1
|
Brokmann F, Luthe K, Hartmann J, Müller L, Klammt F, Hoffmann C, Weitschies W, Rosenbaum C. Hot Melt Extrusion as Continuous Manufacturing Technique to Produce Bilayer Films Loaded with Paracetamol or Lactase. Pharmaceuticals (Basel) 2025; 18:310. [PMID: 40143089 PMCID: PMC11945164 DOI: 10.3390/ph18030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: The oral delivery of large-molecule drugs remains challenging due to poor solubility, perdemeability, and stability in the gastrointestinal tract, resulting in low bioavailability. In this study, hot melt extrusion (HME) was investigated as a solvent-free manufacturing technique for mucoadhesive bilayer films to improve drug absorption. Methods: Polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were evaluated as mucoadhesive film-forming polymers, in conjunction with Eudragit® RS as a water-insoluble backing layer. Paracetamol and lactase were utilized as small and large molecule APIs, respectively. The resulting films were assembled into bilayer film samples and examined for mechanical properties, mucoadhesion, and dissolution behavior. A novel dissolution model was developed to evaluate unidirectional drug transport. Results: The results showed that bilayer films could be successfully fabricated using HME, with different mechanical properties depending on the polymer and drug content. Tests with the newly developed dissolution model showed a unidirectional drug release. The model also confirmed the need for biorelevant dissolution test systems because of a better differentiation between polymers compared to standard test methods such as the paddle-over-disk method. Furthermore, the investigation revealed that the activity of enzymes was retained after extrusion, thus indicating the feasibility of processing biologics. Conclusions: This study highlights the potential of HME to produce bilayer films as an innovative drug delivery platform offering improved bioavailability for both small and large molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christoph Rosenbaum
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
3
|
V M A, Suresh S, Kumar A, K P, N M R, Rangappa S, Murthy SN, H N S. Overcoming challenges in dermal and transdermal delivery of herbal therapeutics with polymeric microneedles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:364-396. [PMID: 37982815 DOI: 10.1080/09205063.2023.2286033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Natural products are generally preferred medications owing to their low toxicity and irritancy potential. However, a good number of herbal therapeutics (HT) exhibit solubility, permeability and stability issues that eventually affect oral bioavailability. Transdermal administration has been successful in resolving some of these issues which has lead in commercialization of a few herbal transdermal products. Polymeric Microneedles (MNs) has emerged as a promising platform in transdermal delivery of HT that face problems in permeating the skin. Several biocompatible and biodegradable polymers used in the fabrication of MNs have been discussed. MNs have been exploited for cutaneous delivery of HT in management of skin ailments like skin cancer, acne, chronic wounds and hypertrophic scar. Considering the clinical need, MNs are explored for systemic delivery of potent HT for management of diverse disorders like asthma, disorders of central nervous system and nicotine replacement as it obviates first pass metabolism and elicits a quicker onset of therapeutic response. MNs of HT have found good number of aesthetic applications in topical delivery of HT to the skin. Interestingly, MNs have emerged as an attractive option as a minimally invasive diagnostic aid in sampling biomarkers from plants, skin and ocular interstitial fluid. The review updates the progress made by MN technology of HT for multiple therapeutic interventions along with the future challenges. An attempt is made to illustrate the challenging formulation strategies employed in the fabrication of polymeric MNs of HT. Efforts are on to extend the potential applications of polymeric MNs to HT for diverse therapeutic applications.
Collapse
Affiliation(s)
- Anusha V M
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Avichal Kumar
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | - Paranjyothy K
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Reena N M
- Topical Products Testing LLC, Oxford, Mississippi, USA
| | | | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- Topical Products Testing LLC, Oxford, Mississippi, USA
| | - Shivakumar H N
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| |
Collapse
|
4
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Fasina O, Baskaran P, Boddu SHS, Tiwari AK, Chen P, Lyman CC, Babu RJ. 3D-Printed Capsaicin-Loaded Injectable Implants for Targeted Delivery in Obese Patients. AAPS PharmSciTech 2023; 24:200. [PMID: 37783858 DOI: 10.1208/s12249-023-02647-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Padmamalini Baskaran
- College of Pharmacy, Howard University, Washington, District of Columbia, 20059, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio, 43614, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Candace C Lyman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA.
| |
Collapse
|
6
|
Brewster PR, Mohammad Ishraq Bari S, Walker GM, Werfel TA. Current and future directions of drug delivery for the treatment of mental illnesses. Adv Drug Deliv Rev 2023; 197:114824. [PMID: 37068660 PMCID: PMC11479664 DOI: 10.1016/j.addr.2023.114824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Mental illnesses including anxiety disorders, autism spectrum disorder, post-traumatic stress disorder, schizophrenia, depression, and others exact an immense toll on the healthcare system and society at large. Depression alone impacts 21 million adults and costs over $200 billion annually in the United States. However, pharmaceutical strategies to treat mental illnesses are lagging behind drug development in many other disease areas. Because many of the shortcomings of therapeutics for mental illness relate to delivery problems, drug delivery technologies have the potential to radically improve the effectiveness of therapeutics for these diseases. This review describes the current pharmacotherapeutic approaches to treating mental illnesses as well as drug delivery approaches that have improved existing therapies. Approaches to improve drug bioavailability, provide controlled release of therapeutics, and enable drug targeting to the central nervous system (CNS) will be highlighted. Moreover, next-generation delivery approaches such as environmentally-controlled release and interval/sequential drug release will be addressed. Based on the evolving landscape of the treatment of mental illnesses, the nascent field of drug delivery in mental health has tremendous potential for growth in terms of both economic and patient impact.
Collapse
Affiliation(s)
- Parker R Brewster
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA; Department of Chemical Engineering, University of Mississippi, University, MS 38677, USA
| | | | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, USA; Department of Chemical Engineering, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
7
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
8
|
Mudhol S, Serva Peddha M. Development of capsaicin loaded nanoparticles based microneedle patch for transdermal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Janardhanam LSL, Deokar AS, Bollareddy SR, Venuganti VVK. Colon-Targeted Layer-by-Layer Self-assembled Film: Pharmacokinetic Analysis of BCS Class I and Class III Model Drugs. AAPS PharmSciTech 2022; 23:299. [DOI: 10.1208/s12249-022-02450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
|
10
|
Yamazoe H, Kominami C, Abe H. Superior Adhesion of a Multifunctional Protein-Based Micropatch to Intestinal Tissue by Harnessing the Hydrophobic Effect. SMALL METHODS 2022; 6:e2200153. [PMID: 35460203 DOI: 10.1002/smtd.202200153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Drug delivery systems comprising drug carriers capable of adhering to intestinal tissue have considerable potential to realize more sophisticated systemic drug delivery and topical drug treatments in the intestinal tract. The development of innovative strategies for improving the adhesion efficiency of carriers is of high importance for the advancement of this field. Herein, a novel approach to achieving high adhesion efficiency of drug carriers is presented, where the accessibility of the carrier to the intestinal surface and its subsequent adhesion to the intestinal tissue are promoted by utilizing the thermodynamic tendency of the hydrophobic carrier and its dispersion solvent, triacetin, to be excluded from the aqueous environment. Drug carriers are fabricated using proteins, imparting multiple functions, including drug release and the removal of reactive oxygen species (ROS). Results of ex vivo studies indicate that this multifunctional protein-based carrier, "protein micropatch," adheres to various mouse intestinal tissues, including the small intestine, colon, and inflamed colon, with high efficiency. Furthermore, protein micropatches, administered to mice via oral or rectal routes, successfully adhere to the intestinal tract. This approach and the highly functionalized carrier described in the study have the potential to significantly contribute to the development of bioadhesive carrier-based drug delivery systems.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Advanced Medical Devices Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Chizuko Kominami
- Advanced Medical Devices Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Hiroko Abe
- Cellular Function Analysis Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
11
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
12
|
Functionalized polymeric patch for localized oxaliplatin delivery to treat gastric cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112302. [PMID: 34474853 DOI: 10.1016/j.msec.2021.112302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Localized delivery of chemotherapeutic agents allows extended drug exposure at the target site, thereby reducing systemic toxicity. We report the development of functionalized polymeric patch with unidirectional drug release to treat gastric cancer. The oxaliplatin-loaded patch was prepared by incorporating sodium carboxymethyl cellulose, hydroxypropyl cellulose and polyvinylpyrrolidone. The patch was functionalized by coating with transferrin-poly(lactic-co-glycolic acid) conjugate on one side of the patch for cancer targeting. The other side of the patch was coated with ethylcellulose (EC) to restrict the release of oxaliplatin. The physical and mechanical properties of oxaliplatin-loaded patches were characterized. Mucoadhesion studies using excised rat stomach tissue have shown that the functionalized side of the patch has significantly (p < 0.05) greater mucoadhesion strength compared with EC coated side of the patch. The in vitro and ex vivo (stomach sac and open-membrane model) studies revealed greater permeation of oxaliplatin across the stomach tissue when adhered to the functionalized and non-functionalized side of the patch compared with EC coated side. It was found that the growth inhibition with oxaliplatin solution was not significantly greater compared with corresponding concentrations of oxaliplatin-loaded patch in AGS and Caco-2 cell models. The in vivo studies were performed in mice, where indocyanine green-loaded patch encapsulated in a gelatin capsule was orally administered. The near-infrared (NIR) optical imaging revealed adherence of the patch on the mucosal side of the stomach tissue for up to 6 h. In conclusion, the functionalized polymeric patch loaded with oxaliplatin can be a potential localized delivery system to target gastric cancer.
Collapse
|
13
|
Okeyo PO, Rajendran ST, Zór K, Boisen A. Sensing technologies and experimental platforms for the characterization of advanced oral drug delivery systems. Adv Drug Deliv Rev 2021; 176:113850. [PMID: 34182015 DOI: 10.1016/j.addr.2021.113850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Complex and miniaturized oral drug delivery systems are being developed rapidly for targeted, controlled drug release and improved bioavailability. Standard analytical techniques are widely used to characterize i) drug carrier and active pharmaceutical ingredients before loading into a delivery device (to ensure the solid form), and ii) the entire drug delivery system during the development process. However, in light of the complexity and the size of some of these systems, standard techniques as well as novel sensing technologies and experimental platforms need to be used in tandem. These technologies and platforms are discussed in this review, with a special focus on passive delivery systems in size range from a few 100 µm to a few mm. Challenges associated with characterizing these systems and evaluating their effect on oral drug delivery in the preclinical phase are also discussed.
Collapse
|
14
|
Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv 2021; 28:1226-1236. [PMID: 34142631 PMCID: PMC8218931 DOI: 10.1080/10717544.2021.1927244] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Quercetin-loaded nanosuspensions (Que-NSps) added metabolic inhibitors were evaluated as drug delivery system to promote the oral bioavailability of quercetin. Que-NSps were prepared respectively using d-alpha tocopherol acid polyethylene glycol succinate (TPGS) or Soybean Lecithin (SPC) as stabilizer. On the basis, Piperine (Pip) or sodium oleate (SO) was, respectively, encapsulated in Que-NSps as phase II metabolic inhibitors. The resulting Que-NSps all displayed a mean particle size of about 200 nm and drug loading content was in the range of 22.3–27.8%. The release of quercetin from Que-NSps was slow and sustained. After oral administration of 50 mg/kg different Que-NSps, the levels of free quercetin in plasma were significantly promoted, the concentration of quercetin metabolites (isorhamnetin and quercetin 3-O-β-d-Glucuronide) were decreased. The absolute bioavailability was, respectively 15.55%, 6.93%, 12.38%, and 23.58% for TPGS-Que-NSps, TPGS-SO-Que-NSps, SPC-Que-NSps, and SPC-Pip-Que-NSps, and 3.61% for quercetin water suspension. SPC-Pip-Que-NSps turned out to an ideal nanocarrier combined nano drug delivery system together with metabolic inhibitor to promote oral absorption of quercetin.
Collapse
Affiliation(s)
- Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Weihua Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| |
Collapse
|
15
|
Kaur G, Arora M, Ravi Kumar MNV. Oral Drug Delivery Technologies-A Decade of Developments. J Pharmacol Exp Ther 2019; 370:529-543. [PMID: 31010845 PMCID: PMC6806634 DOI: 10.1124/jpet.118.255828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Advanced drug delivery technologies, in general, enable drug reformulation and administration routes, together contributing to life-cycle management and allowing the innovator to maintain the product monopoly. Over the years, there has been a steady shift from mere life-cycle management to drug repurposing-applying delivery technologies to tackle solubility and permeability issues in early stages or safety and efficacy issues in the late stages of drug discovery processes. While the drug and the disease in question primarily drive the choice of route of administration, the oral route, for its compliance and safety attributes, is the most preferred route, particularly when it comes to chronic conditions, including pain, which is not considered a disease but a symptom of a primary cause. Therefore, the attempt of this review is to take a stock of the advances in oral delivery technologies that are applicable for injectable to oral transformation, improve risk-benefit profiles of existing orals, and apply them in the early discovery program to minimize the drug attrition rates.
Collapse
Affiliation(s)
- G Kaur
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
16
|
Abstract
Biologics now constitute a significant element of available medical treatments. Owing to their clinical and commercial success, biologics are a rapidly growing class and have become a dominant therapeutic modality. Although most of the successful biologics to date are drugs that bear a peptidic backbone, ranging from small peptides to monoclonal antibodies (~500 residues; 150 kDa), new biologic modalities, such as nucleotide-based therapeutics and viral gene therapies, are rapidly maturing towards widespread clinical use. Given the rise of peptides and proteins in the pharmaceutical landscape, tremendous research and development interest exists in developing less-invasive or non-invasive routes for the systemic delivery of biologics, including subcutaneous, transdermal, oral, inhalation, nasal and buccal routes. This Review summarizes the current status, latest updates and future prospects for such delivery of peptides, proteins and other biologics.
Collapse
|
17
|
Banerjee A, Mitragotri S. Intestinal patch systems for oral drug delivery. Curr Opin Pharmacol 2017; 36:58-65. [DOI: 10.1016/j.coph.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
|
18
|
Kirsch K, Hanke U, Weitschies W. An overview of intestinal wafers for oral drug delivery. Eur J Pharm Biopharm 2017; 114:135-144. [DOI: 10.1016/j.ejpb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/22/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
19
|
Dangol M, Kim S, Li CG, Fakhraei Lahiji S, Jang M, Ma Y, Huh I, Jung H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J Control Release 2017; 265:41-47. [PMID: 28389409 DOI: 10.1016/j.jconrel.2017.03.400] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Natural products such as caffeine have been found to be effective in reducing body weight through lipolysis. Here, we report the successful loading of caffeine onto dissolving microneedle following inhibition of its crystal growth by hyaluronic acid (HA), the matrix material of the dissolving microneedle (DMN). Further, the anti-obesity activity of caffeine was evaluated in high-fat diet-induced obese C57BL/6J mice. After 6weeks of caffeine loaded dissolving microneedle patch (CMP) administration, lipolysis improved significantly as shown by leptin and adiponectin activity, which resulted in considerable weight loss of about 12.8±0.75% in high-fat diet-induced obese mice. Comparison of the levels of triglyceride, total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol after CMP administration with the initial levels in obese mice indicated significant anti-obesity activity of CMP. These findings suggested that a novel CMP with an increased amount of caffeine loaded onto DMN has therapeutic activity against obesity.
Collapse
Affiliation(s)
- Manita Dangol
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Suyong Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Juvic Biotech, Inc., Building 102, Yonsei Engineering Research Park, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cheng Guo Li
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Shayan Fakhraei Lahiji
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Mingyu Jang
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Juvic Biotech, Inc., Building 102, Yonsei Engineering Research Park, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghao Ma
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Inyoung Huh
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Juvic Biotech, Inc., Building 102, Yonsei Engineering Research Park, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Preparation and characterization of gastrointestinal wafer formulations. Int J Pharm 2017; 522:165-171. [DOI: 10.1016/j.ijpharm.2017.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
|
21
|
Fox CB, Nemeth CL, Chevalier RW, Cantlon J, Bogdanoff DB, Hsiao JC, Desai TA. Picoliter-volume inkjet printing into planar microdevice reservoirs for low-waste, high-capacity drug loading. Bioeng Transl Med 2017; 2:9-16. [PMID: 28503662 PMCID: PMC5426811 DOI: 10.1002/btm2.10053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron-scale reservoirs of the devices in a low-waste, high-capacity manner remains challenging. Here, we use picoliter-volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.
Collapse
Affiliation(s)
- Cade B Fox
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Cameron L Nemeth
- UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158
| | - Rachel W Chevalier
- Dept. of Pediatrics, Division of Pediatric Gastroenterology, School of Medicine, University of California, San Francisco, CA 94158
| | | | - Derek B Bogdanoff
- Center for Advanced Technology, University of California, San Francisco, CA, 94158
| | - Jeff C Hsiao
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Tejal A Desai
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158.,UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158
| |
Collapse
|
22
|
Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016; 103:105-120. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023]
Abstract
Development of novel drug delivery systems (DDS) represents a promising opportunity to overcome the various bottlenecks associated with the chronic antiretroviral (ARV) therapy of the human immunodeficiency virus (HIV) infection. Oral drug delivery is the most convenient and simplest route of drug administration that involves the swallowing of a pharmaceutical compound with the intention of releasing it into the gastrointestinal tract. In oral delivery, drugs can be formulated in such a way that they are protected from digestive enzymes, acids, etc. and released in different regions of the small intestine and/or the colon. Not surprisingly, with the exception of the subcutaneous enfuvirtide, all the marketed ARVs are administered orally. However, conventional (marketed) and innovative (under investigation) oral delivery systems must overcome numerous challenges, including the acidic gastric environment, and the poor aqueous solubility and physicochemical instability of many of the approved ARVs. In addition, the mucus barrier can prevent penetration and subsequent absorption of the released drug, a phenomenon that leads to lower oral bioavailability and therapeutic concentration in plasma. Moreover, the frequent administration of the cocktail (ARVs are administered at least once a day) favors treatment interruption. To improve the oral performance of ARVs, the design and development of more efficient oral drug delivery systems are called for. The present review highlights various innovative research strategies adopted to overcome the limitations of the present treatment regimens and to enhance the efficacy of the oral ARV therapy in HIV.
Collapse
|
23
|
Jivani RR, Lakhtaria GJ, Patadiya DD, Patel LD, Jivani NP, Jhala BP. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques. Saudi Pharm J 2016; 24:1-20. [PMID: 26903763 PMCID: PMC4719786 DOI: 10.1016/j.jsps.2013.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/14/2013] [Indexed: 01/19/2023] Open
Abstract
Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures.
Collapse
Affiliation(s)
- Rishad R Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Gaurang J Lakhtaria
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Dhaval D Patadiya
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Laxman D Patel
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Nurrudin P Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Bhagyesh P Jhala
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| |
Collapse
|
24
|
Affiliation(s)
- Mark W. Tibbitt
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - James E. Dahlman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Robert Langer
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Harvard-MIT
Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Fox CB, Chirra HD, Desai TA. Planar bioadhesive microdevices: a new technology for oral drug delivery. Curr Pharm Biotechnol 2015; 15:673-83. [PMID: 25219863 DOI: 10.2174/1389201015666140915152706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/01/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery.
Collapse
Affiliation(s)
| | | | - Tejal A Desai
- 1700 4th Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Adibkia K, Mohajjel Nayebi A, Barzegar-Jalali M, Hosseinzadeh S, Ghanbarzadeh S, Shiva A. Comparison of the Analgesic Effect of Diclofenac Sodium-Eudragit(®) RS100 Solid Dispersion and Nanoparticles Using Formalin Test in the Rats. Adv Pharm Bull 2015; 5:77-81. [PMID: 25789222 DOI: 10.5681/apb.2015.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE In this study the intensity and duration of analgesic effect of diclofenac Na - Eudragit(®) RS100 solid dispersion and nanoparticles were evaluated by using formalin test in the rats. METHODS The animals received different formulations of diclofenac Na and subsequently 50 μl of formalin solution (2.5%) was injected subcutaneously in the right paws after 1 h, 2 h and 3 h. The paw licking behavior was then evaluated in two phases. A dose of 20 mg/kg of pure diclofenac Na powder was determined as effective dose. RESULTS In the first phase, in term of reduced paw licking time, no significant differences were found in any of the groups compared to the control group. However, in the second phase, the animals which received pure drug powder and the physical mixture of diclofenac Na with Eudragit(®) RS100 showed significant differences at the first and second hours. In the animals received the nanoparticles and solid dispersion, significant differences were observed in the third hour compared to the control group. CONCLUSION The analgesic effect of diclofenac Na could be improved by formulating its nanoparticles and solid dispersion with Eudragit(®) RS100. However, the nanoparticles revealed significantly higher analgesic effect than solid dispersion.
Collapse
Affiliation(s)
- Khosro Adibkia
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Barzegar-Jalali
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Hosseinzadeh
- Students' Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Students' Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Shiva
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed Engl 2014; 53:8045-8049. [PMID: 24634136 PMCID: PMC4315180 DOI: 10.1002/anie.201311047] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/07/2022]
Abstract
We report on a therapeutic approach using thermo-responsive multi-fingered drug eluting devices. These therapeutic grippers referred to as theragrippers are shaped using photolithographic patterning and are composed of rigid poly(propylene fumarate) segments and stimuli-responsive poly(N-isopropylacrylamide-co-acrylic acid) hinges. They close above 32 °C allowing them to spontaneously grip onto tissue when introduced from a cold state into the body. Due to porosity in the grippers, theragrippers could also be loaded with fluorescent dyes and commercial drugs such as mesalamine and doxorubicin, which eluted from the grippers for up to seven days with first order release kinetics. In an in vitro model, theragrippers enhanced delivery of doxorubicin as compared to a control patch. We also released theragrippers into a live pig and visualized release of dye in the stomach. The design of such tissue gripping drug delivery devices offers an effective strategy for sustained release of drugs with immediate applicability in the gastrointestinal tract.
Collapse
Affiliation(s)
- Kate Malachowski
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Joyce Breger
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Hye Rin Kwag
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Martha O. Wang
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - John P. Fisher
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - Florin M. Selaru
- Department of Medicine, The Johns Hopkins University, Baltimore, MD21218 (USA)
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| |
Collapse
|
28
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Hamori M, Yoshimatsu S, Hukuchi Y, Shimizu Y, Fukushima K, Sugioka N, Nishimura A, Shibata N. Preparation and pharmaceutical evaluation of nano-fiber matrix supported drug delivery system using the solvent-based electrospinning method. Int J Pharm 2014; 464:243-51. [PMID: 24440839 DOI: 10.1016/j.ijpharm.2013.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
In this study, utilizing the solvent-based electrospinning (ES) method, which is mainly employed in the textile industry, we prepared nanofiber-based capsules including drugs for controlled-release delivery systems using methacrylic acid copolymer (EUDRAGIT(®) S100, MAC) as a polymer, and evaluated their in vitro drug dissolution profiles and in vivo pharmacokinetics in rats. As the model drugs, uranine (UN) was used as a water-soluble drug and nifedipine (NP) as a water-insoluble drug. The mean diameters of drug free nano-fiber and nano-fiber including NP or UN were 751.5 ± 67.2, 703.3 ± 71.2 and 2477.8 ± 206.1 nm, respectively. X-ray diffraction for the nano-fibrotic sheet showed that UN and/or NP were packed in nano-fiber in an amorphous form. The in vitro release of UN or NP from the nano-fiber packed capsules (NFPC) and milled-powder of nano-fiber packed capsules (MPPC) showed controlled release of UN or NP as compared to capsules of a physical mixture of MAC and each drug. An in vivo pharmacokinetic study in rats after intraduodenal administration of NFPC or MPPC including UN and/or NP clearly demonstrated that application of nano-fibrotic technique as a drug delivery system offers drastic changes in pharmacokinetic profiles for both water-soluble and water-insoluble drugs. The ES method is a useful technique to prepare a nano-fiber like solid dispersion for polar or nonpolar drugs, and has wide potential pharmaceutical applications.
Collapse
Affiliation(s)
- Mami Hamori
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Shiori Yoshimatsu
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yuki Hukuchi
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yuki Shimizu
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Keizo Fukushima
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo 650-8586, Japan
| | - Nobuyuki Sugioka
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo 650-8586, Japan
| | - Asako Nishimura
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Nobuhito Shibata
- Department of Bioharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
30
|
Zhu Z, Zhai Y, Zhang N, Leng D, Ding P. The development of polycarbophil as a bioadhesive material in pharmacy. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved Transport and Absorption through Gastrointestinal Tract by PEGylated Solid Lipid Nanoparticles. Mol Pharm 2013; 10:1865-73. [DOI: 10.1021/mp300649z] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.
R. China
| | - Chun-Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.
R. China
| | - Gui-hong Chai
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.
R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.
R. China
| | - Fu-Qiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.
R. China
| |
Collapse
|
32
|
Stevenson CL, Santini JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 2012; 64:1590-602. [PMID: 22465783 DOI: 10.1016/j.addr.2012.02.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy.
Collapse
Affiliation(s)
- Cynthia L Stevenson
- On Demand Therapeutics, Inc., One Industrial Way, Unit 1A, Tyngsboro, MA 01879, USA.
| | | | | |
Collapse
|
33
|
Uskoković V, Lee K, Lee PP, Fischer KE, Desai TA. Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices. ACS NANO 2012; 6:7832-41. [PMID: 22900471 PMCID: PMC3461957 DOI: 10.1021/nn3019865] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While the oral drug delivery route has traditionally been the most popular among patients, it is estimated that 90% of therapeutic compounds possess oral bioavailability limitations. Thus, the development of novel drug carriers for more effective oral delivery of therapeutics is an important goal. Composite particles made by growing nanoscopic silicon wires from the surface of narrowly dispersed, microsized silica beads were previously shown to be able to (a) adhere well onto the epithelium by interdigitating their nanowires with the apical microvilli and (b) increase the permeability of Caco-2 cell monolayers with respect to small organic molecules in direct proportion to their concentration. A comparison between the effects of spherical and planar particle morphologies on the permeability of the epithelial cell layer in vitro and in vivo presented the subject of this study. Owing to their larger surface area, the planar particles exhibited a higher drug-loading efficiency than their spherical counterparts, while simultaneously increasing the transepithelial permeation of a moderately sized model drug, insulin. The insulin elution profile for planar nanowire-coated particles displayed a continual increase in the cumulative amount of the released drug, approaching a constant release rate for a 1-4 h period of the elution time. An immunohistochemical study confirmed the ability of planar silica particles coated with nanowires to loosen the tight junction of the epithelial cells to a greater extent than the spherical particles did, thus, enabling a more facile transport of the drug across the epithelium. Transepithelial permeability tests conducted for model drugs ranging in size from 0.4 to 150 kDa yielded three categories of molecules depending on their permeation propensities. Insulin belonged to the category of molecules deliverable across the epithelium only with the assistance of nanowire-coated particles. Other groups of drugs, smaller and bigger, respectively, either did not need the carrier to permeate the epithelium or were not able to cross it even with the support from the nanowire-coated particles. Bioavailability of insulin orally administered to rabbits was also found to be increased when delivered in conjunction with the nanowire-coated planar particles.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, United States.
| | | | | | | | | |
Collapse
|
34
|
Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 2012; 64:496-507. [PMID: 22166590 DOI: 10.1016/j.addr.2011.11.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 12/21/2022]
Abstract
Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy.
Collapse
|
35
|
Pastor E, Matveeva E, Valle-Gallego A, Goycoolea FM, Garcia-Fuentes M. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloids Surf B Biointerfaces 2011; 88:601-9. [DOI: 10.1016/j.colsurfb.2011.07.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
36
|
PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium. Biomaterials 2011; 33:1663-72. [PMID: 22116000 DOI: 10.1016/j.biomaterials.2011.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/08/2011] [Indexed: 11/21/2022]
Abstract
Composite particles made by growing nanoscopic silicon wires from the surface of monodispersed, microsized silica beads were tested in this study for their ability to affect the integrity and permeability of an epithelial cell layer. Polyethylene glycol (PEG) is known to sterically stabilize particles and prevent protein binding; as such, it is a routine way to impart in vivo longevity to drug carriers. The effect of the silica beads, both with and without silicon nanowires and PEG, on the disruption of the tight junctions in Caco-2 cells was evaluated by means of: (a) analysis of the localization of zonula occludens-1 (ZO-1), claudin-1 and f-actin; (b) measurements of trans-epithelial electrical resistance (TEER); (c) real-time quantitative RT-PCR analysis of the expression of PKC-α and PKC-z, which regulate the fluidity of cell membranes, and RhoA and Rac1, which are mainly involved in mechanotransduction processes; and (d) drug permeability experiments with fluorescein-sodium. The results have shown that Si-nanowire-coated silica microparticles added to Caco-2 cells in culture lead to alterations in tight junction permeability and the localization of ZO-1 and f-actin, as well as to decreased width of ZO-1 and claudin-1 at the tight junction and increased expression of PKC transcripts. Si-nanowire-coated silica microparticles increased the permeability of Caco-2 cell monolayers to fluorescein-sodium in proportion to their amount. Effects indicative of loosening the Caco-2 cell monolayers and increasing their permeability were less pronounced for PEGylated particles, owing to their greater supposed inertness in comparison with the non-functionalized beads and nanowires. The analyzed Si-nanowire-coated silica microparticles have thus been shown to affect membrane barrier integrity in vitro, suggesting the possibility of using nanostructured microparticles to enhance drug permeability through the intestinal epithelium in vivo.
Collapse
|
37
|
Teutonico D, Ponchel G. Patches for improving gastrointestinal absorption: an overview. Drug Discov Today 2011; 16:991-7. [DOI: 10.1016/j.drudis.2011.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/07/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
38
|
Teutonico D, Montanari S, Ponchel G. Concentration and surface of absorption: concepts and applications to gastrointestinal patches delivery. Int J Pharm 2011; 413:87-92. [PMID: 21536118 DOI: 10.1016/j.ijpharm.2011.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Gastrointestinal patches represent a novel multiparticulate drug delivery system able to increase the intestinal absorption of drugs with poor bioavailability. The number of patches to administer is a critical issue since it is related to the surface and drug concentration at the absorption site. The objective of this article is to evaluate the effect of the number of administered patches on the final absorption of leuprolide, a peptide chosen as model drug, assuming complete adhesion of all the devices to the intestinal membrane. The same dose of leuprolide was encapsulated into 2, 4 and 6 patches; the resulting intestinal absorption profiles were measured with the Ussing chamber ex vivo experimental setup and compared between them. The results showed that varying the number of patches, the final absorption does not present statistically significant changes, indicating that changes in concentration are balanced by change in absorption surface. These experimental findings can also be explained considering the equation that links the drug flow to surface and concentration at the absorption site, showing that the drug flow is related only to the geometry of each individual patch.
Collapse
Affiliation(s)
- D Teutonico
- Univ Paris Sud, UMR CNRS 8612, IFR 141, Faculté de Pharmacie, Châtenay-Malabry, France.
| | | | | |
Collapse
|
39
|
Fischer KE, Jayagopal A, Nagaraj G, Daniels RH, Li EM, Silvestrini MT, Desai TA. Nanoengineered surfaces enhance drug loading and adhesion. NANO LETTERS 2011; 11:1076-81. [PMID: 21280638 PMCID: PMC3053427 DOI: 10.1021/nl103951e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To circumvent the barriers encountered by macromolecules at the gastrointestinal mucosa, sufficient therapeutic macromolecules must be delivered in close proximity to cells.(1) Previously, we have shown that silicon nanowires penetrate the mucous layer and adhere directly to cells under high shear.(2) In this work, we characterize potential reservoirs and load macromolecules into interstitial space between nanowires. We show significant increases in loading capacity due to nanowires while retaining adhesion of loaded particles under high shear.
Collapse
Affiliation(s)
- Kathleen E. Fischer
- Department of Bioengineering and Therapeutic Sciences, UCSF; San Francisco, CA 94158
- UCSF/UCB Joint Graduate Group in Bioengineering; San Francisco, CA 94158
| | - Aishwarya Jayagopal
- Department of Bioengineering and Therapeutic Sciences, UCSF; San Francisco, CA 94158
| | - Ganesh Nagaraj
- Department of Bioengineering and Therapeutic Sciences, UCSF; San Francisco, CA 94158
| | | | | | | | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, UCSF; San Francisco, CA 94158
- UCSF/UCB Joint Graduate Group in Bioengineering; San Francisco, CA 94158
- Additional contact information for Tejal A. Desai: , phone – 415–514–4503, fax – 415–476–2414
| |
Collapse
|
40
|
Neelam K, Mahalingam R, Birudaraj R, Alfredson T, Anne P, Li X, Jasti BR. Relative bioavailability of chlorothiazide from mucoadhesive compacts in pigs. AAPS PharmSciTech 2009; 10:1331-5. [PMID: 19902362 PMCID: PMC2799598 DOI: 10.1208/s12249-009-9332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 10/19/2009] [Indexed: 11/30/2022] Open
Abstract
The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9-10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 mL of water via gastric tubes. Blood samples were collected between 0 to 24 h using catheters inserted into the jugular vein. Plasma was separated by protein precipitation, and chlorothiazide concentrations were determined using a high-performance liquid chromatography method. The mean Tmax and the Cmax of chlorothiazide following the administration of oral suspension and mucoadhesive compacts were 0.58+/-0.20 h and 682.97+/-415.69 ng/mL and 2.17+/-0.98 h and 99.42+/-124.08 ng/mL, respectively. The Kel and T1/2 of chlorothiazide were found to be 1.06+/-0.28 h(-1) and 0.70+/-0.21 h from suspension and 0.95+/-1.11 h(-1) and 2.05+/-1.90 h from the compacts, respectively. The Tmax of mucoadhesive compacts were significantly longer (p<0.05; 2.17 h) than the reference products (0.58 h), whereas the Cmax of compacts were significantly lower (99 ng/mL) than the reference product (683 ng/mL; p<0.05). The area under the curve (AUC) of compacts accounts only 50.15% (404.32+/-449.93 ng h/mL) of the reference product's AUC (806.27+/-395.97 ng h/mL). The relative bioavailability of the compacts was lower than that of the suspension, and this may be due to the narrow window of absorption for chlorothiazide.
Collapse
Affiliation(s)
- Karunakar Neelam
- />Department of Pharmaceutics & Medicinal Chemistry, T. J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California 95211 USA
| | - Ravichandran Mahalingam
- />Department of Pharmaceutics & Medicinal Chemistry, T. J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California 95211 USA
| | - Raj Birudaraj
- />Pharmaceutics Department, Roche Palo Alto, 3431 Hillview Ave, Palo Alto, California USA
| | - Tom Alfredson
- />Pharmaceutics Department, Roche Palo Alto, 3431 Hillview Ave, Palo Alto, California USA
| | - Pratap Anne
- />Department of Pharmaceutics & Medicinal Chemistry, T. J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California 95211 USA
| | - Xiaoling Li
- />Department of Pharmaceutics & Medicinal Chemistry, T. J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California 95211 USA
| | - Bhaskara R. Jasti
- />Department of Pharmaceutics & Medicinal Chemistry, T. J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California 95211 USA
| |
Collapse
|
41
|
Caillard R, Petit A, Subirade M. Design and evaluation of succinylated soy protein tablets as delayed drug delivery systems. Int J Biol Macromol 2009; 45:414-20. [DOI: 10.1016/j.ijbiomac.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
42
|
|
43
|
Affiliation(s)
- Eric E Nuxoll
- University of Minnesota Department of Pharmaceutics, 9-177 Weaver- Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
44
|
Parylene-Encapsulated Copolymeric Membranes as Localized and Sustained Drug Delivery Platforms. Ann Biomed Eng 2009; 37:2003-17. [DOI: 10.1007/s10439-009-9662-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/25/2009] [Indexed: 01/17/2023]
|
45
|
Yamanaka YJ, Leong KW. Engineering strategies to enhance nanoparticle-mediated oral delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 19:1549-70. [PMID: 19017470 DOI: 10.1163/156856208786440479] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral delivery is the most preferred route of drug administration due to convenience, patient compliance and cost-effectiveness. Despite these advantages it remains difficult to achieve satisfactory bioavailability levels via oral administration due to the harsh environment of the gastrointestinal (GI) tract, particularly for biomacromolecules. One promising method to increase the bioavailability of macromolecular drugs such as proteins and nucleic acids is to encapsulate them in nanoparticles before oral administration. This review describes innovative strategies for increasing the efficacy of nanoparticle-mediated delivery to the GI tract. Approaches to optimize nanoparticle formulation by exploiting mucoadhesion, environmental responsiveness and external delivery control mechanisms are discussed. The application of recent advances in nanoparticle synthesis using supercritical fluids, microfluidics and imprint lithography to oral delivery are also presented, as well as possible strategies for incorporating nanoparticles into micro- and macroscale oral delivery devices.
Collapse
Affiliation(s)
- Yvonne J Yamanaka
- Department of Biomedical Engineering, Department of Surgery, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
46
|
Hoyer H, Greindl M, Bernkop‐Schnürch A. Design and In Vivo Evaluation of a Patch System Based on Thiolated Polymers. J Pharm Sci 2009; 98:620-7. [DOI: 10.1002/jps.21480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Mahalingam R, Jasti B, Birudaraj R, Stefanidis D, Killion R, Alfredson T, Anne P, Li X. Evaluation of polyethylene oxide compacts as gastroretentive delivery systems. AAPS PharmSciTech 2009; 10:98-103. [PMID: 19148757 DOI: 10.1208/s12249-008-9182-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 11/14/2008] [Indexed: 11/30/2022] Open
Abstract
Compacts containing selected bioadhesive polymers, fillers, and binders were investigated for their potential as a bioadhesive gastroretentive delivery system to deliver water soluble and water insoluble compounds in the stomach. Compacts with 90:10, 75:25, and 60:40 of polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) were evaluated for swelling, dissolution, bioadhesion, and in vitro gastric retention. Compacts containing higher PEO showed higher swelling (111.13%) and bioadhesion (0.62 +/- 0.03 N/cm(2)), and retained their integrity and adherence onto gastric mucosa for about 9 h under in vitro conditions. In vivo gastroretentive property of compacts were evaluated in Yorkshire cross swine. Compacts containing 58% PVP, 40% PEO and 2% of water soluble or water insoluble marker compounds showed gastroadhesive and retentive properties in vivo. It is concluded that PEO in combination with PVP yields a non disintegrating type bioadhesive dosage form which is suitable for gastroretentive applications.
Collapse
|
48
|
Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res 2009; 26:601-11. [PMID: 19132514 DOI: 10.1007/s11095-008-9803-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
The aim of this review is to provide the reader general and inspiring prospects on recent and promising fields of innovation in oral drug delivery. Nowadays, inventive drug delivery systems vary from geometrically modified and modular matrices, more close to "classic" pharmaceutical manufacturing processes, to futuristic bio micro-electro-mechanical systems (bioMEMS), based on manufacturing techniques borrowed from electronics and other fields. In these technologies new materials and creative solutions are essential designing intelligent drug delivery systems able to release the required drug at the proper body location with the correct release rate. In particular, oral drug delivery systems of the future are expected to have a significant impact on the treatment of diseases, such as AIDS, cancer, malaria, diabetes requiring complex and multi-drug therapies, as well as on the life of patients, whose age and/or health status make necessary a multiple pharmacological approach.
Collapse
Affiliation(s)
- P Colombo
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G.P. Usberti 27/a, 43100, Parma, Italy.
| | | | | | | |
Collapse
|
49
|
Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. LAB ON A CHIP 2008; 8:1864-78. [PMID: 18941687 PMCID: PMC2970504 DOI: 10.1039/b806446f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
By adapting microfabrication techniques originally developed in the microelectronics industry novel devices for drug delivery, tissue engineering and biosensing have been engineered for in vivo use. Implant microfabrication uses a broad range of techniques including photolithography, and micromachining to create devices with features ranging from 0.1 to hundreds of microns with high aspect ratios and precise features. Microfabrication offers device feature scale that is relevant to the tissues and cells to which they are applied, as well as offering ease of en masse fabrication, small device size, and facile incorporation of integrated circuit technology. Utilizing these methods, drug delivery applications have been developed for in vivo use through many delivery routes including intravenous, oral, and transdermal. Additionally, novel microfabricated tissue engineering approaches propose therapies for the cardiovascular, orthopedic, and ocular systems, among others. Biosensing devices have been designed to detect a variety of analytes and conditions in vivo through both enzymatic-electrochemical reactions and sensor displacement through mechanical loading. Overall, the impact of microfabricated devices has had an impact over a broad range of therapies and tissues. This review addresses many of these devices and highlights their fabrication as well as discusses materials relevant to microfabrication techniques.
Collapse
Affiliation(s)
- Kristy M. Ainslie
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| |
Collapse
|
50
|
Hoyer H, Föger F, Kafedjiiski K, Loretz, B, Bernkop-Schnürch A. Design and Evaluation of a New Gastrointestinal Mucoadhesive Patch System Containing Chitosan-Glutathione. Drug Dev Ind Pharm 2008; 33:1289-96. [DOI: 10.1080/03639040701385006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|