissue function depends on correctly assembled molecular aggregates being incorporated into the matrix. This review highlights some of the structural characteristics of collagen types I-XXVIII.
Collapse
|
47
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
48
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61:198-223. [PMID: 19549927 PMCID: PMC2830117 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
49
|
Zhao Y, Jia L, Mao X, Xu H, Wang B, Liu Y. siRNA-targeted COL8A1 inhibits proliferation, reduces invasion and enhances sensitivity to D-limonence treatment in hepatocarcinoma cells. IUBMB Life 2009; 61:74-9. [PMID: 19109829 DOI: 10.1002/iub.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The COL8A1 (collagen type VIII, alpha-1) gene, which encodes the alpha 1 chain of collagen, type VIII, may modulate migration, proliferation and adherence of various cells. Only very sparse information exists on COL8A1 expression in hepatocarcinoma. To investigate the possible role of COL8A1 in the mouse hepatocarcinoma cell line Hca-F with highly metastatic potential in the lymph nodes, we used an RNA interference (RNAi) approach to silence COL8A1 expression. The results showed that a small interfering RNA (siRNA) targeted against COL8A1 significantly impeded Hca-F cells proliferation and colony formation in soft agar. This reduction of COL8A1 expression also led to the decreased invasion of Hca-F cells dramatically in vitro. Furthermore, the downregulation of COL8A1 expression also sensitized cells to the action of D-limonene. These data together provide insights into the function of COL8A1 and suggest that COL8A1 might represent a new potential target for gene therapy in hepatocarcinoma.
Collapse
Affiliation(s)
- Yongfu Zhao
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
50
|
Merjava S, Liskova P, Sado Y, Davis PF, Greenhill NS, Jirsova K. Changes in the localization of collagens IV and VIII in corneas obtained from patients with posterior polymorphous corneal dystrophy. Exp Eye Res 2009; 88:945-52. [PMID: 19162009 DOI: 10.1016/j.exer.2008.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 11/15/2022]
Abstract
Posterior polymorphous corneal dystrophy (PPCD) is a hereditary bilateral disorder affecting primarily the endothelium and Descemet's membrane (DM). The aim of this study was to determine the changes in the presence and localization of the alpha1-alpha6 collagen IV chains and alpha1, alpha2 collagen VIII chains in Czech patients with PPCD. Twelve corneal buttons from ten PPCD patients who underwent corneal grafting, as well as eight unaffected corneas, were used. Enzymatic indirect immunohistochemistry was performed on cryosections using antibodies against the alpha1-alpha6 collagen IV chains and alpha1, alpha2 collagen VIII chains. The intensity of the signal was examined separately in the basal membrane of the epithelium (BME), stroma and DM. More than 50% of PPCD specimens exhibited positivity for alpha1 and alpha2 collagen IV chains in the BME and in the posterior stroma, while no staining was detected in these areas in control specimens. The signal for the alpha1 and alpha2 collagen IV chains was more intense in DM of PPCD corneas compared to controls and it was shifted from the stromal side (in control tissue) to the endothelial side of DM (in the patients). A less intensive signal in PPCD corneas for the alpha3 and alpha5 chains in DM and an accumulation of alpha3-alpha5 in the posterior stroma in diseased corneas were the only differences in staining for the alpha3-alpha6 collagen IV chains. The alpha1 collagen VIII chain was detected on both the endothelial and the stromal sides of DM in 90% of patients with PPCD, compared with the prevailing localization on the stromal side of DM in control corneas. A change in the localization of the alpha2 collagen VIII chain in DM from vertically striated features in control specimens to double line positivity in the DM of PPCD corneas and positive staining in the posterior collagenous layer of four patients were also detected. In three PPCD patients a fibrous pannus located under the BME, positive for alpha1-alpha3, alpha5 collagen IV chains and alpha1 collagen VIII chain, was observed. The increased expression of the alpha1, alpha2 collagen IV and alpha1 collagen VIII chains and the change in their localization in DM may contribute to the increased endothelial proliferative capacity observed in PPCD patients.
Collapse
Affiliation(s)
- Stanislava Merjava
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, General Teaching Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|