1
|
Wei Z, Yuan J, Chen Q, Pang J, Shi Q, Peng B, Wei M, Wei Y, Zhang Z, Lu X, Lin X, Liang Q. Bifunctional chemokine-nanobody fusion protein enhances neutrophil recruitment to impede Acanthamoeba immune evasion. EBioMedicine 2025; 115:105685. [PMID: 40222104 PMCID: PMC12013128 DOI: 10.1016/j.ebiom.2025.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acanthamoeba keratitis (AK) is a severe infectious disease that causes serious visual impairment and low quality of life. This study aims to investigate the immune landscape in AK, with the goal of improving treatment outcomes through immunotherapy. METHODS We conducted single-cell transcriptome sequencing on corneal tissues from nine patients (3 AK patients, 3 patients with fungal keratitis and 3 patients with bacterial keratitis). Bioinformatic analysis calculated the cell subsets and their proportions within different infectious keratitis. CellChat analysis elucidated the differential expression of chemokines in keratitis. After that, screening amebic nano-antibodies, synthesizing antibody-chemokine fusion proteins, and validated their affinity and chemotactic abilities in vitro and in vivo. And assessing of the therapeutic efficacy of antibody-chemokine fusion proteins. FINDINGS The UMAP plot demonstrated the 13 major cell clusters in infectious keratitis. Compared with non-AK group, the neutrophil proportion of AK group is markedly reduced. Cell communication indicated a diminished CXCL pathway in AK. Acanthamoeba-specific antibodies were obtained by screening a natural antibody library derived from alpacas. The amoeba-specific antibodies were conjugated with the CXCL1 chemokine, and this fusion protein exhibited robust binding affinity to Acanthamoeba and chemotactic capacity both in vitro and in vivo. Furthermore, in vivo animal investigations indicated that the fusion protein presented excellent therapeutic effect and could effectively eliminate the Acanthamoeba burden. INTERPRETATION This study revealed an immune evasion mechanism employed by Acanthamoeba and offered a therapeutic approach. It presents promising potential for enhancing the treatment of infectious diseases by targeting and overcoming challenges posed by immune evasion. FUNDING This work was funded by National Natural Science Foundation of China (grant number 82171017 and 82471041) and the Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes (PWD&RPP-MRI, JYY2023-6).
Collapse
Affiliation(s)
- Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Jianlong Yuan
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Qingquan Shi
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Bo Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Mingda Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Zhibao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China.
| |
Collapse
|
2
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Jiang X, Wang X, Gao M, Li X, Ding Y, Song Y, Xiao H, Kong X. Molecular cloning, expression analysis, and functional characterization of an interleukin-15 like gene in common carp ( Cyprinus carpio L.). Front Immunol 2024; 15:1502847. [PMID: 39628491 PMCID: PMC11611867 DOI: 10.3389/fimmu.2024.1502847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Interleukin-15 (IL-15) is a crucial cytokine involved in immune system regulation, which is produced by various cell types, including dendritic cells, monocytes, and macrophages. IL-15 plays a key role in the proliferation and activation of natural killer (NK) cells, CD8+ T cells, and memory CD8+ T cells, supporting their survival and enhancing their effector functions. Although IL-15 homologues in fish have been identified, their functions remain poorly understood. In this study, we cloned and investigated the bioactivities of an IL-15 homologue, referred to as IL-15 like (CcIL-15L), in common carp (Cyprinus carpio L.). An expression pattern analysis revealed that CcIL-15L was constitutively expressed in all examined tissues of healthy common carp, with the highest expression level observed in the intestine. Additionally, CcIL-15L expression was significantly up-regulated in the head kidney, spleen, gills, and intestine following Aeromonas hydrophila infection. In vitro, the recombinant protein CcIL-15L can significantly up-regulated the gene expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) and NK cell activation (perforin and Eomesa). We constructed a 3×FLAG eukaryotic expression vector and successfully expressed it in common carp by intramuscular injection. Additionally, the heterologous CcIL-15L protein was successfully overexpressed in vivo, and immune-related genes including CD4-1, CD8β2, TNF-α, and IgM showed significant induction in the head kidney and spleen. Furthermore, CcIL-15L overexpression reduced the bacterial loads after 24 h post-A. hydrophila infection in the liver, spleen, and kidney. Phagocytic and chemotaxis assays showed that rCcIL-15L could promoted the phagocytosis and chemotactic abilities of common carp HKLs. Our study provides a new perspective on the role for CcIL-15L in immunological functions in common carp.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, Zhejiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Sood A, Jothiswaran V, Singh A, Sharma A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1074-1099. [PMID: 39351437 PMCID: PMC11438574 DOI: 10.37349/etat.2024.00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.
Collapse
Affiliation(s)
- Apurva Sood
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - V.V. Jothiswaran
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Amrita Singh
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
5
|
Felgueres MJ, Esteso G, García-Jiménez ÁF, Dopazo A, Aguiló N, Mestre-Durán C, Martínez-Piñeiro L, Pérez-Martínez A, Reyburn HT, Valés-Gómez M. BCG priming followed by a novel interleukin combination activates Natural Killer cells to selectively proliferate and become anti-tumour long-lived effectors. Sci Rep 2024; 14:13133. [PMID: 38849432 PMCID: PMC11161620 DOI: 10.1038/s41598-024-62968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.
Collapse
Affiliation(s)
- María-José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Álvaro F García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology and Public Health of the University of Zaragoza, IIS Aragon, CIBER de Enfermedades Respiratorias, Zaragoza, Spain
| | - Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
| | - Luis Martínez-Piñeiro
- Urology Department and Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
- Pediatric Department, Autonomous University of Madrid, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
7
|
Huang FF, Cui WH, Ma LY, Chen Q, Liu Y. Crosstalk of nervous and immune systems in pancreatic cancer. Front Cell Dev Biol 2023; 11:1309738. [PMID: 38099290 PMCID: PMC10720593 DOI: 10.3389/fcell.2023.1309738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Hui Cui
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan-Yue Ma
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
9
|
Wu YX, Xing S, Wang Y, Tian BY, Wu M, Wang XP, Huang Q, He X, Chen SL, Li XH, Zeng MS, Liu WL. Multiple TMA-aided CRISPR/Cas13a platform for highly sensitive detection of IL-15 to predict immunotherapeutic response in nasopharyngeal carcinoma. J Immunother Cancer 2023; 11:e006552. [PMID: 37536937 PMCID: PMC10401221 DOI: 10.1136/jitc-2022-006552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs)-based treatments have been recommended as the first line for refractory recurrent and/or metastatic nasopharyngeal carcinoma (NPC) patients, yet responses vary, and predictive biomarkers are urgently needed. We selected serum interleukin-15 (sIL-15) out of four interleukins as a candidate biomarker, while most patients' sIL-15 levels were too low to be detected by conventional methods, so it was necessary to construct a highly sensitive method to detect sIL-15 in order to select NPC patients who would benefit most or least from ICIs. METHODS Combining a primer exchange reaction (PER), transcription-mediated amplification (TMA), and a immuno-PER-TMA-CRISPR/Cas13a system, we developed a novel multiple signal amplification platform with a detection limit of 32 fg/mL, making it 153-fold more sensitive than ELISA. RESULTS This platform demonstrated high specificity, repeatability, and versatility. When applied to two independent cohorts of 130 NPC sera, the predictive value of sIL-15 was accurate in both cohorts (area under the curve: training, 0.882; validation, 0.898). Additionally, lower sIL-15 levels were correlated with poorer progression-free survival (training, HR: 0.080, p<0.0001; validation, HR: 0.053, p<0.0001). CONCLUSION This work proposes a simple and sensitive approach for sIL-15 detection to provide insights for personalized immunotherapy of NPC patients.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yu Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Bo-Yu Tian
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Meng Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qi Huang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xia He
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shu-Lin Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiao-Hui Li
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Wan-Li Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
10
|
Tozuka T, Yanagitani N, Yoshida H, Manabe R, Ogusu S, Tsugitomi R, Sakamoto H, Amino Y, Ariyasu R, Uchibori K, Kitazono S, Seike M, Gemma A, Nishio M. Soluble interleukin-2 receptor as a predictive biomarker for poor efficacy of combination treatment with anti-PD-1/PD-L1 antibodies and chemotherapy in non-small cell lung cancer patients. Invest New Drugs 2023:10.1007/s10637-023-01358-3. [PMID: 37058183 DOI: 10.1007/s10637-023-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Soluble interleukin-2 receptor (sIL-2R) suppresses effector T-cells. Few studies have assessed serum sIL-2R in patients receiving immunotherapy. We evaluated the association between serum sIL-2R levels and the efficacy of anti-programmed cell death 1/ programmed death-ligand 1 (anti-PD-1/PD-L1) antibody combined with chemotherapy in non-small cell lung cancer (NSCLC) patients. We prospectively enrolled NSCLC patients who received anti-PD-1/PD-L1 antibody combined with platinum-based chemotherapy between 8/2019 and 8/2020 and measured their serum sIL-2R. The patients were divided into high and low sIL-2R groups based on the median of sIL-2R levels at pretreatment. Progression-free survival (PFS) and overall survival (OS) of patients in the high and low sIL-2R groups were compared. The Kaplan-Meier curves of PFS and OS were evaluated using the log-rank test. The multivariate analysis of PFS and OS was performed using the Cox proportional hazard models. Among 54 patients (median age 65, range 34-84), 39 were male and 43 had non-squamous cell carcinoma. The sIL-2R cut-off value was 533 U/mL. Median PFS was 5.1 months (95% CI, 1.8-7.5 months) and 10.1 months (95% CI, 8.3-not reached [NR] months) in the high and low sIL-2R groups (P = 0.007), respectively. Median OS was 10.3 months (95% CI, 4.0-NR months) and NR (95% CI, 10.3-NR months) in the high and low sIL-2R groups (P = 0.005), respectively. Multivariate Cox regression analysis showed that high sIL-2R was significantly associated with shorter PFS and OS. SIL-2R may be a biomarker for the poor efficacy of anti-PD-1/PD-L1 antibody combined with chemotherapy.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Yoshida
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryo Manabe
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shinsuke Ogusu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryosuke Tsugitomi
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroaki Sakamoto
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yoshiaki Amino
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
11
|
Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG. Immunomodulatory Function of Interleukin-15 and Its Role in Exercise, Immunotherapy, and Cancer Outcomes. Med Sci Sports Exerc 2023; 55:558-568. [PMID: 36730979 DOI: 10.1249/mss.0000000000003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exercise has been shown to improve physical and psychosocial outcomes for people across the cancer care continuum. A proposed mechanism underpinning the relationship between exercise and cancer outcomes is exercise-induced immunomodulation via secretion of anti-inflammatory myokines from skeletal muscle tissue. Myokines have the potential to impair cancer growth through modulation of natural killer (NK) cells and CD8+ T cells while improving the effectiveness of cancer therapies. Interleukin-15 (IL-15), one of the most abundant myokines found in skeletal muscle, has a key immunoregulatory role in supporting the proliferation and maturation of T cells and NK cells, which have a key role in the host's immune response to cancer. Furthermore, IL-15 is being explored clinically as an immunotherapy agent with doses similar to the IL-15 concentrations released by skeletal muscle during exercise. Here we review the role of IL-15 within the immune system, examine how IL-15 is produced as a myokine during exercise, and how it may improve outcomes for people with cancer, specifically as an adjuvant or neoadjuvant to immunotherapy. We summarize the available evidence showing changes in IL-15 in response to both acute exercise and training, and the results are inconsistent; higher quality research is needed to advance the understanding of how exercise-mediated increases in IL-15 potentially benefit those who are being treated for, or who have had, cancer.
Collapse
Affiliation(s)
- Morgan J Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | - David B Bartlett
- School of Biosciences and Medicine, University of Surrey, Surrey, UNITED KINGDOM
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | | | | |
Collapse
|
12
|
Fudaba H, Wakimoto H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin Biol Ther 2023; 23:269-282. [PMID: 36809883 DOI: 10.1080/14712598.2023.2184256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION To overcome the challenge of treating malignant brain tumors, oncolytic viruses (OVs) represent an innovative therapeutic approach, featuring unique mechanisms of action. The recent conditional approval of the oncolytic herpes simplex virus G47Δ as a therapeutic for malignant brain tumors marked a significant milestone in the long history of OV development in neuro-oncology. AREAS COVERED This review summarizes the results of recently completed and active clinical studies that investigate the safety and efficacy of different OV types in patients with malignant gliomas. The changing landscape of the OV trial design includes expansion of subjects to newly diagnosed tumors and pediatric populations. A variety of delivery methods and new routes of administration are vigorously tested to optimize tumor infection and overall efficacy. New therapeutic strategies such as combination with immunotherapies are proposed that take advantage of the characteristics of OV therapy as an immunotherapy. Preclinical studies of OV have been active and aim to translate new OV strategies to the clinic. EXPERT OPINION For the next decade, clinical trials and preclinical and translational research will continue to drive the development of innovative OV treatments for malignant gliomas and benefit patients and define new OV biomarkers.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
15
|
Wu F, Wang Z, Yang G, Jian J, Lu Y. Molecular characterization and expression analysis of interleukin-15 (IL-15) genes in orange-spotted grouper (Epinephelus coioides) in response to Vibrio harveyi challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 128:327-334. [PMID: 35940540 DOI: 10.1016/j.fsi.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a member of the γc family, interleukin 15 plays an important function in the immune response. In this study, we cloned an IL15 from Epinephelus coioides (named Ec-IL15). The open reading frame of Ec-IL15 is 528 bp, encoding 175 amino acids. Sequence alignment analysis showed that EcIL-15 has a conserved Pfam: IL15 domain and four cysteine residues. Subcellular localization studies have shown that Ec-IL15 is distributed in whole cells. In healthy groupers, Ec-IL15 was expressed in all 11 tissues tested and the highest in liver. After ConA, PHA, LPS and poly I:C stimulation, Ec-IL15 expression of HKLs was significantly upregulated. After V. harveyi infection, the expression of Ec-IL15 in 9 tissues was significantly upregulated and peaked within 48 h. In addition, recombinant Ec-IL15 protein can not only stimulate HKLs proliferation and cytokine expression, but also has the potential as an immune enhancer.
Collapse
Affiliation(s)
- Fan Wu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Aquaic Animal Disease Control and Healthy Culture, Zhanjiang, 524025, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Aquaic Animal Disease Control and Healthy Culture, Zhanjiang, 524025, China
| | - Guanjian Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Aquaic Animal Disease Control and Healthy Culture, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Aquaic Animal Disease Control and Healthy Culture, Zhanjiang, 524025, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Aquaic Animal Disease Control and Healthy Culture, Zhanjiang, 524025, China.
| |
Collapse
|
16
|
Kim D, Park JH, Kim TY, Kim DG, Byun JH, Kim HS. Enhanced half-life and antitumor activity of Interleukin-15 through genetic fusion of a serum albumin-specific protein binder. Int J Pharm 2022; 625:122059. [PMID: 35905933 DOI: 10.1016/j.ijpharm.2022.122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Human interleukin-15 (hIL-15) has attracted a considerable attention as a promising cancer immunotherapeutic due to its function to directly stimulate the proliferation and cytotoxic activity of NK and T cells. Nevertheless, a relatively short half-life of hIL-15 requires repeated administration and higher doses, causing serious side effects. Here, we demonstrate an enhanced blood half-life and biological activity of hIL-15 through genetic fusion of a human serum albumin-specific protein binder (rHSA). The fusion construct (rHSA-IL15) was observed to maintain respective binding activities for both hIL-15 receptor α and human serum albumin. The rHSA-IL15 led to a significant increase in the secretion of Granzyme B and INF-γ by immune cells compare to free hIL-15, expanding the population of activated T cell subset such as CD4 + T and CD8+ T cells. The terminal half-life of the rHSA-IL15 was prolonged by around a 40-fold in transgenic mice expressing human serum albumin, compared to free hIL-15. The rHSA-IL15 resulted in distinct anti-tumor activities in xenograft SCC (squamous cell carcinoma) mouse and allograft melanoma mouse models through activation of NK and CD8+ T cells. The rHSA-IL15 is expected to be used in cancer immunotherapy, assisting in the development of other cytokines as immunotherapeutic agents with greater efficacy.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tae-Yoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Present address: Beckmann Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Gun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
17
|
Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev 2022; 185:114308. [PMID: 35472398 DOI: 10.1016/j.addr.2022.114308] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy, which reprograms a patient's own immune system to eradicate cancer cells, has been demonstrated as a promising therapeutic strategy clinically. Immune checkpoint blockade (ICB) therapies, cytokine therapies, cancer vaccines, and chimeric antigen receptor (CAR) T cell therapies utilize immunotherapy techniques to relieve tumor immune suppression and/or activate cellular immune responses to suppress tumor growth, metastasis and recurrence. However, systemic administration is often hampered by limited drug efficacy and adverse side effects due to nonspecific tissue distribution of immunotherapeutic agents. Advancements in local scaffold-based delivery systems facilitate a controlled release of therapeutic agents into specific tissue sites through creating a local drug reservoir, providing a potent strategy to overcome previous immunotherapy limitations by improving site-specific efficacy and minimizing systemic toxicity. In this review, we summarized recent advances in local scaffold-assisted delivery of immunotherapeutic agents to reeducate the immune system, aiming to amplify anticancer efficacy and minimize immune-related adverse events. Additionally, the challenges and future perspectives of local scaffold-assisted cancer immunotherapy for clinical translation and applications are discussed.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yun Su
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States; Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21231, United States
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
18
|
Li Y, Wu L, Liu Y, Ma S, Huang B, Feng X, Wang H. A novel multifunctional anti-PD-L1-CD16a-IL15 induces potent cancer cell killing in PD-L1-positive tumour cells. Transl Oncol 2022; 21:101424. [PMID: 35477065 PMCID: PMC9136603 DOI: 10.1016/j.tranon.2022.101424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Anti-PD-L1 single-domain antibodies were identified from hPD-L1-immunized camels. Three novel multifunctional antibodies, anti-PD-L1-CD16a, anti-PD-L1-IL15, and anti-PD-L1-CD16a-IL15, target PD-L1-positive cancer cells. Anti-PD-L1-IL15 and anti-PD-L1-CD16a-IL15, but not anti-PD-L1-CD16a, stimulate immune cell proliferation in vitro. The anti-PD-L1 antibodies can bind PD-L1-positive cells. Anti-PD-L1-CD16a-IL15 has the strongest antitumour activity, both in vitro and in vivo.
Cancer is the most acute disease and the leading cause of patient death worldwide. Both chemotherapy and molecular-based therapies play an important role in curing cancer. However, the median and overall survival of patients is poor. To date, immune therapies have changed the treatment methods for cancer patients. Programmed death ligand 1 (PD-L1, also known as B-H1, CD274) is a well-studied tumor antigen. PD-L1 is overexpressed in colon cancer, lung cancer, and so on and plays a vital role in cancer development. In this study, anti-PD-L1 single-domain antibodies were identified from recombinant human PD-L1 (rhPD-L1)-immunized llamas. Then, we generated a novel multifunctional anti-PD-L1-CD16a-IL15 antibody targeting PD-L1-positive tumor cells. Anti-PD-L1-CD16a-IL15 was constructed by linking the Interleukin-2 (IL-2) signal peptide, anti-PD-L1 single domain antibody (anti-PD-L1-VHH) and anti-cluster of differentiation 16a single domain antibody (anti-CD16a-VHH), and Interleukin-15/Interleukin-15 receptor alpha (IL15/IL-15Rα). This anti-PD-L1-CD16a-IL15 fusion protein can be expressed and purified from HEK-293F cells. In vitro, our data showed that the anti-PD-L1-CD16a-IL15 fusion protein can recruit T cells and drive natural killer cells (NK) with specific killing of PD-L1-overexpressing tumor cells. Furthermore, in the xenograft model, the anti-PD-L1-CD16a-IL15 fusion protein inhibited tumor growth with human peripheral blood mononuclear cells (PBMCs). These data suggested that the anti-PD-L1-CD16a-IL15 fusion protein has a latent function in antitumour activity, with better guidance for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yumei Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Lingjun Wu
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yueying Liu
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siwen Ma
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Biyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xianjing Feng
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| |
Collapse
|
19
|
Tarannum M, Romee R, Shapiro RM. Innovative Strategies to Improve the Clinical Application of NK Cell-Based Immunotherapy. Front Immunol 2022; 13:859177. [PMID: 35401529 PMCID: PMC8990319 DOI: 10.3389/fimmu.2022.859177] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Natural killer cells constitute a part of the innate immune system that mediates an effective immune response towards virus-infected and malignant cells. In recent years, research has focused on exploring and advancing NK cells as an active immunotherapy platform. Despite major advances, there are several key challenges that need to be addressed for the effective translation of NK cell research to clinical applications. This review highlights some of these challenges and the innovative strategies being developed to overcome them, including in vitro expansion, in vivo persistence, infiltration to the tumor site, and prevention of exhaustion.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Rizwan Romee
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Roman M Shapiro
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Cubitt CC, McClain E, Becker-Hapak M, Foltz JA, Wong P, Wagner JA, Neal CC, Marin ND, Marsala L, Foster M, Schappe T, Soon-Shiong P, Lee J, Berrien-Elliott MM, Fehniger TA. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells. Mol Ther Oncolytics 2022; 24:585-596. [PMID: 35284622 PMCID: PMC8889352 DOI: 10.1016/j.omto.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.
Collapse
Affiliation(s)
- Celia C. Cubitt
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Ethan McClain
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Michelle Becker-Hapak
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Jennifer A. Foltz
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Pamela Wong
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Julia A. Wagner
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Carly C. Neal
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Nancy D. Marin
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Lynne Marsala
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Mark Foster
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | | | - John Lee
- ImmunityBio, Culver City, CA 90232, USA
| | - Melissa M. Berrien-Elliott
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
钟 慧, 邹 庆, 刘 海, 王 晓, 杜 少, 梁 海, 吴 志, 叶 俊, 邹 清. [Construction and evaluation of dual-effect cord blood natural killer cells expressing highaffinity PD-1 and chimeric antigen CD19 receptor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1877-1884. [PMID: 35012922 PMCID: PMC8752428 DOI: 10.12122/j.issn.1673-4254.2021.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To obtain novel dual-effect cord blood natural killer cells (CBNKCs) expressing high-affinity PD-1 (HAPD1) and chimeric antigen CD19 receptor (CAR) to improve the effect of CAR-based immunotherapy. METHODS A dual-effect lentiviral vector expressing both HAPD1 and CAR targeting CD19 was constructed. CBNKCs were infected with the vector to obtain HAPD1 CAR19 CBNKCs. The surface markers of the cells including CD3-/CD16+CD56+, CD3+/CD16+CD56+, CD3+/CD4+, and CD3+/CD8+ were tested during cell proliferation. The cytotoxicity of CBNKCs, CAR19 CBNKCs and HAPD1 CAR19 CBNKCs incubated with CD19-positive target cells at the effector-target ratios of 5∶1, 10∶1 and 20∶1 was tested on days 7, 9, 12, and 15 of cell culture. The cytotoxicity of the cells against the target cells was also tested in NPG mice. RESULTS CBNKCs were successfully transduced with T-cell designed CAR19 and HAPD1 CAR19 with an efficiency of (18.63±1.88)%. Infection with the lentiviral vector significantly reduced the cell expansion efficiency of the CBNKCs (10.97±2.77 vs 24.84±3.17, P < 0.05) but did not significantly affect the expressions of the surface markers (P>0.05). HAPD1 CAR CBNKCs showed stronger anti-tumor effect than CAR19 CBNKCs [(68.38±8.08)% vs (49.65±13.60)% at the effector-target ratios of 5∶1 and (79.11±7.42)% vs (59.78 ± 9.32)% at 10∶1; P < 0.05]. The infected CBNKCs showed the strongest cytotoxicity at 9 and 12 days after lentivirus infection. In the mouse models, transplantation of the dual-effect cells resulted in a significantly lower percentage of tumor cells in white blood cells than transplantation CAR-CBNKCs [(19.21 ± 3.07%) vs (29.08 ± 3.15)%, P < 0.05]. CONCLUSION We obtained a novel dual-effect CBNKC co-expressing HAPD1 and CAR. The cells show strong cytotoxicity against the target tumor cells both in vitro and in vivo, which sheds light on a new strategy of immunotherapy against tumor cells.
Collapse
Affiliation(s)
- 慧霖 钟
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 庆剑 邹
- 五邑大学生物科技与大健康学院,广东 江门 529020School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - 海霞 刘
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 晓民 王
- 西湖大学生命科学学院,浙江 杭州 310024School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - 少茵 杜
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 海燕 梁
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 志君 吴
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 俊杰 叶
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 清雁 邹
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| |
Collapse
|
22
|
Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HAM, Mansour S, Tammam SN. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2021; 211:112289. [PMID: 34954516 DOI: 10.1016/j.colsurfb.2021.112289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Due to its overexpression in cancer cells, the folate receptor (FR) is heavily exploited in the active targeting of nanoparticles (NPs). Its ligand, folic acid (FA) is as a consequence widely used as a NP targeting ligand. Although rather popular and successful in principle, recent data has shown that FA may result in breast cancer initiation and progression, which questions the suitability of FA as NP cancer targeting ligand. In this work, intravenous administration of free FA to healthy female mice resulted in breast tissue dysplasia, hyperplasia and in the increased expression of human epidermal growth factor receptor-2 (HER2), folate receptor (FR), cancer antigen 15-3 (CA15.3), vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) and the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin-1β. In addition to the reduction in IL2. To evaluate the suitability and safety of FA as NP targeting ligand in breast cancer, small (≈ 150 nm) and large (≈ 500 nm) chitosan NPs were formulated and decorated with two densities of FA. The success of active targeting by FA was confirmed in two breast cancer cell lines (MCF-7 and MDA-MB-231 cells) in comparison to HEK293 cells. FA modified NPs that demonstrated successful active targeting in-vitro were assessed in-vivo. Upon intravenous administration, large NPs modified with a high density of FA accumulated in the breast tissue and resulted in similar effects as those observed with free FA. These results therefore question the suitability of FA as a targeting ligand in breast cancer and shed light on the importance of considering the activity (other than targeting) of the ligands used in NP active targeting.
Collapse
Affiliation(s)
- Lama A Helmy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Mohammed Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Raghda Hassan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt
| | - Haithem A M Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy- Ain Shams University, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Egypt.
| |
Collapse
|
23
|
The Race of CAR Therapies: CAR-NK Cells for Fighting B-Cell Hematological Cancers. Cancers (Basel) 2021; 13:cancers13215418. [PMID: 34771581 PMCID: PMC8582420 DOI: 10.3390/cancers13215418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Over the last few years, CAR-T cells have arisen as one of the most promising immunotherapies against relapsed or refractory hematological cancers. Despite their good results in clinical trials, there are some limitations to overcome, such as undesirable side-effects or the restraints of an autologous treatment. Therefore, CAR-NK cells have emerged as a good alternative for these kinds of treatments. This review discusses the advantages of CAR-NK cells compared to CAR-T cells, as well as the different sources and strategies in order to obtain these CAR-NK cells. Abstract Acute lymphoblastic leukemia (ALL) and Chronic lymphocytic leukemia (CLL) are the most common leukemias in children and elderly people, respectively. Standard therapies, such as chemotherapy, are only effective in 40% of ALL adult patients with a five-year survival rate and therefore new alternatives need to be used, such as immunotherapy targeting specific receptors of malignant cells. Among all the options, CAR (Chimeric antigen receptor)-based therapy has arisen as a new opportunity for refractory or relapsed hematological cancer patients. CARs were designed to be used along with T lymphocytes, creating CAR-T cells, but they are presenting such encouraging results that they are already in use as drugs. Nonetheless, their side-effects and the fact that it is not possible to infuse an allogenic CAR-T product without causing graft-versus-host-disease, have meant using a different cell source to solve these problems, such as Natural Killer (NK) cells. Although CAR-based treatment is a high-speed race led by CAR-T cells, CAR-NK cells are slowly (but surely) consolidating their position; their demonstrated efficacy and the lack of undesirable side-effects is opening a new door for CAR-based treatments. CAR-NKs are now in the field to stay.
Collapse
|
24
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Dubois SP, Miljkovic MD, Fleisher TA, Pittaluga S, Hsu-Albert J, Bryant BR, Petrus MN, Perera LP, Müller JR, Shih JH, Waldmann TA, Conlon KC. Short-course IL-15 given as a continuous infusion led to a massive expansion of effective NK cells: implications for combination therapy with antitumor antibodies. J Immunother Cancer 2021; 9:e002193. [PMID: 33883258 PMCID: PMC8061813 DOI: 10.1136/jitc-2020-002193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Full application of cytokines as oncoimmunotherapeutics requires identification of optimal regimens. Our initial effort with intravenous bolus recombinant human interleukin-15 (rhIL-15) was limited by postinfusional reactions. Subcutaneous injection and continuous intravenous infusion for 10 days (CIV-10) provided rhIL-15 with less toxicity with CIV-10 giving the best increases in CD8+ lymphocytes and natural killer (NK) cells. To ease rhIL-15 administration, we shortened time of infusion. Treatment with rhIL-15 at a dose of 3-5 µg/kg as a 5-day continuous intravenous infusion (CIV-5) had no dose-limiting toxicities while effector cell stimulation was comparable to the CIV-10 regimen. METHODS Eleven patients with metastatic cancers were treated with rhIL-15 CIV-5, 3 µg (n=4), 4 µg (n=3), and 5 µg/kg/day (n=4) in a phase I dose-escalation study (April 6, 2012). RESULTS Impressive expansions of NK cells were seen at all dose levels (mean 34-fold), including CD56bright NK cells (mean 144-fold for 4 µg/kg), as well as an increase in CD8+ T cells (mean 3.38-fold). At 5 µg/kg/day, there were no dose-limiting toxicities but pulmonary capillary leak and slower patient recovery. This led to our choice of the 4 µg/kg as CIV-5 dose for further testing. Cytolytic capacity of CD56bright and CD56dim NK cells was increased by interleukin-15 assayed by antibody-dependent cellular cytotoxicity (ADCC), natural cytotoxicity and natural killer group 2D-mediated cytotoxicity. The best response was stable disease. CONCLUSIONS IL-15 administered as CIV-5 substantially expanded NK cells with increased cytotoxic functions. Tumor-targeting monoclonal antibodies dependent on ADCC as their mechanism of action including alemtuzumab, obinutuzumab, avelumab, and mogamulizumab could benefit from those NK cell expansions and provide a promising therapeutic strategy. TRIAL REGISTRATION NUMBERS NCT01572493, NCT03759184, NCT03905135, NCT04185220 and NCT02689453.
Collapse
Affiliation(s)
- Sigrid P Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas A Fleisher
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, Maryland, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer Hsu-Albert
- Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael N Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Liyanage P Perera
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Joanna H Shih
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Gauthier M, Laroye C, Bensoussan D, Boura C, Decot V. Natural Killer cells and monoclonal antibodies: Two partners for successful antibody dependent cytotoxicity against tumor cells. Crit Rev Oncol Hematol 2021; 160:103261. [PMID: 33607229 DOI: 10.1016/j.critrevonc.2021.103261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies targeting tumors are one of the most important discoveries in the field of cancer. Although several effective antibodies have been developed, a relapse may occur. One of their mechanisms of action is Antibody Dependent Cell Cytotoxicity (ADCC), by engaging the Fc γ receptor CD16 expressing Natural Killer cells, innate lymphoid cells involved in cancer immunosurveillance and able to kill tumor cells. A lack of NK cells observed in many cancers may therefore be a cause of the low efficacy of antibodies observed in some clinical situations. Here we review clear evidences of the essential partnership between NK cells and antibodies showed in vitro, in vivo, and in clinical trials in different indications, describe the hurdles and ways to enhance ADCC and the evolution of monoclonal antibody therapy. NK cell adoptive immunotherapy combined with monoclonal antibodies may overcome the resistance to the treatment and enhance their efficacy.
Collapse
Affiliation(s)
- Mélanie Gauthier
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Caroline Laroye
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Danièle Bensoussan
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Cédric Boura
- Lorraine University, CNRS UMR7039, Team BioSIS, Campus Santé, Vandoeuvre-Les-Nancy, France
| | - Véronique Decot
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France.
| |
Collapse
|
27
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
28
|
Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. Semin Hematol 2020; 57:185-193. [PMID: 33256911 DOI: 10.1053/j.seminhematol.2020.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that protect the host from infection and mediate anti-tumor responses. Classically considered part of the innate immune system, NK cells were previously thought to not possess the specificity or enhanced recall responses associated with adaptive T and B lymphocytes. However, a large body of work has transformed these long-held divisions between innate and adaptive immunity; NK cell memory and memory-like responses are clearly established after hapten exposure, viral infection, and combined cytokine activation. These advances come with opportunities to translate innate NK cell recall responses into the clinic as cancer immunotherapy. Here, we review our current understanding of the heterogeneity of memory and memory-like NK cell responses, with distinct formation, molecular biology, and memory type functions. We elaborate on cytokine-induced memory-like NK cells and highlight their application as adoptive immunotherapy for cancer, and as a platform for engineering optimal NK cell anti-tumor responses.
Collapse
Affiliation(s)
- Margery Gang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
29
|
Alvarez M, Dunai C, Khuat LT, Aguilar EG, Barao I, Murphy WJ. IL-2 and Anti-TGF-β Promote NK Cell Reconstitution and Anti-tumor Effects after Syngeneic Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2020; 12:cancers12113189. [PMID: 33138229 PMCID: PMC7692743 DOI: 10.3390/cancers12113189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Hematopoietic stem cell transplantation (HSCT) causes early immune deficiency and susceptibility to both opportunistic infections and cancer relapse. In this study, using a mouse model where donor cells can be tracked over time, we have observed that the combination of IL-2 (a cytokine which activates the immune system) combined with the blockade of TGF-β (a cytokine which suppresses the immune system) increased immune recovery and resulted in greater anti-tumor efficacy. The combination of IL-2 and anti-TGF-β accelerated NK cell and myeloid cell reconstitution after HSCT. Abstract The failure of autologous hematopoietic stem cell transplantation (HSCT) has been associated with a profound immunodeficiency that follows shortly after treatment, which renders patients susceptible to opportunistic infections and/or cancer relapse. Thus, given the additional immunosuppressive pathways involved in immune evasion in cancer, strategies that induce a faster reconstitution of key immune effector cells are needed. Natural killer (NK) cells mediate potent anti-tumor effector functions and are the first immune cells to repopulate after HSCT. TGF-β is a potent immunosuppressive cytokine that can impede both the development and function of immune cells. Here, we evaluated the use of an immunotherapeutic regimen that combines low dose of IL-2, an NK cell stimulatory signal, with TGF-β neutralization, in order to accelerate NK cell reconstitution following congenic HSCT in mice by providing stimulatory signals yet also abrogating inhibitory ones. This therapy led to a marked expansion of NK cells and accelerated NK cell maturation. Following HSCT, mature NK cells from the treated recipients displayed an activated phenotype and enhanced anti-tumor responses both in vitro and in vivo. No overt toxicities or adverse effects were observed in the treated recipients. However, these stimulatory effects on NK cell recovery were predicated upon continuous treatment as cessation of treatment led to return to baseline levels and to no improvement of overall immune recovery when assessed at later time-points, indicating strict regulatory control of the NK cell compartment. Overall, this study still demonstrates that therapies that combine positive and negative signals can be plausible strategies to accelerate NK cell reconstitution following HSCT and augment anti-tumor efficacy.
Collapse
Affiliation(s)
- Maite Alvarez
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
- Program for Immunology and Immunotherapy Department, Center for Applied Medical research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
| | - Lam T. Khuat
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
| | - Ethan G. Aguilar
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabel Barao
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA; (M.A.); (C.D.); (L.T.K.); (E.G.A.); (I.B.)
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
30
|
Efficacy of a novel double-controlled oncolytic adenovirus driven by the Ki67 core promoter and armed with IL-15 against glioblastoma cells. Cell Biosci 2020; 10:124. [PMID: 33133514 PMCID: PMC7592588 DOI: 10.1186/s13578-020-00485-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is an immunosuppressive, highly vascular and devastating malignant brain tumor. Even with progressive combination treatment that includes surgery, radiotherapy, and chemotherapy, the prognosis for GBM patients is still extremely poor. Oncolytic adenovirus (OAd) can specifically replicate in GBM cells, permitting the rapid copy of the therapeutic genes it carries. Moreover, E1A is an essential gene in adenoviral replication and is the first gene expressed upon viral infection. E1A expression can be regulated by the Ki67 promoter, while the CMV promoter drives therapeutic gene expression. However, the efficacy of a double-controlled OAd driven by the Ki67 core promoter and armed with IL-15 against GBM cells has not been investigated. Methods Fluorescence microscopy was performed to evaluate infection ability in the viruses. Cell viability was detected by CCK-8 assay. Levels of cytokines in different supernatants were determined by ELISA, and IL-15 gene expression was measured by RT-PCR. Angiogenic capacity was analyzed by tube formation assay. Results We successfully constructed a double-controlled oncolytic adenovirus driven by the Ki67 core promoter and armed with IL-15 that selectively infected and killed GBM cells while sparing normal cells. The adenoviruses prime IL-15 gene expression to significantly enhance anti-GBM efficacy through effective activation of microglial cells. Moreover, OAd not only directly inhibits angiogenesis but exhibits potent antiangiogenic capacity mediated by the reduction of VEGF secretion. Conclusions These results provide new insight into the effects of a novel double-controlled OAd driven by the Ki67 core promoter and armed with IL-15 in glioblastoma treatment, which may help in the development of novel therapies in solid tumors.
Collapse
|
31
|
Interleukin 15 and Eotaxin correlate with the outcome of breast cancer patients vice versa independent of CTC status. Arch Gynecol Obstet 2020; 303:217-230. [PMID: 32929618 PMCID: PMC7854415 DOI: 10.1007/s00404-020-05793-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/05/2020] [Indexed: 11/28/2022]
Abstract
Background Circulating tumor cells (CTC) in the peripheral blood in women with breast cancer has been found to be an indicator of prognosis before the start of systemic treatment. The aim of this study is the assessment of specific cytokine profiles as markers for CTC involvement that could act as independent prognostic markers in terms of survival outcome for breast cancer patients. Methods Patients selected for this study were defined as women with breast cancer of the SUCCESS study. A total of 200 patients’ sera were included in this study, 100 patients being positive for circulating tumor cells (CTC) and 100 patients being CTC negative. The matching criteria were histo-pathological grading, lymph node metastasis, hormone receptor status, TNM classification, and patient survival. Commercial ELISA with a multi cytokine/chemokine array was used to screen the sera for Interleukin 15 (IL-15) and eotaxin.
Results Statistically significant concentrations were exposed for IL-15 levels regardless of the CTC-Status, lymph node involvement, or hormone receptor status. Significantly enhanced serum IL-15 concentrations were observed in those patients with worse overall survival (OS) and disease-free survival (DFS). Elevated serum concentrations of IL-15 significantly correlate with patients diagnosed with Grade 3 tumor and worse OS. In contrast, patients with a Grade 3 tumor with a favourable OS and DFS demonstrated significantly decreased IL-15 values. The CTC negative patient subgroup with a favourable OS and DFS, showed statistically significant elevated eotaxin values. Conclusion These findings suggest a potential functional interaction of increased IL-15 concentrations in the peripheral blood of patients with a worse OS and DFS, regardless of prognostic factors at primary diagnosis. The increased levels of the chemokine eotaxin in CTC negative patients and a favourable OS and DFS, on the other hand, suggest that the overexpression inhibits CTCs entering the peripheral blood, thus emphasizing a significant inhibition of circulation specific metastasis. To sum up, IL-15 could be used as an independent prognostic marker in terms of survival outcome for breast cancer patients and used as an early indicator to highlight high-risk patients and consequently the adjustment of cancer therapy strategies.
Collapse
|
32
|
Papaevangelou E, Smolarek D, Smith RA, Dasgupta P, Galustian C. Targeting Prostate Cancer Using Intratumoral Cytotopically Modified Interleukin-15 Immunotherapy in a Syngeneic Murine Model. Immunotargets Ther 2020; 9:115-130. [PMID: 32802803 PMCID: PMC7394845 DOI: 10.2147/itt.s257443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background The prostate cancer microenvironment is highly immunosuppressive; immune cells stimulated in the periphery by systemic immunotherapies will be rendered inactive once entering this environment. Immunotherapies for prostate cancer need to break this immune tolerance. We have previously identified interleukin-15 (IL-15) as the only cytokine tested that activates and expands immune cells in the presence of prostate cancer cells. In the current study, we aimed to identify a method of boosting the efficacy of IL-15 in prostate cancer. Methods We engineered, by conjugation to a myristoylated peptide, a membrane-localising form of IL-15 (cyto-IL-15) and the checkpoint inhibitor antibodies cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) (cyto-abs) to enable them to bind to cell surfaces by non-specific anchoring to the phospholipid bilayer. The efficacy of these agents was investigated by intratumoral administration either alone (cyto-IL-15 or cyto-abs) or in combination (cyto-combo) in subcutaneous TRAMP-C2 prostate tumors in C57BL/6J mice and compared with their non-modified equivalents in vivo. Following the survival endpoint, histological analyses and RNA sequencing were performed on the tumors. Results Intratumoral injection of cyto-IL-15 or cyto-combo delayed tumor growth by 50% and increased median survival to 28 and 25 days, respectively, compared with vehicle (17 days), whereas non-modified IL-15 or antibodies alone had no significant effects on tumor growth or survival. Histological analysis showed that cyto-IL-15 and cyto-combo increased necrosis and infiltration of natural killer (NK) cells and CD8 T cells in the tumors compared with vehicle and non-modified agents. Overall, the efficacy of cyto-combo was not superior to that of cyto-IL-15 alone. Conclusion We have demonstrated that intratumoral injection of cyto-IL-15 leads to prostate cancer growth delay, induces tumor necrosis and increases survival. Hence, cytotopic modification in combination with intratumoral injection appears to be a promising novel approach for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Dorota Smolarek
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Richard A Smith
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK.,Urology Centre, Guy's Hospital, London, UK
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
33
|
Felices M, Lenvik TR, Kodal B, Lenvik AJ, Hinderlie P, Bendzick LE, Schirm DK, Kaminski MF, McElmurry RT, Geller MA, Eckfeldt CE, Vallera DA, Miller JS. Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager. Cancer Immunol Res 2020; 8:1139-1149. [PMID: 32661096 DOI: 10.1158/2326-6066.cir-19-0837] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are potent immune modulators that can quickly lyse tumor cells and elicit inflammatory responses. These characteristics make them ideal candidates for immunotherapy. However, unlike T cells, NK cells do not possess clonotypic receptors capable of specific antigen recognition and cannot expand via activating receptor signals alone. To enable NK cells with these capabilities, we created and have previously described a tri-specific killer engager (TriKE) platform capable of inducing antigen specificity and cytokine-mediated NK-cell expansion. TriKE molecules have three arms: (i) a single-chain variable fragment (scFv) against the activating receptor CD16 on NK cells to trigger NK-cell activation, (ii) an scFv against a tumor-associated antigen (CD33 here) to induce specific tumor target recognition, and (iii) an IL15 moiety to trigger NK-cell expansion and priming. Here, we demonstrate that by modifying the anti-CD16 scFv with a humanized single-domain antibody against CD16, we improved TriKE functionality. A CD33-targeting second-generation TriKE induced stronger and more specific NK-cell proliferation without T-cell stimulation, enhanced in vitro NK-cell activation and killing of CD33-expressing targets, and improved tumor control in preclinical mouse models. Given these improved functional characteristics, we propose rapid translation of second-generation TriKEs into the clinic.
Collapse
Affiliation(s)
- Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Todd R Lenvik
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Behiye Kodal
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexander J Lenvik
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Laura E Bendzick
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Dawn K Schirm
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Michael F Kaminski
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ron T McElmurry
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Melissa A Geller
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Craig E Eckfeldt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
34
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Chaurasiya S, Fong Y, Warner SG. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers (Basel) 2020; 12:cancers12061699. [PMID: 32604787 PMCID: PMC7352900 DOI: 10.3390/cancers12061699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The field of oncolytic virotherapy has seen remarkable advancements in last two decades, leading to approval of the first oncolytic immuno-virotherapy, Talimogene Laherparepvec, for the treatment of melanoma. A plethora of preclinical and clinical studies have demonstrated excellent safety profiles of other oncolytic viruses. While oncolytic viruses show clinical promise in already immunogenic malignancies, response rates are inconsistent. Response rates are even less consistent in immunosuppressed tumor microenvironments like those found in liver, pancreas, and MSI-stable colon cancers. Therefore, the efficacy of oncolytic viruses needs to be improved for more oncolytic viruses to enter mainstream cancer therapy. One approach to increase the therapeutic efficacy of oncolytic viruses is to use them as primers for other immunotherapeutics. The amenability of oncolytic viruses to transgene-arming provides an immense opportunity for investigators to explore different ways of improving the outcome of oncolytic therapy. In this regard, genes encoding immunomodulatory proteins are the most commonly studied genes for arming oncolytic viruses. Other transgenes used to arm oncolytic viruses include those with the potential to favorably modulate tumor stroma, making it possible to image the virus distribution and increase its suitability for combination with other therapeutics. This review will detail the progress made in arming oncolytic viruses with a focus on immune-modulatory transgenes, and will discuss the challenges that need to be addressed for more armed oncolytic viruses to find widespread clinical use.
Collapse
|
36
|
Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis 2020; 11:485. [PMID: 32587256 PMCID: PMC7316762 DOI: 10.1038/s41419-020-2696-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is an immunosuppressive, lethal brain tumor. Despite advances in molecular understanding and therapies, the clinical benefits have remained limited, and the life expectancy of patients with GBM has only been extended to ~15 months. Currently, genetically modified oncolytic viruses (OV) that express immunomodulatory transgenes constitute a research hot spot in the field of glioma treatment. An oncolytic virus is designed to selectively target, infect, and replicate in tumor cells while sparing normal tissues. Moreover, many studies have shown therapeutic advantages, and recent clinical trials have demonstrated the safety and efficacy of their usage. However, the therapeutic efficacy of oncolytic viruses alone is limited, while oncolytic viruses expressing immunomodulatory transgenes are more potent inducers of immunity and enhance immune cell-mediated antitumor immune responses in GBM. An increasing number of basic studies on oncolytic viruses encoding immunomodulatory transgene therapy for malignant gliomas have yielded beneficial outcomes. Oncolytic viruses that are armed with immunomodulatory transgenes remain promising as a therapy against malignant gliomas and will undoubtedly provide new insights into possible clinical uses or strategies. In this review, we summarize the research advances related to oncolytic viruses that express immunomodulatory transgenes, as well as potential treatment pitfalls in patients with malignant gliomas.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
- Beijing Laboratory of Biomedical Materials, Beijing, 100070, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
- Beijing Laboratory of Biomedical Materials, Beijing, 100070, China.
| |
Collapse
|
37
|
Bhattacharya S, Goyal A, Kaur P, Singh R, Kalra S. Anticancer Drug-induced Thyroid Dysfunction. EUROPEAN ENDOCRINOLOGY 2020; 16:32-39. [PMID: 32595767 PMCID: PMC7308097 DOI: 10.17925/ee.2020.16.1.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy and targeted therapy, though less toxic than conventional chemotherapy, can increase the risk of thyroid dysfunction. Immune checkpoint inhibitors render the cancer cells susceptible to immune destruction, but also predispose to autoimmune disorders like primary hypothyroidism as well as central hypothyroidism secondary to hypophysitis. Tyrosine kinase inhibitors act by blocking vascular endothelial growth factor receptors and their downstream targets. Disruption of the vascular supply from the inhibition of endothelial proliferation damages not only cancer cells but also organs with high vascularity like the thyroid. Interferon-α, interleukin-2 and thalidomide analogues can cause thyroid dysfunction by immune modulation. Alemtuzumab, a monoclonal antibody directed against the cell surface glycoprotein CD52 causes Graves' disease during immune reconstitution. Metaiodobenzylguanidine, combined with 131-iodine, administered as a radiotherapeutic agent for tumours derived from neural crest cells, can cause primary hypothyroidism. Bexarotene can produce transient central hypothyroidism by altering the feedback effect of thyroid hormone on the pituitary gland. Thyroid dysfunction can be managed in the usual manner without a requirement for dose reduction or discontinuation of the implicated agent. This review aims to highlight the effect of various anticancer agents on thyroid function. Early recognition and appropriate management of thyroid disorders during cancer therapy will help to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Alpesh Goyal
- All Indian Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
38
|
Three-Dimensional Cell Culture Based on Magnetic Fields to Assemble Low-Grade Ovarian Carcinoma Cell Aggregates Containing Lymphocytes. Cells 2020; 9:cells9030635. [PMID: 32155738 PMCID: PMC7140502 DOI: 10.3390/cells9030635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
There is a limited number of established ovarian cancer cell lines matching the low-grade serous histotype available for research purposes. Three-dimensional (3D) culture systems provide in vitro models with better tissue-like characteristics than two-dimensional (2D) systems. The goal in the study was to characterize the growth of a given low-grade serous ovarian carcinoma cell line in a 3D culture system conducted in a magnetic field. Moreover, the culture system was evaluated in respect to the assembly of malignant cell aggregates containing lymphocytes. CAISMOV24 cell line alone or mixed with human peripheral blood mononuclear cells (PBMC) were cultured using a commercially available 3D culture system designed for 24 well plates. Resulting cell aggregates revealed the intrinsic capacity of CAISMOV24 cells to assemble structures morphologically defined as papillary, and reflected molecular characteristics usually found in ovarian carcinomas. The contents of lymphocytes into co-cultured cell aggregates were significantly higher (p < 0.05) when NanoShuttle-conjugated PBMC were employed compared with non-conjugated PBMC. Moreover, lymphocyte subsets NK, T-CD4, T-CD8 and T-regulatory were successfully retrieved from co-cultured cell aggregates at 72h. Thus, the culture system allowed CAISMOV24 cell line to develop papillary-like cell aggregates containing lymphocytes.
Collapse
|
39
|
Terrén I, Orrantia A, Mikelez-Alonso I, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell-Based Immunotherapy in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020316. [PMID: 32013092 PMCID: PMC7072691 DOI: 10.3390/cancers12020316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients’ survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Idoia Mikelez-Alonso
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
- CIC biomaGUNE, 20014 Donostia-San Sebastián, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: ; Tel.: +34-94-600-6000 (ext. 7079)
| |
Collapse
|
40
|
Chao Y, Chen Q, Liu Z. Smart Injectable Hydrogels for Cancer Immunotherapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201902785] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels, a class of materials with a 3D network structure, are widely used in various fields especially in biomedicine. Injectable hydrogels could facilitate the encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. With the rapid development of cancer immunotherapy, such injectable hydrogels have attracted wide attention for local immunomodulation to boost systemic anticancer immune responses, realizing more effective immunotherapy at lower doses. The latest progresses in the development of various smart injectable hydrogels for cancer immunotherapy are summarized here. Although applied locally, such injectable hydrogels can activate systemic antitumor immune responses, safely and effectively inhibiting the tumor metastasis and recurrence. Moreover, it is discussed how injectable hydrogel‐based cancer immunotherapy would contribute to the development of next generation of cancer treatment together with their potential for clinical translation.
Collapse
Affiliation(s)
- Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
41
|
Herrera L, Santos S, Vesga MA, Anguita J, Martin-Ruiz I, Carrascosa T, Juan M, Eguizabal C. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci Rep 2019; 9:18729. [PMID: 31822751 PMCID: PMC6904575 DOI: 10.1038/s41598-019-55239-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among hematological cancers, Acute Lymphoblastic Leukemia (ALL) and Chronic Lymphocytic Leukemia (CLL) are the most common leukemia in children and elderly people respectively. Some patients do not respond to chemotherapy treatments and it is necessary to complement it with immunotherapy-based treatments such as chimeric antigen receptor (CAR) therapy, which is one of the newest and more effective treatments against these cancers and B-cell lymphoma. Although complete remission results are promising, CAR T cell therapy presents still some risks for the patients, including cytokine release syndrome (CRS) and neurotoxicity. We proposed a different immune cell source for CAR therapy that might prevent these side effects while efficiently targeting malignant cells. NK cells from different sources are a promising vehicle for CAR therapy, as they do not cause graft versus host disease (GvHD) in allogenic therapies and they are prompt to attack cancer cells without prior sensitization. We studied the efficacy of NK cells from adult peripheral blood (AB) and umbilical cord blood (CB) against different target cells in order to determine the best source for CAR therapy. AB CAR-NK cells are slightly better at killing CD19 presenting target cells and CB NK cells are easier to stimulate and they have more stable number from donor to donor. We conclude that CAR-NK cells from both sources have their advantages to be an alternative and safer candidate for CAR therapy.
Collapse
Affiliation(s)
- L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - S Santos
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - M A Vesga
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - J Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Biscay, Spain
| | - I Martin-Ruiz
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Biscay, Spain
| | - T Carrascosa
- Servicio de Hematología, Hospital Galdakao-Usansolo, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - M Juan
- Servei d´Immunologia, Hospital Clínic de Barcelona, Hospital Sant Joan de Déu, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital, Universitat de Barcelona, Barcelona, Spain
| | - C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain. .,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain.
| |
Collapse
|
42
|
Yang LC, Lai CY, Hsieh CC, Lin WC. Natural killer cell–mediated anticancer effects of an arabinogalactan derived from rice hull in CT26 colon cancer–bearing mice. Int J Biol Macromol 2019; 124:368-376. [DOI: 10.1016/j.ijbiomac.2018.11.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
43
|
Furuya H, Chan OTM, Pagano I, Zhu C, Kim N, Peres R, Hokutan K, Alter S, Rhode P, Rosser CJ. Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model. J Transl Med 2019; 17:29. [PMID: 30654801 PMCID: PMC6337786 DOI: 10.1186/s12967-019-1778-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND We set out to determine if the administration of subcutaneous (SQ) ALT-803 was non-inferior to standard intravesical BCG treatment in a carcinogen induced mouse (C57BL/6J) bladder cancer model. METHODS Using this well-established carcinogen induced mouse model, we studied the effects of various dosing schemas of ALT-803 (SQ alone, SQ with intravesical BCG, intravesical alone, intravesical with intravesical BCG) compared to intravesical BCG alone (positive control) and PBS (negative control). The non-inferiority margin for the difference in bladder weight, as a surrogate for tumor mass, was defined as 7%. RESULTS All treatment groups (i.e., ALT-803 SQ alone, ALT-803 SQ with intravesical BCG, ALT-803 intravesical alone, ALT-803 intravesical with intravesical BCG and intravesical BCG alone) demonstrated a significant reduction in tumor burden as evident by bladder weights and H&E stain (p < 0.005). Non-inferiority tests between the intravesical BCG alone group and the additional treatment groups showed that SQ ALT-803 alone (p = 0.04) and BCG plus SQ ALT-803 (p = 0.009) were non-inferior to intravesical BCG alone. In this model, we did not see an appreciable infiltration of CD4+ T, CD8+ T or CD161/KLRB1+ natural killer (NK) cells in the bladder/tumor. When assessing peripheral blood mononuclear cells, SQ ALT-803 alone resulted in a robust induction of CD8+ T cells (p < 0.01), NKG2D+ NK cells (p < 0.005) and CD3+/NKG2D+ NKT cells (p < 0.005) compared to other groups, while in splenic tissue, SQ ALT-803 alone resulted in a robust induction of CD3+/NKG2D+ NKT cells (p < 0.005) compared to other groups. CONCLUSION Subcutaneous ALT-803 treatment alone or in combination with intravesical BCG was well tolerated and was not inferior to intravesical BCG alone. CD8+ T, NKG2D+ NK and CD3+/NKG2D+ NKT cell induction along with induction of key cytokines remain steadfast mechanisms behind ALT-803. The enhanced therapeutic index seen with BCG and ALT-803, administered SQ or intravesically, provides a powerful justification for the further development of these regimens.
Collapse
Affiliation(s)
- Hideki Furuya
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA. .,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Owen T M Chan
- Pathology Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ian Pagano
- Cancer Prevention in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Chengjun Zhu
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA
| | - Nari Kim
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA
| | - Rafael Peres
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA
| | - Kanani Hokutan
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | | | - Charles J Rosser
- Translational and Clinical Research Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 353, Honolulu, HI, 96813, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
44
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
45
|
Abstract
Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Clinical Center, Bethesda, Maryland 20892-1374
| |
Collapse
|
46
|
TGFβ Imprinting During Activation Promotes Natural Killer Cell Cytokine Hypersecretion. Cancers (Basel) 2018; 10:cancers10110423. [PMID: 30400618 PMCID: PMC6267005 DOI: 10.3390/cancers10110423] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-beta (TGFβ) is a potent immunosuppressive cytokine that inhibits the anti-tumor responses of NK cells and T cells. However, the stimulation of natural killer (NK) cells with pro-inflammatory cytokines decreases NK cell sensitivity to TGFβ. Herein, we sought to determine if TGFβ imprinting (TGFβi) during NK cell activation and expansion would decrease NK cell sensitivity to TGFβ suppression. To this end, we demonstrate that the activation of NK cells during chronic IL-2 stimulation and TGFβi potently induces NK cell hypersecretion of interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) in response to tumor targets which persists for at least one month in vitro after the removal of TGFβ. TGFβi NK cell cytokine hypersecretion is induced following both cytokine and tumor activation. Further, TGFβi NK cells have a marked suppression of SMAD3 and T-bet which is associated with altered chromatin accessibility. In contrast to their heightened cytokine secretion, TGFβi NK cells downregulate several activating receptors, granzyme and perforin, and upregulate TRAIL, leading to cell-line-specific alterations in cytotoxicity. These findings may impact our understanding of how TGFβ affects NK cell development and anti-tumor function.
Collapse
|
47
|
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115:E10915-E10924. [PMID: 30373815 DOI: 10.1073/pnas.1811615115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The goal of cancer immunotherapy is to stimulate the host immune system to attack malignant cells. Antibody-dependent cellular cytotoxicity (ADCC) is a pivotal mechanism of antitumor action of clinically employed antitumor antibodies. IL-15 administered to patients with metastatic malignancy by continuous i.v. infusion at 2 μg/kg/d for 10 days was associated with a 38-fold increase in the number and activation status of circulating natural killer (NK) cells and activation of macrophages which together are ADCC effectors. We investigated combination therapy of IL-15 with rituximab in a syngeneic mouse model of lymphoma transfected with human CD20 and with alemtuzumab (Campath-1H) in a xenograft model of human adult T cell leukemia (ATL). IL-15 greatly enhanced the therapeutic efficacy of both rituximab and alemtuzumab in tumor models. The additivity/synergy was shown to be associated with augmented ADCC. Both NK cells and macrophages were critical elements in the chain of interacting effectors involved in optimal therapeutic responses mediated by rituximab with IL-15. We provide evidence supporting the hypothesis that NK cells interact with macrophages to augment the NK-cell activation and expression of FcγRIV and the capacity of these cells to become effectors of ADCC. The present study supports clinical trials of IL-15 combined with tumor-directed monoclonal antibodies.
Collapse
|
48
|
Liu Y, Wang Y, Xing J, Li Y, Liu J, Wang Z. A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2645-2654. [PMID: 30214153 PMCID: PMC6120566 DOI: 10.2147/dddt.s166373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Interleukin-15 (IL-15) is an immunomodulatory cytokine. It can activate and expand cytotoxic CD8 T lymphocytes and natural killer cells, leading to potent antitumor effects. Various forms of IL-15 are now in different stages of development for cancer immunotherapy. One of the major issues with IL-15 or IL15–IL15Rα fusion is high toxicity due to systemic activation of immune cells. Materials and methods In this study, we engineered a nanobody–cytokine fusion molecule, anti-CEA-IL15, in which an anti-CEA nanobody was linked to an IL15Rα–IL15 fusion. The nanobody–cytokine fusion exhibited multiple mechanisms to kill tumor cells, including promoting immune cell proliferation and directing antibody-dependent cytotoxicity against CEA-positive tumor cells. Results In xenograft models, anti-CEA-IL15 was localized in the tumor microenvironment and exhibited more potent antitumor activities than non-targeting IL-15, supporting potential application of this multifunctional fusion molecule in tumor immunotherapy. Conclusion We generated and validated a tumortargeting fusion protein, anti-CEA-IL15, which has potent cytokine activity to activate and mobilize the immune system to fight cancer cells. Such strategies may also be applied to other cytokines and tumor-targeting molecules to increase antitumor efficacy.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yanlan Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jieyu Xing
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Yumei Li
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Jiayu Liu
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | - Zhong Wang
- School of Pharmaceutical Sciences, .,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
49
|
Rodriguez-Barbosa JI, Ferreras MC, Buhler L, Jones ND, Schneider P, Perez-Simon JA, Del Rio ML. Therapeutic implications of NK cell regulation of allogeneic CD8 T cell-mediated immune responses stimulated through the direct pathway of antigen presentation in transplantation. MAbs 2018; 10:1030-1044. [PMID: 30036156 PMCID: PMC6204794 DOI: 10.1080/19420862.2018.1502127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Natural killer (NK) cells are a population of innate type I lymphoid cells essential for early anti-viral responses and are known to modulate the course of humoral and cellular-mediated T cell responses. We assessed the role of NK cells in allogeneic CD8 T cell-mediated responses in an immunocompetent mouse model across an MHC class I histocompatibility barrier to determine its impact in therapeutic clinical interventions with polyclonal or monoclonal antibodies (mAbs) targeting lymphoid cells in transplantation. The administration of an NK cell depleting antibody to either CD8 T cell replete or CD8 T cell-depleted naïve C57BL/6 immunocompetent mice accelerated graft rejection. This accelerated rejection response was associated with an in vivo increased cytotoxic activity of CD8 T cells against bm1 allogeneic hematopoietic cells and bm1 skin allografts. These findings show that NK cells were implicated in the control host anti-donor cytotoxic responses, likely by competing for common cell growth factors in both CD8 T cell replete and CD8 T cell-depleted mice, the latter reconstituting in response to lymphopenia. Our data calls for precaution in solid organ transplantation under tolerogenic protocols involving extensive depletion of lymphocytes. These pharmacological biologics with depleting properties over NK cells may accelerate graft rejection and promote aggressive CD8 T cell cytotoxic alloresponses refractory to current immunosuppression.
Collapse
Affiliation(s)
- J I Rodriguez-Barbosa
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M C Ferreras
- b Department of Animal Health, Mountain Livestock Institute (CSIC), School of Veterinary Sciences , University of Leon , Leon , Spain
| | - L Buhler
- c Visceral and Transplantation Surgery, Department of Surgery , University Hospitals of Geneva and Faculty of Medicine , Geneva , Switzerland
| | - N D Jones
- d MRC Centre of Immune Regulation, School of Immunity and Infection, Medical School , University of Birmingham , Birmingham , United Kingdom
| | - P Schneider
- e Department of Biochemistry , University of Lausanne , Epalinges , Switzerland
| | - J A Perez-Simon
- f Department of Hematology , University Hospital Virgen del Rocio/Institute of Biomedicine (IBIS/CSIC) , Sevilla , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M L Del Rio
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,g Leon Regional Transplantation Coordination Center , Leon University Hospital , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| |
Collapse
|
50
|
Abstract
Cytokines are major regulators of innate and adaptive immunity that enable cells of the immune system to communicate over short distances. Cytokine therapy to activate the immune system of cancer patients has been an important treatment modality and continues to be a key contributor to current clinical cancer research. Interferon alpha (IFNα) is approved for adjuvant treatment of completely resected high-risk melanoma patients and several refractory malignancies. High-dose interleukin-2 (HDIL-2) is approved for treatment of metastatic renal cell cancer and melanoma, but both agents are currently less commonly used with the development of newer agents. Granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN gamma (IFNγ), IL-7, IL-12, and IL-21 were evaluated in clinical trials and remain part of certain investigational trials. The initial single-agent clinical trials with the long-awaited IL-15 have been completed and combination trials with antitumor antibodies or checkpoint inhibitors (CPIs) have been initiated. However, cytokines in monotherapy have not fulfilled the promise of efficacy seen in preclinical experiments. They are often associated with severe dose-limiting toxicities that are manageable with appropriate dosing and are now better understood to induce immune-suppressive humoral factors, suppressive cells, and cellular checkpoints, without consistently inducing a tumor-specific response. To circumvent these impediments, cytokines are being investigated clinically with new engineered cytokine mutants (superkines), chimeric antibody-cytokine fusion proteins (immunokines), anticancer vaccines, CPIs, and cancer-directed monoclonal antibodies to increase their antibody-dependent cellular cytotoxicity or sustain cellular responses and anticancer efficacy. In this review, we summarize current knowledge and clinical application of cytokines either as monotherapy or in combination with other biological agents. We emphasize a discussion of future directions for research on these cytokines, to bring them to fruition as major contributors for the treatment of metastatic malignancy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|